

9. APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.407(f), U-NII devices are subject to the radio frequency radiation exposure requirements specified in §§ 1.1307(b), 2.1091 and 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

EUT Specification

DUM	
EUT	Wireless 802.11N DUAL BAND MINI PCI MODULE
Frequency band (Operating)	U WLAN: 2.412GHz ~ 2.462GHz
	🕅 WLAN: 5.15GHz ~ 5.35GHz
	WLAN: 5.725GHz ~ 5.850GHz
	Bluetooth: 2.402 GHz \sim 2.482 GHz
	Others:
Device category	Portable (<20cm separation)
	Mobile (>20cm separation)
	Others:
Exposure classification	General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	Single antenna
	Multiple antennas
	Tx diversity
	Rx diversity
	$\overline{\boxtimes}$ Tx/Rx diversity
Max. output power	IEEE 802.11a mode: 12.11 dBm (16.26mW)
	draft 802.11n Standard-20 MHz Channel mode: 13.77 dBm (23.82mW)
	draft 802.11n Wide-40 MHz Channel mode: 13.48 dBm (22.28mW)
Antonno goin (Mar)	Dipole Antenna: 1.3 dBi (Numeric gain: 1.35)
Antenna gain (Max)	PCB Antenna: -2.6 dBi (including cable loss) (Numeric gain: 0.55)
Evaluation applied	MPE Evaluation*
	SAR Evaluation
	□ N/A

Remark:

1. The maximum output power is <u>13.77dBm (23.82mW)</u> at <u>5270MHz</u> (with <u>1.35 numeric antenna</u> <u>gain.</u>)

 For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Give

en
$$E = \frac{\sqrt{30 \times P \times G}}{d}$$
 & $S = \frac{E^2}{3770}$
Where $E = Field$ strength in Volts / meter
 $P = Power$ in Watts
 $G = Numeric$ antenna gain
 $d = Distance$ in meters
 $S = Power$ density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

 $\sqrt{20 \times P \times C}$

$$P(mW) = P(W) / 1000 \text{ and}$$

 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where
$$d = Distance$$
 in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm²

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW / cm^2$

EUT output power = 23.82mW

Numeric Antenna gain = 1.35

 \rightarrow Power density = 0.0064 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)

EUT Specification

EUT	Wireless 802.11N DUAL BAND MINI PCI MODULE
	WLAN: 2.412GHz ~ 2.462GHz
	WLAN: 5.15GHz ~ 5.35GHz
Frequency band	⊠ WLAN: 5.47GHz ~ 5.725GHz
(Operating)	WLAN: 5.725GHz ~ 5.850GHz
	Bluetooth: 2.402 GHz \sim 2.482 GHz
	Others:
	Portable (<20cm separation)
Device category	Mobile (>20cm separation)
	Others:
Exposure classification	General Population/Uncontrolled exposure $(S=1mW/cm^2)$
	Single antenna
Antenna diversity	Multiple antennas
	Tx diversity
	Rx diversity
	X Tx/Rx diversity
Max. output power	IEEE 802.11a mode: 13.08 dBm (20.32mW)
Antenna gain (Max)	Dipole Antenna: 1.3 dBi (Numeric gain: 1.35)
	PCB Antenna: -2.6 dBi (including cable loss) (Numeric gain: 0.55)
	MPE Evaluation*
Evaluation applied	SAR Evaluation
	N/A
Remark:	

- 3. The maximum output power is <u>13.08dBm (20.32mW)</u> at <u>5600MHz</u> (with <u>1.35 numeric antenna</u> <u>gain.</u>)
- 4. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$E = \frac{\sqrt{30 \times 1 \times 0}}{d} & S = \frac{E}{3770}$$
Where $E = Field$ strength in Volts / meter
$$P = Power \text{ in Watts}$$
 $G = Numeric \text{ antenna gain}$
 $d = Distance \text{ in meters}$
 $S = Power \text{ density in milliwatts / square centimeter}$

 \mathbf{F}^{2}

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

 $\sqrt{20 \times P \times C}$

$$P(mW) = P(W) / 1000 \text{ and}$$

 $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where
$$d = Distance$$
 in cm
 $P = Power$ in mW
 $G = Numeric$ antenna gain
 $S = Power$ density in mW/cm²

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

 $S = 0.000199 \times P \times G$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power density in mW/cm^2$

EUT output power = 20.32mW

Numeric Antenna gain = 1.35

 \rightarrow Power density = 0.0055 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)