

DFS TEST REPORT

 REPORT NO.:
 RF960626H06

 MODEL NO.:
 WEC600N

 RECEIVED:
 Aug. 13, 2007

 TESTED:
 Aug. 13, 2007

ISSUED: Aug. 17, 2007

APPLICANT: Cisco-Linksys LLC

ADDRESS: 121 Theory Drive Irvine, CA 92617(USA)

ISSUED BY: Advance Data Technology Corporation

TEST LOCATION: No. 81-1, Lu Liao Keng, 9 Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien, Taiwan, R.O.C.

This test report consists of 20 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF, A2LA or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	LAB DECLARATION	3
2.	EUT INFORMATION	4
2.1	OPERATING FREQUENCY BANDS AND MODE OF EUT	4
2.2	EUT SOFTWARE AND FIRMWARE VERSION	4
2.3	DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT	4
2.4	EUT MAXIMUM AND MINIMUM CONDUCTED POWER	5
2.5	EUT MAXIMUM AND MINIMUM E.I.R.P. POWER	5
2.6	STATEMENT OF MAUNFACTURER	5
3.	UNII DFS RULE REQUIREMENTS	
3.1	WORKING MODES AND REQUIRED TEST ITEMS	6
3.2	TEST LIMITS AND RADAR SIGNAL PARAMETERS	7
4.	TEST & SUPPORT EQUIPMENT LIST	9
4.1	TEST INSTRUMENTS	
4.2	DESCRIPTION OF SUPPORT UNITS	
5.	TEST PROCEDURE	
5.1	ADT DFS MEASUREMENT SYSTEM:	
5.2	CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:	
5.3	DEVIATION FROM TEST STANDARD	
5.4	CONDUCTED TEST SETUP CONFIGURATION	
5.4.1	CLIENT WITHOUT RADAR DETECTION MODE	
6.	TEST RESULTS	.13
6.1	SUMMARY OF TEST RESULT	
6.2	DETELED TEST RESULTS	.14
6.2.1	TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION MODE.	.14
6.2.1.	1 DFS DETECTION THRESHOLD	.14
6.2.1.	2 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME	.15
6.2.1.	3 NON- OCCUPANCY PERIOD	.18
7.	INFORMATION ON THE TESTING LABORATORIES	.19
8.	APPENDIX-A- MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB	.20

1. LAB DECLARATION

PRODUCT:	Dual-band Wireless-N ExpressCard
BRAND NAME:	Linksys
MODEL NO.:	WEC600N
TEST SAMPLE:	R&D SAMPLE
TESTED:	Aug. 17, 2007
APPLICANT:	Cisco-Linksys LLC
STANDARDS:	FCC Part 15, Subpart E (Section 15.407)
	FCC 06-96
	Canada RSS-210 issue 7

The above equipment (Model: WEC600N) has been tested by Advance Data Technology Corporation, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Midoli Peng (Midoli Peng, Specialist)

PREPARED BY

DATE: Aug. 17, 2007

TECHNICAL ACCEPTANCE Responsible for RF

(Hank Chung, Deputy Manager)

APPROVED BY

(May Chen, Deputy Manager)

DATE: Aug. 17, 2007

DATE: Aug. 17, 2007

Report No.: RF960626H06

2. EUT INFORMATION

2.1 OPERATING FREQUENCY BANDS AND MODE OF EUT

Table 1: Operating frequency bands and mode of EUT.

Operational Mode	Operating Frequency Range		
operational mode	5250~5350MHz	5470~5725MHz	
Client without radar detection	\checkmark	\checkmark	

Note: The EUT only has 802.11a (Legacy mode) architecture operating in DFS band.

2.2 EUT SOFTWARE AND FIRMWARE VERSION

Table 2: The EUT software/firmware version.

No.	Product	Model No.	Software/Firmware Version
1	Dual-band Wireless-N ExpressCard	WEC600N	Driver Version: 4.150.21.0

2.3 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT

Table 3: Antenna list.

Ant No	Antenna	Туре	Operation Frequency Range	Max. Gain(dBi)
1	DBA-7040-25GS3-A1	Chip Antenna	5.15 – 5.85 GHz	1

2.4 EUT MAXIMUM AND MINIMUM CONDUCTED POWER

Ant No.	Frequency	MAX. Power	
	Band(MHz)	Output Power(dBm)	Output Power(mW)
1	5250~5350MHz	16.63	46.02565736
1	5470~5725MHz	17.01	50.23425895

Table 4: The measured conducted output power.

2.5 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER

Ant No.		MAX.	Power
	Band(MHz)	Output Power(dBm)	Output Power(mW)
1	5250~5350MHz	17.63	57.94286964
1	5470~5725MHz	18.01	63.24118514

Table 5: The E.I.R.P output power list.

2.6 STATEMENT OF MAUNFACTURER

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. And the device doesn't have Ad Hoc mode on DFS frequency band.

3. UNII DFS RULE REQUIREMENTS

3.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
Non-Occupancy Period	\checkmark	✓	\checkmark	
DFS Detection Threshold	\checkmark	Not required	✓	
Channel Availability Check Time	\checkmark	Not required	Not required	
Uniform Spreading	\checkmark	Not required	Not required	
U-NII Detection Bandwidth	\checkmark	Not required	\checkmark	

Table 6: Applicability of DFS requirements prior to use a channel

Table 7: Applicability of DFS requirements during normal operation.

	Operational Mode			
Requirement	Master	Client without radar detection	Client with radar detection	
DFS Detection Threshold	\checkmark	Not required	✓	
Channel Closing Transmission Time	~	~	✓	
Channel Move Time	\checkmark	~	~	
U-NII Detection Bandwidth	\checkmark	Not required	~	

3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

Table 8: DFS Detection Thresholds for Master Devices and Client Devices With
Radar Detection.

Maximum Transmit Power	Value (See Notes 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm
Niete A. This is the level of the innert of the mea	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 9: DFS Response Requirement Values

um 30 minutes conds conds ote 1.				
conds				
ote 1.				
illiseconds + an aggregate of 60				
conds over remaining 10 second period.				
otes 1 and 2.				
um 80% of the UNII 99% transmission bandwidth.				
ote 3.				
 For the Short Pulse Radar Test Signals this instant is the end of the Burst. For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated. For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the second period definited period definited period defining the secon				

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Rac	lar Types 1-4)		80%	120

Table 10: Short Pulse Radar Test Waveforms.

Table 11: Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

Table 12: Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

4. TEST & SUPPORT EQUIPMENT LIST

4.1 TEST INSTRUMENTS

Table 1: Test instruments list.

DESCRIPTION & MANUFACTURER	MODEL NO.	BRAND	CALIBRATED UNTIL
R&S Spectrum analyzer	FSP40	R&S	Aug. 15, 2007
Signal generator	8645A	Agilent	May 26, 2008
Oscilloscope	TDS 5104	Tektronix	Apr. 16. 2008

4.2 DESCRIPTION OF SUPPORT UNITS

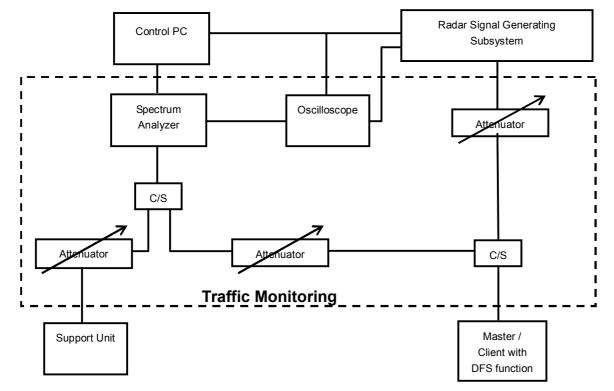
Table 2: Support Unit information.

No.	Product	Brand	Model No.	ID	Spec.
1	802.11a/b/g Access Point	Cisco	AIR-AP1242AG-A- K9	LDK102056	The maximum EIRP is 21.5 dBm, Antenna Gain is 3dBi

Note: This device was functioned as a Master device during the DFS test.

Table 3: Software/Firmware information.

No.	Product	Model No.	Software/Firmware Version	
1.	802.11a/b/g Access Point	AIR-AP1242AG-A-K9	C1240-K9W7-TAR.123-8.JEA	

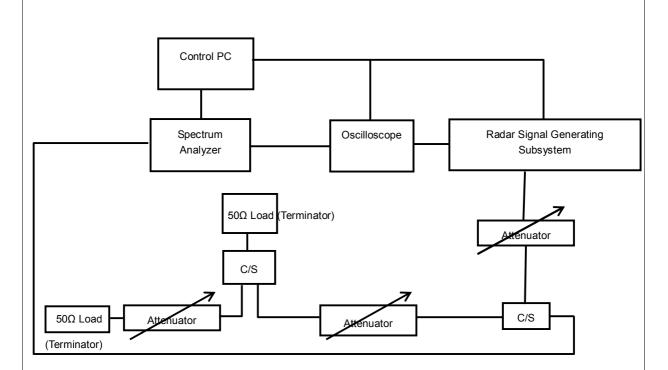


5. TEST PROCEDURE

5.1 ADT DFS MEASUREMENT SYSTEM:

A complete ADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 6, 7 and 8. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

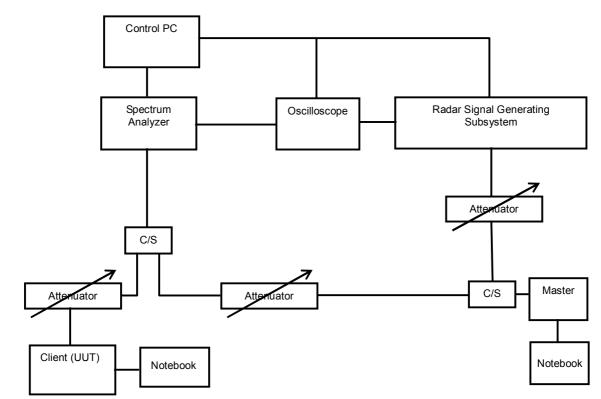
Conducted setup configuration of ADT DFS Measurement System


The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the MPEG file ($6\frac{1}{2}$ Magic Hours) from Master device, the designated MPEG test file and instructions are located at: <u>http://ntiacsd.ntia.doc.gov/dfs/</u>.

5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

The measured channel is 5500MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The Master antenna gain is 3dBi and required detection threshold is -58dBm (= -62 +1+3)dBm. The calibrated conducted detection threshold level is set to -59dBm. The tested level is lower than required level hence it provides margin to the limit.

Conducted setup configuration of Calibration of DFS Detection Threshold Level



5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 CONDUCTED TEST SETUP CONFIGURATION

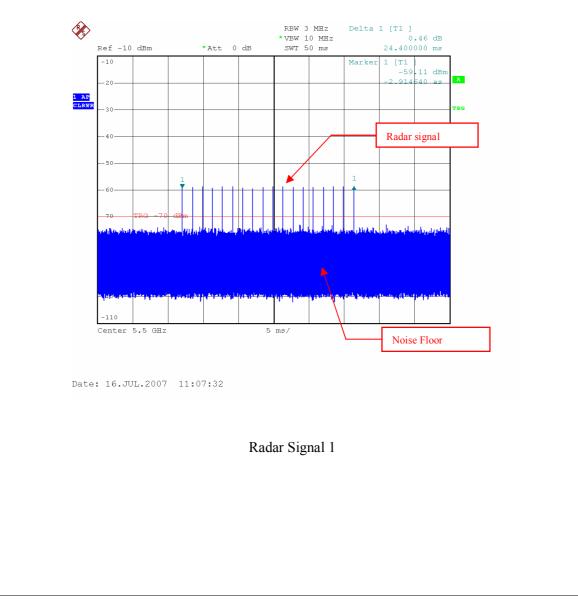
5.4.1 CLIENT WITHOUT RADAR DETECTION MODE

The UUT is a U-NII Device operating in Client mode without radar detection. The radar test signals are injected into the Master Device.

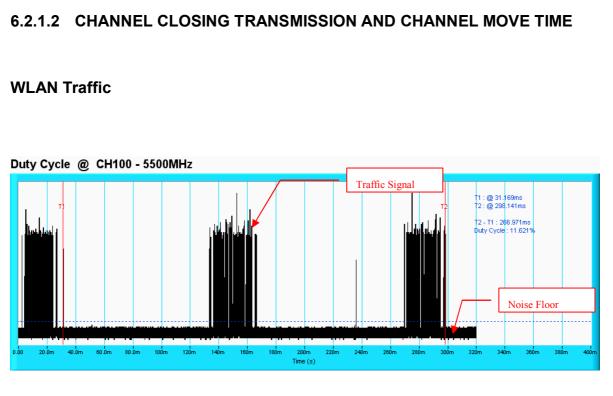
6. TEST RESULTS

6.1 SUMMARY OF TEST RESULT

Clause	Test Parameter	Remarks	Pass/Fail
15.407	DFS Detection Threshold	Not Applicable	NA
15.407	Channel Availability Check Time	Not Applicable	NA
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Not Applicable	NA
15.407	U-NII Detection Bandwidth	Not Applicable	NA

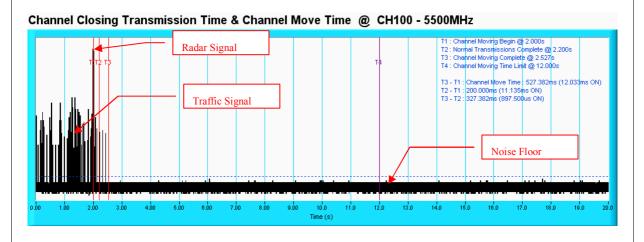

6.2 DETELED TEST RESULTS

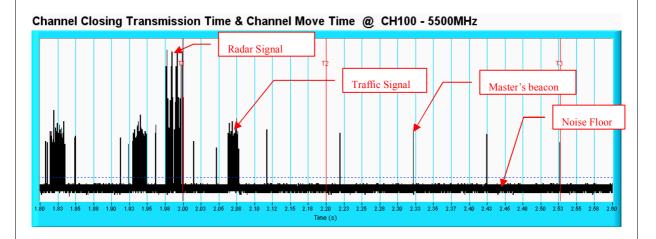
6.2.1 TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION MODE.


Client with injection at the Master . (The radar test signals are injected into the Master Device.

6.2.1.1 DFS DETECTION THRESHOLD

For a detection threshold level of –62dBm and the Master antenna gain is 3dBi. The Required detection threshold is -58dBm (= -62 +1+3)dBm. The conducted radar burst level is set to -59dBm. The tested level is lower than required level hence it provides margin to the limit.

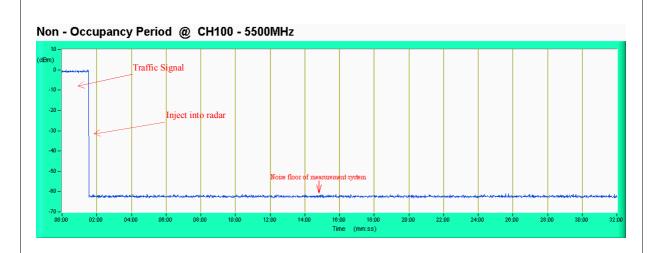



NOTE: T1 denotes the start of duty cycle period is 0.031169^{th} second. T2 denotes the end of duty cycle period is 0.266971^{th} second. T2 – T1= 0.266.971 seconds. Duty Cycle = 11.621%

Radar signal 1

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

NOTE: An expanded plot for the device vacates the channel in the required 200ms.



Trial #	Pulses per Burst	Pulse Width (s)	PRI (s)	Detection
1	18	1.0u	1.428m	Yes
2	18	1.0u	1.428m	Yes
3	18	1.0u	1.428m	Yes
4	18	1.0u	1.428m	Yes
5	18	1.0u	1.428m	Yes
6	18	1.0u	1.428m	Yes
7	18	1.0u	1.428m	Yes
8	18	1.0u	1.428m	Yes
9	18	1.0u	1.428m	Yes
10	18	1.0u	1.428m	Yes
11	18	1.0u	1.428m	Yes
12	18	1.0u	1.428m	Yes
13	18	1.0u	1.428m	Yes
14	18	1.0u	1.428m	Yes
15	18	1.0u	1.428m	Yes
16	18	1.0u	1.428m	Yes
17	18	1.0u	1.428m	Yes
18	18	1.0u	1.428m	Yes
19	18	1.0u	1.428m	Yes
20	18	1.0u	1.428m	Yes
21	18	1.0u	1.428m	Yes
22	18	1.0u	1.428m	Yes
23	18	1.0u	1.428m	Yes
24	18	1.0u	1.428m	Yes
25	18	1.0u	1.428m	Yes
26	18	1.0u	1.428m	Yes
27	18	1.0u	1.428m	Yes
28	18	1.0u	1.428m	Yes
29	18	1.0u	1.428m	Yes
30	18	1.0u	1.428m	Yes

6.2.1.3 NON- OCCUPANCY PERIOD

During the 30 minutes observation time, UUT did not make any transmissions on a channel after a radar signal was detected on that channel by either the Channel Availability Check or the In-Service Monitoring.

7. INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	PSB , GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF Lab:

Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also.

8. APPENDIX-A- MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.