

FCC TEST REPORT

 REPORT NO.:
 RF951127H01

 MODEL NO.:
 WIP310 v2

 RECEIVED:
 Oct. 08, 2007

 TESTED:
 Oct. 15 ~ Oct. 17, 2007

 ISSUED:
 Oct. 18, 2007

APPLICANT : Cisco-Linksys LLC

ADDRESS: 121 Theory Drive Irvine, CA 92617 (USA)

ISSUED BY : Advance Data Technology Corporation

LAB ADDRESS : No. 47, 14th Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.

TEST LOCATION : No. 19, Hwa Ya 2nd Rd., Wen Hwa Tsuen, Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 54 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1	CERTIFICATION	4
2	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	5
3	GENERAL INFORMATION	6
3.1	GENERAL DESCRIPTION OF EUT	6
3.2	DESCRIPTION OF TEST MODES	
3.2.1	CONFIGURATION OF SYSTEM UNDER TEST	8
3.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	10
3.4	DESCRIPTION OF SUPPORT UNITS	11
4	TEST TYPES AND RESULTS	
4.1	RADIATED EMISSION MEASUREMENT	12
4.1.1	LIMITS OF RADIATED EMISSION MEASUREMENT	12
4.1.2	TEST INSTRUMENTS	13
4.1.3	TEST PROCEDURES	
4.1.4	DEVIATION FROM TEST STANDARD	14
4.1.5	TEST SETUP	15
4.1.6	EUT OPERATING CONDITIONS	15
4.1.7	TEST RESULTS	
4.2	CONDUCTED EMISSION MEASUREMENT	23
4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	-
4.2.2	TEST INSTRUMENTS	23
4.2.3	TEST PROCEDURES	
4.2.4	DEVIATION FROM TEST STANDARD	
4.2.5	TEST SETUP	25
4.2.6	EUT OPERATING CONDITIONS	
4.2.7	TEST RESULTS	
4.3	6dB BANDWIDTH MEASUREMENT	
4.3.1	LIMITS OF 6dB BANDWIDTH MEASUREMENT	28
4.3.2	TEST INSTRUMENTS	28
4.3.3	TEST PROCEDURE	
-	DEVIATION FROM TEST STANDARD	-
	TEST SETUP	
	EUT OPERATING CONDITIONS	
	TEST RESULTS	
4.4	MAXIMUM PEAK OUTPUT POWER	
	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	
	TEST INSTRUMENTS	-
	TEST PROCEDURES	
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
4.4.6	EUT OPERATING CONDITIONS	35

4 4 7		20
4.4.7		
4.5	POWER SPECTRAL DENSITY MEASUREMENT	
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	.37
4.5.2	TEST INSTRUMENTS	.37
4.5.3	TEST PROCEDURE	.37
4.5.4	DEVIATION FROM TEST STANDARD	-
4.5.5	TEST SETUP	.37
4.5.6	EUT OPERATING CONDITIONS	.37
4.5.7	TEST RESULTS	
4.6	BAND EDGES MEASUREMENT	.42
4.6.1	LIMITS OF BAND EDGES MEASUREMENT	.42
4.6.2	TEST INSTRUMENTS	
4.6.3	TEST PROCEDURE	.42
4.6.4	DEVIATION FROM TEST STANDARD	
4.6.5	EUT OPERATING CONDITION	.42
4.6.6	TEST RESULTS	.43
4.7	ANTENNA REQUIREMENT	-
4.7.1	STANDARD APPLICABLE	.51
4.7.2	ANTENNA CONNECTED CONSTRUCTION	.51
5	PHOTOGRAPHS OF THE TEST CONFIGURATION	.52
6	INFORMATION ON THE TESTING LABORATORIES	.53
7	APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES	
	TO THE EUT BY THE LAB	.54

1 CERTIFICATION

PRODUCT: Wireless-G IP Phone MODEL: WIP310 v2 **BRAND:** Linksys APPLICANT: Cisco-Linksys LLC **TESTED:** Oct. 15 ~ Oct. 17, 2007 **TEST SAMPLE: ENGINEERING SAMPLE** STANDARDS: FCC Part 15, Subpart C (Section 15.247) ANSI C63.4-2003

The above equipment (model: WIP310 v2) has been tested by Advance Data Technology Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	: <u>Wenely</u> <u>Lias</u> Wendy Liao/Senior Specialist	,	DATE:_	Oct. 18, 2007
TECHNICAL ACCEPTANCE Responsible for RF	: <u>Lowy Chen</u> Long Chen / Senior Engineer	_ ,	DATE:_	Oct. 18, 2007
APPROVED BY	: Gary Charg Gary Chang / Assistant Manager	_ ,	DATE:_	Oct. 18, 2007
2000rt No : PE051127401				Papart Format Varian 2.0

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part 15, Subpart C									
Standard Section	Test Type and Limit	Result	Remark							
15.207	AC Power Conducted Emission		Meet the requirement of limit. Minimum passing margin is -12.42dB at 0.172MHz.							
15.247(a)(2)	Spectrum Bandwidth of a Direct Sequence Spread Spectrum System Limit: min. 500kHz	PASS	Meet the requirement of limit.							
15.247(b)	Maximum Peak Output Power Limit: max. 30dBm	PASS	Meet the requirement of limit.							
15.247(d)	Radiated Emissions Limit: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is -2.08dB at 2483.50MHz.							
15.247(e)	Power Spectral Density Limit: max. 8dBm	PASS	Meet the requirement of limit.							
15.247(d)	Band Edge Measurement Limit: 20dB less than the peak value of fundamental frequency	PASS	Meet the requirement of limit.							

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz ~ 30MHz	2.44 dB
	30MHz ~ 200MHz	3.34 dB
Radiated emissions	200MHz ~1000MHz	3.35 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

PRODUCT	Wireless-G IP Phone			
MODEL NO.	WIP310 v2			
FCC ID	Q87-WIP310V2			
	5Vdc from AC adapter			
POWER SUPPLY	3.7Vdc form Lithium ion battery			
	5Vdc from host equipment			
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS			
MODULATION TYPE	64QAM, 16QAM, QPSK, BPSK for OFDM			
MODULATION TECHNOLOGY	DSSS, OFDM			
TRANSFER RATE	802.11b: 11/5.5/2/1Mbps			
TRANSFER RATE	802.11g: 54/48/36/24/18/12/9/6Mbps			
FREQUENCY RANGE	2412MHz ~ 2462MHz			
NUMBER OF CHANNEL	11			
MAXIMUM OUTPUT POWER	61.235mW			
ANTENNA TYPE	PIFA antenna with 2.5dBi gain			
DATA CABLE	1.2m shielded USB cable without core			
I/O PORTS	USB			
ACCESSORY DEVICES	Adapter, Battery, Cradle, USB cable			

NOTE:

1. The EUT was operated with following adapter and Lithium ion battery:

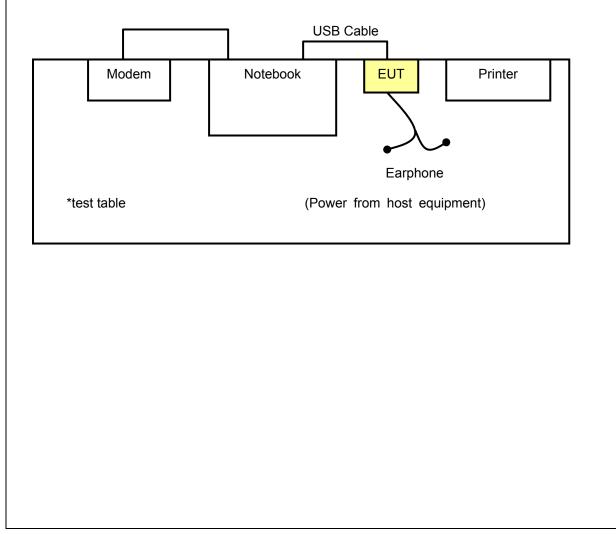
ADAPTER							
BRAND:	DVE						
MODEL:	DSA-5P-05 FUS 050100						
INPUT:	100-240Vac, 50-60Hz, 0.2A						
OUTPUT:	5Vdc, 1A						
POWER LINE:	1.5m non-shielded cable without core						

Rechargeable Lithium ion battery pack (1)						
BRAND: FoxLink						
MODEL:	XF010D80					
OUTPUT:	3.7Vdc, 860mAh					

Rechargeable Lithium ion battery pack (2)						
BRAND: Full Power International Co.						
MODEL: FPO-050-01/M						
INPUT: 3.7Vdc, 860mAh						

NOTE: After pre-tested two batteries, we found the battery 1 was the worst and chosen for final test.

- 2. The EUT, operates in the 2.4GHz frequency range, lets you connect IEEE 802.11g or IEEE 802.11b devices to the network. With its high-speed data transmissions of up to 54Mbps.
- 3. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.



3.2 DESCRIPTION OF TEST MODES

Eleven channels are provided to this EUT.

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

3.2.1 CONFIGURATION OF SYSTEM UNDER TEST

3.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

	EUT			Annli	cable t	0						
	Configu Mode		RE≥1G	RE<1G	1		АРСМ		Descripti		n	
	-		√	√	√	_	√ -					
W				onducted E			_		ed Emissio			
 RE≥1G: Radiated Emission above 1GHz APCM: Antenna Port Conducted Measurement ADIATED EMISSION TEST (ABOVE 1 GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combination between available modulations, data rates, xyz axis and antenna ports (if EUT with antenna diversity architecture). 												
	Following Mode	chani Ava	nel(s) wa	Teste	d	Mo	dulation	Mod	ulation	below.	Data Rate	
ŀ	802.11b		annel to 11	Chani 1, 6, 1			hnology		ype BPSK	Y	(Mbps)	
┢	802.11b		to 11	1, 6, 1			OFDM		PSK	Y	6	
C	between a diversity a Following	rchite	cture).	ulations,	data ra	ates,	xyz axis	and ar	ntenna p	orts (if I	possible com EUT with ant	
C	diversity a Following	rchite chani	cture).	ulations,	data ra) selec	ates, ted f	xyz axis	and ar	ntenna p	orts (if l below.		
C	diversity a	rchite chan Ava Cha	ecture). nel(s) wa	ulations, as (were	data ra) selec ed	ates, ted f Mo Tec	xyz axis or the fin	and ar al test Mod T	ntenna p as listed	orts (if I	EUT with ant	
F E	diversity a Following Mode 802.11b ER LINE (Pre-Scan petween a architectur Following	CONE has b availab chan chan	ecture). nel(s) wa ilable annel to 11 DUCTEE een con ble mode nel(s) wa Availa	ulations, as (were <u>Teste</u> <u>Chann</u> 6 <u>0 EMISS</u> ducted to ulations, as (were ble	data ra) select ed nel ION TI o deten data ra) select	etes, eted f Mo Tec EST: eted f eted f	xyz axis for the fin dulation hnology DSSS e the wor and ante for the fin Modul	and ar al test Mod T DI st-case nna po al test ation	as listed ulation ype BPSK e mode f rts (if EU	Forts (if I below. Axis Y from all JT with below.	Data Rate (Mbps) 1 possible com antenna dive	
F L A	Mode 802.11b BR LINE (Pre-Scan petween a architectur	rchite chann Ava Cha 1 1 CONE has b availal re). chann	ecture). nel(s) wa ilable annel to 11 DUCTEE een con ble mode nel(s) wa	ulations, as (were Chani 6 <u>0 EMISS</u> ducted ta ulations, as (were ble	data ra) selec ed nel lon TI o dete data ra) selec	etes, eted f Mo Tec EST: eted f eted f	xyz axis for the fin dulation hnology DSSS e the wor and ante for the fin	and ar al test Mod T DI st-case nna po al test ation plogy	as listed ulation ype BPSK e mode f rts (if EU as listed	Axis Y Trom all JT with below.	Data Rate (Mbps) 1 possible com antenna dive	

BANDEDGE MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 11	OFDM	BPSK	6

ANTENNA PORT CONDUCTED MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) ANSI C63.4- 2003

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP05L	9954115984	E2K24CLNS
2	PRINTER	EPSON	LQ-300+	DCGY047265	FCC DoC Approved
3	MODEM	ACEEX	1414V/3	0401008248	IFAXDM1414
4	EARPHONE	NA	NA	NA	NA

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS				
1	NA				
2	1.8m braid shielded wire , DB25 connector , w/o core.				
3	1.2m braid shielded wire , DB25 & DB9 connector , w/o core.				
4	0.5m non-shielded cable.				

NOTE: All power cords of the above support units are non shielded (1.8m).

4 TEST TYPES AND RESULTS

4.1 RADIATED EMISSION MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCI	100424	Jul. 27, 2008
Spectrum Analyzer ROHDE & SCHWARZ	FSP40	100041	Feb. 26, 2008
BILOG Antenna SCHWARZBECK	VULB9168	9168-160	May 31, 2008
HORN Antenna SCHWARZBECK	9120D	9120D-209	Jun. 28, 2008
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170243	Dec. 28, 2007
Preamplifier Agilent	8447D	2944A10633	Oct. 26, 2007
Preamplifier Agilent	8449B	3008A01964	Oct. 26, 2007
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	238137/4	Dec. 11, 2007
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	233233/4	Nov. 14, 2007
Software ADT.	ADT_Radiated_V7.6	NA	NA
Antenna Tower inn-co GmbH	MA 4000	013303	NA
Antenna Tower Controller inn-co GmbH	CO2000	017303	NA
Turn Table ADT.	TT100.	TT93021703	NA
Turn Table Controller ADT.	SC100.	SC93021703	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Chamber 3.

3. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

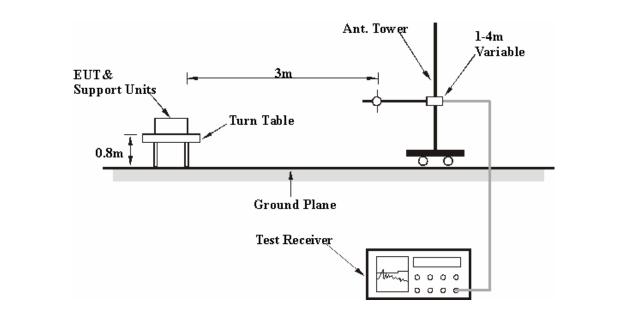
4. The VCCI Site Registration No. is R-237.

5. The IC Site Registration No. is IC3789B-3.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meters semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak method or average method as specified and then reported in data sheet.

NOTE:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT OPERATING CONDITIONS

- a. Connected the EUT via USB cable to notebook and placed on a testing table.
- b. The notebook ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the system in full functions.

4.1.7 TEST RESULTS

802.11b DSSS MODULATION

EUT TEST CONDITIO	N	MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	DBPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 991hPa	
TESTED BY	Brad Wu	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	2390.00	57.92 PK	74.00	-16.08	1.08 H	10	25.68	32.24	
2	2390.00	47.00 AV	54.00	-7.00	1.08 H	10	14.76	32.24	
3	*2412.00	107.65 PK			1.08 H	10	75.33	32.32	
4	*2412.00	103.10 AV			1.08 H	10	70.78	32.32	
5	4824.00	49.30 PK	74.00	-24.70	1.12 H	206	11.17	38.13	
6	4824.00	37.76 AV	54.00	-16.24	1.12 H	206	-0.37	38.13	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	56.46 PK	74.00	-17.54	1.01 V	79	24.22	32.24
2	2390.00	45.36 AV	54.00	-8.64	1.01 V	79	13.12	32.24
3	*2412.00	100.12 PK			1.01 V	79	67.80	32.32
4	*2412.00	95.62 AV			1.01 V	79	63.30	32.32
5	4824.00	49.94 PK	74.00	-24.06	1.12 V	65	11.81	38.13
6	4824.00	39.70 AV	54.00	-14.30	1.12 V	65	1.57	38.13

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Fac
 The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIO	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	DBPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 991hPa	
TESTED BY	Brad Wu	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2437.00	107.54 PK			1.10 H	355	75.14	32.40	
2	*2437.00	103.28 AV			1.10 H	355	70.88	32.40	
3	4874.00	50.34 PK	74.00	-23.66	1.10 H	189	12.02	38.32	
4	4874.00	37.54 AV	54.00	-16.46	1.10 H	189	-0.78	38.32	

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M							
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2437.00	100.35 PK			1.04 V	101	67.95	32.40
2	*2437.00	95.86 AV			1.04 V	101	63.46	32.40
3	4874.00	48.47 PK	74.00	-25.53	1.17 V	96	10.15	38.32
4	4874.00	40.11 AV	54.00	-13.89	1.17 V	96	1.79	38.32

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIO	N	MEASUREMENT DETAIL		
CHANNEL	Channel 11	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	DBPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 991hPa	
TESTED BY	Brad Wu	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	AN	FENNA POLA	RITY & TE	ST DISTA	NCE: HO	RIZONTAL	AT 3 M	
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2462.00	107.41 PK			1.12 H	24	74.93	32.48
2	*2462.00	102.97 AV			1.12 H	24	70.49	32.48
3	2483.50	57.69 PK	74.00	-16.31	1.12 H	24	25.13	32.56
4	2483.50	47.54 AV	54.00	-6.46	1.12 H	24	14.98	32.56
5	4924.00	50.05 PK	74.00	-23.95	1.21 H	350	11.59	38.46
6	4924.00	37.49 AV	54.00	-16.51	1.21 H	350	-0.97	38.46

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2462.00	100.65 PK			1.15 V	86	68.17	32.48		
2	*2462.00	95.96 AV			1.15 V	86	63.48	32.48		
3	2483.50	57.56 PK	74.00	-16.44	1.15 V	86	25.00	32.56		
4	2483.50	46.42 AV	54.00	-7.58	1.15 V	86	13.86	32.56		
5	4924.00	50.32 PK	74.00	-23.68	1.19 V	107	11.86	38.46		
6	4924.00	40.29 AV	54.00	-13.71	1.19 V	107	1.83	38.46		

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m) 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

802.11g OFDM MODULATION

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL	Channel 1	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	BPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 991hPa	
TESTED BY	Brad Wu	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	68.74 PK	74.00	-5.26	1.08 H	10	36.50	32.24		
2	2390.00	51.37 AV	54.00	-2.63	1.08 H	10	19.13	32.24		
3	*2412.00	109.20 PK			1.08 H	10	76.88	32.32		
4	*2412.00	99.03 AV			1.08 H	10	66.71	32.32		
5	4824.00	49.44 PK	74.00	-24.56	1.01 H	38	11.31	38.13		
6	4824.00	35.62 AV	54.00	-18.38	1.01 H	38	-2.51	38.13		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	2390.00	61.80 PK	74.00	-12.20	1.01 V	78	29.56	32.24		
2	2390.00	47.46 AV	54.00	-6.54	1.01 V	78	15.22	32.24		
3	*2412.00	100.72 PK			1.01 V	78	68.40	32.32		
4	*2412.00	90.45 AV			1.01 V	78	58.13	32.32		
5	4824.00	49.79 PK	74.00	-24.21	1.01 V	22	11.66	38.13		
6	4824.00	35.38 AV	54.00	-18.62	1.01 V	22	-2.75	38.13		

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIO	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	BPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 991hPa	
TESTED BY	Brad Wu	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2437.00	109.52 PK			1.10 H	355	77.12	32.40		
2	*2437.00	99.74 AV			1.10 H	355	67.34	32.40		
3	4874.00	49.63 PK	74.00	-24.37	1.02 H	120	11.31	38.32		
4	4874.00	35.89 AV	54.00	-18.11	1.02 H	120	-2.43	38.32		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2437.00	100.89 PK			1.02 V	100	68.49	32.40		
2	*2437.00	90.86 AV			1.02 V	100	58.46	32.40		
3	4874.00	50.32 PK	74.00	-23.68	1.01 V	360	12.00	38.32		
4	4874.00	35.96 AV	54.00	-18.04	1.01 V	360	-2.36	38.32		

REMARKS: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL	Channel 11	FREQUENCY RANGE	1 ~ 25GHz	
MODULATION TYPE	BPSK	DETECTOR FUNCTION	Peak(PK) Average (AV)	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 991hPa	
TESTED BY	Brad Wu	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2462.00	109.52 PK			1.10 H	10	77.04	32.48		
2	*2462.00	99.86 AV			1.10 H	10	67.38	32.48		
3	2483.50	68.57 PK	74.00	-5.43	1.10 H	10	36.01	32.56		
4	2483.50	51.92 AV	54.00	-2.08	1.10 H	10	19.36	32.56		
5	4924.00	49.85 PK	74.00	-24.15	1.04 H	40	11.39	38.46		
6	4924.00	36.01 AV	54.00	-17.99	1.04 H	40	-2.45	38.46		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	*2462.00	100.57 PK			1.01 V	123	68.09	32.48		
2	*2462.00	90.67 AV			1.01 V	123	58.19	32.48		
3	2483.50	61.57 PK	74.00	-12.43	1.01 V	123	29.01	32.56		
4	2483.50	48.50 AV	54.00	-5.50	1.01 V	123	15.94	32.56		
5	4924.00	50.40 PK	74.00	-23.60	1.07 V	10	11.94	38.46		
6	4924.00	35.69 AV	54.00	-18.31	1.07 V	10	-2.77	38.46		

REMARKS:

1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

RADIATED WORST-CASE DATA: BELOW 1GHz

EUT TEST CONDITIC	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	FREQUENCY RANGE	Below 1000MHz	
MODULATION TYPE	DBPSK	DETECTOR FUNCTION	Quasi-Peak	
TRANSFER RATE	1Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH, 991hPa	
TESTED BY	Brad W/II	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
1	259.33	32.97 QP	46.00	-13.03	1.00 H	109	19.42	13.56		
2	467.36	30.81 QP	46.00	-15.19	1.00 H	205	11.10	19.71		
3	599.58	33.31 QP	46.00	-12.69	1.50 H	64	10.86	22.45		
4	700.68	38.54 QP	46.00	-7.46	1.00 H	73	14.32	24.22		
5	799.84	32.99 QP	46.00	-13.01	1.00 H	13	7.11	25.88		
6	900.94	32.40 QP	46.00	-13.60	1.00 H	34	4.78	27.61		

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
No.	Freq. (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	49.34	33.60 QP	40.00	-6.40	1.00 V	136	18.79	14.81			
2	113.50	33.41 QP	43.50	-10.09	1.00 V	37	21.56	11.84			
3	177.67	30.48 QP	43.50	-13.02	2.00 V	10	17.30	13.18			
4	399.31	30.65 QP	46.00	-15.35	1.50 V	346	13.03	17.62			
5	700.68	35.50 QP	46.00	-10.50	1.50 V	187	11.29	24.22			
6	914.55	41.04 QP	46.00	-4.96	1.00 V	10	13.23	27.81			

REMARKS:

: 1. Emission level(dBuV/m)=Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

4.2 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz) CONDUCTED LIMIT (dBµV)

	001200122	
	Quasi-peak	Average
0.15 ~ 0.5 0.5 ~ 5 5 ~ 30	66 to 56 56 60	56 to 46 46 50

NOTE: 1. The lower limit shall apply at the transition frequencies.

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

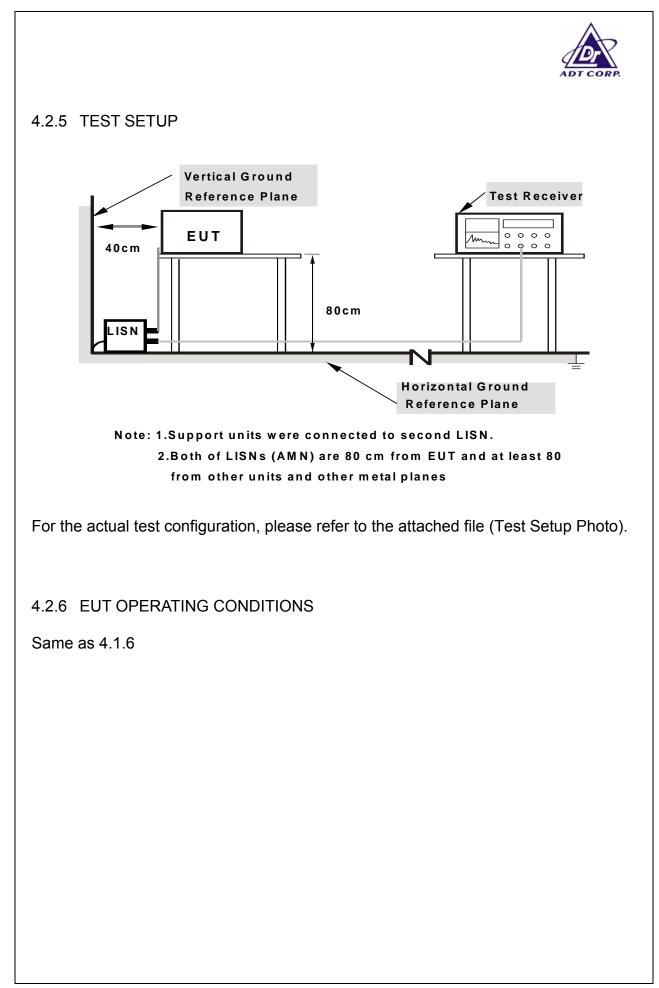
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
Test Receiver ROHDE & SCHWARZ	ESCS30	100289	Dec. 08, 2007
RF signal cable Woken	5D-FB	Cable-HYCO3-01	Jan. 06, 2008
LISN ROHDE & SCHWARZ	ESH2-Z5	100100	Jan. 08, 2008
LISN ROHDE & SCHWARZ	ESH3-Z5	100311	Jan. 16, 2008
Software ADT	ADT_Cond_V3	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2.

3. The VCCI Site Registration No. is C-2047.


4.2.3 TEST PROCEDURES

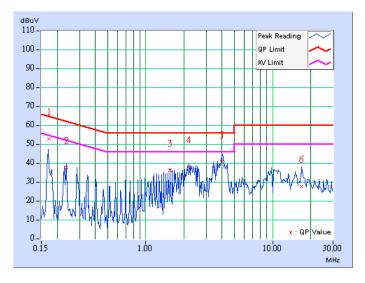
- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation.

4.2.7 TEST RESULTS

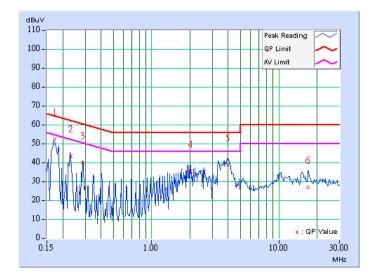

CONDUCTED WORST-CASE DATA

EUT TEST CONDITION	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	PHASE	Line 1	
MODULATION TYPE	BPSK	6dB BANDWIDTH	9 kHz	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 981hPa	
TESTED BY	Kevin Liang	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	Freq.	Corr.	Readin	g Value	Emis Lev		Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.172	0.10	52.34	-	52.44	-	64.86	54.86	-12.42	-
2	0.236	0.10	37.21	-	37.31	-	62.24	52.24	-24.93	-
3	1.559	0.17	35.75	-	35.92	-	56.00	46.00	-20.08	-
4	2.191	0.23	37.50	-	37.73	-	56.00	46.00	-18.27	-
5	3.980	0.28	40.18	-	40.46	-	56.00	46.00	-15.54	-
6	17.020	0.52	27.43	-	27.95	-	60.00	50.00	-32.05	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and
 - measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



EUT TEST CONDITIO	N	MEASUREMENT DETAIL		
CHANNEL	Channel 6	PHASE	Line 2	
MODULATION TYPE	BPSK	6dB BANDWIDTH	9 kHz	
TRANSFER RATE	6Mbps	ENVIRONMENTAL CONDITIONS	25deg. C, 68%RH, 981hPa	
TESTED BY	Kevin Liang	INPUT POWER (SYSTEM)	120Vac, 60 Hz	

	Freq.	Corr.	Reading	g Value		sion vel	Lir	nit	Mar	gin
No		Factor	[dB ((uV)]	[dB((uV)]	[dB ((uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.173	0.10	52.10	-	52.20	-	64.80	54.80	-12.60	-
2	0.232	0.10	43.36	-	43.46	-	62.37	52.37	-18.91	-
3	0.287	0.10	39.62	-	39.72	-	60.62	50.62	-20.90	-
4	2.020	0.22	34.86	-	35.08	-	56.00	46.00	-20.92	-
5	3.984	0.28	38.28	-	38.56	-	56.00	46.00	-17.44	-
6	17.043	0.52	26.43	-	26.95	-	60.00	50.00	-33.05	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and
- measurement with the average detector is unnecessary. 3. The emission levels of other frequencies were very low against the limit.
- The emission levels of other frequencies were very lov
 Margin value = Emission level Limit value
- 4. Margin value = Emission level Limit value
 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

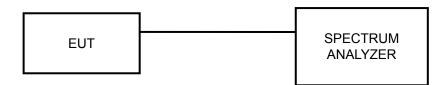
The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
SPECTRUM ANALYZER	FSP 40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 kHz RBW and 300kHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

4.3.4 DEVIATION FROM TEST STANDARD

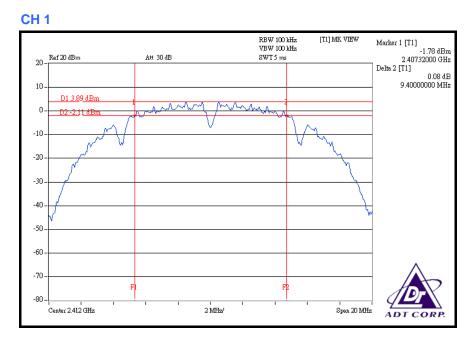
No deviation.

4.3.5 TEST SETUP

For the actual test configuration, please refer to the related Item – Photographs of the Test Configuration.

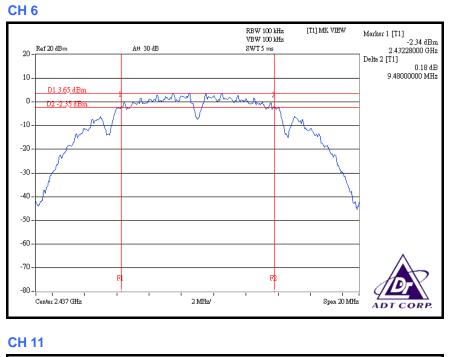
4.3.6 EUT OPERATING CONDITIONS

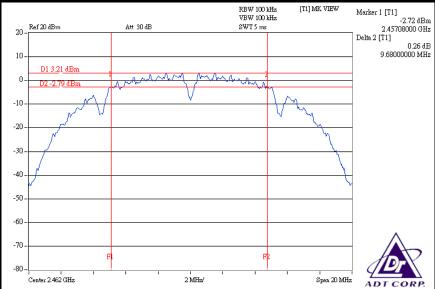
The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.



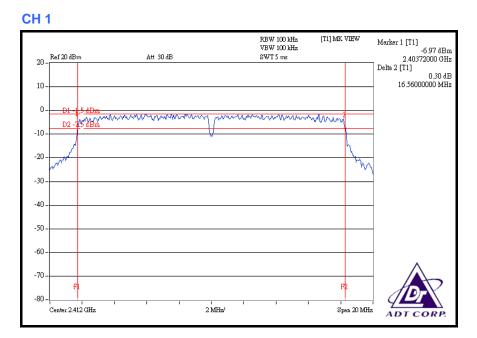
4.3.7 TEST RESULTS

802.11b DSSS MODULATION

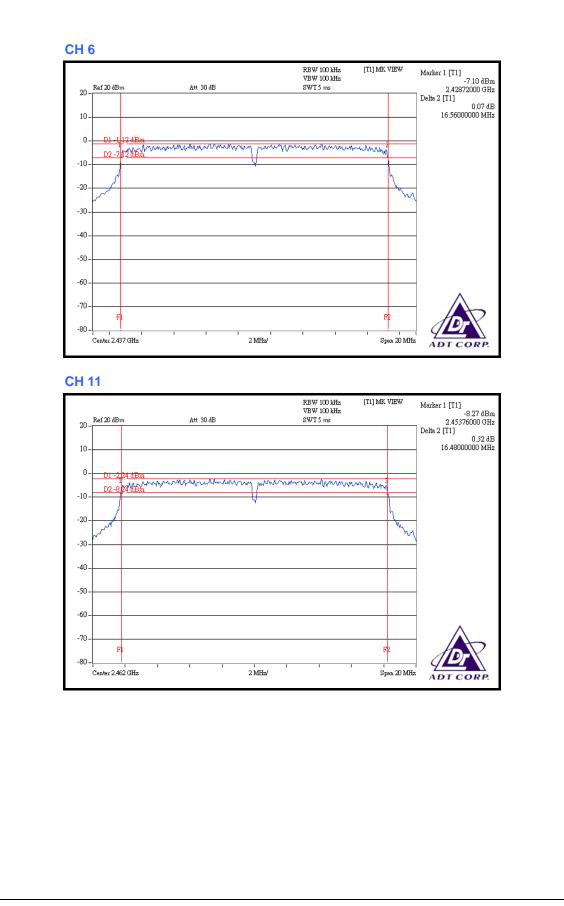

MODULATION TYPE	DBPSK	TRANSFER RATE	1Mbps
INPUT POWER (SYSTEM)	120Vac. 60 Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 72%RH, 1005hPa
TESTED BY	Match Tsui		


CHANNEL	CHANNEL FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS/FAIL
1	2412	9.40	0.5	PASS
6	2437	9.48	0.5	PASS
11	2462	9.68	0.5	PASS

Report No.: RF951127H01



802.11g OFDM MODULATION


MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 72%RH, 1005hPa
TESTED BY	Match Tsui		

CHANNEL	CHANNEL FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS/FAIL
1	2412	16.56	0.5	PASS
6	2437	16.56	0.5	PASS
11	2462	16.48	0.5	PASS

32

4.4 MAXIMUM PEAK OUTPUT POWER

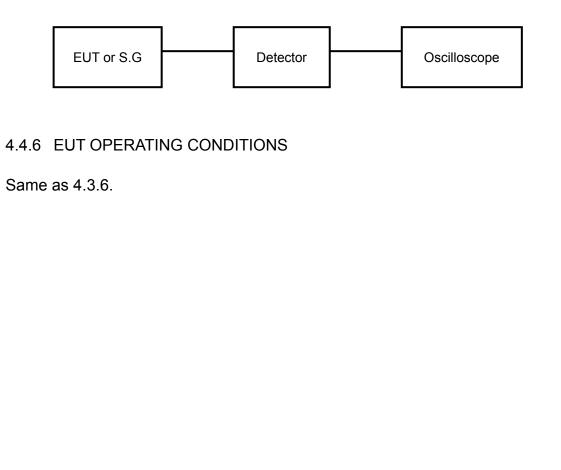
4.4.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP40	100040	Jun. 28, 2008
AGILENT SIGNAL GENERATOR	E8257C	MY43320668	Dec. 28, 2007
TEKTRONIX OSCILLOSCOPE	TDS1012	C037299	Nov. 27, 2007
NARDA DETECTOR	4503A	FSCM99899	NA

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.4.3 TEST PROCEDURES

- a. A detector was used on the output port of the EUT. An oscilloscope was used to peak the response of the detector.
- b. Replaced the EUT by the signal generator. The center frequency of the S.G was adjusted to the center frequency of the measured channel.
- c. Adjusted the power to have the same peak reading on oscilloscope. Record the power level.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation.

4.4.5 TEST SETUP

4.4.7 TEST RESULTS

802.11b DSSS MODULATION

MODULATION TYPE	DBPSK	TRANSFER RATE	1Mbps
INPUT POWER (SYSTEM)	120Vac 60 Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 72%RH, 1005hPa
TESTED BY	Match Tsui		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
1	2412	45.186	16.55	30	PASS
6	2437	42.954	16.33	30	PASS
11	2462	40.644	16.09	30	PASS

802.11g OFDM MODULATION

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac 60 Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 72%RH, 1005hPa
TESTED BY	Match Tsui		

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (mW)	PEAK POWER OUTPUT (dBm)	PEAK POWER LIMIT (dBm)	PASS/FAIL
1	2412	56.885	17.55	30	PASS
6	2437	61.235	17.87	30	PASS
11	2462	52.000	17.16	30	PASS

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

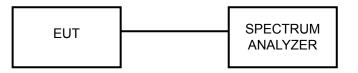
The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP 40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE


The transmitter output was connected to the spectrum analyzer through an attenuator, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3kHz RBW and 30kHz VBW, set sweep time = span/3kHz. The power spectral density was measured and recorded.

The sweep time is allowed to be longer than span/3kHz for a full response of the mixer in the spectrum analyzer.

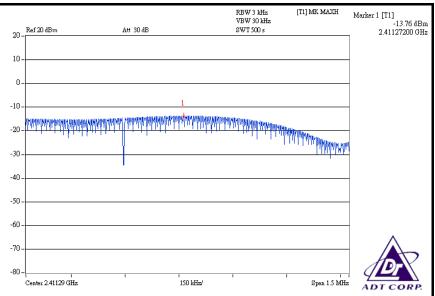
4.5.4 DEVIATION FROM TEST STANDARD

No deviation.

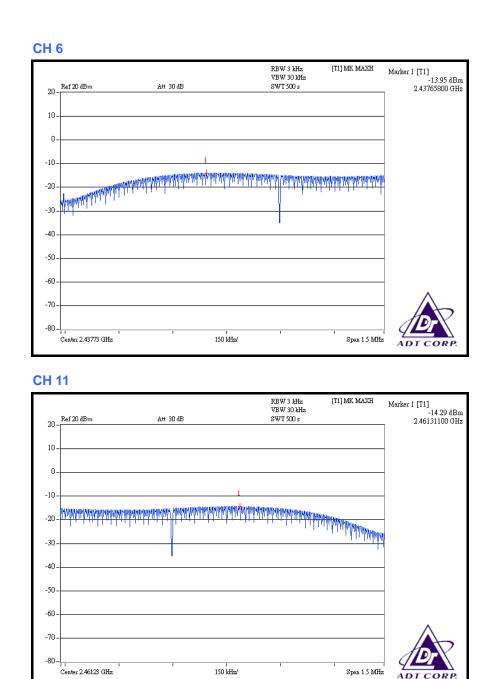
4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITIONS

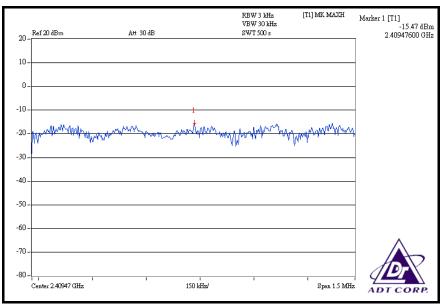
Same as 4.3.6.


4.5.7 TEST RESULTS

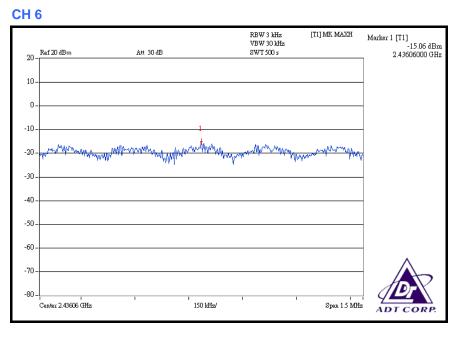
802.11b DSSS MODULATION


MODULATION TYPE	DBPSK	TRANSFER RATE	1Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 72%RH, 1005hPa
TESTED BY	Match Tsui		

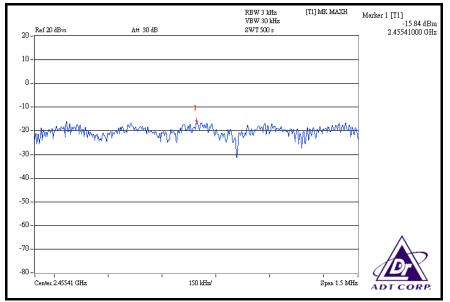
CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3 kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-13.76	8	PASS
6	2437	-13.95	8	PASS
11	2462	-14.29	8	PASS



802.11g OFDM MODULATION


MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac 60 Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 72%RH, 1005hPa
TESTED BY	Match Tsui		

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3 kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	2412	-15.47	8	PASS
6	2437	-15.06	8	PASS
11	2462	-15.84	8	PASS



CH 11

4.6 BAND EDGES MEASUREMENT

4.6.1 LIMITS OF BAND EDGES MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED UNTIL
R&S SPECTRUM ANALYZER	FSP 40	100040	Jun. 28, 2008

NOTE: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100kHz and 300kHz with suitable frequency span including 100MHz bandwidth from band edge. The band edges was measured and recorded.

The spectrum plots (Peak RBW=100kHz, VBW=100kHz; Average RBW=1MHz, VBW= 10Hz are attached on the following pages.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation.

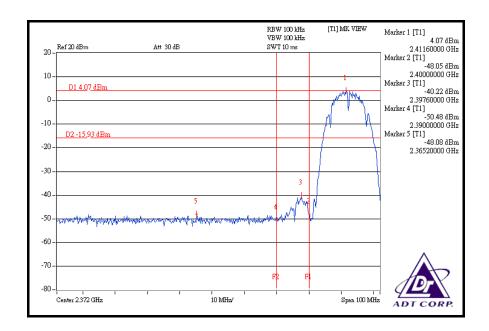
4.6.5 EUT OPERATING CONDITION

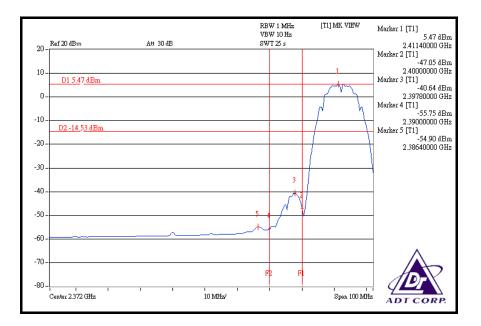
Same as 4.3.6.

4.6.6 TEST RESULTS

The spectrum plots are attached on the following 12 images. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

802.11b DSSS MODULATION


NOTE 1: The band edge emission plot on the next page shows 52.15dBc between carrier maximum power and local maximum emission in restrict band (2.3652GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 107.65dBuV/m (Peak), so the maximum field strength in restrict band is 107.65 - 52.15 = 55.50dBuV/m which is under 74dBuV/m limit.


The band edge emission plot on the next page shows 60.37dBc between carrier maximum power and local maximum emission in restrict band (2.38640GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 103.10dBuV/m (Peak), so the maximum field strength in restrict band is 103.10 - 60.37 = 42.73dBuV/m which is under 54dBuV/m limit.

NOTE 2: The band edge emission plot on the next second page shows 51.37dBc between carrier maximum power and local maximum emission in restrict band (2.4940GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 107.41dBuV/m (Peak), so the maximum field strength in restrict band is 107.41 - 51.37 = 56.04dBuV/m which is under 74dBuV/m limit.

The band edge emission plot on the next third page shows 60.43dBc between carrier maximum power and local maximum emission in restrict band (2.48350GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 102.97dBuV/m (Peak), so the maximum field strength in restrict band is 102.97 - 60.43 = 42.54dBuV/m which is under 54dBuV/m limit.

		RBW 100 kHz VBW 100 kHz	[T1] MK VIEW	Marker 1 [T1] 3.37 dE
Ref 20 dBm 20 -	Att 30 dB	SWT 2.5 s		2.37718000 GI
				Marker 2 [T1] -39.49 dE
				24.70036000 GI Marker 3 [T1]
<u>D1 4.07 dBm</u>				-40.01 dE - 24.80024000 GI
				Marker 4 [T1]
10-				-41.15 dE 21.70396000 GI
D2 -15 9 <u>3 dBm</u>				-
20 -				-
30 -				
			4 2	3
10 -		6	AND ALLAND	H
	and a second second second second	Mynaman	ware walker allow	1
50	approximation and the second	Δ¢ĺ		-
50				-
70 -				
30-			I	
Start 30 MHz	2.497 0	Hz/	Stop 25 GH	ADT CORP
		RBW 100 kHz VBW 100 kHz	[T1] MK VIEW	Marker 1 [T1]
70 _ Ref 20 dBm	Att 30 dB		[T1] MK VIEW	3.80 dE
20 - Ref 20 dBm	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	3.80 dE 2.46240000 G) Marker 2 [T1]
20 -	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	3.80 dE 2.46240000 GJ Marker 2 [T1] -50.84 dE 2.48350000 GJ
10- <u>1</u> D1 3,8jdBm	Att 30 dB	VBW 100 kHz	[Ti] MK VIEW	3.80 dE 2.46240000 G Marker 2 [T1] -50.84 dE 2.48350000 G Marker 3 [T1]
10 - <u>1</u>	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	3.80 dE 2.46240000 G Marker 2 [T1] -50.84 dE 2.48350000 G Marker 3 [T1] -47.57 dE 2.49400000 G
0- 138dBm 0-	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	3.80 dE 2.46240000 GJ Marker 2 [T1] -50.84 dE 2.48350000 GJ
0- <u>138,dBm</u> 0- <u>D138,dBm</u> 0-	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	3 80 dE 2 4624000 G) Marker 2 [T1] -50.84 dE 2 48350000 G) Marker 3 [T1] -47.57 dE 2 49400000 G) Marker 4 [T1]
D1 38dBm	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	380 dE 2.46240000 G Marker 2 [T1] -50.84 dF 2.48350000 G Marker 3 [T1] -47.57 dF 2.49400000 G Marker 4 [T1] -52.47 dB

-30 --40 -

-50 -

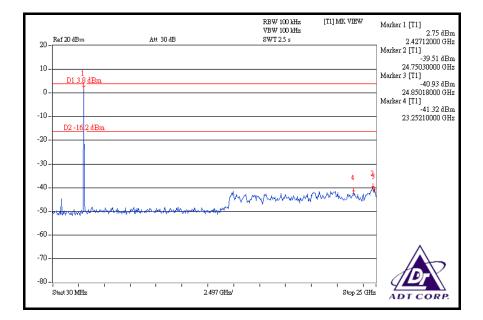
-60 --70 --80 -

Center 2.502 GHz

Mann

Manah

wWw


10 MHz/

Span 100 MHz

ADT COR

20 -	Ref 20 dBm A	# 30 dB	RBW 1 MHz VBW 10 Hz SWT 25 s	[T1] MK VIEW	Marker 1 [T1] 5.17 dBm 2.46120000 GHz
10-	1 				Marker 2 [T1] -55.26 dBm 2.48350000 GHz Marker 3 [T1]
0-					-55.26 dBm 2.48350000 GHz Marker 4 [T1] -58.89 dBm
-10 - -20 -	D2 -14.83 dBm				2.50000000 GHz
-30 -					
-40 -					
-50 -	- M	\sim			
-60 - -70 -					
-80 -	F		1 1 1		
	Center 2.502 GHz	10 MHz/		Span 100 MHz	ADT CORP.

802.11g OFDM MODULATION

NOTE 1: The band edge emission plot on the next page shows 39.96dBc between carrier maximum power and local maximum emission in restrict band (2.39000GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 109.20dBuV/m (Peak), so the maximum field strength in restrict band is 109.20 - 39.96 = 69.24dBuV/m which is under 74dBuV/m limit.

The band edge emission plot on the next page shows 47.25dBc between carrier maximum power and local maximum emission in restrict band (2.39000GHz). The emission of carrier strength list in the test result of channel 1 at the item 4.2.7 is 99.03dBuV/m (Peak), so the maximum field strength in restrict band is 99.03 - 47.25 = 51.78dBuV/m which is under 54dBuV/m limit.

NOTE 2: The band edge emission plot on the next second page shows 42.91dBc between carrier maximum power and local maximum emission in restrict band (2.48500GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 109.52dBuV/m (Peak), so the maximum field strength in restrict band is 109.52 - 42.91 = 66.61dBuV/m which is under 74dBuV/m limit.

The band edge emission plot on the next third page shows 48.86dBc between carrier maximum power and local maximum emission in restrict band (2.48350GHz). The emission of carrier strength list in the test result of channel 11 at the item 4.2.7 is 99.86dBuV/m (Peak), so the maximum field strength in restrict band is 99.86 - 48.86 = 51.00dBuV/m which is under 54dBuV/m limit.

Ref 23 dBm Att 30 dB WW 100 Hz 1 - 3 3 dB 2 4000000 GH 0<			RBW 100 kHz	[T1] MK VIEW	Marker 1 [T1]
200 100 101 100 100 100 100 100	Pat 20 JPm	44 20 JR	VBW 100 kHz		-1.30 dBi
10	0-[do UC #A	awiiums		
2 4000000 1 13 24 Bm 1 31 24 Bm 1 31 24 Bm 2 3000000 GH Marker 3 [T1] 2 3000000 GH 2 2 21 24 Bm 1 41 26 4B 2 3000000 GH 2 300000 GH 2 3000000 GH 2 3000000 GH 2 3000000 GH 2 3000000 GH 2 3000000 GH 2 3000000 GH 2 35 94 Bm 1 0 MEz 2 3000000 GH 2 35 94 Bm 1 1 0 MEz 2 3000000 GH 2 35 94 Bm 2 41400000 1 - 0 25 4 Bm 1 -					
0 0 1 31.32.45 10 31.32.45 2.4000000 GB 00 02.21.248 41.136.45 00 02.21.248 41.136.45 00 0 41.136.45 00 0 41.136.45 00 0 41.136.45 00 0 41.136.45 00 0 0 01 0 0 02.21.248 0 0 03 0 0 04 0 0 05 0 0 06 0 0 07 0 0 08 0 0 09 0 0 00 0 0 01 0 0 02 0 0 0 01 0 0 0 01 0 0 0 02 0 0 0 03 0 0 0 04 0 0	0				2.4000000 GH
0 D1-1/3 dBm 2.40000000 GB 0 0 0.1 26 dB 0 0 0.2 31 3 dBm 0 0 0 0 <t< td=""><td>-</td><td></td><td></td><td></td><td>Marker 3 [T1]</td></t<>	-				Marker 3 [T1]
10 41.25 GB 10 42.248Bm 10 42.248Bm 10 42.23000000 GB 11 41.25 GB 12 42.3000000 GB 11 41.25 GB 12 42.3000000 GB 12 42.3000000 GB 13 42.3000000 GB 14 42.3000000 GB 14 42.3000000 GB 15 10 16 10 17 10 18 10 19 10 10 10	0 01 1 2 40			1	
10 -41.35 dB; 23000000 GH 30 -41.35 dB; -2.300000 GB; -2.300000 H; -2.400000 GB; -2.400000 GB; -2.412 dB; -2.35 dB; -2.412 dB; -2.412 dB; -2.400000 GB; -2.4000000 GB; -2.400000 GB;	0- <u></u>			when the way	
00 02 21 2 4 Bm 41.26 dB 00 41.26 dB 00 41.26 dB 00 41.26 dB 00 41.26 dB 01 41.26 dB 02 41.26 dB 01 41.26 dB 02 41.26 dB 02 41.26 dB 03 41.26 dB 04 41.26 dB 05 41.26 dB 06 41.26 dB 07 41.26 dB 08 41.26 dB 09 41.26 dB 00 41.26 dB 01 41.26 dB 02 41.26 dB 03 41.26 dB 04 41.26 dB 05 41.26 dB 06 41.26 dB 07 41.26 dB 08 41.26 dB 09 41.26 dB 01 41.26 dB 02 41.460000 dB 03 41.26 dB 04.16 dB 41.26 dB 05.16 dB 41.26 dB 04.16 dB 41.26 dB 05.16 dB 41.26 dB 04.16 dB 41.26 dB 05.16 dB 41.26 dB 10 41.26 dB 10	_			1 1	-41.26 dBi
20 21 22 21 2 8Bm 2 3000000 GH 2 4126 dB 2 4146000 GH Marker 1 [T1] - 0.26 dB 2 4146000 GH Marker 2 [T1] - 36 98 dB 2 41460000 GH Marker 3 [T1] - 36 98 dB 2 41460000 GH Marker 3 [T1] - 36 98 dB 2 4140000 GH Marker 3 [T1] - 36 98 dB 2 4000000 GH Marker 4 [T1] - 36 98 dB 2 4000000 GH Marker 5 [T1] - 36 98 dB 2 4000000 GH Marker 5 [T1] - 36 98 dB 2 400000 GH Marker 5 [T1] - 36 98 dB 2 4000000 GH Marker 4 [T1] - 36 98 dB 2 4000000 GH Marker 5 [T1] - 36 98 dB 2 4000000 GH Marker 5 [T1] - 36 98 dB 2 400000 GH Marker 5 [T1] - 36 98 dB 2 400000 GH Marker 5 [T1] - 36 98 dB 2 400000 GH Marker 5 [T1] - 36 98 dB 2 4000000 GH Marker 5 [T1] - 36 98 dB 2 400000 GH - 36 98 dB 2 400000 GH - 36 98 dB - 30 900000 GH -	0-				
2.39000000 GH)	
0 0	0- <u>D2-21</u> . <u>3 dBm</u>			1	
0 0			3	/]
50 -	0-			/	-
50 -			a start		
50 -	0-				_
50 -			L.M.		
50 -	0 h h		interesting to the second second		
50 -	- An Anna an an Albandat and Alband	Annalous Andress, Annald and she	() () () () () () () () () () () () () (
Ref 20 dBm Att 30 dB Styr 25 s Marker 1 [T1] 0 - - - - 0 - <	n				
30 F2 F1 Image: F2 F1 Image: F2 F1 Image: F2] .
30 F2 F1 Image: F2 F1 Image: F2 F1 Image: F2	_				
30-	U - 				
Center 2372 GHz IO MHz/ Span 100 MHz Marker 1 [T1] 0 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 0 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 0 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 0 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 11 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 11 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 10 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 20 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 20 Image: SwT 25 s Image: SwT 25 s Image: SwT 25 s 20 Image: SwT					
REW 1 MHz [T1] MK VIEW Marker 1 [T1] 20 - - 2 d Bm 20 - Att 30 dB SWT 25 s 10 - - 2 d Bm 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - 1 - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - - 0 - - <td></td> <td></td> <td>F2 F1</td> <td></td> <td></td>			F2 F1		
VBW 10 Hz -0.26 dB 20 Att 30 dB SWT 25 s 10 - 2.41480000 GH 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - 1 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - <th>1 1 1</th> <th></th> <th></th> <th></th> <th>D</th>	1 1 1				D
20 - 21 + 14000 1 10 - 26 dBm 1 10 - 20 - 20 26 dBm 2 20 - 22 - 20 26 dBm 4 40 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	1 1 1	і і і 10 МЛ		' Spen 100 MH	ADT CORP.
10 - D1 -0.26 dBm 1 -36.98 dBm 2.40000000 GH Marker 3 [T1] -37.51 dBi 2.40000000 GH Marker 5 [T1] -37.51 dBi 2.3900000 GH Marker 5 [T1] -47.51 dBi 2.3900000 GH Marker 5 [T1] -47.51 dBi 2.3900000 GH Marker 5 [T1] -47.51 dBi 2.3900000 GH	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	_	ADT CORP. Marker 1 [T1] -0.26 dB;
10 - D1 -0.26 dBm 1	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	_	Marker 1 [T1]
0 - D1 -0.26 dBm 1 -36.98 dB 2 4000000 GF 40 - 20 - 20.26 dBm 40 - 20 - 20.26 dBm 1 -36.98 dB 2 4000000 GF Marker 3 [T1] -36.98 dB 2 4000000 GF Marker 4 [T1] -47.51 dB 2.3900000 GF 2.3900000 GF	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	_	Marker 1 [T1] -0.26 dB 2.41480000 GF Marker 2 [T1]
0 - D1 -0.26 dBm5.95 a dBm 2.4000000 GH 10	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	_	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36.98 dB;
0 - 24,000000 GH 10 - 20,20,26 dBm 30 - 22,20,26 dBm 40 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dEi 2.41460000 GH Marker 2 [T1] -36 98 dEi 2.4000000 GH Marker 3 [T1]
10	0 - Ref 20 dBm		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] 2.4000000 GH Marker 3 [T1] -36.98 dB; -36.98 dB; -36.98 dB;
20 - D2 -20.26 dBm Marker 5 [T1] -47.51 dB; 2.39000000 GH 30 - 40 - 40 - 41 - 41 - 42 - 42 - 42 - 42 - 42 - 42	0 - Ref 20 dBm		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36.98 dB; -2.40000000 GH Marker 3 [T1] -36.98 dB; -2.40000000 CH
20 - <u>D2 -20.26 dBm</u> 30	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41490000 GH Marker 2 [T1] -36.98 dB; 2.4000000 GH Marker 3 [T1] 2.4000000 GH Marker 4 [T1] -47.51 dB;
20 - 22 - 20 - 20 - 20 - 20 - 20 - 20 -	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] 0.26 dB; 2.41480000 GH Marker 2 [T1] -36 98 dB; 2.4000000 GH Marker 3 [T1] -36 98 dB; 2.4000000 GH Marker 4 [T1] -47.51 dB; 2.3000000 GH
30	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB: 2.41480000 GH Marker 2 [T1] -36.98 dB: -2.40000000 GH Marker 3 [T1] -36.98 dB: 2.4000000 GH Marker 4 [T1] -47.51 dB: 2.39000000 GH Marker 5 [T1]
40-	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36 98 dB; 2.40000000 GH Marker 3 [T1] -36 98 dB; 2.40000000 GH Marker 4 [T1] -47.51 dB; Marker 5 [T1] -47.51 dB;
	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36 98 dB; 2.40000000 GH Marker 3 [T1] -36 98 dB; 2.40000000 GH Marker 4 [T1] -47.51 dB; Marker 5 [T1] -47.51 dB;
	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36 98 dB; 2.40000000 GH Marker 3 [T1] -36 98 dB; 2.40000000 GH Marker 4 [T1] -47.51 dB; Marker 5 [T1] -47.51 dB;
	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36 98 dB; 2.40000000 GH Marker 3 [T1] -36 98 dB; 2.40000000 GH Marker 4 [T1] -47.51 dB; Marker 5 [T1] -47.51 dB;
70	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36 98 dB; 2.40000000 GH Marker 3 [T1] -36 98 dB; 2.40000000 GH Marker 4 [T1] -47.51 dB; Marker 5 [T1] -47.51 dB;
	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB; 2.41480000 GH Marker 2 [T1] -36 98 dB; 2.40000000 GH Marker 3 [T1] -36 98 dB; 2.40000000 GH Marker 4 [T1] -47.51 dB; Marker 5 [T1] -47.51 dB;
	Center 2.372 GHz		Hz/ RBW 1 MHz VBW 10 Hz	[T1] MK VIEW	Marker 1 [T1] -0.26 dB 2.41480000 GF Marker 2 [T1] -36.98 dB 2.40000000 GF Marker 3 [T1] -36.98 dB 2.40000000 GF Marker 4 [T1] -47.51 dB Marker 5 [T1]

-60 --70 -

-80 -

Center 2.372 GHz

FŻ

10 MHz/

F

Span 100 MHz

ADT CO

nef 20 dBm	Att 30 dB	RBW 100 kHz VBW 100 kHz SWT 2.5 s	[T1] MK VIEW	Marker 1 [T1] -1.66 dB 2.37718000 GH
20 -	In Jour	011235		Marker 2 [T1]
10 -				-39.40 dB 24.70036000 GF
1				Marker 3 [T1] -40.95 dB
0- <u>D1-1-3 dBm</u>				24.40072000 GH
10 -				Marker 4 [T1] -41.37 dB
10-				20.75510000 GH
20 - D2-21 3 dBm				
30 -			4 32	-
40			++	_
	the strength of the state	Mannan	MANAMAN	1
50 - Maril Marine 10, 1000000000000000000000000000000000	apple and the set	en la companya de la companya		-
60 -				
				^
70 -				
80-				
Start 30 MHz	2.497 G	i i i i	Stop 25 GH	4
				ADT CORP.
	Att 30 dB	RBW 100 kHz VBW 100 kHz SWT 10 ms	[T1] MK VIEW	Marker 1 [T1] -1.91 dB 2 46000000 GB
20 - Ref 20 dBm	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB: 2.46000000 GE Marker 2 [T1]
20 - Ref 20 dBm	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB: 2.46000000 GH Marker 2 [T1] -44.82 dB: 2.48350000 GH
10 - 1	Att 30 dB	VBW 100 kHz	[Ti] MK VIEW	-1.91 dB: 2.4600000 GH Marker 2 [T1] -44.82 dB: 2.48350000 GH Marker 3 [T1] -44.82 dB:
10 -	Att 30 0E	VBW 100 kHz	[Ti] MK VIEW	-1.91 dB; 2.46000000 GF Marker 2 [T1] -44.82 dB; 2.48350000 GF Marker 3 [T1] -44.82 dB; 2.48350000 GF Marker 4 [T1]
10 - 1	Att 30 dB	VBW 100 kHz	[Ti] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
0 - <u>1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 </u>	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB; 2.46000000 GF Marker 2 [T1] -44.82 dB; 2.48350000 GF Marker 3 [T1] -44.82 dB; 2.48350000 GF Marker 4 [T1]
0 - <u>1 191 UBm</u>	An 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
0 - <u>1 1 UBm</u> 0 - <u>D1 191 UBm</u> 10 - <u>D2 -21.91 dBm</u>	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
0 - <u>1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 </u>	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
0 - <u>1 1 UBm</u> 0 - <u>D1 191 UBm</u> 10 - <u>D2 -21.91 dBm</u>	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
10	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
0 - <u>D1 - 1 91 UBm</u> 0 - <u>D1 - 1 91 UBm</u> 10 - <u>D2 - 21 91 dBm</u> 30 -	Att 30 dB	VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
10		VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
10		VBW 100 kHz	[T1] MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
0 - <u>1</u> 0 - <u>1</u> 10 - <u>10 - <u>10 - 10</u> 10 - <u>10 - 10</u> 10</u>		VBW 100 kHz	(T1) MK VIEW	-1.91 dB 2.4600000 GF Marker 2 [T1] -44.82 dB 2.48350000 GF Marker 3 [T1] -44.82 dB 2.4835000 GF Marker 4 [T1] -48.68 dB
0 - 1 0 - 1 10 - 1	Att 30 dB	VBW 100 kHz		-191 dB 2.46000000 GF Marker 2 [T1] -44.82 dB 2.4835000 GF Marker 3 [T1] -48.68 dB 2.5000000 GF
10		VBW 100 kHz SWT 10 ms	(T1) MK VIEW	-191 dB 2.46000000 GF Marker 2 [11] -44.82 dB 2.4835000 GF Marker 3 [11] -44.82 dB 2.435000 GF Marker 4 [11] -45.68 dB 2.50000000 GF

20 -	Ref 20 dBm A	# 30 dB		RBW 1 MHz VBW 10 Hz SWT 25 s	[T1] MK VIEW	Marker 1 [T1] -0.50 dBm 2.45860000 GHz
10- 0-	1 5_dBm					Marker 2 [T1] -49.36 dBm 2.48350000 GHz Marker 3 [T1] -49.36 dBm 2.48350000 GHz Marker 4 [T1]
-10 - -20 -	<u>D2-20</u> 5dBm					-57.53 dBm 2.50000000 GHz
-30 - -40 - -50 -						
-60 –						^
-70 - -80 -	F Center 2.502 GHz	l F	2 10 MHz/	1 1	Span 100 MHz	ADT CORP.

	Ref 20 dBm	Att 30 dB	RBW 100 kHz VBW 100 kHz SWT 2.5 s	[T1] MK VIEW	Marker 1 [T1] -3.37 dBm
20 -	Kei 20 dbm	do UC #A	8W12.3S		2.42712000 GHz Marker 2 [T1]
10-					-40.32 dBm 24.75030000 GHz
10-					Marker 3 [T1]
0-	D1 -1.91	Bu			-40.36 dBm 24.85018000 GHz
	1				Marker 4 [T1] -40.62 dBm
-10 -					-40.62 aBm 23.30204000 GHz
-20 –	<u>D2-21.9</u>	1 dBm			-
-30 -					
				4 3	
-40 -					T
		March and a share was a share was a share of a	monormany	www.www.ww	
-50 –	- Anton the set	_n to an and the second			-
-60 -					
					^
-70 -					
-80 –	Start 30 MHz	2.497 GHz/	1 1 1	Stop 25 GHz	
	Statt 50 IMINZ	2.497 GHZ		Stop 23 GHz	ADT CORP.

4.7 ANTENNA REQUIREMENT

4.7.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.7.2 ANTENNA CONNECTED CONSTRUCTION

The antenna used in this product is PIFA antenna without antenna connector. The maximum Gain of the antenna is 2.5dBi.

5 PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6 INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA , CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF Lab

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety/Telecom Lab Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

7 APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.