SAR TEST REPORT

REPORT NO.: SA941110L07
MODEL NO.: WIP300
RECEIVED: Nov. 10, 2005
TESTED: Dec. 16 ~ Dec. 19 , 2005
ISSUED: Dec. 21, 2005

APPLICANT: Cisco-Linksys LLC
ADDRESS: 121 Theory Drive Irvine, CA 92617 (USA)

ISSUED BY: Advance Data Technology Corporation
LAB ADDRESS: No. $47,14^{\text {th }}$ Ling, Chia Pau Tsuen, Lin Kou Hsiang 244, Taipei Hsien, Taiwan, R.O.C.

TEST LOCATION: No. 19, Hwa Ya $2^{\text {nd }}$ Rd., Kwei Shan Hsiang, Taoyuan Hsien 333, Taiwan, R.O.C.

This test report consists of 42 pages in total except Appendix. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1. CERTIFICATION 3
2. GENERAL INFORMATION 4
2.1 GENERAL DESCRIPTION OF EUT 4
2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS 5
2.3 GENERAL INOFRMATION OF THE SAR SYSTEM 5
2.4 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION 9
3. DESCRIPTION OF SUPPORT UNITS 12
4. DESCRIPTION OF TEST MODES AND CONFIGURATIONS 13
4.1. DESCRIPTION OF ANTENNA LOCATION 13
4.2. DESCRIPTION OF ASSESSMENT POSITION 14
4.3. DESCRIPTION OF TEST MODE 16
4.4. SUMMARY OF TEST RESULTS 17
5. TEST RESULTS 18
5.1 TEST PROCEDURES 18
5.2 MEASURED SAR RESULTS 20
5.3 SAR LIMITS 26
5.4 RECIPES FOR TISSUE SIMULATING LIQUIDS 27
5.5 TEST EQUIPMENT FOR TISSUE PROPERTY 29
6. SYSTEM VALIDATION 30
6.1 TEST EQUIPMENT 30
6.2 TEST PROCEDURE 31
6.3 VALIDATION RESULTS 33
6.4 SYSTEM VALIDATION UNCERTAINTIES 34
7. MEASUREMENT SAR PROCEDURE UNCERTAINTIES 35
7.1. PROBE CALIBRATION UNCERTAINTY 35
7.2. ISOTROPY UNCERTAINTY 36
7.3. BOUNDARY EFFECT UNCERTAINTY 36
7.4. PROBE LINEARITY UNCERTAINTY 37
7.5. READOUT ELECTRONICS UNCERTAINTY 37
7.6. RESPONSE TIME UNCERTAINTY 37
7.7. INTEGRATION TIME UNCERTAINTY 38
7.8. PROBE POSITIONER MECHANICAL TOLERANCE 39
7.9. PROBE POSITIONING 39
7.10. PHANTOM UNCERTAINTY 40
7.11. DASY4 UNCERTAINTY BUDGET 41
8. INFORMATION ON THE TESTING LABORATORIES 42APPENDIX A: TEST CONFIGURATIONS AND TEST DATAAPPENDIX B: ADT SAR MEASUREMENT SYSTEM
APPENDIX C: PHOTOGRAPHS OF SYSTEM VALIDATION
APPENDIX D: SYSTEM CERTIFICATE \& CALIBRATION

1. CERTIFICATION

PRODUCT: Wireless-G IP Phone
MODEL: WIP300
BRAND: Linksys
APPLICANT: Cisco-Linksys LLC
TESTED: Dec. 16 ~ Dec. 19,2005
TEST SAMPLE: ENGINEERING SAMPLE
STANDARDS: FCC Part 2 (Section 2.1093), RSS-102
FCC OET Bulletin 65, Supplement C (01-01),

The above equipment has been tested by Advance Data Technology Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation \& Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT		Wireless-G IP Phone
MODEL NO.		WIP300
POWER SUPPLY		4.0 Vdc from battery 5.0 Vdc from AC adapter
CLASSIFICATION		Portable device, production unit
MODULATION TYPE		CCK, QPSK, BPSK for DSSS, 64QAM, 16QAM, QPSK, BPSK for OFDM
RADIO TECHNOLOGY		DSSS, OFDM
TRANSFER RATE		802.11b: 11/5.5/2/1Mbps 802.11g: 54/48/36/24/18/12/9/6Mbps
FREQUENCY RANGE		$2412 \mathrm{MHz} \sim 2462 \mathrm{MHz}$
NUMBER OF CHANNEL		11
CHANNEL FREQUENCIES UNDER TEST AND ITS CONDUCTED OUTPUT POWER (FOR DSSS)		$56.364 \mathrm{~mW} / \mathrm{Ch} 1: 2412 \mathrm{MHz}$ $56.754 \mathrm{~mW} / \mathrm{Ch} 6: 2437 \mathrm{MHz}$ 56.885mW / Ch11: 2462MHz
CHANNEL FREQUENCIES UNDER TEST AND ITS CONDUCTED OUTPUT POWER (FOR OFDM)		28.576mW / Ch1: 2412MHz 28.510mW / Ch6: 2437MHz 28.510mW / Ch11: 2462MHz
AVERAGE SAR (1g) (FOR DSSS)		Head: 0.158W/kg Body: $0.836 \mathrm{~W} / \mathrm{kg}$
AVERAGE SAR (1g) (FOR OFDM)		Head: 0.012W/kg Body: 0.065W/kg
ANTENNA TYPE		Main antenna: Chip antenna with 0.48 dBi gain Auxiliary antenna: Chip antenna with -0.86 dBi gain
DATA CABLE		NA
I/O PORTS		NA
ASSOCIATED DEVICES		NA
NOTE: 1. The EUT is a Wireless-G IP Phone. 2. The EUT was powered by the following adapter and battery: Adapter:		
Brand: Ktec		
Model:	KSAFB0500100W1US	
Input:	$100-240 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$.15A
Output:	5Vdc, 1A	
Power Line:	DC 1.8m non-shielded	able with one core

Battery:

Model:	LP053450AH
Input:	$3.7 \mathrm{Vdc}, 900 \mathrm{mAh}$
Output:	$4.0 \mathrm{Vdc}, 600 \mathrm{mAh}$

3. The EUT complies with IEEE 802.11 g standards and backwards compatible with IEEE 802.11b products.
4. The EUT operates in the 2.4 GHz frequency spectrum with throughput of up to 54 Mbps .
5. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

2.2 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to the specifications of the manufacturer, this product must comply with the requirements of the following standards:

FCC Part 2 (2.1093)
FCC OET Bulletin 65, Supplement C (01-01)
RSS-102
IEEE 1528-2003

All test items have been performed and recorded as per the above standards.

2.3 GENERAL INOFRMATION OF THE SAR SYSTEM

DASY4 (software 4.6 Build 23) consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY4 software defined. The DASY4 software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, $A D$ converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

ET3DV6 ISOTROPIC E-FIELD PROBE

CONSTRUCTION

FREQUENCY

DYNAMIC RANGE
OPTICAL SURFACE DETECTION

DIMENSIONS

APPLICATION

Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., glycolether).

10 MHz to 3 GHz ; Linearity: $\pm 0.2 \mathrm{~dB}(30 \mathrm{MHz}$ to 3 GHz$)$
$5 \mu \mathrm{~W} / \mathrm{g}$ to $>100 \mathrm{~mW} / \mathrm{g}$; Linearity: $\pm 0.2 \mathrm{~dB}$
$\pm 0.2 \mathrm{~mm}$ repeatability in air and clear liquids over diffuse reflecting surfaces

Overall length: 330 mm (Tip Length: 16 mm)
Tip diameter: 6.8 mm (Body diameter: 12 mm)
Distance from probe tip to dipole centers: 2.7 mm
General dosimetric measurements up to 3 GHz Compliance tests of mobile phones
Fast automatic scanning in arbitrary phantoms (ET3DV6)

NOTE

1. The Probe parameters have been calibrated by the SPEAG. Please reference "APPENDIX D" for the Calibration Certification Report.
2. For frequencies above 800 MHz , calibration in a rectangular wave-guide is used, because wave-guide size is manageable.
3. For frequencies below 800 MHz , temperature transfer calibration is used because the waveguide size becomes relatively large.

TWIN SAM V4.0

CONSTRUCTION The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 15282003, CENELEC 50361 and IEC 62209. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points with the robot.

SHELL THICKNESS $2 \pm 0.2 \mathrm{~mm}$

FILLING VOLUME Approx. 25 liters

DIMENSIONS Height: 810 mm; Length: 1000 mm; Width: 500 mm

SYSTEM VALIDATION KITS:

CONSTRUCTION Symmetrical dipole with I/4 balun enables measurement of feedpoint impedance with NWA matched for use near flat phantoms filled with brain simulating solutions.
Includes distance holder and tripod adaptor
CALIBRATION Calibrated SAR value for specified position and input power at the flat phantom in brain simulating solutions

FREQUENCY

2450 MHz

RETURN LOSS
> 20 dB at specified validation position
POWER
CAPABILITY
> 100 W (f < 1GHz); > 40 W (f > 1GHz)
OPTIONS
Dipoles for other frequencies or solutions and other calibration conditions upon request

DEVICE HOLDER FOR SAM TWIN PHANTOM

CONSTRUCTION The device holder for the mobile phone device is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles. The holder has been made out of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. The device holder for the portable device makes up of the polyethylene foam. The dielectric parameters of material close to the dielectric parameters of the air.

DATA ACQUISITION ELECTRONICS

FCC ID: Q87-WIP300

CONSTRUCTION The data acquisition electronics (DAE3) consists of a highly sensitive electrometer grade preamplifier with auto-zeroing, a channel and gain-switching multiplex, a fast 16 bit AD converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The mechanical probe is mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection. The input impedance of the DAE3 box is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB .

2.4 GENERAL DESCRIPTION OF THE SPATIAL PEAK SAR EVALUATION

The DASY4 post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the micro-volt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Norm $_{i}, a_{i 0}, a_{i 1}, a_{i 2}$
	- Conversion factor	ConvF_{i}
	- Diode compression point	dcp_{i}
Device parameters:	- Frequency	F
	- Crest factor	Cf
Media parameters:	- Conductivity	σ
	- Density	ρ

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$
V_{i}=U_{i}+U_{i}^{2} \bullet \frac{c f}{d c p_{i}}
$$

$V_{i} \quad=$ compensated signal of channel i
$\mathrm{U}_{\mathrm{i}} \quad=$ input signal of channel I
Cf =crest factor of exciting field
$\mathrm{dcp}_{\mathrm{i}} \quad=$ diode compression point

$$
(i=x, y, z)
$$

(i $=x, y, z$)
(DASY parameter)
(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$
\text { E-fieldprobes: } E_{i}=\sqrt{\frac{V_{1}}{\text { Norm}_{i} \cdot \operatorname{ConvF}}}
$$

H-fieldprobes: $H_{i}=\sqrt{V_{i}} \cdot \frac{a_{i 0}+a_{i 1} f+a_{i 2} f^{2}}{f}$
$V_{i} \quad=$ compensated signal of channel I (i = x,y,z)
Norm $_{\mathrm{i}} \quad=$ sensor sensitivity of channel $\mathrm{i} \mu \mathrm{V} /(\mathrm{V} / \mathrm{m}) 2$ for E - ($\mathrm{i}=\mathrm{x}, \mathrm{y}, \mathrm{z}$) field Probes
ConvF = sensitivity enhancement in solution
$\mathrm{a}_{\mathrm{ij}} \quad=$ sensor sensitivity factors for H -field probes
$F \quad=$ carrier frequency [GHz]
$\mathrm{E}_{\mathrm{i}} \quad=$ electric field strength of channel i in V / m
$\mathrm{H}_{\mathrm{i}} \quad=$ magnetic field strength of channel i in A / m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$
E_{t o t}=\sqrt{E_{x}^{2}+E_{y}^{2}+E_{z}^{2}}
$$

The primary field data are used to calculate the derived field units.

$$
S A R=E_{\text {tot }}^{2} \cdot \frac{\sigma}{\rho \cdot 1^{\prime} 000}
$$

SAR = local specific absorption rate in mW / g
$\mathrm{E}_{\text {tot }} \quad=$ total field strength in V / m
$\sigma \quad=$ conductivity in [mho/m] or [Siemens $/ \mathrm{m}$]
$\rho \quad=$ equivalent tissue density in $\mathrm{g} / \mathrm{cm} 3$

Note that the density is set to 1 , to account for actual head tissue density rather than the density of the tissue simulating liquid. The entire evaluation of the spatial peak values is performed within the Post-processing engine (SEMCAD). The system always gives the maximum values for the 1 g and 10 g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

1. The extraction of the measured data (grid and values) from the Zoom Scan
2. The calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
3. The generation of a high-resolution mesh within the measured volume
4. The interpolation of all measured values from the measurement grid to the highresolution grid
5. The extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
6. The calculation of the averaged SAR within masses of 1 g and 10 g .

The probe is calibrated at the center of the dipole sensors that is located 1 to 2.7 mm away from the probe tip. During measurements, the probe stops shortly above the phantom surface, depending on the probe and the surface detecting system. Both distances are included as parameters in the probe configuration file. The software always knows exactly how far away the measured point is from the surface. As the probe cannot directly measure at the surface, the values between the deepest measured point and the surface must be extrapolated. The angle between the probe axis and the surface normal line is less than 30 degree.

In the Area Scan, the gradient of the interpolation function is evaluated to find all the extreme of the SAR distribution. The uncertainty on the locations of the extreme is less than $1 / 20$ of the grid size. Only local maximum within -2 dB of the global maximum are searched and passed for the Cube Scan measurement. In the Cube Scan, the interpolation function is used to extrapolate the Peak SAR from the lowest measurement points to the inner phantom surface (the extrapolation distance). The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm .

The maximum search is automatically performed after each area scan measurement. It is based on splines in two or three dimensions. The procedure can find the maximum for most SAR distributions even with relatively large grid spacing. After the area scanning measurement, the probe is automatically moved to a position at the interpolated maximum. The following scan can directly use this position for reference, e.g., for a finer resolution grid or the cube evaluations. The 1 g and 10 g peak evaluations are only available for the predefined cube $7 \times 7 \times 7$ scans. The routines are verified and optimized for the grid dimensions used in these cube measurements. The measured volume of $30 \times 30 \times 30 \mathrm{~mm}$ contains about 30 g of tissue. The first procedure is an extrapolation (incl. boundary correction) to get the points between the lowest measured plane and the surface. The next step uses 3D interpolation to get all points within the measured volume in a 1 mm grid (42875 points). In the last step, a 1 g cube is placed numerically into the volume and its averaged SAR is calculated. This cube is the moved around until the highest averaged SAR is found. If the highest SAR is found at the edge of the measured volume, the system will issue a warning: higher SAR values might be found outside of the measured volume. In that case the cube measurement can be repeated, using the new interpolated maximum as the center.

3. DESCRIPTION OF SUPPORT UNITS

NA

FCC ID: Q87-WIP300
4. DESCRIPTION OF TEST MODES AND CONFIGURATIONS
4.1. DESCRIPTION OF ANTENNA LOCATION

4.2. DESCRIPTION OF ASSESSMENT POSITION

The following test configurations have been applied in this test report:
A: RIGHT HEAD POSITION

B: LEFT HEAD POSITION

FCC ID: Q87-WIP300

C: BODY WORN POSITION

FCC ID: Q87-WIP300

4.3. DESCRIPTION OF TEST MODE

$\begin{array}{\|c\|} \hline \text { TEST } \\ \text { MODE } \end{array}$	MODULATION TECHNOLOGY	ASSESSMENT POSTITION	TESTED CHANNEL	REMARK
1	DSSS	A / Cheek	L, M, H	-
2		A / Tilt	L, M, H	-
3		B / Cheek	L, M, H	-
4		B / Tilt	L, M, H	-
5	OFDM	A / Cheek	L, M, H	-
6		A / Tilt	L, M, H	-
7		B / Cheek	L, M, H	-
8		B / Tilt	L, M, H	-
9	DSSS	C / Bottom	L, M, H	-
10		C / Front	L, M, H	-
11	OFDM	C / Bottom	L, M, H	-
12		C / Front	L, M, H	-

FCC ID: Q87-WIP300

4.4. SUMMARY OF TEST RESULTS

MODULATION TECHNOLOGY	DSSS				OFDM				
	MEASURED VALUE OF 1g SAR (W/kg)								
	HEAD				HEAD				
	RIGHT			LEFT		RIGHT		LEFT	
	CHEEK	TILT	CHEEK	TILT	CHEEK	TILT	CHEEK	TILT	
LOW	0.121	0.125	0.155	0.152	0.012	0.00619	0.00777	0.00425	
MIDDLE	0.111	0.131	0.145	$\mathbf{0 . 1 5 8}$	$\mathbf{0 . 0 0 5 5}$	$\mathbf{0 . 0 0 0 5 3 4}$	0.011	0.00359	
HIGH	0.106	0.104	0.107	0.120	0.00288	0.00743	0.011	0.00318	

NOTE: The worst value has been marked by boldface.

MODULATION TECHNOLOGY	DSSS		OFDM	
	MEASURED VALUE OF 1g SAR (W/kg)			
	BODY		BODY	
	BOTTOM	FRONT	BOTTOM	FRONT
LOW	$\mathbf{0 . 8 3 6}$	0.167	$\mathbf{0 . 0 6 5}$	0.012
MIDDLE	0.749	0.195	0.046	0.012
HIGH	0.559	0.203	0.048	0.013

NOTE: The worst value has been marked by boldface.

5. TEST RESULTS

5.1 TEST PROCEDURES

Use the software to control the EUT channel and transmission power. Then record the conducted power before the testing. Place the EUT to the specific test location. After the testing, must writing down the conducted power of the EUT into the report. The SAR value was calculated via the 3D spline interpolation algorithm that has been implemented in the software of DASY4 SAR measurement system manufactured and calibrated by SPEAG. According to the IEEE P1528 standards, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- Power reference measurement
- Verification of the power reference measurement
- Area scan
- Zoom scan
- Power reference measurement

The area scan was performed for the highest spatial SAR location. The zoom scan with $30 \mathrm{~mm} \times 30 \mathrm{~mm} \times 30 \mathrm{~mm}$ volume was performed for SAR value averaged over 1 g and 10 g spatial volumes.

In the zoom scan, the distance between the measurement point at the probe sensor location (geometric center behind the probe tip) and the phantom surface is 4.0 mm and maintained at a constant distance of $\pm 1.0 \mathrm{~mm}$ during a zoom scan to determine peak SAR locations. The distance is 4 mm between the first measurement point and the bottom surface of the phantom. The secondary measurement point to the bottom surface of the phantom is with 9 mm separation distance. The cube size is $7 \times 7 \times 7$ points consist of 343 points and the grid space is 5 mm .

The measurement time is 0.5 s at each point of the zoom scan. The probe boundary effect compensation shall be applied during the SAR test. Because of the tip of the probe to the Phantom surface separated distances are longer than half a tip probe diameter.

In the area scan, the separation distance is 4 mm between the each measurement point and the phantom surface. The scan size shall be included the transmission portion of the EUT. The measurement time is the same as the zoom scan. At last the reference power drift shall be less than $\pm 5 \%$.

FCC ID: Q87-WIP300
5.2 MEASURED SAR RESULTS

DSSS_RIGHT HEAD POSITION

EUT		Wireless-G IP Phone				MODEL		WIP300	
ENVIRONMENTAL CONDITION		Air Temperature : $21.8^{\circ} \mathrm{C}$, Liquid Temperature : $20.6^{\circ} \mathrm{C}$ Humidity : 55\%RH							
TESTED BY		Sam Onn				DATE		Dec. 19, 2005	
Chan.	Freq. (MHz)	Modulation Technique	Conducted Power (mW)		Power Drift (\%)	Device Use Power	Device Test Position	Antenna Position	Measured 1g SAR (W/kg)
			Begin Test	After Test					
1	$\begin{gathered} 2412 \\ (\text { Low }) \end{gathered}$	DSSS	56.364	55.287	-1.91	Standard Battery	1	Internal Fixed	0.121
6	$\begin{gathered} 2437 \\ \text { (Mid.) } \end{gathered}$	DSSS	56.754	55.545	-2.13	Standard Battery	1	Internal Fixed	0.111
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	DSSS	56.885	55.884	-1.76	Standard Battery	1	Internal Fixed	0.106
1	$\begin{gathered} 2412 \\ (\text { Low }) \end{gathered}$	DSSS	56.364	55.659	-1.25	Standard Battery	2	Internal Fixed	0.125
6	2437 (Mid.)	DSSS	56.754	56.062	-1.22	Standard Battery	2	Internal Fixed	0.131
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	DSSS	56.885	56.054	-1.46	Standard Battery	2	Internal Fixed	0.104

NOTE:

1. Test configuration of each mode is described in section 3.
2. In this testing, the limit for General Population Spatial Peak averaged over $1 \mathrm{~g}, \mathbf{1 . 6} \mathbf{~ W} / \mathbf{k g}$, is applied.
3. Please see the Appendix A for the photo of the test configuration and also the data.
4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

FCC ID: Q87-WIP300

DSSS_LEFT HEAD POSITION

EUT		Wireless-G IP Phone				MODEL		WIP300	
ENVIRONMENTAL CONDITION		Air Temperature : $21.8^{\circ} \mathrm{C}$, Liquid Temperature : $20.6^{\circ} \mathrm{C}$ Humidity : 55\%RH							
TESTED BY		Sam Onn				DATE		Dec. 19, 2005	
Chan.	Freq. (MHz)	Modulation Technique	Conducted Power (mW)		Power Drift (\%)	Device Use Power	Device Test Position	Antenna Position	Measured 1g SAR (W/kg)
			Begin Test	After Test					
1	2412 (Low)	DSSS	56.364	55.874	-0.87	Standard Battery	3	Internal Fixed	0.155
6	2437 (Mid.)	DSSS	56.754	55.755	-1.76	Standard Battery	3	Internal Fixed	0.145
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	DSSS	56.885	55.651	-2.17	Standard Battery	3	Internal Fixed	0.107
1	2412 (Low)	DSSS	56.364	55.141	-2.17	Standard Battery	4	Internal Fixed	0.152
6	2437 (Mid.)	DSSS	56.754	55.795	-1.69	Standard Battery	4	Internal Fixed	0.158
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	DSSS	56.885	56.134	-1.32	Standard Battery	4	Internal Fixed	0.120

NOTE:

1. Test configuration of each mode is described in section 3.
2. In this testing, the limit for General Population Spatial Peak averaged over $1 \mathrm{~g}, \mathbf{1 . 6} \mathbf{~ W} / \mathbf{k g}$, is applied.
3. Please see the Appendix A for the photo of the test configuration and also the data.
4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.
5.

FCC ID: Q87-WIP300

OFDM_RIGHT HEAD POSITION

EUT		Wireless-G IP Phone				MODEL		WIP300	
ENVIRONMENTAL CONDITION		Air Temperature : $21.8^{\circ} \mathrm{C}$, Liquid Temperature : $20.6^{\circ} \mathrm{C}$ Humidity : 55\%RH							
TESTED BY		Sam Onn				DATE		Dec. 19, 2005	
Chan.	Freq. (MHz)	Modulation Technique	Conducted Power (mW)		Power Drift (\%)	Device Use Power	Device Test Position	Antenna Position	Measured 1g SAR (W/kg)
			Begin Test	After Test					
1	$\begin{gathered} 2412 \\ (\text { Low }) \end{gathered}$	OFDM	28.576	28.124	-1.58	Standard Battery	5	Internal Fixed	0.012
6	2437 (Mid.)	OFDM	28.510	28.044	-1.63	Standard Battery	5	Internal Fixed	0.0055
11	2462 (High)	OFDM	28.510	27.988	-1.83	Standard Battery	5	Internal Fixed	0.00288
1	$\begin{gathered} 2412 \\ \text { (Low) } \end{gathered}$	OFDM	28.576	28.262	-1.10	Standard Battery	6	Internal Fixed	0.00619
6	$\begin{gathered} 2437 \\ \text { (Mid.) } \end{gathered}$	OFDM	28.510	27.878	-2.21	Standard Battery	6	Internal Fixed	0.000534
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	OFDM	28.510	27.888	-2.18	Standard Battery	6	Internal Fixed	0.00743

NOTE:

1. Test configuration of each mode is described in section 3.
2. In this testing, the limit for General Population Spatial Peak averaged over $1 \mathrm{~g}, \mathbf{1 . 6} \mathbf{W} / \mathbf{k g}$, is applied.
3. Please see the Appendix A for the photo of the test configuration and also the data.
4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

FCC ID: Q87-WIP300

OFDM_LEFT HEAD POSITION

EUT		Wireless-G IP Phone				MODEL		WIP300	
ENVIRONMENTAL CONDITION		Air Temperature : $21.8^{\circ} \mathrm{C}$, Liquid Temperature : $20.6^{\circ} \mathrm{C}$ Humidity : 55\%RH							
TESTED BY		Sam Onn				DATE		Dec. 19, 2005	
Chan.	Freq. (MHz)	Modulation Technique	Conducted Power (mW)		Power Drift (\%)	Device Use Power	Device Test Position	Antenna Position	Measured 1g SAR (W/kg)
			Begin Test	After Test					
1	$\begin{gathered} 2412 \\ (\text { Low }) \end{gathered}$	OFDM	28.576	28.396	-0.63	Standard Battery	7	Internal Fixed	0.00777
6	$\begin{gathered} 2437 \\ \text { (Mid.) } \end{gathered}$	OFDM	28.510	28.153	-1.25	Standard Battery	7	Internal Fixed	0.011
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	OFDM	25.510	28.276	-0.82	Standard Battery	7	Internal Fixed	0.011
1	$\begin{gathered} 2412 \\ \text { (Low) } \end{gathered}$	OFDM	28.576	28.310	-0.93	Standard Battery	8	Internal Fixed	0.00425
6	$\begin{aligned} & 2437 \\ & \text { (Mid.) } \end{aligned}$	OFDM	28.510	27.793	-2.51	Standard Battery	8	Internal Fixed	0.00359
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	OFDM	28.510	27.951	-1.96	Standard Battery	8	Internal Fixed	0.00318

NOTE:

1. Test configuration of each mode is described in section 3.
2. In this testing, the limit for General Population Spatial Peak averaged over $1 \mathrm{~g}, \mathbf{1 . 6} \mathbf{W} / \mathbf{k g}$, is applied.
3. Please see the Appendix A for the photo of the test configuration and also the data.
4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

FCC ID: Q87-WIP300

DSSS_BODY WORN POSITION

EUT		Wireless-G IP Phone				MODEL		WIP300	
ENVIRONMENTAL CONDITION		Air Temperature : $21.6^{\circ} \mathrm{C}$, Liquid Temperature : $20.5^{\circ} \mathrm{C}$ Humidity : 43\%RH							
TESTED BY		Sam Onn				DATE		Dec. 16, 2005	
Chan.	Freq. (MHz)	Modulation Technique	Conduct (m	ed Power W)	Power Drift (\%)	Device Use Power	Device Test Position	Antenna Position	Measured 1g SAR (W/kg)
			Begin Test	After Test					
1	$\begin{gathered} 2412 \\ \text { (Low) } \end{gathered}$	DSSS	56.364	55.631	-1.30	Standard Battery	9	Internal Fixed	0.836
6	$\begin{gathered} 2437 \\ \text { (Mid.) } \end{gathered}$	DSSS	56.754	55.818	-1.65	Standard Battery	9	Internal Fixed	0.749
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	DSSS	56.885	55.850	-1.82	Standard Battery	9	Internal Fixed	0.559
1	$\begin{gathered} 2412 \\ (\text { Low }) \end{gathered}$	DSSS	56.364	55.473	-1.58	Standard Battery	10	Internal Fixed	0.167
6	$\begin{gathered} 2437 \\ \text { (Mid.) } \end{gathered}$	DSSS	56.754	55.562	-2.10	Standard Battery	10	Internal Fixed	0.195
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	DSSS	56.885	55.378	-2.65	Standard Battery	10	Internal Fixed	0.203

NOTE:

1. Test configuration of each mode is described in section 3.
2. In this testing, the limit for General Population Spatial Peak averaged over $1 \mathrm{~g}, 1.6 \mathrm{~W} / \mathrm{kg}$, is applied.
3. Please see the Appendix A for the photo of the test configuration and also the data.
4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

FCC ID: Q87-WIP300

OFDM_BODY WORN POSITION

EUT		Wireless-G IP Phone				MODEL		WIP300	
ENVIRONMENTAL CONDITION		Air Temperature : $21.6^{\circ} \mathrm{C}$, Liquid Temperature : $20.5^{\circ} \mathrm{C}$ Humidity : 43\%RH							
TESTED BY		Sam Onn				DATE		Dec. 16, 2005	
Chan	Freq (MHz)	Modulation Technique	Conducted Power (mW)		Power Drift (\%)	Device Use Power	Device Test Position	Antenna Position	Measured 1g SAR (W/kg)
			Begin Test	After Test					
1	2412 (Low)	OFDM	28.576	28.210	-1.28	Standard Battery	11	Internal Fixed	0.065
6	2437 (Mid.)	OFDM	28.510	28.130	-1.33	Standard Battery	11	Internal Fixed	0.046
11	2462 (High)	OFDM	28.510	28.117	-1.38	Standard Battery	11	Internal Fixed	0.048
1	2412 (Low)	OFDM	28.576	28.167	-1.43	Standard Battery	12	Internal Fixed	0.012
6	2437 (Mid.)	OFDM	28.510	28.027	-1.48	Standard Battery	12	Internal Fixed	0.012
11	$\begin{gathered} 2462 \\ \text { (High) } \end{gathered}$	OFDM	28.510	28.074	-1.53	Standard Battery	12	Internal Fixed	0.013

NOTE:

1. Test configuration of each mode is described in section 3.
2. In this testing, the limit for General Population Spatial Peak averaged over $1 \mathrm{~g}, \mathbf{1 . 6} \mathbf{W} / \mathbf{k g}$, is applied.
3. Please see the Appendix A for the photo of the test configuration and also the data.
4. The variation of the EUT conducted power measured before and after SAR testing should not over 5%.

FCC ID: Q87-WIP300

5.3 SAR LIMITS

HUMAN EXPOSURE	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / controlled Exposure Environment)
Spatial Average (whole body)	0.08	0.4
Spatial Peak (averaged over 1 g)	1.6	8.0
Spatial Peak (hands / wrists / feet / ankles averaged over 10 g)	4.0	20.0

NOTE:

1. This limits accord to 47 CFR 2.1093 - Safety Limit.
2. The EUT property been complied with the partial body exposure limit under the general population environment.

FCC ID: Q87-WIP300
5.4 RECIPES FOR TISSUE SIMULATING LIQUIDS

For the measurement of the field distribution inside the SAM phantom, the phantom must be filled with 25 litters of tissue simulation liquid.

The following ingredients are used:

- WATER- Deionized water (pure H20), resistivity _16 M - as basis for the liquid
- SUGAR- Refined sugar in crystals, as available in food shops - to reduce relative permittivity
- SALT- Pure NaCl - to increase conductivity
- CELLULOSE- Hydroxyethyl-cellulose, medium viscosity ($75-125 \mathrm{mPa} . \mathrm{s}, 2 \%$ in water, 20_C),

CAS \# 54290 - to increase viscosity and to keep sugar in solution

- PRESERVATIVE- Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS \# 55965-84-9 - to prevent the spread of bacteria and molds
- DGMBE- Diethylenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS \# 112-34-5 - to reduce relative permittivity

THE RECIPES FOR 2450MHz SIMULATING LIQUID TABLE

INGREDIENT	HEAD SIMULATING LIQUID 2450MHz (HSL-2450)	MUSCLE SIMULATING LIQUID 2450MHz (MSL-2450)
Water	45%	69.83%
DGMBE	55%	30.17%
Salt	NA	NA
Dielectric	$\mathrm{f}=2450 \mathrm{MHz}$	$\mathrm{f}=2450 \mathrm{MHz}$
Parameters at	$\varepsilon=39.2 \pm 5 \%$	$\varepsilon=52.7 \pm 5 \%$
$22^{\circ} \mathrm{C}$	$\sigma=1.80 \pm 5 \% \mathrm{~S} / \mathrm{m}$	$\sigma=1.95 \pm 5 \% \mathrm{~S} / \mathrm{m}$

Testing the liquids using the Agilent Network Analyzer E8358A and Agilent Dielectric Probe Kit 85070D. The testing procedure is following as

1. Turn Network Analyzer on and allow at least 30 min . warm up.
2. Mount dielectric probe kit so that interconnecting cable to Network Analyzer will not be moved during measurements or calibration.
3. Pour de-ionized water and measure water temperature $\left(\pm 1^{\circ}\right)$.
4. Set water temperature in Agilent-Software (Calibration Setup).
5. Perform calibration.
6. Validate calibration with dielectric material of known properties (e.g. polished ceramic slab with $>8 \mathrm{~mm}$ thickness $\varepsilon^{\prime}=10.0, \varepsilon^{\prime \prime}=0.0$). If measured parameters do not fit within tolerance, repeat calibration (± 0.2 for $\varepsilon^{\prime}: \pm 0.1$ for ε ").
7. Conductivity can be calculated from ε " by $\sigma=\omega \varepsilon_{0} \varepsilon^{\prime \prime}=\varepsilon " f[G H z] / 18$.
8. Measure liquid shortly after calibration. Repeat calibration every hour.
9. Stir the liquid to be measured. Take a sample ($\sim 50 \mathrm{ml}$) with a syringe from the center of the liquid container.
10. Pour the liquid into a small glass flask. Hold the syringe at the bottom of the flask to avoid air bubbles.
11. Put the dielectric probe in the glass flask. Check that there are no air bubbles in front of the opening in the dielectric probe kit.
12. Perform measurements.
13. Adjust medium parameters in DASY4 for the frequencies necessary for the measurements ('Setup Config', select medium (e.g. Brain 900 MHz) and press 'Option'-button.
14. Select the current medium for the frequency of the validation (e.g. Setup Medium Brain 900 MHz).

FCC ID: Q87-WIP300

FOR 2.4GHz BAND SIMULATING LIQUID

LIQUID TYPE		HSL-2450		MSL-2450	
SIMULATING LIQUID TEMP.		20.6		20.5	
TEST DATE		Dec. 19, 2005		Dec. 16, 2005	
TESTED BY		Sam Onn		Sam Onn	
FREQ. (MHz)	LIQUID PARAMETER	STANDARD VALUE	MEASUREMENT VALUE	STANDARD VALUE	MEASUREMENT VALUE
2412	Permitivity (ε)	39.27	39.7	52.75	53.5
2437		39.22	39.6	52.71	53.4
2450		39.20	39.6	52.70	53.4
2462		39.18	39.6	52.68	53.3
2412	Conductivity (σ) S / m	1.77	1.76	1.913	1.99
2437		1.79	1.79	1.937	2.02
2450		1.80	1.80	1.950	2.03
2462		1.81	1.82	1.967	2.05
Dielectric Parameters Required at $22^{\circ} \mathrm{C}$		$\begin{gathered} \mathrm{f}=2450 \mathrm{MHz} \\ \varepsilon=39.2 \pm 5 \% \\ \sigma=1.80 \pm 5 \% \mathrm{~S} / \mathrm{m} \end{gathered}$		$\begin{gathered} f=2450 \mathrm{MHz} \\ \varepsilon=52.7 \pm 5 \% \\ \sigma=1.95 \pm 5 \% \text { S/m } \end{gathered}$	

5.5 TEST EQUIPMENT FOR TISSUE PROPERTY

ITEM	NAME	BAND	TYPE	SERIES NO.	CALIBRATED UNTIL
1	Network Analyzer	Agilent	E8358A	US41480538	May 05, 2006
2	Dielectric Probe	Agilent	$85070 D$	US01440176	NA

NOTE:

1. Before starting, all test equipment shall be warmed up for 30 min .
2. The tolerance $(\mathrm{k}=1)$ specified by Agilent for general dielectric measurements, deriving from inaccuracies in the calibration data, analyzer drift, and random errors, are usually $\pm 2.5 \%$ and $\pm 5 \%$ for measured permittivity and conductivity, respectively. However, the tolerances for the conductivity is smaller for material with large loss tangents, i.e., less than $\pm 2.5 \% ~(k=1)$. It can be substantially smaller if more accurate methods are applied.

6. SYSTEM VALIDATION

The system validation was performed in the flat phantom with equipment listed in the following table. Since the SAR value is calculated from the measured electric field, dielectric constant and conductivity of the body tissue, and the SAR is proportional to the square of the electric field. So, the SAR value will be also proportional to the RF power input to the system validation dipole under the same test environment. In our system validation test, 250 mW RF input power was used.

6.1 TEST EQUIPMENT

ITEM	NAME	BAND	TYPE	SERIES NO.	CALIBRATED UNTIL
1	SAM Phantom	S \& P	QD000 P40 CA	PT-1150	NA
2	Signal Generator	Agilent	E8257C	984703	May 04, 2006
3	E-Field Probe	S \& P	ET3DV6	1790	Dec. 19, 2006
4	DAE	S \& P	DAE3 V1	579	Mar. 22, 2006
5	Robot Positioner	Staubli Unimation	NA	NA	NA
6	Validation Dipole	S \& P	D2450V2	737	Mar. 15, 2006

NOTE: 1. Before starting the measurement, all test equipment shall be warmed up for 30 min .
2. System validation was performed to check the condition during each test. According to this situation, calibrated period for the validation dipole back to the original factory is one year, and the others will be two.

6.2 TEST PROCEDURE

Before the system performance check, we need only to tell the system which components (probe, medium, and device) are used for the system performance check; the system will take care of all parameters. The dipole must be placed beneath the flat section of the SAM Twin Phantom with the correct distance holder in place. The distance holder should touch the phantom surface with a light pressure at the reference marking (little cross) and be oriented parallel to the long side of the phantom. Accurate positioning is not necessary, since the system will search for the peak SAR location, except that the dipole arms should be parallel to the surface. The device holder for mobile phones can be left in place but should be rotated away from the dipole.
1.The "Power Reference Measurement" and "Power Drift Measurement" jobs are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the amplifier output power. If it is too high (above $\pm 0.1 \mathrm{~dB}$), the system performance check should be repeated; some amplifiers have very high drift during warm-up. A stable amplifier gives drift results in the DASY system below $\pm 0.02 \mathrm{~dB}$.
2.The "Surface Check" job tests the optical surface detection system of the DASY system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1 \mathrm{~mm}$). In that case it is better to abort the system performance check and stir the liquid. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^{\circ}$.) However, varying breaking indices of different liquid compositions might also influence the distance. If the indicated difference varies from the actual setting, the probe parameter "optical surface
3. The "Area Scan" job measures the SAR above the dipole on a plane parallel to the surface. It is used to locate the approximate location of the peak SAR. The proposed scan uses large grid spacing for faster measurement; due to the symmetric field, the peak detection is reliable. If a finer graphic is desired, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result.
4. The "Zoom Scan" job measures the field in a volume around the peak SAR value assessed in the previous "Area Scan" job (for more information see the application note on SAR evaluation).

About the validation dipole positioning uncertainty, the constant and low loss dielectric spacer is used to establish the correct distance between the top surface of the dipole and the bottom surface of the phantom, the error component introduced by the uncertainty of the distance between the liquid (i.e., phantom shell) and the validation dipole in the DASY4 system is less than $\pm 0.1 \mathrm{~mm}$.

$$
\operatorname{SAR}_{\text {tolerance }}[\%]=100 \times\left(\frac{(a+d)^{2}}{a^{2}}-1\right)
$$

As the closest distance is 10 mm , the resulting tolerance $\operatorname{SAR}_{\text {tolerance }}[\%]$ is $<2 \%$.

FCC ID: Q87-WIP300

6.3 VALIDATION RESULTS

2450MHz SYSTEM VALIDATION TEST IN THE MUSCLE SIMULATING LIQUID					
TEST FREQUENCY (MHz)	REQUIRED SAR (mW/g)	MEASURED SAR (mW/g)	DEVIATION $(\%)$	SEPARATION DISTANCE	TEST DATE
HSL2450	$13.7(1 \mathrm{~g})$	12.9	-5.84	10 mm	Dec. 19, 2005
MSL2450	$13.4(1 \mathrm{~g})$	12.7	-5.22	10 mm	Dec. 16, 2005
TESTED BY	Sam Onn				

NOTE: Please see Appendix for the photo of system validation test.

FCC ID: Q87-WIP300

6.4 SYSTEM VALIDATION UNCERTAINTIES

In the table below, the system validation uncertainty with respect to the analytically assessed SAR value of a dipole source as given in the IEEE P1528 standard is given. This uncertainty is smaller than the expected uncertainty for mobile phone measurements due to the simplified setup and the symmetric field distribution.

Error Description	Tolerance ($\pm \%)$	Probability Distribution	Divisor	$\left(C_{i}\right)$		Standard Uncertainty ($\pm \%)$		$\left(v_{i}\right)$
				(1g)	(10g)	(1g)	(10g)	
Measurement System								
Probe Calibration	4.8	Normal	1	1	1	4.8	4.8	∞
Axial Isotropy	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	∞
Hemispherical Isotropy	0	Rectangular	$\sqrt{3}$	1	1	0	0	∞
Boundary effect	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
Linearity	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	∞
System Detection Limit	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time	0	Rectangular	$\sqrt{3}$	1	1	0	0	∞
Integration Time	0	Rectangular	$\sqrt{3}$	1	1	0	0	∞
RF Ambient Conditions	3.0	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	∞
Probe Positioner	0.4	Rectangular	$\sqrt{3}$	1	1	0.2	0.2	∞
Probe positioning	2.9	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	∞
Algorithms for Max. SAR Evaluation	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
Dipole								
Dipole Axis to Liquid Distance	2.0	Rectangular	$\sqrt{3}$	1	1	1.2	1.2	∞
Input power and SAR drift measurement	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	∞

Phantom and Tissue Parameters								
Phantom Uncertainty	4.0	Rectangular	$\sqrt{ } 3$	1	1	2.3	2.3	∞
Liquid Conductivity (target)	5.0	Rectangular	$\sqrt{ } 3$	0.64	0.43	1.8	1.2	∞
Liquid Conductivity (measurement)	2.5	Normal	1	0.64	0.43	1.6	1.1	∞
Liquid Permittivity (target)	5.0	Rectangular	$\sqrt{ } 3$	0.6	0.49	1.7	1.4	∞
Liquid Permittivity (measurement)	2.5	Normal	1	0.6	0.49	1.5	1.2	∞
Combined Standard Uncertainty						8.4	8.1	∞
Coverage Factor for 95\%						$\mathrm{kp}=2$		
Expanded Uncertainty (K=2)						16.8	16.2	

NOTE: About the system validation uncertainty assessment, please reference the section 7 .

7. MEASUREMENT SAR PROCEDURE UNCERTAINTIES

The assessment of spatial peak SAR of the hand handheld devices is according to IEEE 1528. All testing situation shall be met below these requirements.

- The system is used by an experienced engineer who follows the manual and the guidelines taught during the training provided by SPEAG.
- The probe has been calibrated within the requested period and the stated uncertainty for the relevant frequency bands does not exceed $4.8 \%(k=1)$.
- The validation dipole has been calibrated within the requested period and the system performance check has been successful.
- The DAE unit has been calibrated within the within the requested period.
- The minimum distance between the probe sensor and inner phantom shell is selected to be between 4 and 5 mm .
- The operational mode of the DUT is CW, CDMA, FDMA or TDMA (GSM, DCS, PCS, IS136 and PDC) and the measurement/integration time per point is >500 ms.
- The dielectric parameters of the liquid have been assessed using Agilent 85070D dielectric probe kit or a more accurate method.
- The dielectric parameters are within 5% of the target values.
- The DUT has been positioned as described in section 3 .

7.1. PROBE CALIBRATION UNCERTAINTY

SPEAG conducts the probe calibration in compliance with international and national standards (e.g. IEEE 1528, EN50361, IEC 62209, etc.) under ISO17025. The uncertainties are stated on the calibration certificate. For the most relevant frequency bands, these values do not exceed $4.8 \%(k=1)$. If evaluations of other bands are performed for which the uncertainty exceeds these values, the uncertainty tables given in the summary have to be revised accordingly.

7.2. ISOTROPY UNCERTAINTY

The axial isotropy tolerance accounts for probe rotation around its axis while the hemispherical isotropy error includes all probe orientations and field polarizations. These parameters are assessed by SPEAG during initial calibration. In 2001, SPEAG further tightened its quality controls and warrants that the maximal deviation from axial isotropy is $\pm 0.20 \mathrm{~dB}$, while the maximum deviation of hemispherical isotropy is $\pm 0.40 \mathrm{~dB}$, corresponding to $\pm 4.7 \%$ and $\pm 9.6 \%$, respectively. A weighting factor of cp equal to 0.5 can be applied, since the axis of the probe deviates less than 30 degrees from the normal surface orientation.

7.3. BOUNDARY EFFECT UNCERTAINTY

The effect can be estimated according to the following error approximation formula

$$
\begin{gathered}
S A R_{\text {tolerance }}[\%]=\operatorname{SAR}_{b e}[\%] \times \frac{\left(d_{b e}+d_{\text {step }}\right)^{2}}{2 d_{\text {step }}} \frac{e^{-\frac{d_{b e}}{\delta / 2}}}{\delta / 2} \\
d_{b e}+d_{\text {step }}<10 \mathrm{~mm}
\end{gathered}
$$

The parameter d_{be} is the distance in mm between the surface and the closest measurement point used in the averaging process; $d_{\text {step }}$ is the separation distance in mm between the first and second measurement points; δ is the minimum penetration depth in mm within the head tissue equivalent liquids (i.e., $\delta=13.95 \mathrm{~mm}$ at 3 GHz); $S A R_{b e}$ is the deviation between the measured SAR value at the distance $d_{b e}$ from the boundary and the wave-guide analytical value SAR $_{\text {ref }}$.DASY4 applies a boundary effect compensation algorithm according to IEEE 1528, which is possible since the axis of the probe never deviates more than 30 degrees from the normal surface orientation. $\mathrm{SAR}_{\mathrm{be}}[\%]$ is assessed during the calibration process and SPEAG warrants that the uncertainty at distances larger than 4 mm is always less than 1%.In summary, the worst case boundary effect SAR tolerance[\%] for scanning distances larger than 4 mm is $< \pm 0.8 \%$.

7.4. PROBE LINEARITY UNCERTAINTY

Field probe linearity uncertainty includes errors from the assessment and compensation of the diode compression effects for CW and pulsed signals with known duty cycles. This error is assessed using the procedure described in IEEE 1528. For SPEAG field probes, the measured difference between CW and pulsed signals, with pulse frequencies between 10 Hz and 1 kHz and duty cycles between 1 and 100 , is $< \pm 0.20 \mathrm{~dB}(< \pm 4.7 \%)$.

7.5. READOUT ELECTRONICS UNCERTAINTY

All uncertainties related to the probe readout electronics (DAE unit), including the gain and linearity of the instrumentation amplifier, its loading effect on the probe, and accuracy of the signal conversion algorithm, have been assessed accordingly to IEEE 1528.The combination (root-sum-square RSS method) of these components results in an overall maximum error of $\pm 1.0 \%$.

7.6. RESPONSE TIME UNCERTAINTY

The time response of the field probes is assessed by exposing the probe to a wellcontrolled electric field producing SAR larger than $2.0 \mathrm{~W} / \mathrm{kg}$ at the tissue medium surface. The signal response time is evaluated as the time required by the system to reach 90% of the expected final value after an on/of switch of the power source. Analytically, it can be expressed as:

$$
\operatorname{SAR}_{\text {tolerance }}[\%]=100 \times\left(\frac{T_{m}}{T_{m}+\tau e^{-T_{m} / \tau}-\tau}-1\right)
$$

where Tm is 500 ms , i.e., the time between measurement samples, and ${ }_{T}$ the time constant. The response time $\mathrm{T}^{\text {of }}$ SPEAG's probes is $<5 \mathrm{~ms}$. In the current implementation, DASY4 waits longer than 100 ms after having reached the grid point before starting a measurement, i.e., the response time uncertainty is negligible.

FCC ID: Q87-WIP300
7.7. INTEGRATION TIME UNCERTAINTY

If the device under test does not emit a CW signal, the integration time applied to measure the electric field at a specific point may introduce additional uncertainties due to the discretization and can be assessed as follows

$$
\operatorname{SAR}_{\text {tolerance }}[\%]=100 \times \sum_{\text {alsub-frames }} \frac{t_{\text {frame }}}{t_{\text {integration }}} \frac{\text { slot }_{\text {idle }}}{\text { slot }_{\text {total }}}
$$

The tolerances for the different systems are given in Table 7.1, whereby the worstcase SAR $_{\text {tolerance }}$ is 2.6%.

System	SAR $_{\text {tolerance }} \%$
CW	0
CDMA* *	0
WCDMA* *	0
FDMA	0
IS-136	2.6
PDC	2.6
GSM/DCS/PCS	1.7
DECT	1.9
Worst-Case	2.6

TABLE 7.1

FCC ID: Q87-WIP300
7.8. PROBE POSITIONER MECHANICAL TOLERANCE

The mechanical tolerance of the field probe positioner can introduce probe positioning uncertainties. The resulting SAR uncertainty is assessed by comparing the SAR obtained according to the specifications of the probe positioner with respect to the actual position defined by the geometric enter of the probe sensors. The tolerance is determined as:

$$
S A R_{\text {tolerance }}[\%]=100 \times \frac{d_{p h}}{\delta / 2}
$$

The specified repeatability of the RX robot family used in DASY4 systems is $\pm 25 \mu \mathrm{~m}$. The absolute accuracy for short distance movements is better than $\pm 0.1 \mathrm{~mm}$, i.e., the $\mathrm{SAR}_{\text {tolerance }}[\%]$ is better than 1.5% (rectangular).

7.9. PROBE POSITIONING

The probe positioning procedures affect the tolerance of the separation distance between the probe tip and the phantom surface as:

$$
S_{A R}^{\text {tolerance }} \text { [\%] }=100 \times \frac{d_{p h}}{\delta / 2}
$$

where d_{ph} is the maximum deviation of the distance between the probe tip and the phantom surface. The optical surface detection has a precision of better than 0.2 mm , resulting in an $\operatorname{SAR}_{\text {tolerance }}[\%]$ of $<2.9 \%$ (rectangular distribution). Since the mechanical detection provides better accuracy, 2.9% is a worst-case figure for DASY4 system.

FCC ID: Q87-WIP300
7.10. PHANTOM UNCERTAINTY

The SAR measurement uncertainty due to SPEAG phantom shell production tolerances has been evaluated using
$S_{\text {tolerance }}[\%] \cong 100 \times \frac{2 d}{a}, \quad d \ll a$

For a maximum deviation d of the inner and outer shell of the phantom from that specified in the CAD file of $\pm 0.2 \mathrm{~mm}$, and a 10 mm spacing a between source and tissue liquid, the calculated phantom uncertainty is $\pm 4.0 \%$.

FCC ID: Q87-WIP300

7.11. DASY4 UNCERTAINTY BUDGET

Error Description	Tolerance$\text { (} \ddagger \%)$	Probability Distribution	Divisor	$\left(C_{i}\right)$		\qquad		$\left(v_{i}\right)$
				(1g)	(10g)	(1g)	(10g)	
Measurement Equipment								
Probe Calibration	4.8	Normal	1	1	1	4.8	4.8	∞
Axial Isotropy	4.7	Rectangular	$\sqrt{3}$	1	1	1.9	1.9	∞
Hemispherical Isotropy	9.6	Rectangular	$\sqrt{3}$	1	1	3.9	3.9	∞
Boundary effect	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
Linearity	4.7	Rectangular	$\sqrt{3}$	1	1	2.7	2.7	∞
System Detection Limit	1.0	Rectangular	$\sqrt{3}$	1	1	0.6	0.6	∞
Readout Electronics	1.0	Normal	1	1	1	1.0	1.0	∞
Response Time	0.8	Normal	1	1	1	0.8	0.8	∞
Integration Time	2.6	Normal	1	1	1	2.6	2.6	∞
Noise	0.0	Normal	1	0	0	0	0	∞
Mechanical Constraints								
Scanning System	0.4	Rectangular	$\sqrt{ } 3$	1	1	0.2	0.2	∞
Phantom Shell	4.0	Rectangular	$\sqrt{3}$	1	1	2.3	2.3	∞
Probe Positioning	2.9	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	∞
Device Positioning	2.9	Normal	1	1	1	2.9	2.9	875

Physical Parameters								
Liquid Conductivity (target)	5.0	Rectangular	$\sqrt{3}$	0.7	0.5	2	1.4	∞
Liquid Conductivity (measurement)	4.3	Rectangular	$\sqrt{ } 3$	0.7	0.5	1.7	1.2	∞
Liquid Permittivity (target)	5.0	Rectangular	$\sqrt{3}$	0.6	0.5	1.7	1.4	∞
Liquid Permittivity (measurement)	4.3	Rectangular	$\sqrt{3}$	0.6	0.5	1.5	1.2	∞
Power Drift	5	Rectangular	$\sqrt{3}$	1	1	2.9	2.9	∞
RF Ambient Conditions	3.0	Rectangular	$\sqrt{3}$	1	1	1.7	1.7	∞

Post-Processing

Extrapolation and Integration	1	Rectangular	$\sqrt{ } 3$	1	1	0.6	0.6
Combined Standard Uncertainty	$\mathbf{9 . 9}$	$\mathbf{9 . 7}$					
Coverage Factor for 95\%							
Expanded Uncertainty (K=2)	19.9	19.3					

TABLE 7.2
The table 7.2: Worst-Case uncertainty budget for DASY4 assessed according to CENELEC EN 50361. The budget is valid for the frequency range $300 \mathrm{MHz}-3 \mathrm{GHz}$ and represents a worst-case analysis. For specific tests and configurations, the uncertainty could be considerable smaller.

8. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, NVLAP, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	CNLA, BSMI, DGT
Netherlands	Telefication
Singapore	PSB, GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: www.adt.com.tw/index.5/phtml. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180
Fax: 886-2-26052943

Hwa Ya EMC/RF/Safety/Telecom Lab:
Tel: 886-3-3183232
Fax: 886-3-3185050

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343
Fax: 886-3-5935342

Linko RF Lab.
Tel: 886-3-3270910
Fax: 886-3-3270892

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

