APPENDIX I RADIO FREQUENCY EXPOSURE LIMIT

According to §15.407(f), U-NII devices are subject to the radio frequency radiation exposure requirements specified in §§ 1.1307(b), 2.1091 and 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

Report No.: 90519203-RP2

Date of Issue: August 4, 2009

EUT Specification

EUT	Dual-Band Wireless-N ADSL2+ Modem Router with Gigabit				
Frequency band (Operating)	 □ WLAN: 2412 MHz ~ 2462 MHz □ WLAN: 5150 MHz ~ 5250 MHz □ WLAN: 5725 MHz ~ 5850 MHz 				
Device category	☐ Portable (<20cm separation) ☐ Mobile (>20cm separation) ☐ Others:				
Exposure classification	General Population/Uncontrolled exposure $(S=1mW/cm^2)$				
Antenna diversity	 Single antenna Multiple antennas ☐ Tx diversity ☐ Rx diversity ☐ Tx/Rx diversity 				
Max. output power	Mode	Frequency Range (MHz)	Output Power (dBm)	Output Power (mw)	
	IEEE 802.11a	5180 - 5220	13.68	23.3346	
	draft 802.11n Standard-20 MHz	5180 - 5220	14.97	31.4051	
	draft 802.11n Standard-40 MHz	5190	10.38	10.9144	
Antenna gain (Max)	4.6 dBi (Numeric gain: 2.88)				
Evaluation applied					
	er is <u>14.97dBm (31.4051mW)</u> on transmitters, no SAR cons				

For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density
is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Remark: This device is a portable device, and according with 1. FCC Rule KDB # 447498 (1) (c): The power is > 60/f(GHz), therefore please see the SAR test report. 2. IC Rule: The power is > 10 mW, then SAR evaluation is required, therefore please refer to the appendix A-B RF Technical Brief Cover Sheet.

Page 103 Rev. 00

Calculation

Given

$$E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$$

Where E = Field strength in Volts / meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

 $S = Power\ density\ in\ milliwatts\ /\ square\ centimeter$

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000$$
 and $d(cm) = d(m) / 100$

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1

Where d = Distance in cm

P = Power in mW

G = Numeric antenna gain

 $S = Power\ density\ in\ mW/cm^2$

Maximum Permissible Exposure

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where P = Power in mW

G = Numeric antenna gain

 $S = Power\ density\ in\ mW/cm^2$

Page 104 Rev. 00

Report No.: 90519203-RP2 Date of Issue: August 4, 2009

IEEE 802.11a:

EUT output power = 23.33 mW

Numeric Antenna gain = 2.88

 \rightarrow Power density = 0.01337 mW/cm²

draft 802.11n Standard-20 MHz Channel mode:

EUT output power = 31.40 mW

Numeric Antenna gain = 2.88

 \rightarrow Power density = 0.01799mW/cm²

draft 802.11n Wide-40 MHz Channel mode:

EUT output power = 10.91 mW

Numeric Antenna gain = 2.88

 \rightarrow Power density = $0.00625 \text{mW}/\text{cm}^2$

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.)

Page 105 Rev. 00

Report No.: 90519203-RP2

Date of Issue: August 4, 2009