

DFS TEST REPORT

 REPORT NO.:
 RF960926L01

 MODEL NO.:
 WGA600N

 RECEIVED:
 Nov. 17, 2007

 TESTED:
 Nov. 21, 2007

 ISSUED:
 Nov. 21, 2007

APPLICANT: Cisco-Linksys LLC.

ADDRESS: 121 Theory Drive Irvine, CA 92617 (USA)

ISSUED BY: Advance Data Technology Corporation

TEST LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan, R.O.C.

This test report consists of 22 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CNLA, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	LAB DECLARATION
2.	EUT INFORMATION4
2.1	OPERATING FREQUENCY BANDS AND MODE OF EUT
2.2	EUT SOFTWARE AND FIRMWARE VERSION
2.3	DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT4
2.4	EUT MAXIMUM AND MINIMUM CONDUCTED POWER
2.5	EUT MAXIMUM AND MINIMUM E.I.R.P. POWER
2.6	STATEMENT OF MAUNFACTURER
3.	U-NII DFS RULE REQUIREMENTS
3.1	WORKING MODES AND REQUIRED TEST ITEMS
3.2	TEST LIMITS AND RADAR SIGNAL PARAMETERS
4.	TEST & SUPPORT EQUIPMENT LIST
4.1	TEST INSTRUMENTS
4.2	DESCRIPTION OF SUPPORT UNITS
5.	TEST PROCEDURE
5.1	ADT DFS MEASUREMENT SYSTEM:10
5.2	CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:
5.3	DEVIATION FROM TEST STANDARD
5.4	CONDUCTED TEST SETUP CONFIGURATION
5.4.1	CLIENT WITHOUT RADAR DETECTION MODE
6.	TEST RESULTS
6.1	SUMMARY OF TEST RESULT
6.2	DETELED TEST RESULTS14
6.2.1	TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION
	MODE
	DFS DETECTION THRESHOLD14
6.2.1.2	CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME
7.	TESTING LABORATORIES INFORMATION
8.	APPENDIX A-1
8.1	APPENDIX-AA-1

1. LAB DECLARATION

PRODUCT:	Dual-Band Wireless-N Gaming Adapter
BRAND NAME:	Linksys
MODEL NO.:	WGA600N
TEST SAMPLE:	ENGINEERING SAMPLE
TESTED:	Nov. 21, 2007
APPLICANT:	Cisco-Linksys LLC
STANDARDS:	FCC Part 15, Subpart E (Section 15.407)
	FCC 06-96

The above equipment (Model: WGA600N) has been tested by **Advance Data Technology Corporation,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

DATE: Nov. 21, 2007 PREPARED BY : (Carol Liao, Specialist) **TECHNICAL DATE:** Nov. 21, 2007 ACCEPTANCE Responsible for RF (Hank Chung, Deputy Manager) **APPROVED BY** : DATE: Nov. 21, 2007 (May Chen, Deputy Manager)

2. EUT INFORMATION

2.1 OPERATING FREQUENCY BANDS AND MODE OF EUT

Table 1: Operating frequency bands and mode of EUT.

Operational Mode	Operating Frequency Range		
	5250~5350MHz	5470~5725MHz	
Client without radar detection	\checkmark	\checkmark	

2.2 EUT SOFTWARE AND FIRMWARE VERSION

Table 2: The EUT software/firmware version.

NO.	PRODUCT	MODEL NO.	BRAND	FCC ID	SOFTWARE/FIRMWARE VERSION
1	Dual-Band Wireless-N Gaming Adapter	WGA600N	Linksys	Q87-WGA600N	0.0.6.1

2.3 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT

Table 3: Antenna list.

Ant NO.	Туре	Operation Frequency Range	Max. Gain(dBi)
1	PIFA Antenna	5.15 – 5.85 GHz	1

2.4 EUT MAXIMUM AND MINIMUM CONDUCTED POWER

Table 4: The measured conducted output power.

	MAX. Power		MIN. Power		
Frequency Band(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)	
	802.11a OF		ON:		
5250~5350MHz	14.08	25.586	11	12.589	
5470~5725MHz	14.05	25.410	11	12.589	
DR	AFT 802.11n (20	MHz) OFDM MO	DULATION		
5250~5350MHz	16.726	47.058	11	12.589	
5470~5725MHz	16.666	46.407	11	12.589	
DRAFT 802.11n (40MHz) OFDM MODULATION					
5250~5350MHz	16.503	44.703	11	12.589	
5470~5725MHz	16.825	48.135	11	12.589	

2.5 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER

Table 5: The E.I.R.P output power list.

	MAX.	MAX. Power		MIN. Power		
Frequency Band(MHz)	Output Power(dBm)	Output Power(mW)	Output Power(dBm)	Output Power(mW)		
	802.11a OF		ON:			
5250~5350MHz	15.08	31.211	12	15.849		
5470~5725MHz	15.05	31.989	12	15.849		
DR	AFT 802.11n (20	MHz) OFDM MO	DULATION			
5250~5350MHz	17.726	59.238	12	15.849		
5470~5725MHz	17.666	58.425	12	15.849		
DR	DRAFT 802.11n (40MHz) OFDM MODULATION					
5250~5350MHz	17.503	56.273	12	15.849		
5470~5725MHz	17.825	60.604	12	15.849		

2.6 STATEMENT OF MAUNFACTURER

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

3. U-NII DFS RULE REQUIREMENTS

3.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	\checkmark	Not required	\checkmark	
DFS Detection Threshold	\checkmark	Not required	\checkmark	
Channel Availability Check Time	\checkmark	Not required	Not required	
Uniform Spreading	\checkmark	Not required	Not required	
U-NII Detection Bandwidth	\checkmark	Not required	\checkmark	

Table 6: Applicability of DFS requirements prior to use a channel

Table 7: Applicability of DFS requirements during normal operation.

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
DFS Detection Threshold	\checkmark	Not required	✓	
Channel Closing Transmission Time	~	\checkmark	✓	
Channel Move Time	\checkmark	~	~	
U-NII Detection Bandwidth	\checkmark	Not required	~	

3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

Table 8: DFS Detection Thresholds for Master Devices and Client Devices With
Radar Detection.

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 9: DFS Response Requirement Values

Minimum 30 minutes 60 seconds 10 seconds					
10 seconds					
See Note 1.					
200 milliseconds + an aggregate of 60					
milliseconds over remaining 10 second period.					
See Notes 1 and 2.					
Minimum 80% of the UNII 99% transmission					
power bandwidth.					
See Note 3.					
and the Channel Closing Transmission Time					
ant is the end of the Burst.					
his instant is the end of the last radar					
nt is the end of the 12 second period defining the					
is comprised of 200 milliseconds starting at the					
ditional intermittent control signals required to					
facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second					
period. The aggregate duration of control signals will not count quiet periods in between transmissions.					
tection test, radar type 1 is used and for each					
requency step the minimum percentage of detection is 90 percent. Measurements are performed vith no data traffic.					

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Rac	80%	120		

Table 10: Short Pulse Radar Test Waveforms.

Table 11: Long Pulse Radar Test Waveform

Rad Typ	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 12: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

4. TEST & SUPPORT EQUIPMENT LIST

4.1 **TEST INSTRUMENTS**

Table 1: Test instruments list. CALIBRATED **DESCRIPTION & MANUFACTURER** MODEL NO. BRAND

			UNTIL
R&S Spectrum analyzer	FSP40	R&S	Aug. 12, 2008
Signal generator	8645A	Agilent	Sep. 12, 2008
Oscilloscope	TDS 5104	Tektronix	Apr. 16. 2008

DESCRIPTION OF SUPPORT UNITS 4.2

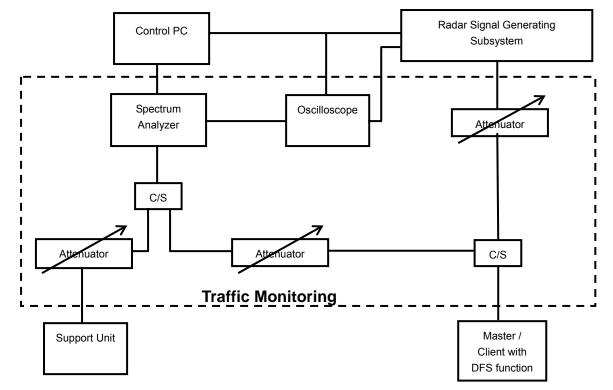
Table 2: Support Unit information.

No.	Product	Brand	Model No.	ID	Spec.
1	Dual-Band Wireless-N Gigabit Router with Storage Link	Linksys	WRT600N	Q87-WRT600NV11	NA

Note: This device was functioned as a Master Slave device during the DFS test.

Table 3: Software/Firmware information.

No.	Product	Model No.	Software/Firmware Version
1.	Dual-Band Wireless-N Gigabit Router with Storage Link	WRT600N	CFE 4.151.10.5

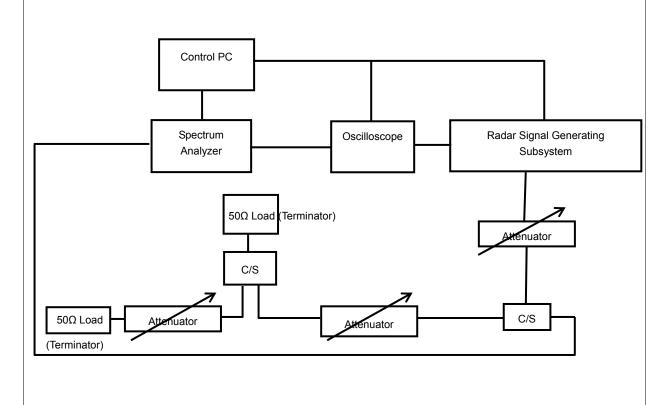


5. TEST PROCEDURE

5.1 ADT DFS MEASUREMENT SYSTEM:

A complete ADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 6, 7 and 8. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

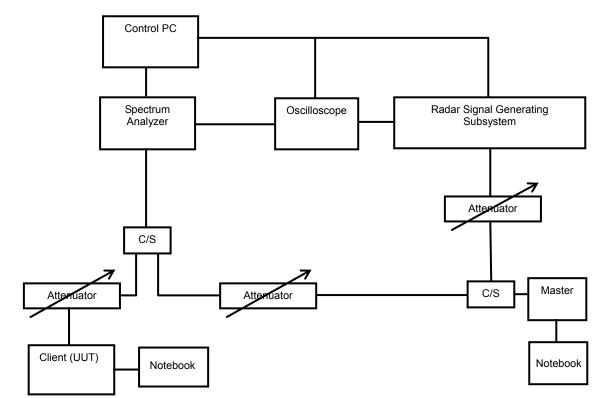
Conducted setup configuration of ADT DFS Measurement System


The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file ($6\frac{1}{2}$ Magic Hours) from Master device, the designated MPEG test file and instructions are located at: <u>http://ntiacsd.ntia.doc.gov/dfs/</u>.

5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

The measured channel is 5500MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The Master antenna gain is 1.6dBi and required detection threshold is -59.4dBm (= -62 +1+1.6)dBm.

Conducted setup configuration of Calibration of DFS Detection Threshold Level



5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 CONDUCTED TEST SETUP CONFIGURATION

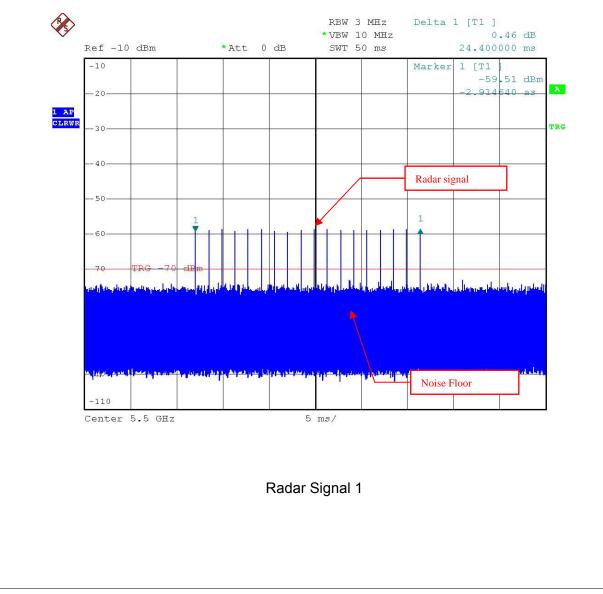
5.4.1 CLIENT WITHOUT RADAR DETECTION MODE

The UUT is a U-NII Device operating in Client mode without radar detection. The radar test signals are injected into the Master Device.

6. TEST RESULTS

6.1 SUMMARY OF TEST RESULT

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Not Applicable	NA
15.407	Channel Availability Check Time	Not Applicable	NA
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Not Applicable	NA
15.407	Uniform Spreading	Not Applicable	NA
15.407	U-NII Detection Bandwidth	Not Applicable	NA

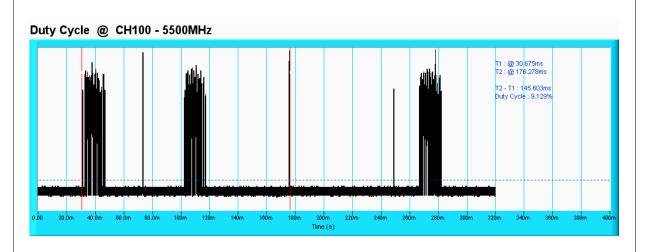

6.2 DETELED TEST RESULTS

6.2.1 TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION MODE.

Client with injection at the Master . (The radar test signals are injected into the Master Device.

6.2.1.1 DFS DETECTION THRESHOLD

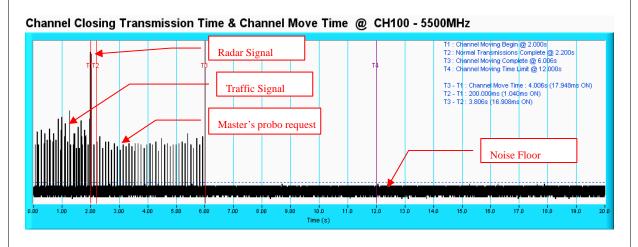
For a detection threshold level of –62dBm and the Master antenna gain is 1.6dBi. The Required detection threshold is -59.4dBm (= -62 +1+1.6)dBm. The conducted radar burst level is set to -59.4dBm. The tested level is lower than required level hence it provides margin to the limit.



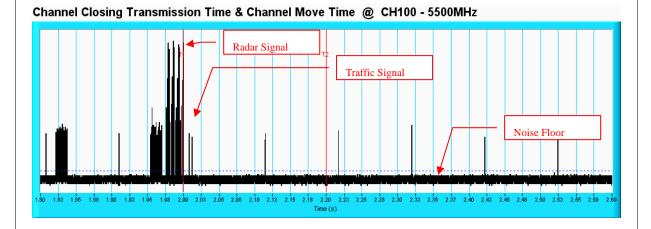
<section-header>

NOTE: T1 denotes the start of duty cycle period is 0.052761^{th} second. T2 denotes the end of duty cycle period is 0.25726^{th} second. T2 – T1= 0.204499 seconds. Duty Cycle = 9.879%

Draft 802.11n(40MHz)

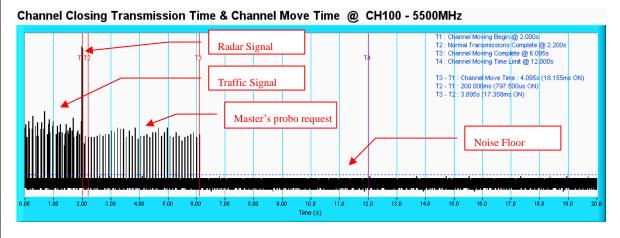


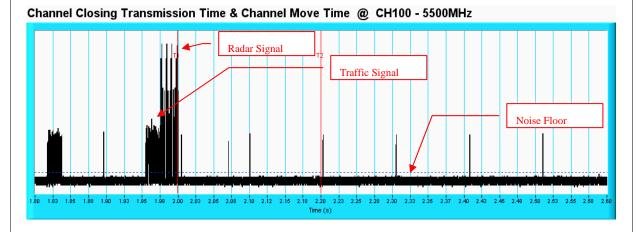
NOTE: T1 denotes the start of duty cycle period is 0.030675^{th} second. T2 denotes the end of duty cycle period is 0.17627^{th} second. T2 – T1= 0.145603 seconds. Duty Cycle = 9.129%



Radar signal 1

IEEE 802.11A


NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 600ms from T1. T3 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

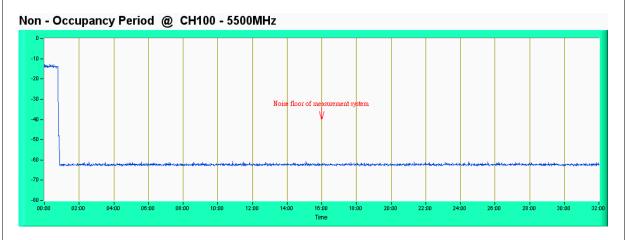

NOTE: An expanded plot for the device vacates the channel in the required 200ms.

Draft 802.11n(40MHz)

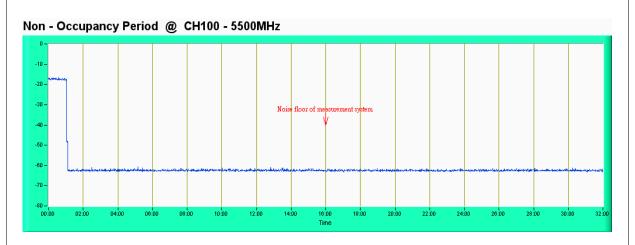
NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 600ms from T1. T3 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: An expanded plot for the device vacates the channel in the required 200ms.

rial #	Pulses per Burst	Pulse Width (s)	PRI (s)	Detection
1	18	1.0u	1.428m	Yes
2	18	1.0u	1.428m	Yes
3	18	1.0u	1.428m	Yes
4	18	1.0u	1.428m	Yes
5	18	1.0u	1.428m	Yes
6	18	1.0u	1.428m	Yes
7	18	1.0u	1.428m	Yes
8	18	1.0u	1.428m	Yes
9	18	1.0u	1.428m	Yes
10	18	1.0u	1.428m	Yes
11	18	1.0u	1.428m	Yes
12	18	1.0u	1.428m	Yes
13	18	1.0u	1.428m	Yes
14	18	1.0u	1.428m	Yes
15	18	1.0u	1.428m	Yes
16	18	1.0u	1.428m	Yes
17	18	1.0u	1.428m	Yes
18	18	1.0u	1.428m	Yes
19	18	1.0u	1.428m	Yes
20	18	1.0u	1.428m	Yes
21	18	1.0u	1.428m	Yes
22	18	1.0u	1.428m	Yes
23	18	1.0u	1.428m	Yes
24	18	1.0u	1.428m	Yes
25	18	1.0u	1.428m	Yes
26	18	1.0u	1.428m	Yes
27	18	1.0u	1.428m	Yes
28	18	1.0u	1.428m	Yes
29	18	1.0u	1.428m	Yes
30	18	1.0u	1.428m	Yes



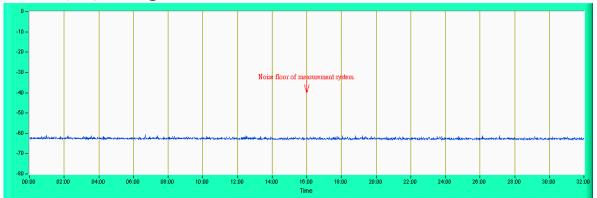
6.1.2.3 Non-Occupancy Period


Non- Occupancy Period

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

IEEE 802.11A

Draft 802.11n(40MHz)


6.2.1.4 Non-associated test

Non-associated test

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.

7. TESTING LABORATORIES INFORMATION

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Hsin Chu EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

8. APPENDIX

8.1 APPENDIX-A

Modifications or adding components during the test

No any modifications are made to the EUT by the lab during the test.