

DFS TEST REPORT

REPORT NO.: RF970702L10

MODEL NO.: DMC250

RECEIVED: July 02, 2008

TESTED: Nov. 18 to 21, 2008

ISSUED: Nov. 27, 2008

APPLICANT: Cisco-Linksys LLC

ADDRESS: 121 Theory Drive Irvine, CA 92617 (USA)

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.)

Ltd., Taoyuan Branch

TEST LOCATION: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen,

Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

This test report consists of 28 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	LAB DECLARATION	3
2.	EUT INFORMATION	4
2.1	OPERATING FREQUENCY BANDS AND MODE OF EUT	4
2.2	EUT SOFTWARE AND FIRMWARE VERSION	4
2.3	DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT	4
2.4	EUT MAXIMUM CONDUCTED POWER	5
2.5	EUT MAXIMUM E.I.R.P. POWER	6
2.6	STATEMENT OF MAUNFACTURER	6
3.	U-NII DFS RULE REQUIREMENTS	7
3.1	WORKING MODES AND REQUIRED TEST ITEMS	7
3.2	TEST LIMITS AND RADAR SIGNAL PARAMETERS	8
4.	TEST & SUPPORT EQUIPMENT LIST	11
4.1	TEST INSTRUMENTS	
4.2	DESCRIPTION OF SUPPORT UNITS	11
5.	TEST PROCEDURE	12
5.1	ADT DFS MEASUREMENT SYSTEM:	12
5.2	CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:	
5.3	DEVIATION FROM TEST STANDARD	14
5.4	CONDUCTED TEST SETUP CONFIGURATION	14
5.4.1	CLIENT WITHOUT RADAR DETECTION MODE	14
6.	TEST RESULTS	15
6.1	SUMMARY OF TEST RESULTS	15
6.2	DETELED TEST RESULTS	16
6.2.1	TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION	_
6211	1 DFS DETECTION THRESHOLD	
_	2 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME	_
	TESTING LABORATORIES INFORMATION	

1. LAB DECLARATION

PRODUCT: Director-Wireless-N Music Player with Integrated Amp

(Wireless Home Audio)

MODEL: DMC250

BRAND: LINKSYS® by Cisco

APPLICANT: Cisco-Linksys LLC

TESTED: Nov. 18 to 21, 2008

TEST SAMPLE: R&D SAMPLE

STANDARDS: FCC Part 15, Subpart E (Section 15.407)

FCC 06-96

The above equipment (model: DMC250) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : // (100/1 /9/19 , DATE: Nov. 27, 2008

(Midoli Peng, Specialist)

TECHNICAL
ACCEPTANCE: Mark they, DATE: Nov. 27, 2008

Responsible for RF (Hank Chung, Deputy Manager)

APPROVED BY : (, DATE: Nov. 27, 2008)

(May Chen, Deputy Manager)

2. EUT INFORMATION

2.1 OPERATING FREQUENCY BANDS AND MODE OF EUT

TABLE 1: OPERATING FREQUENCY BANDS AND MODE OF EUT

OPERATIONAL MODE	OPERATING FREQUENCY RANGE	
	5250~5350MHz	5470~5725MHz
Client without radar detection and ad hoc function	✓	✓

2.2 EUT SOFTWARE AND FIRMWARE VERSION

TABLE 2: THE EUT SOFTWARE/FIRMWARE VERSION

NO.	PRODUCT	MODEL NO.	SOFTWARE/FIRMWARE VERSION
1	Director-Wireless-N Music Player with Integrated Amp (Wireless Home Audio)	DMC250	Driver Version: RT2860STA 1.8.0.0 Firmware Version: 1.4.0

2.3 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT

TABLE 3: ANTENNA LIST

ANT NO.	ANTENNA TYPE	OPERATION FREQUENCY RANGE (MHz)	MAX. GAIN (dBi)
1	Dipole	5250~5350	3.5
1	Dipole	5470~5725	3.75

2.4 EUT MAXIMUM CONDUCTED POWER

TABLE 4: THE MEASURED CONDUCTED OUTPUT POWER

IEEE 802.11a

ANT NO.	FREQUENCY BAND (MHz)	MAX. POWER	
		OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5350	13.76	23.768
1	5470~5725	14.35	27.227

DRAFT 802.11n (20MHz)

ANT NO.	FREQUENCY BAND (MHz)	MAX. POWER	
		OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5350	14.61	28.907
1	5470~5725	14.71	29.580

DRAFT 802.11n (40MHz)

ANT	NO. (MHz)	MAX. POWER	
NO.		OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5350	14.78	30.061
1	5470~5725	14.57	28.642

2.5 EUT MAXIMUM E.I.R.P. POWER

TABLE 5: THE E.I.R.P OUTPUT POWER LIST

IEEE 802.11a

ANT	FREQUENCY BAND (MHz)	MAX. POWER	
NO.		OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5370	17.26	53.211
1	5470~5725	18.10	64.565

DRAFT 802.11n (20MHz)

ANT NO.	FREQUENCY BAND (MHz)	MAX. POWER	
		OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5370	18.11	64.714
1	5470~5725	18.46	70.146

DRAFT 802.11n (40MHz)

ANT NO.	FREQUENCY BAND (MHz)	MAX. P	POWER
		OUTPUT POWER(dBm)	OUTPUT POWER(mW)
1	5250~5370	18.28	67.298
1	5470~5725	18.32	67.920

2.6 STATEMENT OF MAUNFACTURER

Manufacturer statement confirming that information regarding the parameters of the detected Radar Waveforms is not available to the end user. **And the device doesn't have Ad Hoc mode on DFS frequency band.**

3. U-NII DFS RULE REQUIREMENTS

3.1 WORKING MODES AND REQUIRED TEST ITEMS

The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes.

TABLE 6: APPLICABILITY OF DFS REQUIREMENTS PRIOR TO USE A CHANNEL

		OPERATIONAL MO	DE
REQUIREMENT	MASTER	CLIENT WITHOUT RADAR DETECTION	CLIENT WITH RADAR DETECTION
Non-Occupancy Period	✓	Not required	✓
DFS Detection Threshold	✓	Not required	✓
Channel Availability Check Time	✓	Not required	Not required
Uniform Spreading	✓	Not required	Not required
U-NII Detection Bandwidth	✓	Not required	√

TABLE 7: APPLICABILITY OF DFS REQUIREMENTS DURING NORMAL OPERATION

	OPERATIONAL MODE		
REQUIREMENT	MASTER	CLIENT WITHOUT RADAR DETECTION	CLIENT WITH RADAR DETECTION
DFS Detection Threshold	✓	Not required	✓
Channel Closing Transmission Time	✓	✓	✓
Channel Move Time	✓	✓	✓
U-NII Detection Bandwidth	✓	Not required	✓

3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS

DETECTION THRESHOLD VALUES

TABLE 8: DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION

MAXIMUM TRANSMIT POWER	VALUE (SEE Note 1 and 2)
≥ 200 milliwatt	-64 dBm
< 200 milliwatt	-62 dBm

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

TABLE 9: DFS RESPONSE REQUIREMENT VALUES

PARAMETER	VALUE
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the UNII 99% transmission power bandwidth. See Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short Pulse Radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

PARAMETERS OF DFS TEST SIGNALS

Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

TABLE 10: SHORT PULSE RADAR TEST WAVEFORMS

RADAR TYPE	PULSE WIDTH (μsec)	PRI (μsec)	NUMBER OF PULSES	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
	Aggregate (Ra	dar Types 1-4)		80%	120

TABLE 11: LONG PULSE RADAR TEST WAVEFORM

RADAR TYPE	PULSE WIDTH (µsec)	CHIRP WIDTH (MHz)	PRI (µsec)	NUMBER OF PULSES PER BURST	NUMBER OF BURSTS	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

TABLE 12: FREQUENCY HOPPING RADAR TEST WAVEFORM

RADAR TYPE	PULSE WIDTH (µsec)	PRI (µsec)	PULSES PER HOP	HOPPING RATE (kHz)	HOPPING SEQUENCE LENGTH (msec)	MINIMUM PERCENTAGE OF SUCCESSFUL DETECTION	MINIMUM NUMBER OF TRIALS
6	1	333	9	0.333	300	70%	30

4. TEST & SUPPORT EQUIPMENT LIST

4.1 TEST INSTRUMENTS

TABLE 1: TEST INSTRUMENTS LIST.

DESCRIPTION & MANUFACTURER	MODEL NO.	BRAND	CALIBRATED UNTIL
R&S Spectrum analyzer	FSP40	R&S	Aug. 08, 2009
Signal generator	8645A	Agilent	Sep. 02, 2009
Oscilloscope	TDS 5104	Tektronix	Apr. 24. 2009

4.2 DESCRIPTION OF SUPPORT UNITS

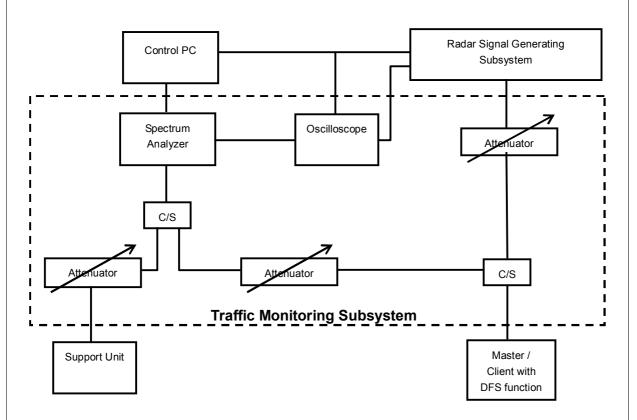
TABLE 2: SUPPORT UNIT INFORMATION.

NO.	PRODUCT	BRAND	MODEL NO.	ID	SPEC.
1	802.11a/b/g/n Access Point	Cisco	AIR-AP1252A G-A-K9	LDK102062	The maximum EIRP is 23 dBm, Antenna Gain is 3dBi

NOTE: This device was functioned as a \square Master \square Slave device during the DFS test.

TABLE 3: SOFTWARE/FIRMWARE INFORMATION.

NO.	PRODUCT	MODEL NO.	SOFTWARE/FIRMWARE VERSION
1.	802.11a/b/g/n Access Point	AIR-AP1252AG-A-K9	12.4(10b)JA1



5. TEST PROCEDURE

5.1 ADT DFS MEASUREMENT SYSTEM:

A complete ADT DFS Measurement System consists of two subsystems: (1) the Radar Signal Generating Subsystem and (2) the Traffic Monitoring Subsystem. The control PC is necessary for generating the Radar waveforms in Table 6, 7 and 8. The traffic monitoring subsystem is specified to the type of unit under test (UUT).

CONDUCTED SETUP CONFIGURATION OF ADT DFS MEASUREMENT SYSTEM

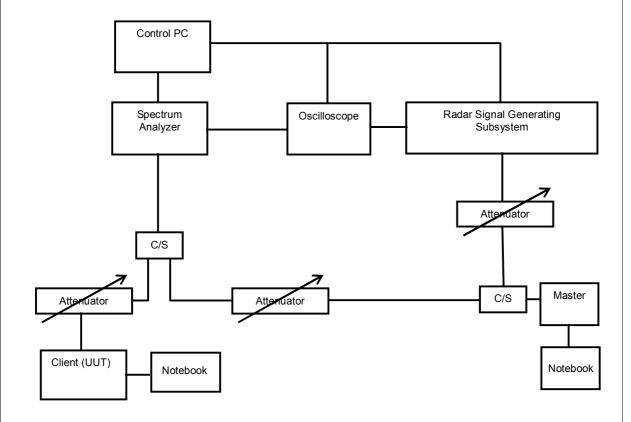
The test transmission will always be from the Master Device to the Client Device. While the Client device is set up to associate with the Master device and play the audio file from Master device, the designated Audio test file and instructions are located at: http://ntiacsd.ntia.doc.gov/dfs/.

This device only plays audio files.

5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL:

The measured channel is 5500 MHz. The radar signal was the same as transmitted channels, and injected into the antenna port of AP (master) or Client Device with Radar Detection, measured the channel closing transmission time and channel move time. The Master antenna gain is 3dBi and required detection threshold is -58dBm (= -62 +1+3)dBm. The calibrated conducted detection threshold level is set to -59dBm. The tested level is lower than required level hence it provides margin to the limit.

CONDUCTED SETUP CONFIGURATION OF CALIBRATION OF DFS DETECTION THRESHOLD LEVEL



5.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4 CONDUCTED TEST SETUP CONFIGURATION

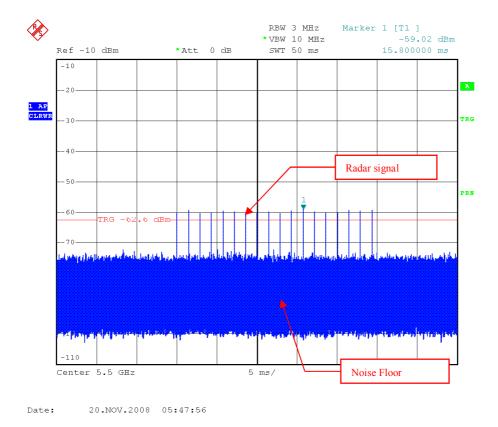
5.4.1 CLIENT WITHOUT RADAR DETECTION MODE

The UUT is a U-NII Device operating in Client mode without radar detection. The radar test signals are injected into the Master Device.

6. TEST RESULTS

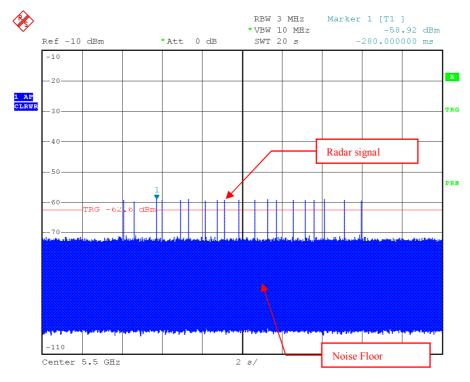
6.1 SUMMARY OF TEST RESULTS

CLAUSE	TEST PARAMETER	REMARKS	PASS/FAIL
15.407	DFS Detection Threshold	Not Applicable	NA
15.407	Channel Availability Check Time	Not Applicable	NA
15.407	Channel Move Time	Applicable	Pass
15.407	Channel Closing Transmission Time	Applicable	Pass
15.407	Non- Occupancy Period	Applicable	Pass
15.407	Uniform Spreading	Not Applicable	NA
15.407	U-NII Detection Bandwidth	Not Applicable	NA
15.407	Non-associated test	Applicable	Pass

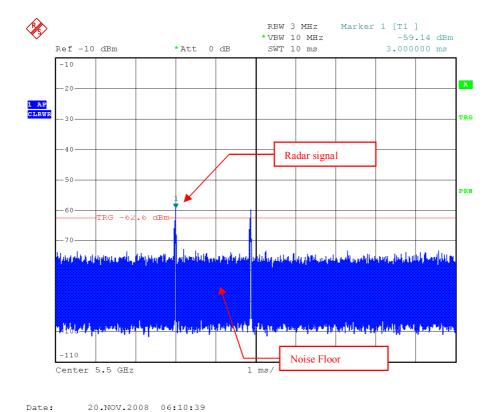

6.2 DETELED TEST RESULTS

6.2.1 TEST MODE: DEVICE OPERATING IN CLIENT WITHOUT RADAR DETECTION MODE.

Client with injection at the Master. (The radar test signals are injected into the Master Device.

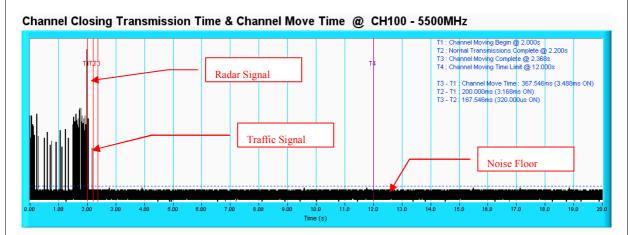

6.2.1.1 DFS DETECTION THRESHOLD

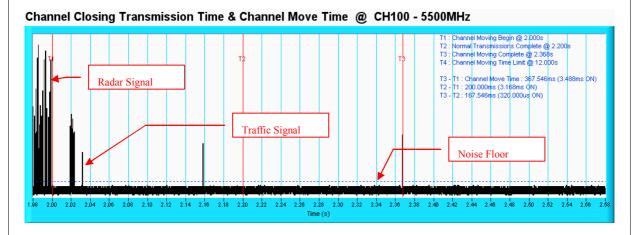
For a detection threshold level of –62dBm and the Master antenna gain is 3dBi. The Required detection threshold is -58dBm (= -62 +1+3)dBm. The conducted radar burst level is set to -59dBm. The tested level is lower than required level hence it provides margin to the limit.



Radar Signal 1

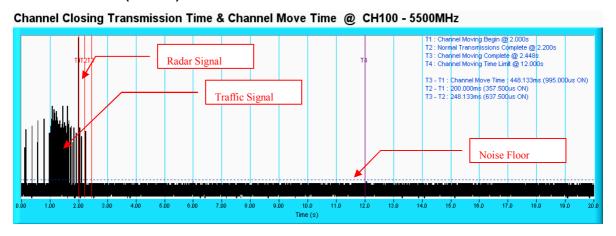
Date: 20.NOV.2008 06:07:05


Radar Signal 5

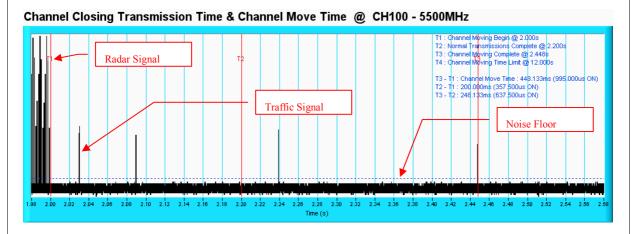

6.2.1.2 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME

RADAR SIGNAL 1

IEEE 802.11a

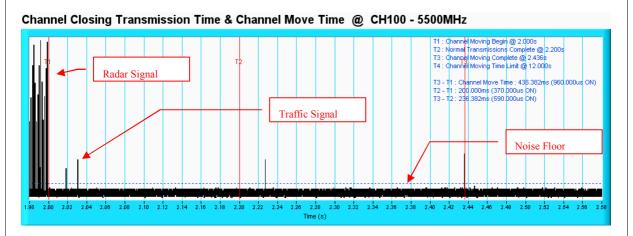


NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.



DRAFT 802.11n (20MHz)

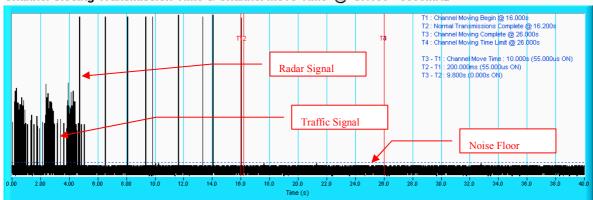
NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

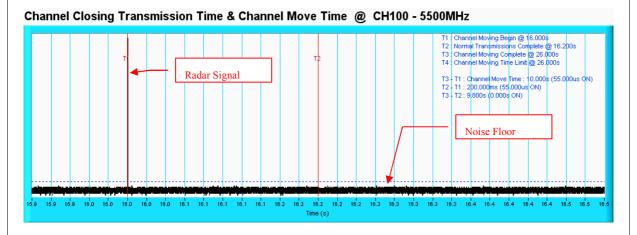


DRAFT 802.11n (40MHz)

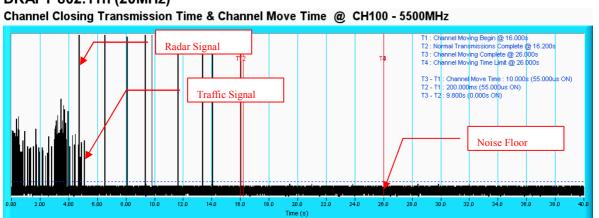
Channel Closing Transmission Time & Channel Move Time @ CH100 - 5500MHz T1: Channel Moving Begin @ 2.000s T2: Normal Transmissions Complete @ 2.200s T3: Channel Moving Transmissions Complete @ 2.200s T3: Chann

NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.

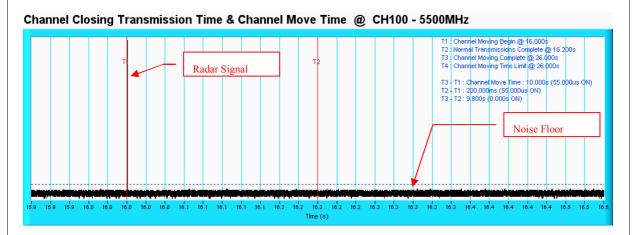



RADAR SIGNAL 5

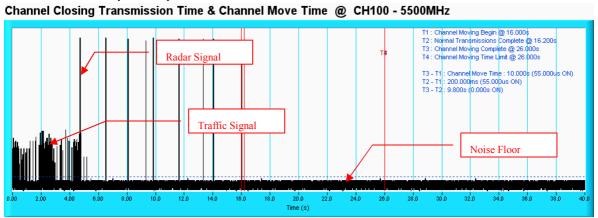
IEEE 802.11a



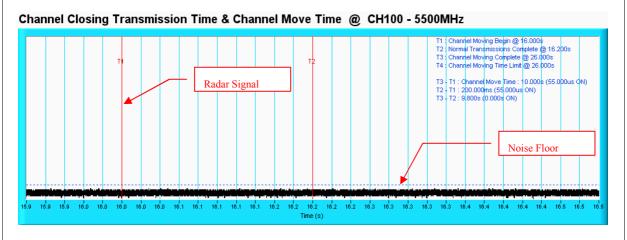
NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.



DRAFT 802.11n (20MHz)

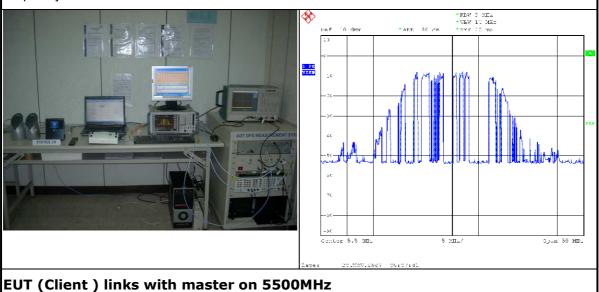


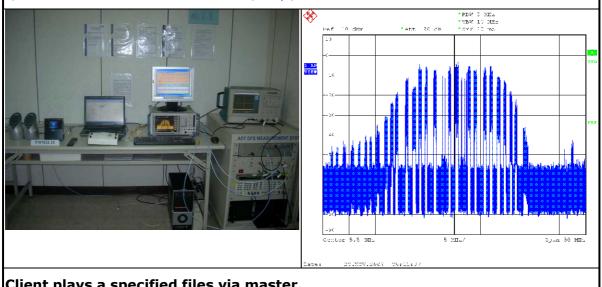
NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.



DRAFT 802.11n (40MHz)

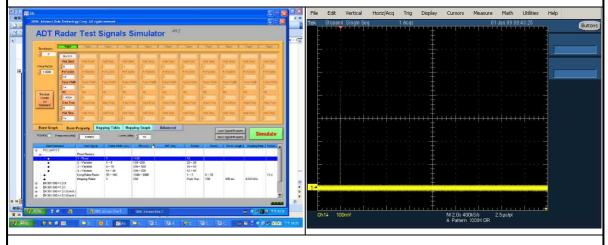
NOTE: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions.




CLIENT IN ASSOCIATED TEST MODE

MODIFICATIONS OR ADDING COMPONENTS DURING THE TEST

1) Test results demonstrating an associated client link is established with the master on a test frequency.


2) The client and DFS-certified master device are associated, and the movie can be streamed as specified in the DFS Order for a non-occupancy period test.

Client plays a specified files via master.

3). The device transmits one type of radar as specified in the DFS Order.

Radar 1 is used to test during DFS testing.

3). The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

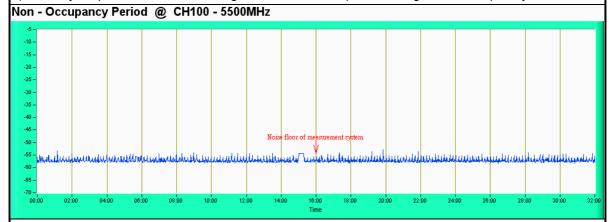
**The device transmits one type of radar as specified in the DFS Order.

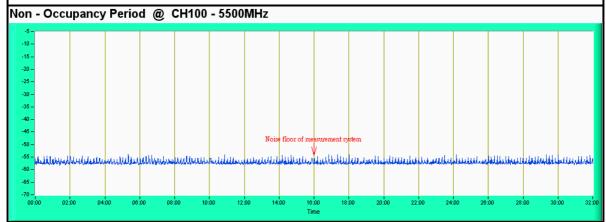
**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one type of radar as specified in the DFS Order.

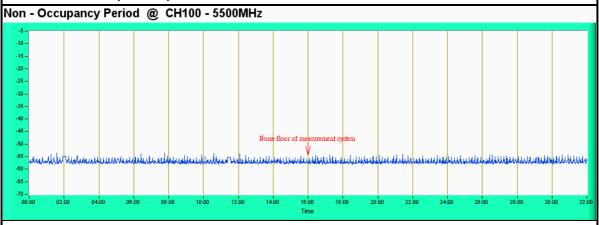
**The device transmits one type of radar as specified in the DFS Order.

**The device transmits one transmits


Radar 5 is used to test during DFS testing.


4) The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes;

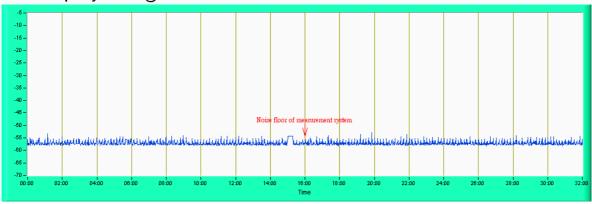
Note: If the client moves with the master, the device is considered compliant if nothing appears in the client nonoccupancy period test. For devices that shut down (rather than moving channels), no beacons should appear;


5)An analyzer plot that contains a single 30-minute sweep on the original test frequency.

IEEE 802.11a

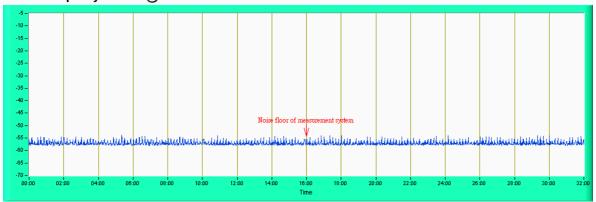
DRAFT 802.11n (20MHz)

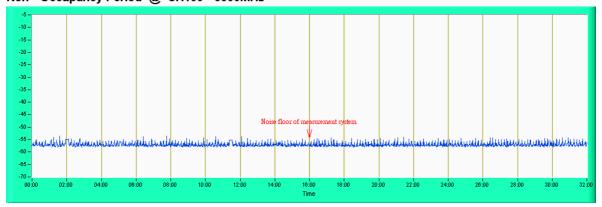
DRAFT 802.11n (40MHz)


NON-ASSOCIATED TEST

Master was off.

During the 30 minutes observation time, The UUT did not make any transmissions in the DFS band after UUT power up.


IEEE 802.11a


DRAFT 802.11n (20MHz)

Non - Occupancy Period @ CH100 - 5500MHz

DRAFT 802.11n (40MHz)

Non - Occupancy Period @ CH100 - 5500MHz

7. TESTING LABORATORIES INFORMATION

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA FCC, UL, NVLAP
Germany TUV Rheinland

Japan VCCI Norway NEMKO

Canada INDUSTRY CANADA, CSA

R.O.C. TAF, BSMI, NCC

Netherlands Telefication

Singapore GOST-ASIA(MOU)
Russia CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site:

<u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab:Hsin Chu EMC/RF Lab:Tel: 886-2-26052180Tel: 886-3-5935343Fax: 886-2-26051924Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also.

---END---