

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Linksys LLC
Applicant Address	121 Theory Drive, Irvine, CA 92617, USA
FCC ID	Q87-EA6100
Manufacturer's company	Wistron NeWeb Corporation
Manufacturer Address	20 Park Avenue II, Hsinchu Science Park, Hsinchu 308 Taiwan

Product Name	Linksys EA6100 Wireless-AC Router			
Brand Name	LINKSYS			
Model No.	EA6100			
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407			
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz			
Received Date	Dec. 24, 2013			
Final Test Date	May 17, 2016			
Submission Type	Class II Change			

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01r02, KDB662911 D01 v02r01, KDB644545 D03 v01, ET Docket No. 13–49; FCC 16–24. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1. '	VERIF	ICATION OF COMPLIANCE	1
2.	SUMN	MARY OF THE TEST RESULT	2
3.	GENE	RAL INFORMATION	3
	3.1.	Product Details	
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	6
	3.5.	Table for Test Modes	7
	3.6.	Table for Testing Locations	8
	3.7.	Table for Class II Change	9
	3.8.	Table for Supporting Units	9
	3.9.	Table for Parameters of Test Software Setting	10
	3.10.	EUT Operation during Test	10
	3.11.	Duty Cycle	10
	3.12.	Test Configurations	11
4. [']	TEST R	result	12
	4.1.	26dB Bandwidth and 99% Occupied Bandwidth Measurement	12
	4.2.	6dB Spectrum Bandwidth Measurement	19
	4.3.	Maximum Conducted Output Power Measurement	23
	4.4.	Power Spectral Density Measurement	25
	4.5.	Radiated Emissions Measurement	30
	4.6.	Band Edge Emissions Measurement	42
	4.7.	Frequency Stability Measurement	47
	4.8.	Antenna Requirements	51
5.	LIST C	OF MEASURING EQUIPMENTS	52
6 .	MEAS	SUREMENT UNCERTAINTY	53
۸D	DENID	NIV A TEST DUOTOS	۸1 ۸۵

FCC ID: Q87-EA6100

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR4N1172-36AC	Rev. 01	Initial issue of report	Jun. 23, 2016

Project No: CB10505225

1. VERIFICATION OF COMPLIANCE

Product Name :

Linksys EA6100 Wireless-AC Router

Brand Name :

LINKSYS

Model No. :

EA6100

Applicant:

Linksys LLC

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Dec. 24, 2013 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen

SPORTON INTERNATIONAL INC.

FCC ID: Q87-EA6100

Page No.

: 1 of 53

Issued Date : Jun. 23, 2016

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part	Rule Section	Result	Under Limit				
4.1	15.407(a)	26dB Spectrum Bandwidth and 99% Occupied Bandwidth	Complies	-			
4.2	15.407(e)	6dB Spectrum Bandwidth	Complies	-			
4.3	15.407(a)	Maximum Conducted Output Power	Complies	0.02 dB			
4.4	15.407(a)	Power Spectral Density	Complies	16.22 dB			
4.5	15.407(b)	Radiated Emissions	Complies	7.41 dB			
4.6	15.407(b)	Band Edge Emissions	Complies	0.12 dB			
4.7	15.407(g)	Frequency Stability	Complies	-			
4.8	15.203	Antenna Requirements	Complies	-			

Page No. : 2 of 53

Issued Date : Jun. 23, 2016

3. GENERAL INFORMATION

3.1. Product Details

Items	Description
Product Type	WLAN (2TX, 2RX)
Radio Type	Intentional Transceiver
Power Type	From power adapter
Modulation	IEEE 802.11a: OFDM
	IEEE 802.11n/ac: see the below table
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
	IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)
	IEEE 802.11n/ac: see the below table
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Channel Number	9 for 20MHz bandwidth ; 4 for 40MHz bandwidth
	2 for 80MHz bandwidth
Channel Band Width (99%)	IEEE 802.11a: 26.83 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT20): 25.79 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT40): 42.98 MHz
	IEEE 802.11ac MCS0/Nss1 (VHT80): 75.54 MHz
Maximum Conducted Output	IEEE 802.11a: 29.82 dBm
Power	IEEE 802.11ac MCS0/Nss1 (VHT20): 29.98 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT40): 29.93 dBm
	IEEE 802.11ac MCS0/Nss1 (VHT80): 27.37 dBm
Carrier Frequencies	Please refer to section 3.4
Antenna	Please refer to section 3.3

Items	Description		
Communication Mode		Frame Based	
Beamforming Function		☐ Without beamforming	
Operate Condition		☐ Outdoor	

Note: The product has beamforming function for 802.11a/n/ac in 5GHz band.

Report Format Version: Rev. 01 Page No. : 3 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

Antenna and Band width

Antenna	Two (TX)			
Band width Mode	20 MHz	40 MHz	80 MHz	
IEEE 802.11a	V	X	X	
IEEE 802.11n	V	V	X	
IEEE 802.11ac	V	V	V	

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS
802.11n (HT20)	2	MC\$ 0-15
802.11n (HT40)	2	MC\$ 0-15
802.11ac (VHT20)	2	MCS 0-9/Nss1-2
802.11ac (VHT40)	2	MCS 0-9/Nss1-2
802.11ac (VHT80)	2	MCS 0-9/Nss1-2

Note 1: IEEE Std. 802.11n modulation consists of HT20 and HT40 (HT: High Throughput). Then EUT supports HT20 and HT40.

Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High Throughput). Then EUT supports VHT20, VHT40 and VHT80.

Note 3: Modulation modes consist of below configuration: HT20/HT40: IEEE 802.11n, VHT20/VHT40/VHT80: IEEE 802.11ac

3.2. Accessories

Power	Brand	Model	Rating
Adaptor	161	MU18A2120150-A1	Input: 100-240V~50/60Hz, 0.5A
Adapter	LEI	WIU 1 6A2 12U 15U-A1	Output: 12V, 1.5A

Report Format Version: Rev. 01 Page No. : 4 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

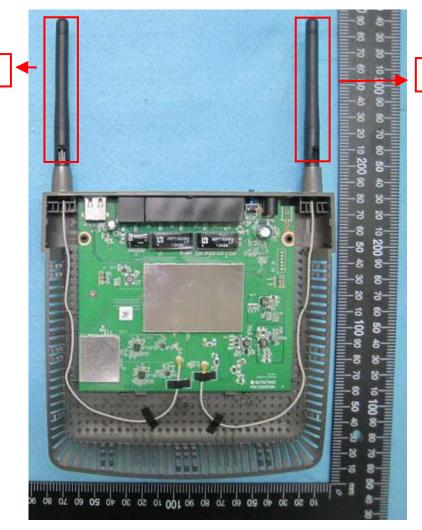
3.3. Table for Filed Antenna

					2.4GHz	Gain (dBi)	
Ant.	Brand	Model Name	Antenna Type	Connector		5G	Hz
					2.4 9 62	(Band 1)	(Band 4)
1	CORTEC	AN2450-55A03BGX	Dipole Antenna	I-PEX	2.82	2.24	2.91
2	CORTEC	AN2450-55A03BGX	Dipole Antenna	I-PEX	2.49	2.35	2.91

Note: The EUT has two antennas

For 2.4GHz function:

For IEEE 802.11b/g/n mode (2TX/2RX)


Ant. 1 and Ant. 2 could transmit/receive simultaneously.

For 5GHz function:

Ant. 1 for 2.4G/5G

For IEEE 802.11a/n/ac mode (2TX/2RX)

Ant. 1 and Ant. 2 could transmit/receive simultaneously.

Ant. 2 for 2.4G/5G

Report Format Version: Rev. 01 Page No. : 5 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

For 80MHz bandwidth systems, use Channel 42, 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Мо	de	Data Rate	Channel	Ant.
Max. Conducted Output Power	11a/BPSK	Band 4	6Mbps	149/157/165	1+2
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2
Power Spectral Density	11a/BPSK	Band 4	6Mbps	149/157/165	1+2
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2
26dB Spectrum Bandwidth &	11a/BPSK	Band 4	6Mbps	149/157/165	1+2
99% Occupied Bandwidth	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2
Measurement	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2
6dB Spectrum Bandwidth	11a/BPSK	Band 4	6Mbps	149/157/165	1+2
Measurement	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2
Radiated Emission Above 1GHz	11a/BPSK	Band 4	6Mbps	149/157/165	1+2
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2
Band Edge Emission	11a/BPSK	Band 4	6Mbps	149/157/165	1+2
	11ac VHT20	Band 4	MCS0/Nss1	149/157/165	1+2
	11ac VHT40	Band 4	MCS0/Nss1	151/159	1+2
	11ac VHT80	Band 4	MCS0/Nss1	155	1+2
Frequency Stability	20 MHz	Band 4	-	157	2
	40 MHz	Band 4	-	151	2
	80 MHz	Band 4	-	155	2

Report Format Version: Rev. 01 Page No. : 7 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

Note:

1. There are two modes of EUT, one is beamforming mode and the other is non-beamforming mode for 802.11a/n/ac. After evaluating, beamforming mode had been evaluated to be the worst case, so it was selected to record in this test report.

2. VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than 802.11ac VHT20 and VHT40.

The following test modes were performed for all tests:

For Radiated Emission test:

Mode 1. CTX - Place EUT in Z axis

For Co-location MPE Test:

The EUT could be applied with 2.4GHz WLAN function and 5GHz WLAN function; therefore Co-location Maximum Permissible Exposure (Please refer to FA4N1172-36AB) test is added for simultaneously transmit between 2.4GHz WLAN function and 5GHz WLAN function.

3.6. Table for Testing Locations

	Test Site Location						
Address:	No.	No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					
TEL:	886	-3-656-9065					
FAX:	886	5-3-656-9085					
Test Site N	o. Site Category Location FCC Designation No. IC File No. VCCI Reg. 1					VCCI Reg. No	
03CH01-C	CB SAC Hsin Chu TW0006 IC 4086D -				-		
TH01-CB	3	OVEN Room	Hsin Chu	-	-	-	

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC).

Report Format Version: Rev. 01 Page No. : 8 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR4N1172-36AB. Below is the table for the change of the product with respect to the original one.

Modifications	Performance Checking
1. Updating test rule of 5GHz band 4 to "15.407 (b)(4)(i) of New Rules (ET Docket No. 13–49; FCC 16–24)" from "New Rules	 26dB Bandwidth and 99% Occupied Bandwidth 6dB Spectrum Bandwidth Maximum Conducted Output Power Power Spectral Density
(ET Docket No. 13-49; FCC 14-30)".	5. Radiated Emissions above 1GHz6. Band Edge Emissions7. Frequency Stability

3.8. Table for Supporting Units

For Test Site No: 03CH01-CB

Support Unit	Brand	Model	FCC ID
NB*2	DELL	E4300	DoC
WLAN module	Broadcom	BCM943162ZP	QDS-BRCM1075

For Test Site No: TH01-CB

Support Unit	Brand	Model	FCC ID
NB	DELL	E4300	DoC

Report Format Version: Rev. 01 Page No. : 9 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

3.9. Table for Parameters of Test Software Setting

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Test Software Version	MT7662 QA V0.0.2.3			
	Test Frequency (MHz) NCB: 20MHz			
Mode				
	5745 MHz	5785 MHz	5825 MHz	
802.11a	27/27 27/26		27/27	
802.11ac MCS0/Nss1 VHT20	25/25 26/26		27/26	
Mode		NCB: 40MHz		
802.11ac MCS0/Nss1 VHT40	5755 MHz		5795 MHz	
502.11 Td 5 W1000/1001 VIII 40	25/24		27/26	
Mode	NCB: 80MHz			
802.11ac MCS0/Nss1 VHT80	5775 MHz			
002.11GC WC30/N331 VF100 —	1D/1D			

3.10. EUT Operation during Test

For Conducted Mode:

The EUT was programmed to be in continuously transmitting mode.

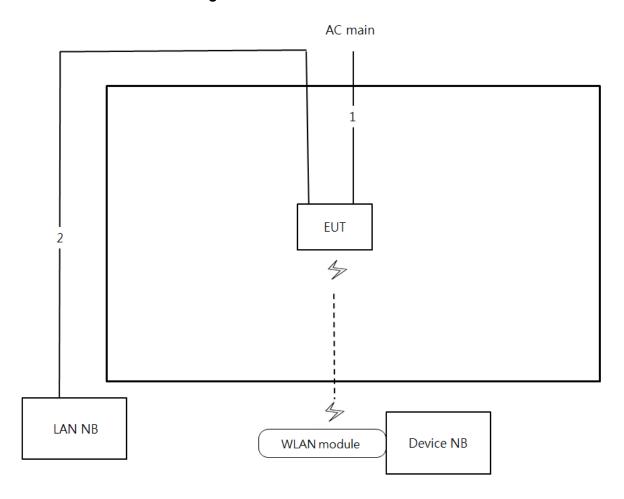
For Radiated Mode:

During the test, the following programs under WIN XP were executed.

The program was executed as follows:

- 1. During the test, the EUT operation to normal function.
- 2. Executed command fixed test channel under DOS.
- 3. Executed "Lantest.exe " to link with the remote workstation to receive and transmit packet by WLAN module and transmit duty cycle no less 98%

3.11. Duty Cycle


Mode	On Time	On+Off Time	Duty Cycle	Duty Factor	1/T Minimum VBW
Wiode	(ms)	(ms)	(%)	(dB)	(kHz)
802.11a	1.420	1.650	86.06	0.65	0.70
802.11ac MCS0/Nss1 VHT20	1.360	1.580	86.08	0.65	0.74
802.11ac MCS0/Nss1 VHT40	0.640	0.884	72.40	1.40	1.56
802.11ac MCS0/Nss1 VHT80	0.306	0.542	56.46	2.48	3.27

Report Format Version: Rev. 01 Page No. : 10 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

3.12. Test Configurations

3.12.1. Radiation Emissions Test Configuration

Item	Connection	Shielded	Length
1	Power cable	No	1.5m
2	RJ-45 cable	No	10m

4. TEST RESULT

4.1. 26dB Bandwidth and 99% Occupied Bandwidth Measurement

4.1.1. Limit

No restriction limits.

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

26dB Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 26dB Bandwidth		
RBW	Approximately 1% of the emission bandwidth		
VBW	VBW > RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		
	99% Occupied Bandwidth		
Spectrum Parameters	Setting		
Span	1.5 times to 5.0 times the OBW		
RBW	1 % to 5 % of the OBW		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		

4.1.3. Test Procedures

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- 2. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

4.1.4. Test Setup Layout

For Radiated 26dB Bandwidth and 99% Occupied Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.1.5. Test Deviation

There is no deviation with the original standard.

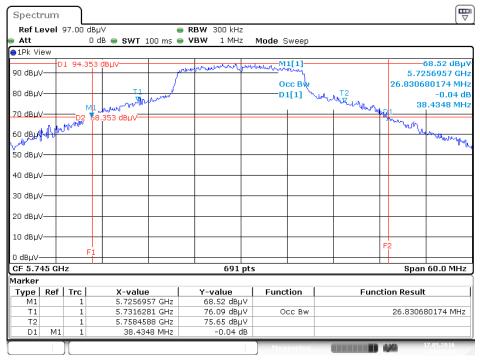
4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

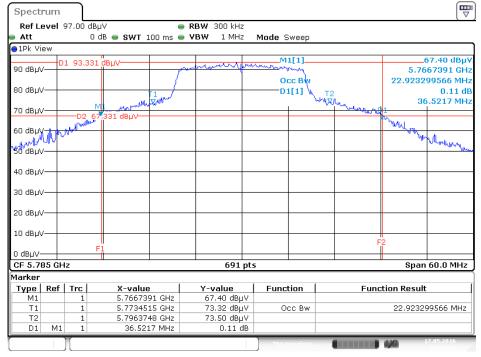
 Report Format Version: Rev. 01
 Page No.
 : 12 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016

4.1.7. Test Result of 26dB Bandwidth and 99% Occupied Bandwidth


Temperature	20°C	Humidity	61%
Test Engineer	Serway Li		

Mode	Frequency	26dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
	5745 MHz	38.43	26.83
802.11a	5785 MHz	36.52	22.92
	5825 MHz	35.57	20.75
802.11ac MCS0/Nss1 VHT20	5745 MHz	42.78	25.79
	5785 MHz	39.22	24.05
	5825 MHz	41.30	24.14
802.11ac	5755 MHz	78.12	42.55
MCS0/Nss1 VHT40	5795 MHz	78.70	42.98
802.11ac	5775 NALL-	111.50	75.54
MCS0/Nss1 VHT80	5775 MHz	111.59	75.54

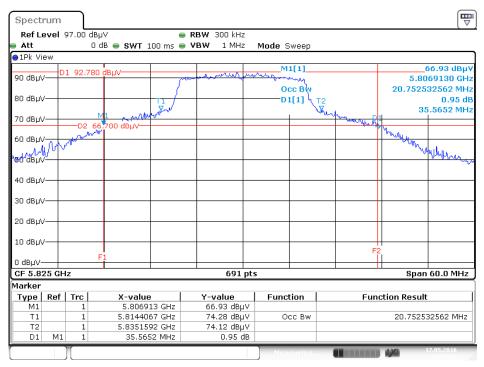


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5745 MHz

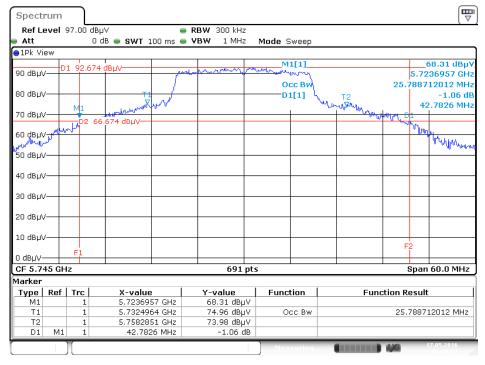
Date: 17 M AY 2016 02:20:34

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5785 MHz

Date:17MAY 2016 02:23:26


 Report Format Version: Rev. 01
 Page No.
 : 14 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016

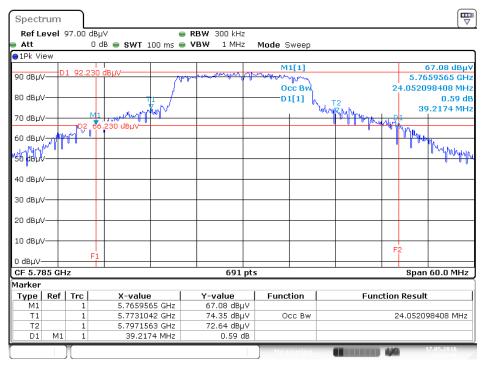


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5825 MHz

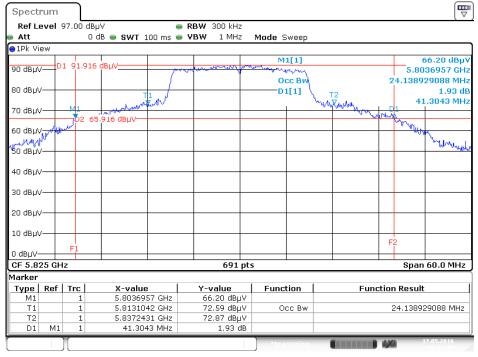
Date: 17 M AY 2016 02:25:07

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5745 MHz

Date:17MAY 2016 02:27:33


 Report Format Version: Rev. 01
 Page No.
 : 15 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016

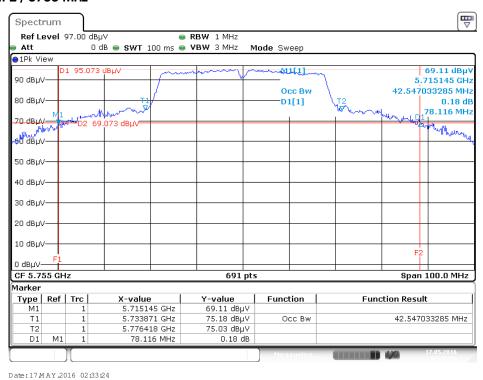


26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5785 MHz

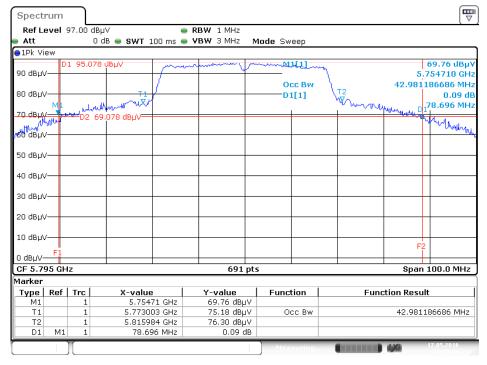
Date: 17 M AY 2016 02:29:46

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5825 MHz

Date: 17 M AY 2016 02:31:18

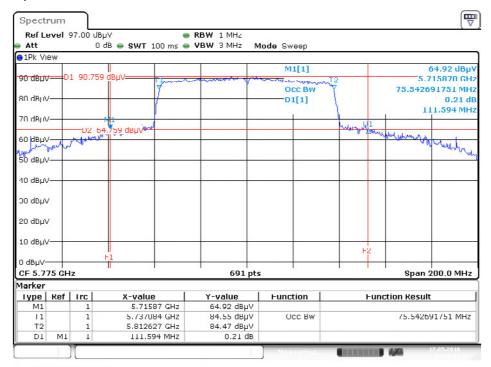

 Report Format Version: Rev. 01
 Page No.
 : 16 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016



26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5755 MHz

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5795 MHz



Date: 17 M AY 2016 02:35:45

 Report Format Version: Rev. 01
 Page No.
 : 17 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016

26dB Bandwidth and 99% Occupied Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

Date: 17.MAY.2016 02:40:28

4.2. 6dB Spectrum Bandwidth Measurement

4.2.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer.

andiyzer.			
6dB Spectrum Bandwidth			
Spectrum Parameters	Setting		
Attenuation	Auto		
Span Frequency	> 6dB Bandwidth		
RBW	100kHz		
VBW	≥ 3 x RBW		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

4.2.3. Test Procedures

For Radiated 6dB Bandwidth Measurement:

- 1. The transmitter was radiated to the spectrum analyzer in peak hold mode.
- Test was performed in accordance with KDB789033 D02 v01r02 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth.
- Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions
 Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. Measured the spectrum width with power higher than 6dB below carrier.

4.2.4. Test Setup Layout

For Radiated 6dB Bandwidth Measurement:

This test setup layout is the same as that shown in section 4.5.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

Report Format Version: Rev. 01 Page No. : 19 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

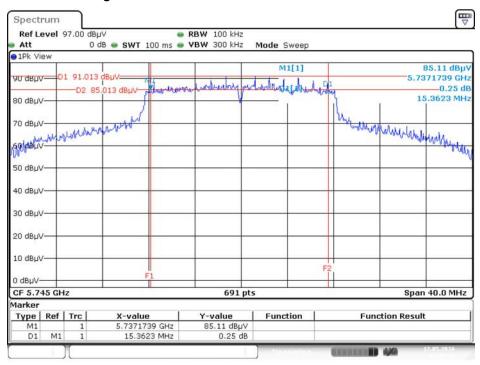
4.2.7. Test Result of 6dB Spectrum Bandwidth

Temperature	20°C	Humidity	61%
Test Engineer	Serway Li		

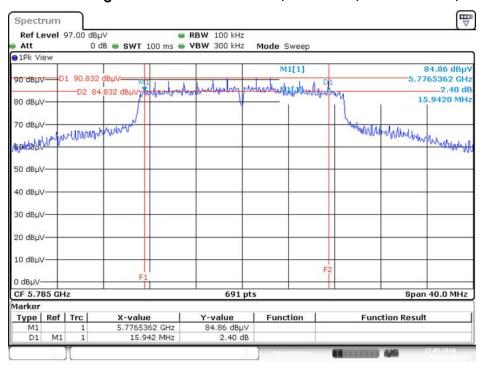
Mode	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Test Result
	5745 MHz	15.36	500	Complies
802.11a	5785 MHz	15.48	500	Complies
	5825 MHz	15.42	500	Complies
802.11ac	5745 MHz	16.46	500	Complies
MCS0/Nss1	5785 MHz	15.94	500	Complies
VHT20	5825 MHz	16.06	500	Complies
802.11ac	5755 MHz	35.13	500	Complies
MCS0/Nss1 VHT40	5795 MHz	35.48	500	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	71.01	500	Complies

Note: All the test values were listed in the report.

For plots, only the channel with worse result was shown.


 Report Format Version: Rev. 01
 Page No.
 : 20 of 53

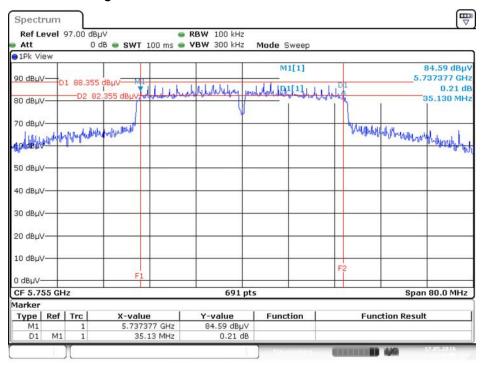
 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016



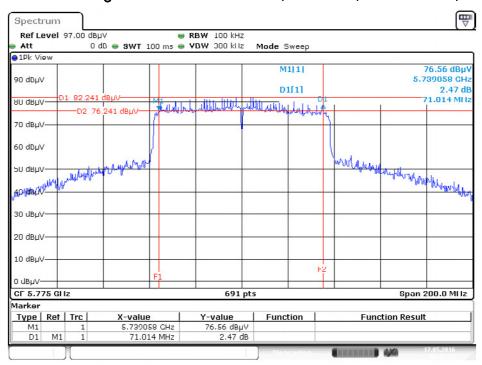
6 dB Bandwidth Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5745 MHz

Date: 17.MAY.2016 02:56:11

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5785 MHz



Date: 17.MAY.2016 02:53:40



6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5755MHz

Date: 17.MAY.2016 02:48:56

6 dB Bandwidth Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

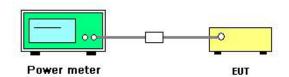
Date: 17.MAY.2016 02:45:24

4.3. Maximum Conducted Output Power Measurement

4.3.1. Limit

Frequency Band	Limit
	The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Detector	AVERAGE

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Test was performed in accordance with KDB789033 D02 v01r02 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).
- 3. Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.
- 4. When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

4.3.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 23 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016

4.3.7. Test Result of Maximum Conducted Output Power

Temperature	20°C	Humidity	61%
Test Engineer	Serway Li	Test Date	May 17, 2016

Mode	Eroguepov	Conducted Power (dBm)			Max. Limit	Result
Wode	Frequency	Ant. 1	Ant. 2	Total	(dBm)	Kesuii
	5745 MHz	26.88	26.52	29.71	30.00	Complies
802.11a	5785 MHz	26.98	26.56	29.79	30.00	Complies
	5825 MHz	26.87	26.74	29.82	30.00	Complies
802.11ac	5745 MHz	27.27	26.64	29.98	30.00	Complies
MCS0/Nss1	5785 MHz	26.64	26.51	29.59	30.00	Complies
VHT20	5825 MHz	26.92	26.11	29.54	30.00	Complies
802.11ac MCS0/Nss1	5755 MHz	27.23	26.58	29.93	30.00	Complies
VHT40	5795 MHz	27.17	26.41	29.82	30.00	Complies
802.11ac MCS0/Nss1 VHT80	5775 MHz	24.51	24.21	27.37	30.00	Complies

Note: $Directional \ Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left(\sum_{k=1}^{N_{ANT}} g_{j,k} \right)^2}{N_{ANT}} \right] = 5.92 \ \mathrm{dBi} < 6 \ \mathrm{dBi}$, so the limit doesn't reduce.

 Report Format Version: Rev. 01
 Page No.
 : 24 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016

4.4. Power Spectral Density Measurement

4.4.1. Limit

The following table is power spectral density limits and decrease power density limit rule refer to section 4.3.1.

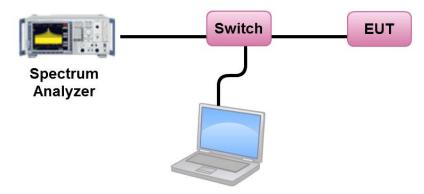
Frequency Band	Limit
⊠ 5.725~5.85 GHz	30 dBm/500kHz

4.4.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RBW	1000 kHz
VBW	3000 kHz
Detector	RMS
Trace	AVERAGE
Sweep Time	Auto
Trace Average	100 times

Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.


4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.
- Test was performed in accordance with KDB789033 D02 v01r02 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).
- 3. Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements and sum the spectra across the outputs.
- 4. For 5.725~5.85 GHz, the measured result of PSD level must add 10log(500kHz/RBW) and the final result should ≤ 30 dBm.

Report Format Version: Rev. 01 Page No. : 25 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

4.4.4. Test Setup Layout

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of Power Spectral Density

Temperature	20 ℃	Humidity	61%
Test Engineer	Serway Li		

Configuration IEEE 802.11a / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	16.55	-3.01	13.54	30.00	Complies
157	5785 MHz	16.64	-3.01	13.63	30.00	Complies
165	5825 MHz	16.66	-3.01	13.65	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2

Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
149	5745 MHz	16.79	-3.01	13.78	30.00	Complies
157	5785 MHz	16.34	-3.01	13.33	30.00	Complies
165	5825 MHz	16.30	-3.01	13.29	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2

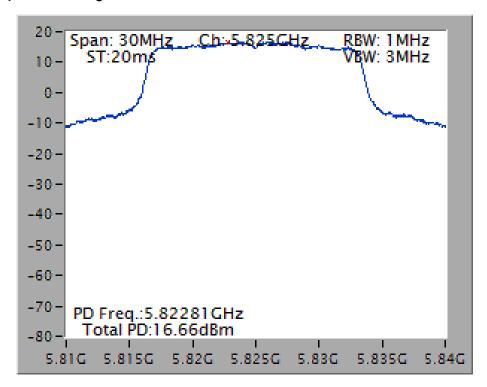
Channel	Frequency	Power Density (dBm/MHz)	10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
151	5755 MHz	13.62	-3.01	10.61	30.00	Complies
159	5795 MHz	13.59	-3.01	10.58	30.00	Complies

Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2

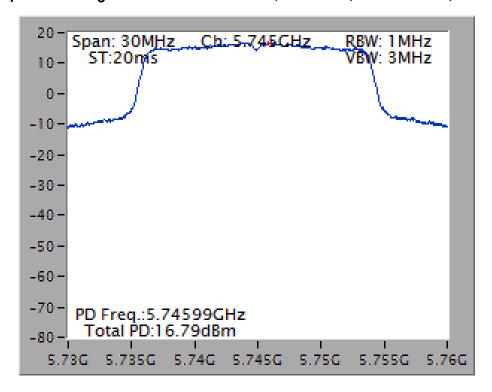

Channel	Frequency Power Density (dBm/MHz)		10log(500kHz/RBW) Factor (dB)	Power Density (dBm/500kHz)	Power Density Limit (dBm/500kHz)	Result
155	5775 MHz	8.23	-3.01	5.22	30.00	Complies

Note: $Directional \ Gain = 10 \log \left[\frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{K=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right] = 5.92 \ \mathrm{dBi} < 6 \ \mathrm{dBi}$, so the limit doesn't reduce.

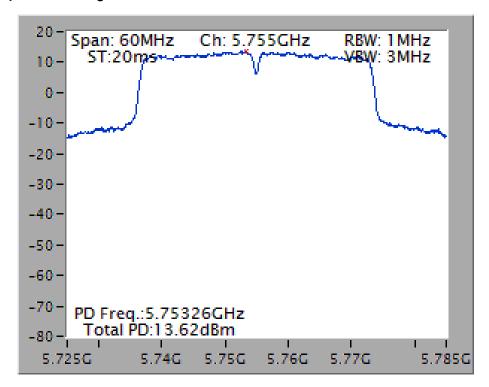
Note: All the test values were listed in the report.

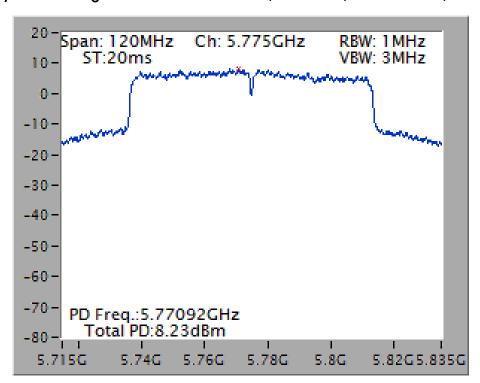

For plots, only the channel with worse result was shown.

Report Format Version: Rev. 01 Page No. : 27 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016



Power Density Plot on Configuration IEEE 802.11a / Ant. 1 + Ant. 2 / 5825 MHz


Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT20 / Ant. 1 + Ant. 2 / 5745 MHz



Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT40 / Ant. 1 + Ant. 2 / 5755 MHz

Power Density Plot on Configuration IEEE 802.11ac MCS0/Nss1 VHT80 / Ant. 1 + Ant. 2 / 5775 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance			
(MHz)	(micorvolts/meter)	(meters)			
0.009~0.490	2400/F(kHz)	300			
0.490~1.705	24000/F(kHz)	30			
1.705~30.0	30	30			
30~88	100	3			
88~216	150	3			
216~960	200	3			
Above 960	500	3			

4.5.2. Measuring Instruments and Setting

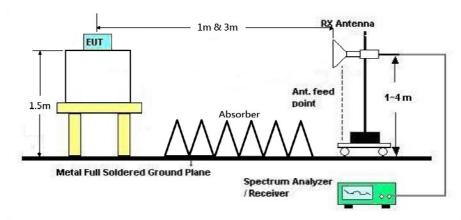
Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP

Report Format Version: Rev. 01 Page No. : 30 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

4.5.3. Test Procedures


Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 1m & 3m far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Report Format Version: Rev. 01 Page No. : 31 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

4.5.4. Test Setup Layout

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in beamforming transmitting mode.

: 32 of 53 Page No. FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

4.5.7. Results for Radiated Emissions (1GHz~40GHz)

Temperature	20.4°C	Humidity	52%					
Test Engineer	Charlie Cheng / Gary Chu	Configurations	IEEE 802.11a CH 149 / Ant. 1 + Ant. 2					
Test Date	May 10, 2016							

Horizontal

		Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11481.40	46.49	54.00	-7.51	30.14	11.57	40.01	35.23	192	219	Average	HORIZONTAL
2	11499.12	59.90	74.00	-14.10	43.53	11.60	40.00	35.23	192	219	Peak	HORIZONTAL

Vertical

		Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
		dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11491.52	46.38	54.00	-7.62	30.01	11.60	40.00	35.23	176	157	Average	VERTICAL
2	11495.32	58.96	74.00	-15.04	42.59	11.60	40.00	35.23	176	157	Peak	VERTICAL

Report Format Version: Rev. 01 Page No. : 33 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

Temperature	20.4°C	Humidity	52%
Test Engineer	Charlie Cheng / Gary Chu	Configurations	IEEE 802.11a CH 157 / Ant. 1 + Ant. 2
Test Date	May 10, 2016		

Horizontal

	Freq	Level						Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11573.80	46.25	54.00	-7.75	29.97	11.64	39.87	35.23	170	188	Average	HORIZONTAL
2	11576.32	59.56	74.00	-14.44	43.28	11.64	39.87	35.23	170	188	Peak	HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11571.60	46.39	54.00	-7.61	30.11	11.64	39.87	35.23	180	162	Average	VERTICAL
2	11572.72	59.23	74 00	-14 77	42 95	11.64	39.87	35 23	180	162	Peak	VERTICAL

Temperature	20.4°C	Humidity	52%
Test Engineer	Charlie Cheng / Gary Chu	Configurations	IEEE 802.11a CH 165 / Ant. 1 + Ant. 2
Test Date	May 11, 2016		

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11652.68	58.59	74.00	-15.41	42.43	11.71	39.67	35.22	145	196	Peak	HORIZONTAL
2	11658.44	45.85	54.00	-8.15	29.69	11.71	39.67	35.22	145	196	Average	HORIZONTAL

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11654.52	45.94	54.00	-8.06	29.78	11.71	39.67	35.22	174	214	Average	VERTICAL
2	11658.80	58.97	74.00	-15.03	42.81	11.71	39.67	35.22	174	214	Peak	VERTICAL

Page No.

Temperature	20.4°C	Humidity	52%			
Test Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149 /			
Test Engineer	Gary Chu Configurations		Ant. 1 + Ant. 2			
Test Date	May 10, 2016					

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11482.12	59.30	74.00	-14.70	42.95	11.57	40.01	35.23	185	133	Peak	HORIZONTAL
2	11495.20	46.54	54.00	-7.46	30.17	11.60	40.00	35.23	185	133	Average	HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11494.20	46.34	54.00	-7.66	29.97	11.60	40.00	35.23	193	135	Average	VERTICAL
2	11499 28	59.54	74 99	-14 46	43 17	11.60	40 00	35 23	193	135	Peak	VERTICAL

Temperature	20.4°C	Humidity	52%
Test Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 157 /
Test Engineer	Gary Chu Configurations		Ant. 1 + Ant. 2
Test Date	May 10, 2016		

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11560.44	59.83	74.00	-14.17	43.55	11.64	39.87	35.23	137	161	Peak	HORIZONTAL
2	11565.04	46.29	54.00	-7.71	30.01	11.64	39.87	35.23	137	161	Average	HORIZONTAL

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11579.12	59.21	74.00	-14.79	42.93	11.64	39.87	35.23	171	126	Peak	VERTICAL
2	11580.00	46.59	54.00	-7.41	30.31	11.64	39.87	35.23	171	126	Average	VERTICAL

Temperature	20.4°C	Humidity	52%			
Test Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 165 /			
Test Engineer	Gary Chu Configurations		Ant. 1 + Ant. 2			
Test Date	May 10, 2016					

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11645.12	58.89	74.00	-15.11	42.69	11.69	39.73	35.22	164	157	Peak	HORIZONTAL
2	11648.04	46.05	54.00	-7.95	29.85	11.69	39.73	35.22	164	157	Average	HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11650.28	46.13	54.00	-7.87	29.93	11.69	39.73	35.22	148	115	Average	VERTICAL
2	11651.60	59.02	74.00	-14.98	42.86	11.71	39.67	35.22	148	115	Peak	VERTICAL

Temperature	20.4°C	Humidity	52%
Test Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151 /
Test Engineer	Gary Chu	Configurations	Ant. 1 + Ant. 2
Test Date	May 10, 2016		

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11506.04	45.79	54.00	-8.21	29.42	11.60	40.00	35.23	186	139	Average	HORIZONTAL
2	11514.64	58.52	74.00	-15.48	42.15	11.60	40.00	35.23	186	139	Peak	HORIZONTAL

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11504.24	58.88	74.00	-15.12	42.51	11.60	40.00	35.23	204	178	Peak	VERTICAL
2	11506.44	45.98	54.00	-8.02	29.61	11.60	40.00	35.23	204	178	Average	VERTICAL

Temperature	20.4°C	Humidity	52%
Test Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 /
Test Engineer	Gary Chu Configurations		Ant. 1 + Ant. 2
Test Date	May 10, 2016		

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11580.20	45.90	54.00	-8.10	29.62	11.64	39.87	35.23	206	162	Average	HORIZONTAL
2	11585.64	59.37	74.00	-14.63	43.12	11.67	39.80	35.22	206	162	Peak	HORIZONTAL

	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11582.08	59.20	74.00	-14.80	42.92	11.64	39.87	35.23	155	120	Peak	VERTICAL
2	11593.88	45.75	54.00	-8.25	29.50	11.67	39.80	35.22	155	120	Average	VERTICAL

Temperature	20.4°C	Humidity	52%			
Test Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 /			
Test Engineer	Gary Chu Configurations		Ant. 1 + Ant. 2			
Test Date	May 10, 2016					

Horizontal

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11545.40	58.58	74.00	-15.42	42.26	11.62	39.93	35.23	171	152	Peak	HORIZONTAL
2	11554.68	45.90	54.00	-8.10	29.62	11.64	39.87	35.23	171	152	Average	HORIZONTAL

Vertical

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	11541.92	45.98	54.00	-8.02	29.66	11.62	39.93	35.23	190	201	Average	VERTICAL
2	11543.60	59.56	74.00	-14.44	43.24	11.62	39.93	35.23	190	201	Peak	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Page No. : 41 of 53 Issued Date : Jun. 23, 2016

4.6. Band Edge Emissions Measurement

4.6.1. Limit

For transmitters operating in the 5.725-5.85 GHz band: all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.6.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1 MHz / 3MHz for Peak

4.6.3. Test Procedures

The test procedure is the same as section 4.5.3.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in beamforming transmitting mode.

 Report Format Version: Rev. 01
 Page No.
 : 42 of 53

 FCC ID: Q87-EA6100
 Issued Date
 : Jun. 23, 2016

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	20.4°C	Humidity	52%				
Tost Engineer	Charlie Cheng /	Configurations	IEEE 802.11a CH 149, 157, 165/				
Test Engineer	Gary Chu	Configurations	Ant. 1 + Ant. 2				
Test Date	May 10, 2016						

Channel 149

	Freq	Level	Limit Line		Read Level			Control of the contro	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		_
1	5648.00	64.71	68.20	-3.49	58.07	7.64	31.98	32.98	252	318	Peak	VERTICAL
2	5744.00	115.09			108.27	7.73	32.10	33.01	252	318	Average	VERTICAL
3 0	5746.00	125.19			118.38	7.73	32.10	33.02	252	318	Peak	VERTICAL
4	5995.00	62.95	68.20	-5.25	55.81	7.84	32.40	33.10	252	318	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5745 MHz.

Channel 157

		Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	3	5645.00	62.51	68.20	-5.69	55.87	7.64	31.98	32.98	237	244	Peak	VERTICAL
2	3	5788.00	113.20			106.33	7.76	32.14	33.03	237	244	Average	VERTICAL
3	0	5788.00	124.20			117.33	7.76	32.14	33.03	237	244	Peak	VERTICAL
4		5939.00	64.37	68.20	-3.83	57.32	7.82	32.32	33.09	237	244	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5785 MHz.

Channel 165

		Freq	Level	Limit Line		Read Level			Company of the Compan	A/Pos	T/Pos	Remark	Pol/Phase
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1		5627.00	62.55	68.20	-5.65	55.93	7.63	31.96	32.97	248	245	Peak	VERTICAL
2		5826.00	114.41			107.48	7.78	32.20	33.05	248	245	Average	VERTICAL
3	0	5826.00	123.62			116.69	7.78	32.20	33.05	248	245	Peak	VERTICAL
4		5928.00	63.78	68.20	-4.42	56.72	7.82	32.32	33.08	248	245	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5825 MHz.

Temperature	20.4°C	Humidity	52%				
Tost Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149,				
Test Engineer	Gary Chu	Configurations	157, 165 / Ant. 1 + Ant. 2				
Test Date	May 10, 2016						

Channel 149

	Freq	Level	Limit Line		Read Level			Control of the contro	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		_
1	5640.00	64.64	68.20	-3.56	58.03	7.63	31.96	32.98	254	90	Peak	VERTICAL
2	5744.00	114.10			107.28	7.73	32.10	33.01	254	90	Average	VERTICAL
3 0	5747.00	124.48			117.67	7.73	32.10	33.02	254	90	Peak	VERTICAL
4	5944.00	61.61	68.20	-6.59	54.54	7.82	32.34	33.09	254	90	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5745 MHz.

Channel 157

	Freq	Level	Limit Line		Read Level			The second secon	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5634.00	63.60	68.20	-4.60	56.99	7.63	31.96	32.98	220	22	Peak	VERTICAL
2 0	5784.00	123.54			116.67	7.76	32.14	33.03	220	22	Peak	VERTICAL
3	5785.00	113.14			106.27	7.76	32.14	33.03	220	22	Average	VERTICAL
4	5991.00	62.94	68.20	-5.26	55.83	7.83	32.38	33.10	220	22	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5785 MHz.

Channel 165

	Freq	Level	Limit Line	O. 010 h	Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		_
1	5653.00	62.90	70.43	-7.53	56.26	7.64	31.98	32.98	206	162	Peak	VERTICAL
2	5822.00	111.96			105.05	7.78	32.18	33.05	206	162	Average	VERTICAL
3	5826.00	121.67			114.74	7.78	32.20	33.05	206	162	Peak	VERTICAL
4	5993.00	63.10	68.20	-5.10	55.96	7.84	32.40	33.10	206	162	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5825 MHz.

Temperature	20.4°C	Humidity	52%					
Toot Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40					
Test Engineer	Gary Chu	Configurations	CH 151, 159 / Ant. 1 + Ant. 2					
Test Date	May 10, 2016							

Channel 151

		Level	Limit Line		Read Level			The second secon	A/Pos	T/Pos	Remark	Pol/Phase
		dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5651.50	69.19	69.31	-0.12	62.55	7.64	31.98	32.98	257	341	Peak	VERTICAL
2	5753.00	109.10			102.29	7.73	32.10	33.02	257	341	Average	VERTICAL
3	5753.00	118.90			112.09	7.73	32.10	33.02	257	341	Peak	VERTICAL
4	5940.00	62.61	68.20	-5.59	55.56	7.82	32.32	33.09	257	341	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5755 MHz.

Channel 159

	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5648.00	68.04	68.20	-0.16	61.40	7.64	31.98	32.98	244	21	Peak	VERTICAL
2	5793.00	121.05			114.15	7.77	32.16	33.03	244	21	Peak	VERTICAL
3	5794.00	110.89			103.99	7.77	32.16	33.03	244	21	Average	VERTICAL
4	5924.00	67.10	68.94	-1.84	60.07	7.81	32.30	33.08	244	21	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5795 MHz.

Page No. : 45 of 53 Issued Date : Jun. 23, 2016

Temperature	20.4°C	Humidity	52%	
Test Engineer	Charlie Cheng /	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 /	
Test Engineer	Gary Chu	Configurations	Ant. 1 + Ant. 2	
Test Date	May 10, 2016			

Channel 155

	Freq	Level	Limit Line		Read Level			Control of the second	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5652.00	69.40	69.69	-0.29	62.76	7.64	31.98	32.98	248	315	Peak	VERTICAL
2	5754.00	114.31			107.50	7.73	32.10	33.02	248	315	Peak	VERTICAL
3	5772.00	99.26			92.39	7.76	32.14	33.03	248	315	Average	VERTICAL
4	5932.00	63.07	68.20	-5.13	56.01	7.82	32.32	33.08	248	315	Peak	VERTICAL

Item 2, 3 are the fundamental frequency at 5775 MHz.

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

: 46 of 53 Page No. FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

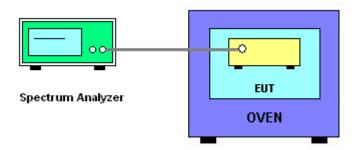
4.7. Frequency Stability Measurement

4.7.1. Limit

In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

4.7.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	Entire absence of modulation emissions bandwidth
RBW	10 kHz
VBW	10 kHz
Sweep Time	Auto

4.7.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer.
- 2. EUT have transmitted absence of modulation signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.
- 4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.
- 5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11nspecification).
- 6. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 7. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value
- 8. Extreme temperature is $0^{\circ}C\sim40^{\circ}C$.

4.7.4. Test Setup Layout

Report Format Version: Rev. 01 Page No. : 47 of 53

FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

4.7.5. Test Deviation

There is no deviation with the original standard.

4.7.6. EUT Operation during Test

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.7.7. Test Result of Frequency Stability

Temperature	20°C	Humidity	61%
Test Engineer	Serway Li	Test Date	May 17, 2016

Mode: 20 MHz / Ant. 2

Voltage vs. Frequency Stability

reliage to requestly classify									
Voltage	Measurement Frequency (MHz)								
0.0		5785	6 MHz						
(V)	0 Minute	2 Minute	5 Minute	10 Minute					
126.50	5784.9919	5784.9913	5784.9903	5784.9897					
110.00	5784.9917	5784.9914	5784.9911	5784.9904					
93.50	5784.9910	5784.9903	5784.9898	5784.9892					
Max. Deviation (MHz)	0.0090	0.0097	0.0102	0.0108					
Max. Deviation (ppm)	1.56	1.68	1.76	1.87					
Result		Com	plies						

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)							
(%C)		5785	5 MHz					
(°C)	0 Minute	2 Minute	5 Minute	10 Minute				
0	5785.0022	5785.0010	5784.9991	5784.9969				
10	5785.0009	5784.9996	5784.9981	5784.9963				
20	5784.9997	5784.9984	5784.9968	5784.9949				
30	5784.9983	5784.9972	5784.9958	5784.9942				
40	5784.9967	5784.9952	5784.9936	5784.9916				
Max. Deviation (MHz)	0.0067	0.0062	0.0077	0.0104				
Max. Deviation (ppm)	1.16	1.07	1.33	1.80				
Result		Com	nplies					

Report Format Version: Rev. 01 Page No. : 48 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

Mode: 40 MHz / Ant. 2

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)								
00		5755 MHz							
(V)	0 Minute	2 Minute	5 Minute	10 Minute					
126.50	5754.9928	5754.9918	5754.9910	5754.9905					
110.00	5754.9919	5754.9914	5754.9912	5754.9908					
93.50	5754.9912	5754.9904	5754.9897	5754.9888					
Max. Deviation (MHz)	0.0088	0.0096	0.0103	0.0112					
Max. Deviation (ppm)	1.53	1.67	1.79	1.95					
Result		Com	nplies						

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)							
(%C)		5755	5 MHz					
(°C)	0 Minute	2 Minute	5 Minute	10 Minute				
0	5754.9946	5754.9934	5754.9915	5754.9893				
10	5754.9933	5754.9920	5754.9905	5754.9887				
20	5754.9921	5754.9908	5754.9892	5754.9873				
30	5754.9907	5754.9896	5754.9882	5754.9866				
40	5754.9891	5754.9876	5754.9860	5754.9840				
Max. Deviation (MHz)	0.0126	0.0138	0.0153	0.0180				
Max. Deviation (ppm)	2.19	2.40	2.66	3.13				
Result		Com	nplies					

Report Format Version: Rev. 01 Page No. : 49 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

Mode: 80 MHz / Ant. 2

Voltage vs. Frequency Stability

Voltage	Measurement Frequency (MHz)							
0.0		5775	5 MHz					
(V)	0 Minute	2 Minute	5 Minute	10 Minute				
126.50	5774.9971	5774.9966	5774.9957	5774.9949				
110.00	5774.9964	5774.9962	5774.9952	5774.9943				
93.50	5774.9957	5774.9952	5774.9946	5774.9936				
Max. Deviation (MHz)	0.0043	0.0048	0.0054	0.0064				
Max. Deviation (ppm)	0.74	0.83	0.94	1.11				
Result		Com	plies					

Temperature vs. Frequency Stability

Temperature	Measurement Frequency (MHz)								
(%)		5775 MHz							
(°C)	0 Minute	2 Minute	5 Minute	10 Minute					
0	5774.9925	5774.9913	5774.9894	5774.9872					
10	5774.9912	5774.9899	5774.9884	5774.9866					
20	5774.9900	5774.9887	5774.9871	5774.9852					
30	5774.9886	5774.9875	5774.9861	5774.9845					
40	5774.9870	5774.9855	5774.9839	5774.9819					
Max. Deviation (MHz)	0.0147	0.0159	0.0174	0.0201					
Max. Deviation (ppm)	2.55	2.75	3.01	3.48					
Result		Com	nplies						

Report Format Version: Rev. 01 Page No. : 50 of 53 FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

4.8. Antenna Requirements

4.8.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.8.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Horn Antenna	EMCO	3115	00075790	750MHz ~ 18GHz	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 21, 2015	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 13, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)
Spectrum analyzer	R&S	FSV40	100979	9kHz~40GHz	Dec. 09, 2015	Conducted (TH01-CB)
Temp. and Humidity Chamber	Ten Billion	TTH-D3SP	TBN-931011	-30~100 degree	Jun. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-6	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-7	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-8	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-9	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
RF Cable-high	Woken	RG402	High Cable-10	1 GHz – 26.5 GHz	Nov. 02, 2015	Conducted (TH01-CB)
Power Sensor	Agilent	U2021XA	MY53410001	50MHz~18GHz	Nov. 02, 2015	Conducted (TH01-CB)

Note: Calibration Interval of instruments listed above is one year.

Report Format Version: Rev. 01 Page No. : 52 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%
Conducted Emission	1.7 dB	Confidence levels of 95%

Report Format Version: Rev. 01 Page No. : 53 of 53
FCC ID: Q87-EA6100 Issued Date : Jun. 23, 2016