# Wireless-G Notebook Adapter



Use this Guide to install the following:

WPC54G



#### **COPYRIGHT & TRADEMARKS**

Specifications are subject to change without notice. Copyright © 2003 Cisco Systems, Inc. All rights reserved. Linksys is a registered trademarks of Cisco Systems, Inc. Other brands and product names are trademarks or registered trademarks of their respective holders.

#### LIMITED WARRANTY

Linksys guarantees that every Wireless-G Notebook Adapter will be free from physical defects in material and workmanship for three years from the date of purchase, when used within the limits set forth in the Specifications section of this User Guide.

This Warranty is valid and may be processed only in the country of purchase.

If the product proves defective during this warranty period, go to the Linksys website at www.linksys.com for complete RMA (Return Merchandise Authorization) assistance. You can also call Linksys Technical Support in order to obtain a RMA Number. BE SURE TO HAVE YOUR PROOF OF PURCHASE AND A BARCODE FROM THE PRODUCT'S PACK-AGING ON HAND WHEN CALLING. RETURN REQUESTS CANNOT BE PROCESSED WITHOUT PROOF OF PURCHASE. When returning a product, mark the RMA Number clearly on the outside of the package and include a copy of your original proof of purchase. All customers located outside of the United States of America and Canada shall be held responsible for shipping and handling charges.

IN NO EVENT SHALL LINKSYS'S LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT FROM DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THE PRODUCT, ITS ACCOMPANYING SOFTWARE, OR ITS DOCUMENTATION. LINKSYS DOES NOT OFFER REFUNDS FOR ANY PRODUCT. Linksys makes no warranty or representation, expressed, implied, or statutory, with respect to its products or the contents or use of this documentation and all accompanying software, and specifically disclaims its quality, performance, merchantability, or fitness for any particular purpose. Linksys reserves the right to revise or update its products, software, or documentation without obligation to notify any individual or entity. Please direct all inquiries to:

Linksys P.O. Box 18558, Irvine, CA 92623.

#### SAFETY AND REGULATORY NOTICES

#### FCC STATEMENT

This Wireless-G Notebook Adapter has been tested and complies with the specifications for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used according to the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which is found by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment or devices
- Connect the equipment to an outlet other than the receiver's
- Consult a dealer or an experienced radio/TV technician for assistance

FCC Caution: Any change or modification to the product not expressly approved by Linksys could void the user's authority to operate the device.

#### FCC Radiation Exposure Statement

This transmitter must not be co-located or operating in conjunction with any other ant na or transmitter.

This equipment has been SAR-evaluated for use in laptops (notebooks) with side slot configuration.

End-users must be provided with specific operations for satisfying RF exposure compliance.

#### INDUSTRY CANADA (CANADA)

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003 du Canada. The use of this device in a system operating either partially or completely outdoors may require the user to obtain a license for the system according to the Canadian regulations.

#### EC DECLARATION OF CONFORMITY (EUROPE)

Linksys declares that the product included conforms to the specifications listed below, following the provisions of the EMC Directive 89/336/EEC and Low Voltage Directive 73/23/EEC:

- ETS 300-826, 301 489-1 General EMC requirements for Radio equipment.
- EN 609 50 Safety
- ETS 300-328-2 Technical requirements for Radio equipment.

Note: This equipment is intended to be used in all EU and EFTA countries. Outdoor use may be restricted to certain frequencies and/or may require a license for operation. For more details, contact Linksys Corporate Compliance.

Note: Combinations of power levels and antennas resulting in a radiated power level of above 100 mW are considered as not compliant with the above mentioned directive and are not allowed for use within the European community and countries that have adopted the European R&TTE directive 1999/5/EC and/or the CEPT recommendation Rec 70.03. For more details on legal combinations of power levels and antennas, contact Linksys Corporate Compliance.

- Linksys vakuuttaa täten että Wireless-G Ethernet Bridge tyyppinen laite on direktiivin 1999/5/EY, direktiivin 89/336/EEC ja direktiivin 73/23/EEC oleellisten vaatimusten ja sitä koskevien näiden direktiivien muiden ehtojen mukainen.
- Linksys déclare que le pont Ethernet sans fil G est conforme aux conditions essentielles et aux dispositions relatives à la directive 1999/5/EC, la directive 89/336/EEC, et à la directive 73/23/EEC.
- Belgique B L'utilisation en extérieur est autorisé sur le canal 11 (2462 MHz), 12 (2467 MHz), et 13 (2472 MHz).
  - Dans le cas d'une utilisation privée, à l'extérieur d'un bâtiment, au-dessus d'un espace public, aucun enregistrement n'est nécessaire pour une distance de moins de 300m. Pour une distance supérieure à 300m un enregistrement auprès de l'IBPT est requise. Pour une utilisation publique à l'extérieur de bâtiments, une licence de l'IBPT est requise. Pour les enregistrements et licences, veuillez contacter l'IBPT.

- France F: Bande de fréquence restreinte: seuls les canaux 10, 11, 12, 13 (2457, 2462, 2467, et 2472 MHz respectivement) doivent être utilisés en France. Toute utilisation, qu'elle soit intérieure ou extérieure, est soumise à autorisation. Vous pouvez contacter l'Autorité de Régulation des Télécommuniations (http://www.art-telecom.fr) pour la procédure à suivre.
- France F: Restricted frequency band: only channels 10, 11, 12, 13 (2457, 2462, 2467, and 2472 MHz respectively) may be used in France. License required for every indoor and outdoor installations. Please contact ART for procedure to follow.
- Deutschland D: Anmeldung im Outdoor-Bereich notwending, aber nicht genehmigungspflichtig. Bitte mit Händler die Vorgehensweise abstimmen.
- Germany D: License required for outdoor installations. Check with reseller for procedure to follow.
- Italia I: E' necessaria la concessione ministeriale anche per l'uso interno. Verificare con i rivenditori la procedura da seguire. L'uso per installazione in esterni non e' permessa
- Italy I: License required for indoor use. Use with outdoor installations not allowed.
- the Netherlands NL License required for outdoor installations. Check with reseller for procedure to follow.
- Nederlands NL Licentie verplicht voor gebruik met buitenantennes. Neem contact op met verkoper voor juiste procedure.

### Table of Contents

| Chapter 1: Introduction The Wireless-G Notebook Adapter Features                                                                                      | 1<br>1<br>1                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Chapter 2: Planning Your Wireless Network Network Topology Ad-Hoc versus Infrastructure Mode                                                          | 2 2 2                            |
| Chapter 3: Getting to Know the Wireless-G Notebool<br>Adapter<br>The Adapter's LEDs                                                                   | k<br>4<br>4                      |
| Chapter 4: Software Installation and Configuration for Windows 98SE, Me, and 2000  Overview  Setup Wizard Instructions for Windows 98SE, Me, and 2000 | 5<br>5                           |
| Chapter 5: Hardware Installation                                                                                                                      | 10                               |
| Chapter 6: Driver Installation and Configuration for Windows XP Overview Driver Installation for Windows XP Windows XP Wireless Zero Configuration    | 11<br>11<br>11<br>13             |
| Chapter 7: Using the WLAN Monitor for Windows 98SE, Me, and 2000 Overview Accessing the WLAN Monitor Link Information Site Survey Profiles            | 15<br>15<br>15<br>16<br>18<br>20 |
| Creating a New Profile                                                                                                                                | 2.2                              |

| Appendix A: Troubleshooting      | 28 |
|----------------------------------|----|
| Common Problems and Solutions    | 28 |
| Frequently Asked Questions       | 29 |
| Appendix B: Glossary             | 32 |
| Appendix C: Specifications       | 37 |
| Environmental                    | 38 |
| Appendix D: Warranty Information | 39 |
| Appendix E: Contact Information  | 40 |

### Chapter 1: Introduction

#### The Wireless-G Notebook Adapter

Wireless-G is the upcoming 54Mbps wireless networking standard that's almost five times faster than the widely deployed Wireless-B (802.11b) products found in homes, businesses, and public wireless hotspots around the country — but since they share the same 2.4GHz radio band, Wireless-G devices can also work with existing 11Mbps Wireless-B equipment. The new Wireless-G Notebook Adapter from Linksys has both standards built in, so you can connect your notebook to existing 802.11b infrastructure, and also the new screaming fast Wireless-G networks. The included Setup Wizard will walk you through configuring the adapter to your network's settings, step by step. Then just slide it into your notebook's PC Card slot and enjoy network access with your notebook computer, while retaining true mobility.

Once you're connected, you can keep in touch with your e-mail, access the Internet, and share files and other resources such as printers and network storage with other computers on the network, wherever you wander. At home, you can surf the web or use instant messaging to chat with friends while sitting out on the patio. You'll also be able to connect with any of the growing number of public wireless hotspots springing up in coffee shops, airport lounges, hotels and convention centers. And as those hotspots upgrade to the new high-speed Wireless-G standard, you'll be ready to take advantage of the increased speeds. Get connected to current-standard 802.11b networks today, and be prepared for the future with the Wireless-G Notebook Adapter from Linksys.

#### **Features**

- High-speed Wireless-G (802.11g) networking for your notebook computer
- Data rates up to 54Mbps -- 5 times faster than Wireless-B (802.11b)
- Also interoperates with Wireless-B networks (at 11Mbps)
- Wireless security -- up to 128-bit WEP encryption
- Free Technical Support—24 Hours a Day, 7 Days a Week, Toll-Free US Calls
- 3-Year Limited Warranty

# Chapter 2: Planning Your Wireless Network

#### **Network Topology**

A wireless local area network (WLAN) is exactly like a regular local area network (LAN), except that each computer in the WLAN uses a wireless device to connect to the network. Computers in a WLAN share the same frequency channel and SSID, which is an identification name for wireless devices.

#### Ad-Hoc versus Infrastructure Mode

Unlike wired networks, wireless networks have two different modes in which they may be set up: **infrastructure** and **ad-hoc**. An infrastructure configuration is a WLAN and wired LAN communicating to each other through an access point. An ad-hoc configuration is wireless-equipped computers communicating directly with each other. Choosing between these two modes depends on whether or not the wireless network needs to share data or peripherals with a wired network or not.

If the computers on the wireless network need to be accessed by a wired network or need to share a peripheral, such as a printer, with the wired network computers, the wireless network should be set up in **infrastructure** mode. (See Figure 2-1.) The basis of infrastructure mode centers around an access point, which serves



Figure 2-1

as the main point of communications in a wireless network. Access points transmit data to PCs equipped with wireless network cards, which can *roam* within a certain radial range of the access point. Multiple access points can be arranged to work in succession to extend the roaming range, and can be set up to communicate with your Ethernet (wired) hardware as well.

If the wireless network is relatively small and needs to share resources only with the other computers on the wireless network, then the **ad-hoc** mode can be used. (See Figure 2-2.) Ad-hoc mode allows computers equipped with wireless transmitters and receivers to communicate directly with each other, eliminating the need for an access point. The drawback of this mode is that, in Ad-Hoc mode, wireless-equipped computers are not able to communicate with computers on a wired network. And, of course, communication between the wireless-equipped computers is limited by the distance and interference directly between them.



Figure 2-2

# Chapter 3: Getting to Know the Wireless-G Notebook Adapter

#### The Adapter's LEDs



Figure 3-1

**Power** Green. The Power LED lights up when the Adapter is pow-

ered on.

**Link** Green. The Link LED lights up and stays solid when the Adapter is inserted correctly and a link is established with the Notebook. The LED flashes when data is transmitted or

received..

# Chapter 4: Software Installation and Configuration for Windows 98SE, Me, and 2000

#### Overview

The Wireless-G Notebook Adapter Setup Wizard will guide you through the installation procedure for Windows 98SE, Me, and 2000. The Setup Wizard will install the WLAN Monitor and driver, as well as configure the Adapter.



**Important for Windows XP users:** Do **NOT** run the Setup Wizard. Proceed directly to "Chapter 5: Hardware Installation."



**Important for Windows 98SE, Me, and 2000 users:** You must run the Setup Wizard to install the software before installing the hardware.

Insert the **Setup Wizard CD-ROM** into your CD-ROM drive. The Setup Wizard should run automatically, and Figure 4-1 should appear. If it does not, click the **Start** button and choose **Run**. In the field that appears, enter **D:\setup.exe** (if "D" is the letter of your CD-ROM drive).



Figure 4-1

#### Setup Wizard Instructions for Windows 98SE, Me, and 2000

- To install the Adapter, click the **Setup** button on the *Welcome* screen, Figure 4-1. Click **User Guide** to view the User Guide or click **Exit** to exit the Setup Wizard.
- 2. Read the License Agreement and click the **Next** button to continue the installation. If you click the **Cancel** button, you will end the installation.



Figure 4-2

3. The Setup Wizard will ask you to choose a wireless mode. (See Figure 4-3.) Click the Infrastructure Mode radio button if you want your wireless computers to network with computers on your wired network using a wireless access point. Click the Ad-Hoc Mode radio button if you want multiple wireless computers to network directly with each other. Do not use the Ad-Hoc mode if you want your wireless computers to communicate with computers on your wired network.

In the *SSID* field, enter the **SSID** (Service Set Identifier) of your wireless network. The SSID is your network name and must be identical for all devices in the network. The default setting is **linksys** (all lowercase). Click the **Next** button to continue, or click the **Back** button to return to the previous page.



Figure 4-3

4. If you chose Infrastructure Mode, go to *Step 5* now. If you chose Ad-Hoc Mode, select the correct operating channel for your network from the *Channel* drop-down menu. Then, select the *Network Mode* from the drop-down menu. Click the **Next** button, and go to *Step 5*. Click the **Back** button to change any settings.

**Channel** - The channel you choose should match the channel set on the other devices in your wireless network. If you are unsure about which channel to use, select the default channel (Channel 6).

**Network Mode** - Select **Mixed Mode**, and both Wireless-G and Wireless-B computers will be allowed on the network, but the speed will be reduced. Select **G-Only Mode** for maximum speed, but no Wireless-B users will be allowed on the network.

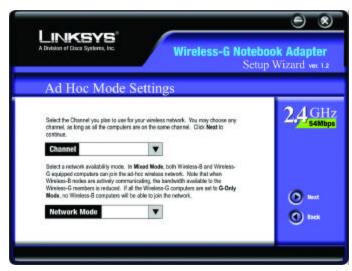



Figure 4-4

5. The Setup Wizard will ask you to review your settings before it starts to copy files. Click the **Next** button to save these settings, or click the **Back** button to change any settings.(See Figure 4-5.)



Figure 4-5

6. After the files have been successfully copied, the screen in Figure 4-6 will appear. Click the **Exit** button



Figure 4-6

 Odyssey Client will now automatically install its utility on your PC to enable Wi-Fi Protected Access (WPA). An icon will appear on your system tray. Click this icon to configure your WPA settings. For more information on this software, refer to their documentation on the CD-ROM.

Proceed to "Chapter 5: Hardware Installation."

### Chapter 5: Hardware Installation



**Important for Windows 98SE, Me, and 2000 users:** You must run the Setup Wizard to install the software before installing the hardware.



**Important for Windows XP users:** You must install the Adapter's hardware before installing the software.

- 1. Turn off your notebook PC.
- 2. Locate an available CardBus slot on your notebook PC.
- 3. With the Adapter's label facing up, as shown in Figure 5-1, slide the Adapter into the CardBus slot until it locks in place.
- 4. Restart your note-book PC.



Figure 5-1

5. Windows will begin copying the driver files to your computer. If Windows asks you for the original Windows CD-ROM, insert the CD-ROM, and direct Windows to its proper location (e.g., **D:**\).

If your PC is using Windows 98SE, Me, or 2000, proceed to "Chapter 7: Using the WLAN Monitor for Windows 98SE, Me, and 2000."

If your PC is using Windows XP, proceed to "Chapter 6: Driver Installation and Configuration for Windows XP."

# Chapter 6: Driver Installation and Configuration for Windows XP

#### Overview

After inserting the Adapter into your notebook, you will install the driver and configure the Adapter.

#### Driver Installation for Windows XP

1. Windows XP will automatically detect the Adapter. Insert the Setup CD-ROM into the CD-ROM drive. Click the radio button next to **Install the software automatically (Recommended)**. Then click the **Next** button.



Figure 6-1

2. When Windows has finished installing the driver, click the **Finish** button.



Figure 6-2

You have now completed the driver installation for the Adapter. To configure the Adapter, proceed to the next section, "Windows XP Wireless Zero Configuration."

#### Windows XP Wireless Zero Configuration



**For Windows XP users:** Windows XP has a built-in configuration tool. Use Windows XP Wireless Zero Configuration (in the system tray at the bottom of your screen) to configure the Adapter.

1. After installing the Adapter, the Windows XP Wireless Zero Configuration icon will appear in your computer's system tray (see Figure 6-3). Double-click the icon.



Figure 6-3

The screen that appears will show any available wireless network. Select the network you want.

If this network has a preshared key encryption (WEP, AES, TKIP) enabled, go to step 3. If this network does not have pre-shared key encryption enabled, then the screen in Figure 6-4 will appear. Check the box next to Allow me to connect to the selected wireless network, even though it is not secure. Then click the **Connect** button and go to step 4.

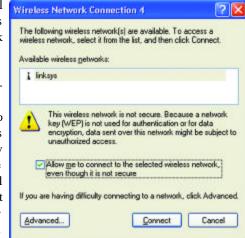



Figure 6-4



**Note:** Steps 2 and 3 are instructions and screenshots for Windows XP with Service Pack 1 installed. If you have not installed Service Pack 1, select the network you want, and click the **Connect** button. If the network has WEP encryption enabled, enter the WEP key in the *Network key* field, and then click the **Connect** button.

3. The screen in Figure 6-5 will appear. Enter the WEP key of your wireless network in the *Network key* field, and re-enter it in the *Confirm network key* field. Click the **Connect** button.



**Note:** Wireless Zero Configuration does not support the use of a passphrase. Enter the exact WEP key used by your access point.

If you want to use AES or TKIP, you will need to download the latest patch, Windows XP Support Patch for Wireless Protected Access, from the Microsoft website, microsoft.com. To manually configure the wireless profile, refer to your Windows documentation.



Figure 6-5

4. The screen in Figure 6-6 will appear if your connection is active.

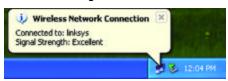



Figure 6-6

For more information about WEP, refer to your access point's documentation, or visit www.linksys.com.

For more information about wireless networking on a Windows XP computer, enter the keyword **wireless** in the Windows XP search engine.

#### Congratulations!

Your notebook is now connected to your wireless network.

# Chapter 7: Using the WLAN Monitor for Windows 98SE, Me,

Overview

#### Accessing the WLAN Monitor

whereas hetworks, or create profiles that hold different configuration settings.

After installing the Adapter, the Wireless-G Notebook Adapter WLAN Monitor icon will appear in your system tray. Double-click the icon (see Figure 7-1).



Figure 7-1

The *Link Information* screen will appear. (See Figure 7-2.) From this screen, you can find out how strong the current wireless signal is and how good the connection's quality is. You can also click the *More Information* button to view additional status information about the current wireless connection. To search for available wireless networks, click the **Site Survey** tab. To perform configuration changes, click the **Profiles** tab.



Figure 7-2

#### Link Information

The *Link Information* screen displays the signal strength and link quality information about the current connection and provides a button to click for additional status information.



Figure 7-3

**Ad-Hoc Mode** or **Infrastructure Mode** - The screen indicates whether the Adapter is currently working in ad-hoc or infrastructure mode.

**Signal Strength** - The Signal Strength bar indicates the signal strength.

**Link Quality** - The Link Quality bar indicates the quality of the wireless network connection.

Click the **More Information** button to view more information about the wireless network connection.



Figure 7-4

#### **TCP/IP Setting**

**IP Address** - The IP Address of the Adapter.

**Subnet Mask** - The Subnet Mask of the Adapter.

**Default Gateway** - The Default Gateway address of the Adapter.

**DNS** - The DNS address of the Adapter.

**DHCP** - The status of the DHCP client.

#### Wireless Network Status

**State** - The status of the wireless network connection.

**SSID** - The unique name of the wireless network.

**Network Type** - The mode of the wireless network currently in use.

Transfer Rate - The data transfer rate of the current connection.

**Channel** - The channel to which the wireless network devices are set.

**WEP** - The status of the WEP encryption security feature.

MAC - The MAC address of the wireless network's access point.

**Signal Strength** - The Signal Strength bar indicates the signal strength.

**Link Quality** - The Link Quality bar indicates the quality of the wireless network connection.

Click the **Back** button to return to the initial *Link Information* screen.

#### Site Survey

The Site Survey screen displays a list of infrastructure and ad-hoc networks available for connection.



Figure 7-5

**SSID** - The SSID or unique name of the wireless network.

**Signal** - The percentage of signal strength, from 0 to 100%.

#### **Site Information**

**Network Type** - The mode of the wireless network currently in use.

**Channel** - The channel to which the wireless network devices are set.

**WEP** - The status of the WEP encryption security feature.

MAC - The MAC address of the wireless network's access point.

**Surveyed at** - The time at which the wireless network was scanned.

**Refresh** - Click the **Refresh** button to perform a new search for wireless devices.

**Connect** - To connect to one of the networks on the list, select the wireless network, and click the **Connect** button. If the wireless network has WEP encryption enabled, you will see the screen shown in Figure 7-6.



Figure 7-6

In the WEP drop-down box, select the type of WEP encryption used by the wireless network: **64-bit**, or **128-bit** WEP.

If the wireless network uses a passphrase, enter the passphrase in the *Passphrase* field. If the wireless network uses a WEP key, enter the WEP key in the *Key 1* field.

Click the **OK** button to complete the network connection and return to the *Site Survey* screen, or click the **Cancel** button to cancel the network connection and return to the *Site Survey* screen.

The *Profiles* screen lets you save different configuration profiles for different network setups. You can also import or export profiles. The default profile holds the initial configuration saved when you ran the Setup Wizard.



Figure 7-7

**Profile** - Name of the connection profile.

**SSID** - The wireless network's unique name, as set in the connection profile.

#### **Profile Information**

**Network Type** - The mode of the wireless network currently in use.

**Transfer Rate** - The data transfer rate of the current connection. (In *Auto* mode, the Adapter dynamically shifts to the fastest data transfer rate possible at any given time.)

**Channel** - The channel to which the wireless network devices are set.

**WEP** - The status of the WEP encryption security feature.

**Connect** - To connect to a wireless network using a specific profile, select the profile, and click the **Connect** button.

**Edit** - Select a profile, and click the **Edit** button to change an existing profile.

**New** - Click the **New** button to create a new profile. See the next section, "Creating a New Profile," for detailed instructions.

**Import** - Click the **Import** button to import a profile that has been saved in another location. Select the appropriate file, and click the **Open** button.



Figure 7-8

**Export** - To save the profile(s) in a different location, click the **Export** button. Direct Windows to the appropriate folder, and click the **OK** button.



Figure 7-9



**Note:** If you have more than one profile, all profiles will be automatically selected and exported to the same folder.

**Delete** - Click the **Delete** button to delete a profile.

#### Creating a New Profile

1. On the *Profiles* screen, click the **New** button to create a new profile.



Figure 7-10

2. When the *Create connection profile* screen appears, enter a name for the new profile. Click **OK** to save the profile name or click **Cancel** to return to the previous screen.



Figure 7-11

3. The Choose a network type screen shows a choice of two wireless modes. Click the Infrastructure Mode radio button if you want your wireless computers to communicate with computers on your wired network via a wireless access point. Click the Ad-Hoc Mode radio button if you want multiple wireless computers to communicate directly with each other. Click the Next button to continue or the Back button to return to the previous screen.

**Infrastructure Mode** - This mode allows wireless and wired networks to communicate through an access point.

**Ad-Hoc Mode** - This mode allows wireless-equipped computers to communicate directly with each other. No access point is used.



Figure 7-12

4. The *Wireless Settings* screen will appear. If you chose Infrastructure Mode, go to *Step 5* now. If you chose Ad-Hoc Mode, select the correct operating channel for your network from the *Channel* drop-down menu. Then, select the *Network Mode* from the drop-down menu. Click the **Next** button, and go to *Step 5*. Click the **Back** button to change any settings.

**Channel** - The channel you choose should match the channel set on the other devices in your wireless network. If you are unsure about which channel to use, select the default channel (Channel 6).

**Network Mode** - Select **Mixed Mode**, and both Wireless-G and Wireless-B computers will be allowed on the network, but the speed will be reduced. Select **G-Only Mode** for maximum speed, but no Wireless-B users will be allowed on the network.




Figure 7-13

5. The *Network Setting* screen will appear.

If your network has a DHCP server, click the radio button next to **Obtain** an **IP** address automatically (**DHCP**). Click the **Next** button to continue, or click the **Back** button to return to the previous screen. Then go to *Step 5*.

If your network does not have a DHCP server, click the radio button next to **Specify the IP address**. Enter an **IP Address**, **Subnet Mask**, **Default Gateway**, and **DNS** appropriate for your network. Enter each address in this format: **xxx.xxx.xxx** (the x's represent the numbers that make up each address). You must specify the IP Address and Subnet Mask on this screen. If you are unsure about the Default Gateway and DNS addresses, then leave these fields alone.

Click the **Next** button to continue or the **Back** button to return to the previous screen. Then go to *Step 6*.

**IP Address** - This IP Address must be unique to your network.

**Subnet Mask** - The Adapter's Subnet Mask must be the same as your wired network's Subnet Mask.

**Default Gateway** - Enter the IP address of your network's Gateway here.

**DNS** - Enter the DNS addresses of your Ethernet (wired) network here.

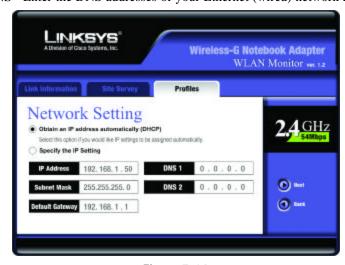



Figure 7-14

6. The *Security Settings* screen will appear. Enable or disable Wired Equivalent Privacy (WEP) encryption for your wireless network. If you enable WEP, enter a Passphrase or WEP key. Click the **Next** button to continue or the **Back** button to return to the previous screen.

WEP (Disabled/64-bit WEP/128-bit WEP) - If you do not want to use WEP encryption, choose Disabled. To use WEP encryption (recommended to increase network security), select 64-bit or 128-bit WEP from the drop-down menu, and enter either a Passphrase or WEP key.

Passphrase - Instead of manually entering WEP keys, you can enter a Passphrase, so that a WEP key is automatically generated. It is case-sensitive and should not be longer than 16 alphanumeric characters. This passphrase must match the passphrase of your wireless network and is compatible with other Linksys wireless products only. (If you have any non-Linksys wireless products, enter the WEP key(s) manually on those products.)

**Key 1** - This WEP key must match the WEP key of your wireless network. If you are using 64-bit WEP encryption, then the key must consist of exactly 10 hexadecimal characters. If you are using 128-bit WEP encryption, then the key must consist of exactly 26 hexadecimal characters. Valid hexadecimal characters are "0" to "9" and "A" to "F".



Figure 7-15

7. The *Confirm New Settings* screen will appear. To save the new settings, click the **Yes** button. To cancel the settings and return to the *Profiles* screen, click the **No** button. To edit the new settings, click the **Back** button.



Figure 7-16

8. The *Congratulations* screen will appear next. Click **Activate new settings now** to implement the new settings immediately and return to the *Link Information* screen. Click **Activate new settings later** to keep the current settings active, and return to the *Profiles* screen so that you can edit your profile or create another profile.



Figure 7-17

You have successfully created a connection profile.

## Appendix A: Troubleshooting

#### **Common Problems and Solutions**

This chapter provides solutions to problems that may occur during the installation and operation of the Wireless-G Notebook Adapter. Read the descriptions below to solve your problems. If you can't find an answer here, check the Linksys website at www.linksys.com.

- 1. My computer does not recognize the Adapter.
- Make sure the Adapter is properly inserted into the CardBus slot. Note that
  the Adapter can be inserted either way, but is correctly only when it is inserted so that the "Instant Wireless" logo on the front of the Adapter cannot be
  seen. If in doubt, try inserting the Adapter both ways. The Adapter will slide
  in further when it is correct.
- 2. The Adapter does not work properly.
- Reinsert the Adapter into your notebook's CardBus slot. A beep should be heard if the Adapter is properly inserted.
- For non-Windows environments, make sure that a PCMCIA card service driver is installed on your PC.
- Open the **Control Panel** and click the **PC Card**. Check whether it has a PCMCIA card in one of the sockets or not. If you find the Adapter in one of the sockets, it means that the Adapter has been detected properly. If you see a yellow question mark, the resources are in conflict.
- Right-click My Computer and select Properties. Select Device Manager
  and click the Network Adapter. You will find the Wireless-G Notebook
  Adapter if it is installed successfully. If you see the yellow exclamation mark,
  the resources are in conflict. Click PCMCIA card and then click PCMCIA
  card service. You will see the status of the Adapter. If there is a yellow question mark please check the following:
  - Make sure that your notebook has a free IRQ.
  - Make sure that you have inserted the right Adapter and installed the proper driver.

If the Adapter does not function after attempting the above steps, remove the Adapter and do the following:

- Uninstall the driver software from your PC.
- Restart your PC and repeat the hardware and software installation as specified in this User Guide.

- 3. I cannot communicate with a wired computer linked via an access point in the infrastructure configuration.
- Make sure that the notebook PC is powered on.
- Make sure that the Adapter is configured with the same SSID and security
  options as the other computers in the infrastructure configuration.

#### Frequently Asked Questions

Can I run an application from a remote computer over the wireless network? This will depend on whether or not the application is designed to be used over a network. Consult the application's user guide to determine if it supports operation over a network.

Can I play computer games with other members of the wireless network? Yes, as long as the game supports multiple players over a LAN (local area network). Refer to the game's user guide for more information.

#### What is the IEEE 802.11b standard?

It is one of the IEEE standards for wireless networks. The 802.11b standard allows wireless networking hardware from different manufacturers to communicate, provided that the hardware complies with the 802.11b standard. The 802.11b standard states a maximum data transfer rate of 11Mbps and an operating frequency of 2.4GHz.

#### What is the IEEE 802.11g standard?

It is one of the IEEE standards for wireless networks. The 802.11g standard allows wireless networking hardware from different manufacturers to communicate, provided that the hardware complies with the 802.11g standard. The 802.11g standard states a maximum data transfer rate of 54Mbps and an operating frequency of 2.4GHz.

What IEEE 802.11g features are supported?

The product supports the following IEEE 802.11g functions:

- CSMA/CA plus Acknowledge protocol
- Multi-Channel Roaming
- Automatic Rate Selection
- RTS/CTS feature
- Fragmentation
- Power Management

#### What is ad-hoc mode?

When a wireless network is set to ad-hoc mode, the wireless-equipped computers are configured to communicate directly with each other. The ad-hoc wireless network will not communicate with any wired network.

#### What is infrastructure mode?

When a wireless network is set to infrastructure mode, the wireless network is configured to communicate with a wired network through a wireless access point.

#### What is roaming?

Roaming is the ability of a portable computer user to communicate continuously while moving freely throughout an area greater than that covered by a single access point. Before using the roaming function, the workstation must make sure that it is the same channel number with the access point of dedicated coverage area.

To achieve true seamless connectivity, the wireless LAN must incorporate a number of different functions. Each node and access point, for example, must always acknowledge receipt of each message. Each node must maintain contact with the wireless network even when not actually transmitting data. Achieving these functions simultaneously requires a dynamic RF networking technology that links access points and nodes. In such a system, the user's end node undertakes a search for the best possible access to the system. First, it evaluates such factors as signal strength and quality, as well as the message load currently being carried by each access point and the distance of each access point to the wired backbone. Based on that information, the node next selects the right access point and registers its address. Communications between end node and host computer can then be transmitted up and down the backbone.

As the user moves on, the end node's RF transmitter regularly checks the system to determine whether it is in touch with the original access point or whether it should seek a new one. When a node no longer receives acknowledgment from its original access point, it undertakes a new search. Upon finding a new access point, it then re-registers, and the communication process continues.

#### What is ISM band?

The FCC and their counterparts outside of the U.S. have set aside bandwidth for unlicensed use in the ISM (Industrial, Scientific and Medical) band. Spectrum in the vicinity of 2.4 GHz, in particular, is being made available worldwide. This presents a truly revolutionary opportunity to place convenient high-speed wireless capabilities in the hands of users around the globe.

#### What is Spread Spectrum?

Spread Spectrum technology is a wideband radio frequency technique developed by the military for use in reliable, secure, mission-critical communications systems. It is designed to trade off bandwidth efficiency for reliability, integrity, and security. In other words, more bandwidth is consumed than in the case of narrowband transmission, but the trade-off produces a signal that is, in effect, louder and thus easier to detect, provided that the receiver knows the parameters of the spread-spectrum signal being broadcast. If a receiver is not tuned to the right frequency, a spread-spectrum signal looks like background noise. There are two main alternatives, Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS).

#### What is DSSS? What is FHSS? And what are their differences?

Frequency-Hopping Spread-Spectrum (FHSS) uses a narrowband carrier that changes frequency in a pattern that is known to both transmitter and receiver. Properly synchronized, the net effect is to maintain a single logical channel. To an unintended receiver, FHSS appears to be short-duration impulse noise. Direct-Sequence Spread-Spectrum (DSSS) generates a redundant bit pattern for each bit to be transmitted. This bit pattern is called a chip (or chipping code). The longer the chip, the greater the probability that the original data can be recovered. Even if one or more bits in the chip are damaged during transmission, statistical techniques embedded in the radio can recover the original data without the need for retransmission. To an unintended receiver, DSSS appears as low power wideband noise and is rejected (ignored) by most narrowband receivers.

Would the information be intercepted while transmitting on air?

WLAN features two-fold protection in security. On the hardware side, as with Direct Sequence Spread Spectrum technology, it has the inherent security feature of scrambling. On the software side, WLAN offers the encryption function (WEP) to enhance security and access control.

#### What is WEP?

WEP is Wired Equivalent Privacy, a data privacy mechanism based on a 64-bit or 128-bit shared key algorithm, as described in the IEEE 802.11 standard.

# Appendix B: Glossary

**802.11b** - One of the IEEE standards for wireless networking hardware. Products that adhere to a specific IEEE standard will work with each other, even if they are manufactured by different companies. The 802.11b standard specifies a maximum data transfer rate of 11Mbps, an operating frequency of 2.4GHz, and WEP encryption for security. 802.11b networks are also referred to as Wi-Fi networks.

**802.11g** - One of the IEEE standards for wireless networking hardware, which specifies a maximum data transfer rate of 54Mbps using OFDM modulation, an operating frequency of 2.4GHz, backward compatibility with IEEE 802.11b devices and WEP encryption for security.

**Ad-hoc Network** - An ad-hoc network is a group of computers, each with a wireless adapter, connected as an independent 802.11 wireless LAN. Ad-hoc wireless computers operate on a peer-to-peer basis, communicating directly with each other without the use of an access point. Ad-hoc mode is also referred to as an Independent Basic Service Set (IBSS) or as peer-to-peer mode, and is useful at a departmental scale or SOHO operation.

CTS (Clear To Send) - An RS-232 signal sent from the receiving station to the transmitting station that indicates it is ready to accept data.

**Default Gateway** - The router used to forward all traffic that is not addressed to a station within the local subnet.

**DHCP** (Dynamic Host Configuration Protocol) - A protocol that lets network administrators manage centrally and automate the assignment of Internet Protocol (IP) addresses in an organization's network. Using the Internet's set of protocol (TCP/IP), each machine that can connect to the Internet needs a unique IP address. When an organization sets up its computer users with a connection to the Internet, an IP address must be assigned to each machine. Without DHCP, the IP address must be entered manually at each computer and, if computers move to another location in another part of the network, a new IP address must be entered. DHCP lets a network administrator supervise and distribute IP addresses from a central point and automatically sends a new IP address when a computer is plugged into a different place in the network.

DHCP uses the concept of a "lease" or amount of time that a given IP address will be valid for a computer. The lease time can vary depending on how long a

user is likely to require the Internet connection at a particular location. It's especially useful in education and other environments where users change frequently. Using very short leases, DHCP can dynamically reconfigure networks in which there are more computers than there are available IP addresses.

DHCP supports static addresses for computers containing Web servers that need a permanent IP address.

**DNS** - The domain name system (DNS) is the way that Internet domain name are located and translated into Internet Protocol (IP) addresses. A domain name is a meaningful and easy-to-remember "handle" for an Internet address.

**DSSS** (Direct-Sequence Spread Spectrum) - DSSS generates a redundant bit pattern for all transmitted data. This bit pattern is called a chip (or chipping code). Even if one or more bits in the chip are damaged during transmission, statistical techniques embedded in the receiver can recover the original data without the need for retransmission. To an unintended receiver, DSSS appears as low power wideband noise and is rejected (ignored) by most narrowband receivers. However, to an intended receiver (i.e. another wireless LAN endpoint), the DSSS signal is recognized as the only valid signal, and interference is inherently rejected (ignored).

**Dynamic IP Address** - An IP address that is automatically assigned to a client station in a TCP/IP network, typically by a DHCP server. Network devices that serve multiple users, such as servers and printers, are usually assigned static IP addresses.

**ESS** (Extended Service Set) - A set of more than two or more BSSs (multiple access points) forming a single network.

**Firmware** - Code that is written onto read-only memory (ROM) or programmable read-only memory (PROM). Once firmware has been written onto the ROM or PROM, it is retained even when the device is turned off.

**IEEE** - The Institute of Electrical and Electronics Engineers. The IEEE describes itself as "the world's largest technical professional society—promoting the development and application of electrotechnology and allied sciences for the benefit of humanity, the advancement of the profession, and the well-being of our members."

The IEEE fosters the development of standards that often become national and international standards. The organization publishes a number of journals, has many local chapters, and several large societies in special areas, such as the IEEE Computer Society.

**Infrastructure Network** - An infrastructure network is a group of computers or other devices, each with a wireless adapter, connected as an 802.11 wireless LAN. In infrastructure mode, the wireless devices communicate with each other and to a wired network by first going through an access point. An infrastructure wireless network connected to a wired network is referred to as a Basic Service Set (BSS). A set of two or more BSS in a single network is referred to as an Extended Service Set (ESS). Infrastructure mode is useful at a corporation scale, or when it is necessary to connect the wired and wireless networks.

**IP Address** - In the most widely installed level of the Internet Protocol (IP) today, an IP address is a 32-binary digit number that identifies each sender or receiver of information that is sent in packet across the Internet. When you request an HTML page or send e-mail, the Internet Protocol part of TCP/IP includes your IP address in the message (actually, in each of the packets if more than one is required) and sends it to the IP address that is obtained by looking up the domain name in the Uniform Resource Locator you requested or in the e-mail address you're sending a note to. At the other end, the recipient can see the IP address of the Web page requester or the e-mail sender and can respond by sending another message using the IP address it received.

**IPCONFIG** - A utility that provides for querying, defining and managing IP addresses within a network. A commonly used utility, under Windows NT and 2000, for configuring networks with static IP addresses.

**ISP** - An ISP (Internet service provider) is a company that provides individuals and companies access to the Internet and other related services such as Web site building and virtual hosting.

**LAN** - A local area network (LAN) is a group of computers and associated devices that share a common communications line and typically share the resources of a single processor or server within a small geographic area (for example, within an office building).

**MAC** Address - The MAC (Media Access Control) address is your computer's unique hardware number.

**mIRC** - mIRC runs under Windows and provides a graphical interface for logging onto IRC servers and listing, joining and leaving channels.

Network Mask - also known as the "Subnet Mask."

**OFDM** - Developed for wireless applications, Orthogonal Frequency Division Multiplexing (OFDM) technology offers superior performance-increased data rates and more reliable transmissions-than previous technologies, such as DSSS. OFDM is a scheme in which numerous signals of different frequencies are combined to form a single signal for transmission on the medium.

OFDM works by breaking one high-speed data stream into a number of lower-speed data streams, which are then transmitted in parallel. Each lower speed stream is used to modulate a subcarrier. Essentially, this creates a multi-carrier transmission by dividing a wide frequency band or channel into a number of narrower frequency bands or sub-channels. OFDM is also used for other applications, including powerline networking.

**Plug-and-Play** - The ability of a computer system to configure expansion boards and other devices automatically without requiring the user to turn off the system during installation.

Roaming - In an infrastructure mode wireless network, this refers to the ability to move out of one access point's range and into another and transparently reassociate and reauthenticate to the new access point. This reassociation and reauthentication should occur without user intervention and ideally without interruption to network connectivity. A typical scenario would be a location with multiple access points, where users can physically relocate from one area to another and easily maintain connectivity.

**SSID** (Service Set Identifier) - An identification name that wireless devices use to make connections. In order for wireless devices to communicate, they must all be set to the same channel and they all must use the same SSID. For instance, if you are using an access point to connect two computers using wireless devices, the access point and each of the wireless devices must use the same SSID. Even if they are set to the same channel, they cannot communicate unless the SSID is the same.

**Static IP Address** - A permanent IP address that is assigned to a node in a TCP/IP network.

**Subnet Mask** - The method used for splitting IP networks into a series of subgroups, or subnets. The mask is a binary pattern that is matched up with the IP address to turn part of the host ID address field into a field for subnets.

TCP (Transmission Control Protocol) - A method (protocol) used along with the IP (Internet Protocol) to send data in the form of message units (datagram) between network devices over a LAN or WAN. While IP takes care of handling the actual delivery of the data (routing), TCP takes care of keeping track of the individual units of data (called packets) that a message is divided into for efficient delivery over the network. TCP is known as a "connection oriented" protocol due to requiring the receiver of a packet to return an acknowledgment of receipt to the sender of the packet resulting in transmission control.

TCP/IP (Transmission Control Protocol/Internet Protocol) - The basic communication language or set of protocols for communications over a network (developed specifically for the Internet). TCP/IP defines a suite or group of protocols and not only TCP and IP.

**UDP** (User **D**atagram **P**rotocol) - A method (protocol) used along with the IP (Internet Protocol) to send data in the form of message units (datagram) between network devices over a LAN or WAN. While IP takes care of handling the actual delivery of the data (routing), UDP takes care of keeping track of the individual units of data (called packets) that a message is divided into for efficient delivery over the network. UDP is known as a "connection-less" protocol due to NOT requiring the receiver of a packet to return an acknowledgment of receipt to the sender of the packet (as opposed to TCP).

**WEP** (Wired Equivalent Privacy) - A data privacy mechanism based on a 64-bit shared key algorithm, as described in the IEEE 802.11b standard.

**WINIPCFG** - Configuration utility based on the Win32 API for querying, defining and managing IP addresses within a network. A commonly used utility under Windows 95, 98SE, and Me.

**WLAN** (Wireless Local Area Network) - A group of computers and associated devices that communicate with each other wirelessly.

### Appendix C: Specifications

**Standards:** IEEE 802.11b, IEEE 802.11g

**Modulations:** 802.11b: CCK (11 Mbps), DQPSK (2 Mbps),

DBPSK (1 Mbps); 802.11q: OFDM

**Channels:** 

802.11b, 11 Channels (USA) 802.11g 13 Channels (Europe)

14 Channels (Japan)

**Interface:** CardBus

**Speed:** Up to 54 Mbps

**LEDs:** Power, Link

**WEP Key Bits:** 64-Bit and 128-Bit

#### Environmental

**Dimensions:** 4.53" x 2.13" x 0.30"

(115 mm x 54 mm x 7.5 mm)

**Unit Weight:** 1.66 oz. (0.047 kg)

**Power:** 3.3V Bus powered

**Certifications:** FCC, CE, Wi-Fi (802.11b, 802.11g), WPA,

WHQL:Windows 2000, XP

**Operating Temp.:** 32°F to 99°F (0°C to 55°C)

**Storage Temp.:** -13°F to 158°F (-25°C to 70°C)

**Operating Humidity:** 5% to 95%, Non-Condensing

**Storage Humidity:** 5% to 95%, Non-Condensing

## Appendix D: Warranty Information

BE SURE TO HAVE YOUR PROOF OF PURCHASE AND A BARCODE FROM THE PRODUCT'S PACKAGING ON HAND WHEN CALLING. RETURN REQUESTS CANNOT BE PROCESSED WITHOUT PROOF OF PURCHASE.

IN NO EVENT SHALL LINKSYS' LIABILITY EXCEED THE PRICE PAID FOR THE PRODUCT FROM DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OF THE PRODUCT, ITS ACCOMPANYING SOFTWARE, OR ITS DOCUMENTATION. LINKSYS DOES NOT OFFER REFUNDS FOR ANY PRODUCT.

LINKSYS OFFERS CROSS SHIPMENTS, A FASTER PROCESS FOR PROCESSING AND RECEIVING YOUR REPLACEMENT. LINKSYS PAYS FOR UPS GROUND ONLY. ALL CUSTOMERS LOCATED OUTSIDE OF THE UNITED STATES OF AMERICA AND CANADA SHALL BE HELD RESPONSIBLE FOR SHIPPING AND HANDLING CHARGES. PLEASE CALL LINKSYS FOR MORE DETAILS.

# Appendix E: Contact Information

For help with the installation or operation of the Wireless-G Notebook Adapter, contact Linksys Technical Support at one of the phone numbers or Internet addresses below.

**Sales Information** 800-546-5797 (LINKSYS)

**Technical Support** 800-326-7114

**RMA** (Return Merchandise

**Authorization) Issues** www.linksys.com (or call 949-271-5461)

**Fax** 949-265-6655

E-mail support@linksys.com
Web http://www.linksys.com

FTP Site ftp.linksys.com



http://www.linksys.com

© Copyright 2003 Linksys, All Rights Reserved.

#### Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

#### **IMPORTANT NOTE:**

#### **FCC Radiation Exposure Statement:**

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.

This device complies with FCC RF Exposure limits set forth for an uncontrolled environment, under 47 CFR 2.1093 paragraph (d)(2).

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Wireless-G CardBus Card is limited in Ch1~Ch11 by specified fireware controlled in U.S.A.