

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

Project No: CB10403159

Maximum Permissible Exposure

Applicant's company	Linksys LLC
Applicant Address	121 Theory Drive, Irvine, California 92617, United States
FCC ID	Q87-EA8500

Product Name	LINKSYS DUAL-BAND WIRELESS-AC ROUTER
Brand Name	LINKSYS
Model No.	EA8500
Ref. Standard(s)	47 CFR FCC Part 2 Subpart J, section 2.1091
EUT Freq. Range	2400 ~ 2483.5MHz / 5150 ~ 5250MHz / 5725 ~ 5850MHz
Received Date	Feb. 25, 2015
Final Test Date	Mar. 17, 2015
Submission Type	Original Equipment

MA

Sam Chen SPORTON INTERNATIONAL INC.

Table of Contents

1.	MAXI	MUM PERMISSIBLE EXPOSURE	1
	1.1.	Applicable Standard	.1
	1.2.	MPE Calculation Method	.1
	1.3.	Calculated Result and Limit	.2

History of This Assessment Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FA530324	Rev. 01	Initial issue of report.	Mar. 30, 2015
FA530324	Rev. 02	Revising the minimum mobile separation distance to "0.26m" from "0.32m".	Mar. 31, 2015

1. MAXIMUM PERMISSIBLE EXPOSURE

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device. (A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$\mathsf{E}(\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d}$$

Power Density: Pd (W/m²) =
$$\frac{E^2}{377}$$

E = Electric field (V/m)

P = Peak RF output power (W)

- G = EUT Antenna numeric gain (numeric)
- d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the EUT RF output power, the minimum mobile separation distance, d=0.26m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

Exposure Environment: General Population / Uncontrolled Exposure

For 5GHz Band (NII):

Antenna Type : Dipole Antenna

Conducted Power for 802.11ac MCS0/Nss1 VHT40: 29.01 dBm

Distance (m)	Directional	Antenna	The maximum combined Average Output Power		Power	Limit of Power	Test Desult
	Gain (dBi)	(m) Gain (dBi)	(numeric)	(dBm)	(mW)	(mW/cm ²) Density (S) (mW/cm ²)	Density (S) (mW/cm²)
0.26	6.91	4.9124	29.0073	795.6683	0.460348	1	Complies
		Г (

Note: Directional Gain =
$$10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \sum_{K=1}^{N_{ANT}} g_{j,k} \right]^2}{N_{ANT}} \right]$$

For 5GHz Band (DTS):

Antenna Type : Dipole Antenna

Conducted Power for IEEE 802.11ac MCS0/Nss1 VHT40: 28.70 dBm

Distance (m)	Directional Gain (dBi)	Antenna Gain	The maximum combine Average Output Power		Power Density (S)	Limit of Power Density (S)	Test Result
			(numeric)	(dBm)	(mW)	(mW/cm²) (mW/cm²	(mW/cm ²)
0.26	7.23	5.2818	28.7043	742.0405	0.461605	1	Complies

Note: Directional Gain = 10 log
$$\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}}$$

Antenna Type : Dipole Antenna / PIFA Antenna

Conducted Power for 802.11ac MCS0/Nss1 VHT20: 28.21 dBm

Distance (m)	Directional	Antenna Gain	The maximum combined Average Output Power		Power Density (S)	Limit of Power	Test Result
	(m) Gain (Gain (dBi)	(numeric)	(dBm)	(mW)	(mW/cm²)	Density (S) (mW/cm²)
0.26	7.74	5.9448	28.2079	661.9024	0.463439	1	Complies

$$\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}}$$

Conclusion:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculated the MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. < 1

CPD = Calculation power density

LPD = Limit of power density

Therefore, the worst-case situation is 0.463439 / 1 + 0.461605 / 1 = 0.925044, which is less than "1". This confirmed that the device comply with FCC 1.1310 MPE limit.