Appendix B. Maximum Permissible Exposure

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.
(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $\mathrm{N} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{H})(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S $(\mathrm{minutes})$
$0.3-3.0$	614	1.63	$(100)^{\star}$	6
$3.0-30$	$1842 / \mathrm{f}$	$4.89 / \mathrm{f}$	$(900 / \mathrm{f})^{\star}$	6
$30-300$	61.4	0.163	1.0	6
$300-1500$			$\mathrm{~F} / 300$	6
$1500-100,000$			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) $\mathrm{V} / \mathrm{m})$	Magnetic Field Strength $(\mathrm{H})(\mathrm{A} / \mathrm{m})$	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Averaging Time $\|\mathrm{E}\|^{2},\|\mathrm{H}\|^{2}$ or S $($ minutes $)$
$0.3-1.34$	614	1.63	$(100)^{\star}$	30
$1.34-30$	$824 / \mathrm{f}$	$2.19 / \mathrm{f}$	$(180 / \mathrm{f})^{\star}$	30
$30-300$	27.5	0.073	0.2	30
$300-1500$			$\mathrm{~F} / 1500$	30
$1500-100,000$			1.0	30

Note: $\mathrm{f}=$ frequency in MHz ; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$E(\mathrm{~V} / \mathrm{m})=\frac{\sqrt{30 \times P \times G}}{d}$
Power Density: $\quad P d\left(W / \mathrm{m}^{2}\right)=\frac{E^{2}}{377}$
$E=$ Electric field (V/m)
P = Average RF output power (W)
$\mathbf{G}=$ EUT Antenna numeric gain (numeric)
$\mathbf{d}=$ Separation distance between radiator and human body (m)
The formula can be changed to
$P d=\frac{30 \times P \times G}{377 \times d^{2}}$
From the EUT RF output power, the minimum mobile separation distance, $\mathrm{d}=0.2 \mathrm{~m}$, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

For 5GHz UNII Band:
Antenna Type : Dipole Antenna
Max Conducted Power for IEEE 802.11a: 16.99 dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
5.31	3.3963	16.9928	50.0355	0.033824	1	Complies

Note: Directional gain=GANT+10log(NANT/Nss)

For 5GHz ISM Band:
Antenna Type : Dipole Antenna
Max Conducted Power for IEEE 802.11 ac VHT20: 29.96dBm

Directional Gain (dBi)	Antenna Gain (numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (\mathbf{S}) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
5.92	3.9084	29.9609	991.0291	0.770969	1	Complies

Note: Directional gain $=$ GANT $+10 \log (N A N T / N s s)$

For 2.4GHz Band:
Antenna Type : Dipole Antenna
Max Conducted Power for IEEE 802.11 g: 27.56 dBm

Antenna Gain (dBi)	Antenna Gain $($ numeric)	Average Output Power (dBm)	Average Output Power (mW)	Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Limit of Power Density (S) $\left(\mathrm{mW} / \mathrm{cm}^{2}\right)$	Test Result
2.82	1.9143	27.5646	570.7678	0.217475	1	Complies

CONCULSION:

Both of the WLAN 2.4GHz Band and WLAN 5GHz Band can transmit simultaneously, the formula of calculatedthe MPE is:

CPD1 / LPD1 + CPD2 / LPD2 +etc. <1
CPD = Calculation power density
LPD = Limit of power density
Therefore, the worst-case situation is $0.770969 / 1+0.217475 / 1=0.988444$, which is less than " 1 ". This confirmed that the device comply with FCC 1.1310 MPE limit.

