

FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E

TEST REPORT

For

GSM/GPRS module

Model: A8000

Trade Name: Longsung

Issued to

Longcheer Technology (Shanghai) Co., Ltd Building1,NO401,Caobao Rd, Xuhui District, Shanghai, P.R.China

Issued by

COMPLIANCE CERTIFICATION SERVICES (KUNSHAN) INC. 10#Weiye Rd, Innovation Park Eco. & Tec. Development Zone Kunshan city JiangSu, (215300) CHINA TEL: 86-512-57355888 FAX: 86-512-57370818

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	TES	Γ RESULT CERTIFICATION	3
2.	FUT	DESCRIPTION	1
2.	LUI		4
3.	TES	Г METHODOLOGY	5
	3.1	EUT CONFIGURATION	5
	3.2	EUT EXERCISE	
	3.2 3.3	GENERAL TEST PROCEDURES	
	3.3 3.4	DESCRIPTION OF TEST MODES	
	5.4	DESCRIPTION OF TEST MODES	5
4.	INST	RUMENT CALIBRATION	6
5.	FAC	ILITIES AND ACCREDITATIONS	7
	5.1	FACILITIES	7
	5.2	EQUIPMENT	
	5.3	LABORATORY ACCREDITATIONS AND LISTING	
	5.4	TABLE OF ACCREDITATIONS AND LISTINGS	
	5.4		0
6.	SET	UP OF EQUIPMENT UNDER TEST	9
	6.1	SETUP CONFIGURATION OF EUT	9
	6.2	SUPPORT EQUIPMENT	
	0.2		-
7.	FCC	PART 22 & 24 REQUIREMENTS 10	0
	7.1	PEAK POWER	0
	7.2	ERP & EIRP MEASUREMENT	
	7.3	OCCUPIED BANDWIDTH MEASUREMENT	
	7.4	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
	7.5	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
	7.6	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
	7.7	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	
	7.8	POWERLINE CONDUCTED EMISSIONS	

1. TEST RESULT CERTIFICATION

Applicant:	Longcheer Technology (Shanghai) Co., Ltd Building1,NO401,Caobao Rd, Xuhui District, Shanghai, P.R.China			
Equipment Under Test:	GSM/GPRS module			
Trade Name:	Longsung			
Model Number:	A8000			
Date of Test:	July 1, 2009~July 3, 2009			
	APPLICABLE STANDARDS			

AFFLICADLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E	No non-compliance noted			

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA/EIA-603-A-2001 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 Subpart H and PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Miro Chueh Section Manager of Kunshan Laboratory Compliance Certification Services Inc. Reviewed by: in Thing

EMC Supervisor of Kunshan Laboratory Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	GSM/GPRS module	
Trade Name	Longsung	
Model Number	A8000	
Model Discrepancy	N/A	
Power Supply	AC to DC charger Trade Name :Longcheer Model Number :ASSA1-080200 Input: AC100-240V, 50/60Hz, 0.68A Output:DC8.0V,2000mA Module: Input: DC 3.5V to 4.2V	
Frequency Range	TX: 824 ~ 849 MHz / 1850 ~ 1909.8 MHz RX: 869 ~ 894 MHz / 1930 ~ 1990 MHz	
Transmit Power(conducted)	GSM 850: 31.12dBm PCS 1900: 27.31dBm	
Cellular Phone Protocol	GSM 850MHz; PCS 1900MHz GPRS Class12 850MHz;GPRS Class 12 1900MHz	
Type of Emission	245.71 KGXW	
Antenna Type	Monopole Antenna ; Gain:0dBi(Max)	

Remark: This submittal(s) (test report) is intended to comply with Part 22 and Part 24 of the FCC 47 CFR Rules.

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 2003 and FCC CFR 47, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4 2003.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4 2003

DESCRIPTION OF TEST MODES

The EUT (Model:A8000)had been tested under operating condition.

EUT staying in link mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conduction emission below 30MHz, which worst case was in normal link mode only.

GSM/GPRS 850: Channel Low/Mid/High and H plan were chosen for full testing.

GSM/GPRS 1900: Channel Low/Mid/High and H plan were chosen for full testing.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

FACILITIES

All measurement facilities used to collect the measurement data are located at CCS China Kunshan Lab at 10#, Weiye Rd, Innovation Park Eco. & Tec. Development Zone

Kunshan city JiangSu, (215300)CHINA.

The sites are constructed in conformance with the requirements of ANSI C63.4 2003 and CISPR Publication 22.

EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by American Association for Laboratory Accreditation Program for the specific scope accreditation under 2541.01 to perform Electromagnetic Interference tests according to FCC Part 22&24 and CISPR 22 requirements. In addition, the test facilities are listed with Industry Canada, Certification and Engineering Bureau, IC 2324E-1 for 3/10m Chamber.

TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	A2LA	47 CFR FCC Part 15/18 (using ANSI C63.4 2003); VCCI V3; CNS 13438; CNS 13439; CNS 13803; CISPR 11; EN 55011; CISPR 13; EN 55013; CISPR 22:2005; CISPR 22:1997 +A1 :2000+A2 :2002; EN 55022:2006; EN55022 :1998 +A1 :2001+A2 :2003; EN 61000-6-3 (excluding discontinuous interference); EN 61000-6-4; AS/NZS CISPR 22; CAN/CSA-CEI/IEC CISPR 22; EN 61000-3-2; EN 61000-3-3; EN550024; EN 61000-4-2; EN 61000-4-3; EN61000-4-4; EN 61000-4-5; EN 61000-4-6; IEC 61000-4-8; EN 61000-4-5; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-2; IEC 61000-4-6; IEC 61000-4-4; IEC 61000-4-2; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-11; EN 300 220-3; EN 300 328; EN 300 330-2; EN 300 440-1; EN 300-440-2; EN 300 893; EN 301 489-01; EN 301 489-3; EN 301 489-07; EN 301 489-17, 301 489-19, 301 489-24, 301 489-25, 301 511clause4.2.2and clause4.2.3 and clause5.3.1 and clause5.3.2; EN 301 908-2 clause 4.2.4 and clause 4.2.10 and clause5.3.9; 47 CFR FCC Part 15, 22, 24	ACCREDITED TESTING CERT #2541.01
USA	FCC	3/10 meter Sites to perform FCC Part 15/18 measurements	FC 238958, 424105
Japan	VCCI	3/10 meter Sites and conducted test sites to perform radiated/conducted measurements	VCCI R-1600 C-1707 T-1499

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
1	N/A						

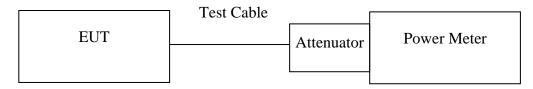
Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 22 & 24 REQUIREMENTS

AVERAGE POWER

LIMIT


According to FCC §2.1046.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Peak and Avg Power Sensor	Agilent	E9327A	US40441788	07/30/2009
EPM-P Series Power Meter	Agilent	E4416A	QB41292714	07/30/2009
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2009
Wireless communication test set	Agilent	8960	QB44051695	10/06/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

<u>Test Data</u>

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Average Power (dBm)
	128	824.20	6.07		31.12
GSM 850	190	836.60	5.46	26.50	30.51
	251	848.80	5.04		30.09

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Average Power (dBm)
	512	1850.20	3.72		27.31
GSM 1900	661	1880.00	3.20	24.50	26.79
	810	1909.80	3.71		27.28

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Average Power (dBm)
	128	824.20	6.07		30.99
GPRS 850	190	836.60	5.46	26.50	30.11
	251	848.80	5.04		29.66

Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Factor (dB)	Average Power (dBm)
	512	1850.20	3.72		27.13
GPRS 1900	661	1880.00	3.20	24.50	26.55
	810	1909.80	3.71		26.98

Remark: The value of factor includes both the loss of cable and external attenuator

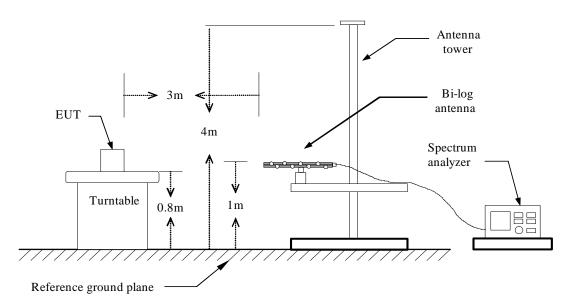
ERP & EIRP MEASUREMENT

LIMIT

According to FCC §2.1046

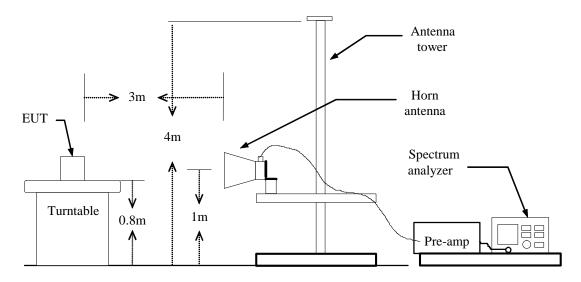
FCC 22.913(b): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7 Watts.

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

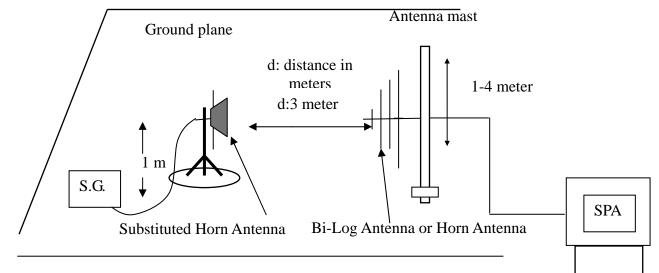

MEASUREMENT EQUIPMENT USED

977 Chamber (3m)								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due				
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2009				
EMI Test Receiver	R&S	ESPI3	101026	11/11/2009				
Pre-Amplfier	MINI-circuits	ZFL-1000VH2	d041703	12/13/2009				
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/28/2010				
Bilog Antenna	Sunol	JB1	A110204-2	11/22/2009				
Horn-antenna	SCHWARZBECK	BBHA9120D	D:266	02/01/2010				
PSG Analog Signal Generator	Agilent	E8257C	MY43321570	12/19/2009				
Wireless communication test set	Agilent	8960	QB44051695	10/06/2009				
Turn Table	СТ	CT123	4165	N.C.R				
Antenna Tower	СТ	CTERG23	3256	N.C.R				
Controller	СТ	CT100	95637	N.C.R				
Site NSA	CCS	N/A	N/A	04/06/2010				

Remark: Each piece of equipment is scheduled for calibration once a year.


TEST CONFIGURATION

Below 1 GHz



Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBm) was calculated. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) – Cable (dB) EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

No non-compliance noted.

<u>GSM 850</u>

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBm)		S.G. (dBm)		Ant.Gain (dBd)	level	Limit (dBm)	Margin (dB)
	128	824.20	-5.98	V	26.00	2.87	6.2	29.33	38.5	-9.17
	120	824.20	-7.04	Н	24.94	2.87	6.2	28.27	38.5	-10.23
н	190	836.60	-6.87	V	24.92	2.88	6.4	28.44	38.5	-10.06
11	190	836.60	-7.75	Н	24.04	2.88	6.4	27.56	38.5	-10.94
	251	848.80	-7.86	V	23.89	2.94	6.5	27.45	38.5	-11.05
	231	848.80	-7.19	Н	24.56	2.94	6.5	28.12	38.5	-10.38

<u>GSM 1900</u>

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)		Ant.Gain (dBi)	level	Limit (dBm)	Margin (dB)
	512	1850.20	-19.26	V	22.18	4.31	8.45	26.32	33	-6.68
	512	1850.20	-20.24	Н	21.20	4.31	8.45	25.34	33	-7.66
н	661	1880.00	-20.46	V	21.17	4.53	8.48	25.12	33	-7.88
п	001	1880.00	-21.21	Н	20.42	4.53	8.48	24.37	33	-8.63
	810	1909.80	-19.70	V	21.91	4.55	8.52	25.88	33	-7.12
	810	1909.80	-20.36	Н	21.25	4.55	8.52	25.22	33	-7.78

<u>GPRS 850</u>

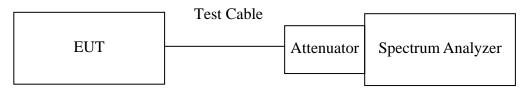
EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)		Ant.Gain (dBd)	ievei	Limit (dBm)	Margin (dB)
	128	824.20	-6.66	V	25.32	2.87	6.2	28.65	38.5	-9.85
	120	824.20	-6.87	Н	25.11	2.87	6.2	28.44	38.5	-10.06
н	190	836.60	-8.77	V	23.02	2.88	6.4	26.54	38.5	-11.96
п	190	836.60	-7.98	Н	23.81	2.88	6.4	27.33	38.5	-11.17
	251	848.80	-8.45	V	23.30	2.94	6.5	26.86	38.5	-11.64
	231	848.80	-8.20	Н	23.55	2.94	6.5	27.11	38.5	-11.39

GPRS 1900

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	level	Limit (dBm)	Margin (dB)
	512	1850.20	-19.80	V	21.64	4.31	8.45	25.78	33	-7.22
	512	1850.20	-20.22	Н	21.22	4.31	8.45	25.36	33	-7.64
н	661	1880.00	-20.72	V	20.91	4.53	8.48	24.86	33	-8.14
11	001	1880.00	-20.57	Н	21.06	4.53	8.48	25.01	33	-7.99
	810	1909.80	-19.57	V	22.04	4.55	8.52	26.01	33	-6.99
	010	1909.80	-19.35	Н	22.26	4.55	8.52	26.23	33	-6.77

OCCUPIED BANDWIDTH MEASUREMENT

LIMIT


According to §FCC 2.1049.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2009
Wireless communication test set	Agilent	8960	QB44051695	10/06/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

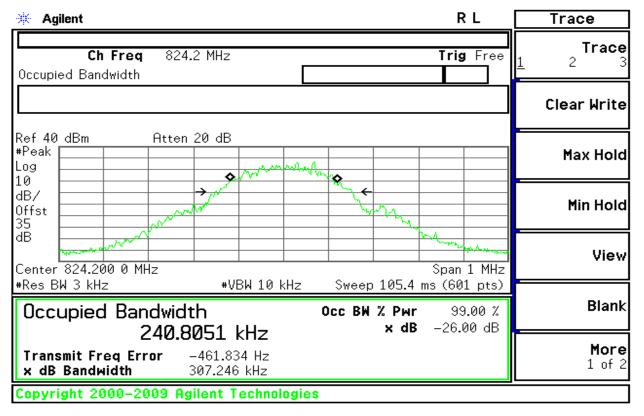
Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

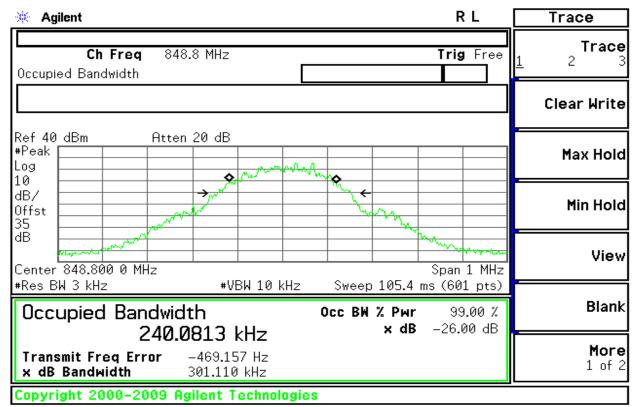
No non-compliance noted


<u>Test Data</u>

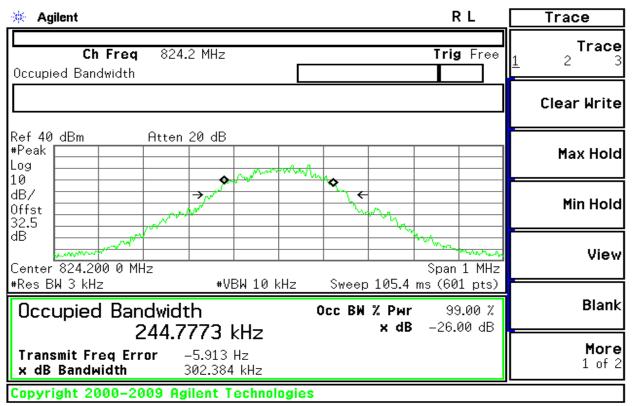
Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)
	128	824.20	240.81
GSM 850	190	836.60	241.90
	251	848.80	240.08
	512	1850.20	243.21
GSM 1900	661	1880.00	242.63
	810	1909.80	240.30
	128	824.20	244.78
GPRS 850	190	836.60	241.55
	251	848.80	241.45
	512	1850.20	243.95
GPRS 1900	661	1880.00	245.71
	810	1909.80	241.65

Test Plot

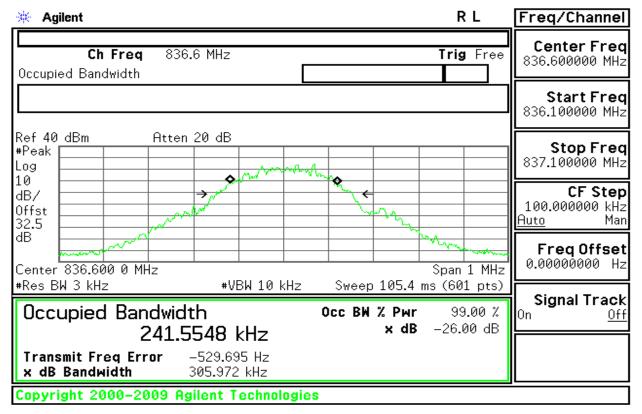
GSM 850 (CH Low)



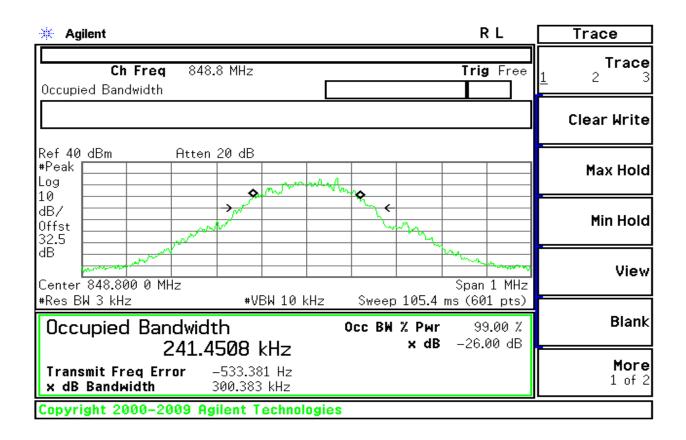
GSM 850 (CH Mid)


🔆 Agilent			RL	Trace
Ch Freq 83 Occupied Bandwidth	6.6 MHz		Trig Free	Trace <u>1</u> 2 3
				Clear Write
#Peak	n 20 dB	Min to		Max Hold
10 dB/ 0ffst 35	Aver a second			Min Hold
dB			Span 1 MHz	View
*Res BW 3 kHz Occupied Bandwid 241	#VBW 10 kHz 1th 9046 kHz	Occ BW % Pwr	ms (601 pts) 99.00 % -26.00 dB	Blank
고학도. Transmit Freq Error x dB Bandwidth	-438.968 Hz 300.307 kHz			More 1 of 2
Copyright 2000-2009 A	gilent Technologi	es		

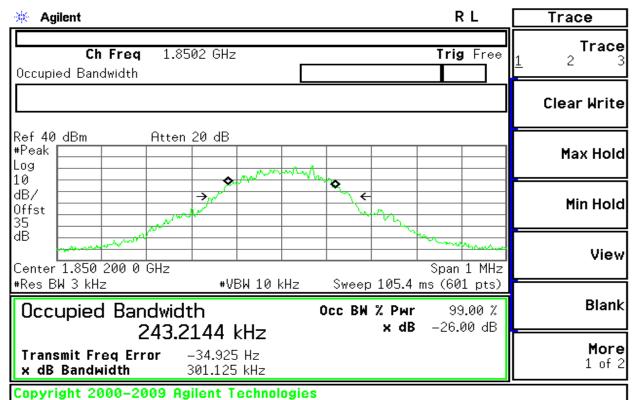
GSM 850 (CH High)



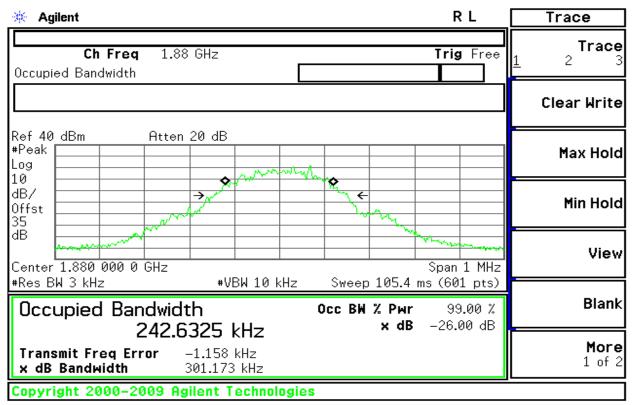
GPRS 850 (CH Low)



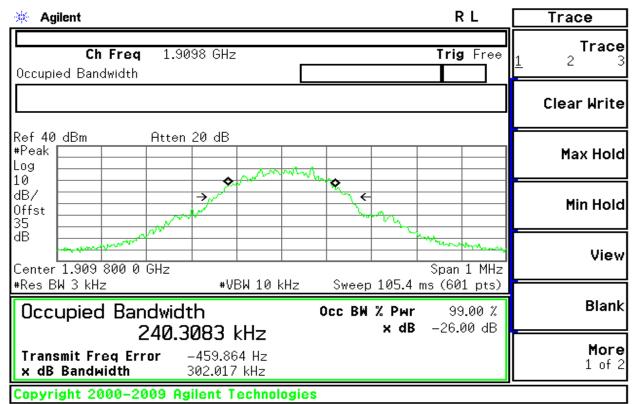
GPRS 850 (CH Mid)



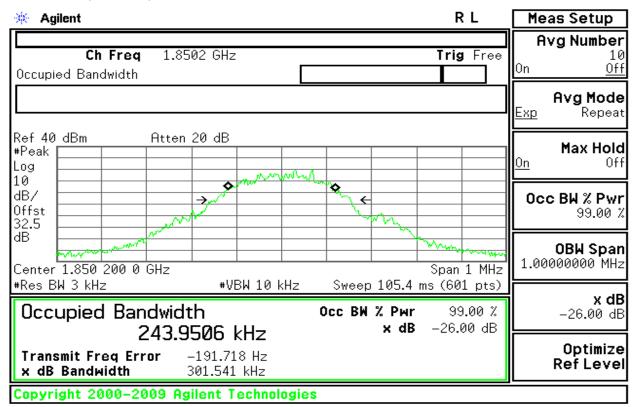
GPRS 850 (CH High)



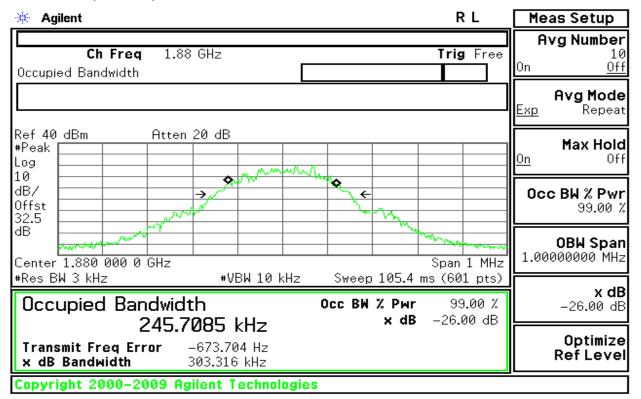
GSM 1900(CH Low)



GSM 1900 (CH Mid)



GSM 1900 (CH High)



GPRS 1900(CH Low)

GPRS 1900 (CH Mid)

GPRS 1900 (CH High)

✤ Agilent 06:15:53 Apr 8, 2009 R L	Freq/Channel				
Ch Freq 1.9098 GHz Trig Free Occupied Bandwidth	Center Freq 1.90980000 GHz				
	Start Freq 1.90930000 GHz				
Ref 40 dBm Atten 20 dB #Peak Log 10 Atten 20 dB	Stop Freq 1.91030000 GHz				
dB/ → ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←	CF Step 100.000000 kHz <u>Auto</u> Man				
dBCenter 1.909 800 0 GHzSpan 1 MHz	FreqOffset 0.00000000 Hz				
*Res BW 3 kHz *VBW 10 kHz Signal Track Occupied Bandwidth Occ BW % Pwr 99.00 % Signal Track On Off 241.6456 kHz × dB -26.00 dB <t< td=""></t<>					
Z41.0430 KHZ Transmit Freq Error -201.345 Hz × dB Bandwidth 301.635 kHz					
Copyright 2000–2009 Agilent Technologies					

OUT OF BAND EMISSION AT ANTENNA TERMINALS

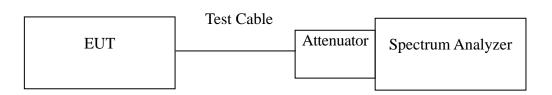
LIMIT

According to FCC §2.1051, FCC §2.2917(f), FCC §22.917(f), FCC §24.238(a).

<u>Out of Band Emissions</u>: The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease $43 + 10 \log P dB$.

<u>Mobile Emissions in Base Frequency Range</u>: The mean power of any emissions appearing in the base station frequency range from cellular mobile transmitters operated must be attenuated to a level not exceed –80 dBm at the transmit antenna connector.

Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2009
Wireless communication test set	Agilent	8960	QB44051695	10/06/2009

Remark: Each piece of equipment is scheduled for calibration once a year.

TEST CONFIGURATION

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (824 MHz and 849 MHz /1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

For the Band Edge: The spectrum analyzer is set to: RBW = 3 kHz, VBW = 10 kHz, Span = 1 MHz, Sweep = auto

TEST RESULTS

No non-compliance noted.

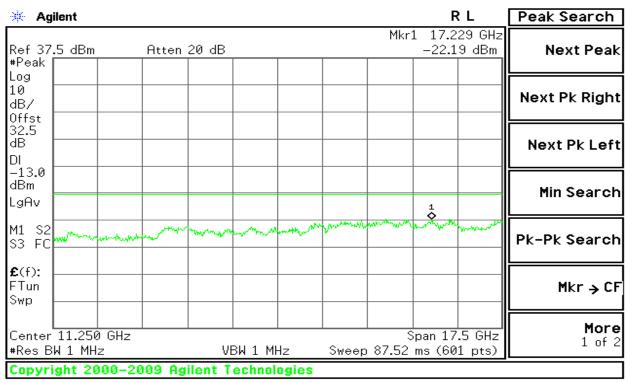
<u>Test Data</u>

Mode	СН	Location	Description
	128	Figure 7-1	Conducted spurious emissions, 30MHz - 2.5GHz
	120	Figure 7-2	Conducted spurious emissions, 2.5GHz - 20GHz
GSM 850	190	Figure 7-3	Conducted spurious emissions, 30MHz - 2.5GHz
051/1 050	190	Figure 7-4	Conducted spurious emissions, 2.5GHz - 20GHz
	251	Figure 7-5	Conducted spurious emissions, 30MHz - 2.5GHz
	251	Figure 7-6	Conducted spurious emissions, 2.5GHz - 20GHz
	128	Figure 7-7	Conducted spurious emissions, 30MHz - 2.5GHz
	120	Figure 7-8	Conducted spurious emissions, 2.5GHz - 20GHz
GPRS 850	190	Figure 7-9	Conducted spurious emissions, 30MHz - 2.5GHz
UFK5 050	190	Figure 7-10	Conducted spurious emissions, 2.5GHz - 20GHz
	251	Figure 7-11	Conducted spurious emissions, 30MHz - 2.5GHz
	231	Figure 7-12	Conducted spurious emissions, 2.5GHz - 20GHz

Mode	СН	Location	Description
	512	Figure 8-1	Conducted spurious emissions, 30MHz - 2.5GHz
	512	Figure 8-2	Conducted spurious emissions, 2.5GHz - 20GHz
GSM 1900	661	Figure 8-3	Conducted spurious emissions, 30MHz - 2.5GHz
USIM 1900	001	Figure 8-4	Conducted spurious emissions, 2.5GHz - 20GHz
	810 -	Figure 8-5	Conducted spurious emissions, 30MHz - 2.5GHz
		Figure 8-6	Conducted spurious emissions, 2.5GHz - 20GHz
	512	Figure 8-7	Conducted spurious emissions, 30MHz - 2.5GHz
	512	Figure 8-8	Conducted spurious emissions, 2.5GHz - 20GHz
GPRS 1900	661	Figure 8-9	Conducted spurious emissions, 30MHz - 2.5GHz
GFK5 1900	001	Figure 8-10	Conducted spurious emissions, 2.5GHz - 20GHz
	010	Figure 8-11	Conducted spurious emissions, 30MHz - 2.5GHz
	810	Figure 8-12	Conducted spurious emissions, 2.5GHz - 20GHz

Mode	СН	Location	Description
GSM 850	128	Figure 9-1	Band Edge emissions
USW 030	251	Figure 9-2	Band Edge emissions
	128	Figure 9-3	Band Edge emissions
GPRS 850	251	Figure 9-4	Band Edge emissions

Mode	СН	Location	Description		
GSM 1900	512 Figure 1		Band Edge emissions		
USM 1900	810	Figure 10-2	Band Edge emissions		
GPRS 1900	512	Figure 10-3	Band Edge emissions		
GFK5 1900	810	Figure 10-4	Band Edge emissions		


Test Plot

<u>GSM 850</u>

Figure 7-1: Out of Band emission at antenna terminals – GSM CH Low

🔆 Agi	ilent								I	RL	Peak Search
Ref 37. #Peak	.5 dBm		Atten	20 dB	1	1	1	1		325 MHz 25 dBm	Next Peak
Log 10 dB/ Offst				\$							Next Pk Right
32.5 dB DI											Next Pk Left
-13.0 dBm LgAv											Min Search
	elle de la compañía d	un lun di Mari		Jam	- www.	woodgester	a.d.m	an a	hot gurates	monthly	Pk-Pk Search
£(f): FTun Swp											Mkr → CF
Start 3 #Res Bl		 z		lv	 BW 1 M	 Hz	Swee	St p 4.12		00 GHz 01 pts)	More 1 of 2
System	n erro	r									

Figure 7-2: Out of Band emission at antenna terminals - GSM CH Low

🔆 Ag	jilent									F	۲L	Peak Search
Ref 37 #Peak	.5 dBm		Atten	20				I	1		37 MHz 34 dBm	Next Peak
Log 10 dB/ Offst					>							Next Pk Right
32.5 dB DI												Next Pk Left
-13.0 dBm LgAv												Min Search
M1 S2 S3 FC	ger met al	na _b nifeligi fend	w		مرجوروهم	minteres	Active	www.	warmen warmen	amount	·····	Pk-Pk Search
€(f): FTun Swp												Mkr → CF
Start 3 #Res B	3W 1 MH		000.04			BW 1 MI		Swee	S1 p 4.12		00 GHz 1 pts)	More 1 of 2

Figure 7-3: Out of Band emission at antenna terminals – GSM CH Mid

Figure 7-4: Out of Band emission at antenna terminals - GSM CH Mid

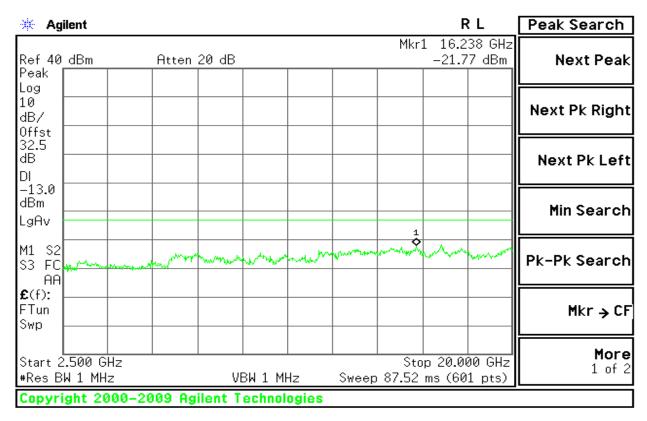
🔆 Agilent		RL	Peak Search
Ref 40 dBm #Peak	Atten 20 dB	Mkr1 15.508 GHz -21.65 dBm	Next Peak
Log 10 dB/ Offst			Next Pk Right
32.5 dB DI			Next Pk Left
-13.0 dBm LgAv		1	Min Search
M1 S2 S3 FC	and a second sec	mar and a second	Pk-Pk Search
£(f): FTun Swp			Mkr → CF
Start 2.500 GHz #Res BW 1 MHz	VBW 1 MHz	Stop 20.000 GHz Sweep 87.52 ms (601 pts)	More 1 of 2
Copyright 2000-:	2009 Agilent Technologie	S	

🔆 Agilent		RL	Peak Search
Ref 40 dBm #Peak	Atten 20 dB	Mkr1 849 MH 31.25 dBm	
Log 10 dB/			Next Pk Right
Offst 32.5 dB DI			Next Pk Left
-13.0 dBm LgAv			Min Search
M1 S2 S3 FC	1000000	wy construction of the and the and the and	Pk-Pk Search
€(f): FTun Swp			Mkr → CF
Start 30 MHz #Res BW 1 MHz	VBW 1 MH	Stop 2.500 GHz z Sweep 4.12 ms (601 pts)	

Figure 7-5: Out of Band emission at antenna terminals – GSM CH High

Figure 7-6: Out of Band emission at antenna terminals – GSM CH High

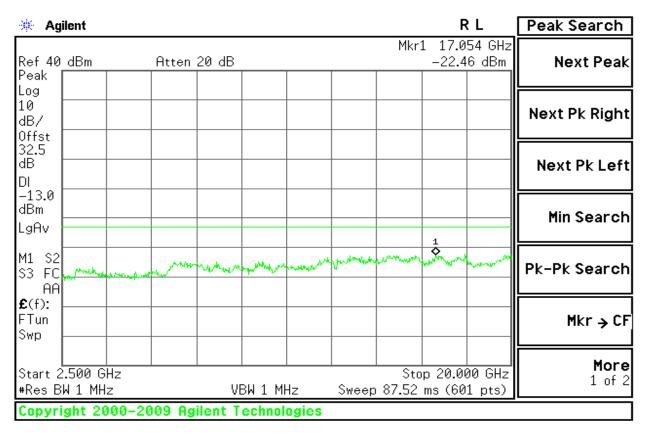
e		Ũ	
🔆 Agilent		RL	Peak Search
#Peak	Atten 20 dB	Mkr1 17.229 GHz -22.16 dBm	Next Peak
Log 10 dB/ Offst			Next Pk Right
32.5 dB DI			Next Pk Left
-13.0 dBm LgAv		1	Min Search
M1 S2 S3 FC	warman and the second s	man the second	Pk-Pk Search
£(f): FTun Swp			Mkr → CF
Start 2.500 GHz #Res BW 1 MHz	VBW 1 MHz	Stop 20.000 GHz Sweep 87.52 ms (601 pts)	More 1 of 2
Copyright 2000-200	9 Agilent Technologie	S	



<u>GPRS 850</u>

₩ 4	Agilent								I	₹L	Peak Search
Ref 4 Peak	40 dBm		Atten	20 dE	;	1	1	1		325 MHz 31 dBm	Next Peak
Log 10 dB/ Offst				1 \$							Next Pk Right
32.5 dB DI											Next Pk Left
−13.0 dBm LgAv											Min Search
\$3 F		ryte-/w	a marine			a an	then when the				Pk-Pk Search
€(f): FTun Swp											Mkr → CF
	: 30 MH2 BW 1 M				 VBW 1 M	 Hz	Swee	St p 4.12		00 GHz 01 pts)	More 1 of 2
Copy	right 2	000-2	009 A	gilent	Technol	logies					

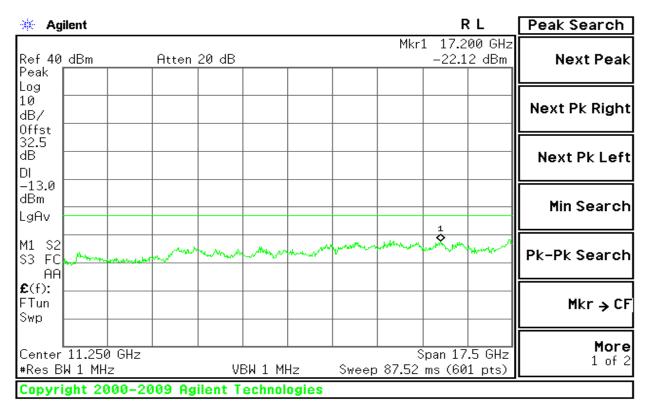
Figure 7-7: Out of Band emission at antenna terminals – GSM CH Low


Figure 7-8: Out of Band emission at antenna terminals - GSM CH Low

🔆 Agi	ilent								I	R L	Peak Search
Ref 40 Peak [dBm		Atten	20 dB		1		M		337 MHz 39 dBm	Next Peak
Log 10 dB/ Offst				\$							Next Pk Right
32.5 dB DI											Next Pk Left
-13.0 dBm LgAv											Min Search
AA	and a start of the	and the second	-	new work		topoge to get	and the second s	witness		-	Pk-Pk Search
€(f): FTun Swp											Mkr → CF
L Start 3 ≢Res Bl		z			 /BW 1 M	 Hz	Swee	St p 4.12		00 GHz 01 pts)	More 1 of 2
Copyri	ght 20	000-20	009 Ag	ilent	Technol	ogies					

Figure 7-9: Out of Band emission at antenna terminals – GSM CH Middle

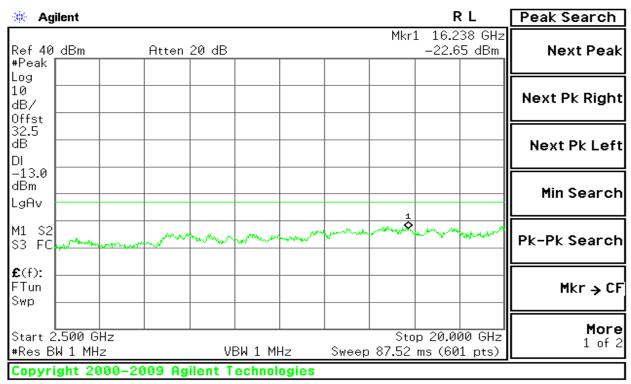
Figure 7-10: Out of Band emission at antenna terminals – GSM CH Middle



🔆 Agilent	RL	Peak Search
Mk Ref 40 dBm Atten 20 dB Peak 1 1	r1 849 MHz 31.99 dBm	Next Peak
Log 10 dB/ Offst		Next Pk Right
32.5 dB DI		Next Pk Left
-13.0 dBm LgAv		Min Search
M1 S2 S3 FC	With the state of	Pk-Pk Search
£(f): FTun Swp		Mkr → CF
Start 30 MHz Stop #Res BW 1 MHz VBW 1 MHz Sweep 4.12 m	o 2.500 GHz s (601 pts)	More 1 of 2

Figure 7-11: Out of Band emission at antenna terminals – GSM CH High

Figure 7-12: Out of Band emission at antenna terminals – GSM CH High

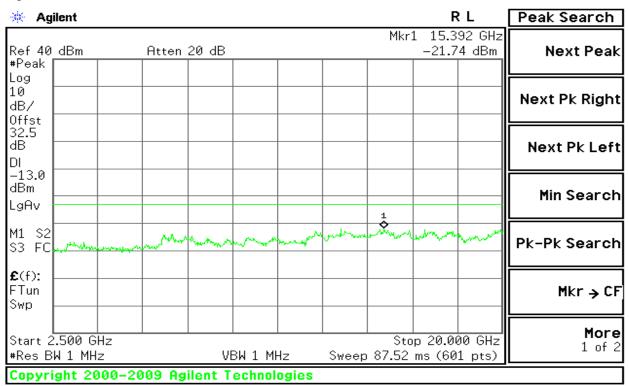


<u>GSM 1900</u>

🔆 Agil	lent								F	۲L	Peak Search
Ref 40 ≢Peak [dBm		Atten	20 dB				M		50 GHz 6 dBm	Next Peak
Log 10 dB/ Offst								1 •			Next Pk Right
32.5 dB DI -13.0											Next Pk Left
dBm LgAv											Min Search
ľ	ng la barran	-and applicable	alance and			and the second	er en transcor			alleydar thay a	Pk-Pk Search
£(f): - FTun Swp -											Mkr → CF
Start 30 #Res Bk		z		VE	BW 1 M		Swee		 Stop 2.5 2 ms (60		More 1 of 2
Copyrig	pyright 2000–2009 Agilent Technologies										

Figure 8-1: Out of Band emission at antenna terminals – GSM CH Low

Figure 8-2: Out of Band emission at antenna terminals – GSM CH Low



			RL	Peak Search
Atten 20 dB		Mkr1	1.878 GHz 27.11 dBm	Next Peak
		¹		Next Pk Right
				Next Pk Left
				Min Search
made and an and and and and and a second	and the second and the second	··· 10/1	menaget and marked	Pk-Pk Search
				Mkr → CF
	MHz			More 1 of 2
			Atten 20 dB	Mkr1 1.878 GHz 27.11 dBm

Figure 8-3: Out of Band emission at antenna terminals – GSM CH Mid

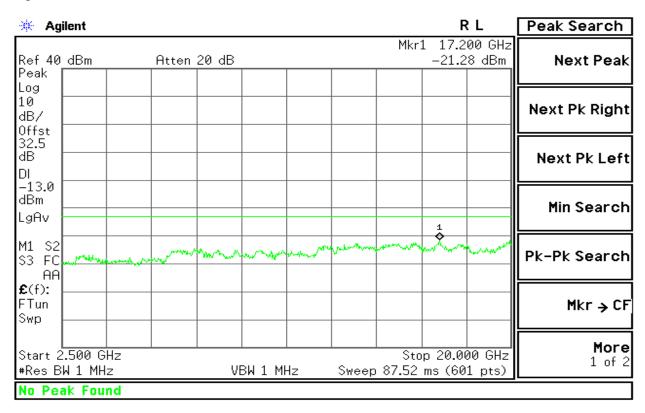
Figure 8-4: Out of Band emission at antenna terminals - GSM CH Mid

🔆 Agilent		R L Peak Search
Ref 40 dBm Atten #Peak	20 dB	1 1.911 GHz 27.29 dBm Next Peak
Log 10 dB/		Next Pk Right
Offst 32.5 dB DI		Next Pk Left
-13.0 dBm LgAv		Min Search
M1 S2 S3 FC	ner - top to the property and the second of the second	Pk-Pk Search
£(f): FTun Swp		Mkr → CF
Start 30 MHz #Res BW 1 MHz		op 2.500 GHz More ms (601 pts) 1 of 2

Figure 8-5: Out of Band emission at antenna terminals – GSM CH High

Figure 8-6: Out of Band emission at antenna terminals – GSM CH High

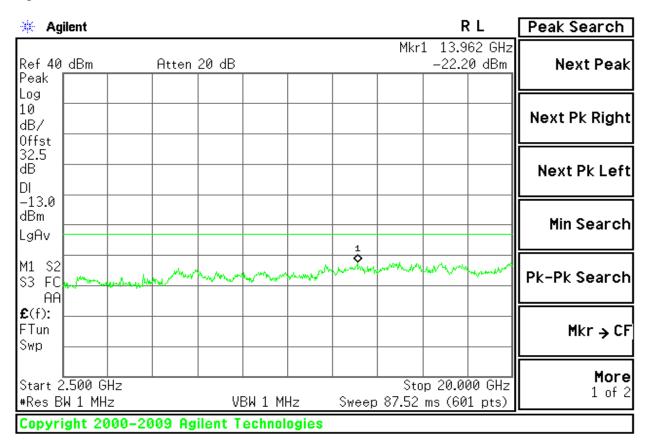
🔆 Agilent		RL	Peak Search		
Ref 40 dBm #Peak	Atten 20 dB	Mkr1 17.171 GHz -22.40 dBm	Next Peak		
Log 10 dB/ Offst			Next Pk Right		
32.5 dB DI			Next Pk Left		
-13.0 dBm LgAv		1	Min Search		
M1 S2 S3 FC	way was a stranger at the stranger	man Anna and	Pk-Pk Search		
£(f): FTun Swp			Mkr → CF		
Start 2.500 GHz #Res BW 1 MHz	VBW 1 MHz	Stop 20.000 GHz Sweep 87.52 ms (601 pts)	More 1 of 2		
Copyright 2000–2009 Agilent Technologies					



GPRS 1900

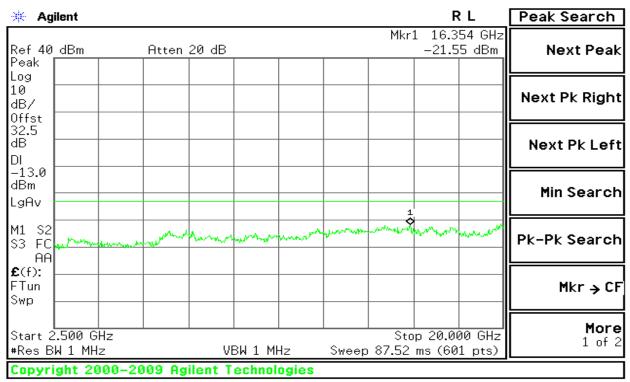
🔆 Agilent				RL	Peak Search
Ref 40 dBm Peak	Atten 20) dB	Mkr1	1.850 GHz 26.19 dBm	Next Peak
Log 10 dB/ Offst			\$		Next Pk Right
32.5 dB DI					Next Pk Left
-13.0 dBm LgAv					Min Search
M1 S2 S3 FC	**************************************	•			Pk-Pk Search
£ (f): FTun Swp					Mkr → CF
Start 30 MHz #Res BW 1 MHz	2	VBW 1 MHz	Stop Sweep 4.12 ms	2.500 GHz 6 (601 pts)	More 1 of 2
Copyright 2000–2009 Agilent Technologies					

Figure 8-7: Out of Band emission at antenna terminals – GSM CH Low


Figure 8-8: Out of Band emission at antenna terminals – GSM CH Low

🔆 Agile	ent								F	۲L	Peak Search
Ref 40 d Peak ∣	dBm		Atten	20 dB				Mł		378 GHz 34 dBm	Next Peak
Log 10 dB/ Offst								1			Next Pk Right
32.5 dB – DI											Next Pk Left
-13.0 dBm LgAv											Min Search
AA		wyotaa	Martina and Martina	a surveil and and	an a	an and a star	an tanggan		r yeley although		Pk-Pk Search
£(f): FTun Swp											Mkr → CF
Start 30 #Res BW				 Vi	BW 1 M	 Hz	Swee		 top 2.5 ms (60	00 GHz 01 pts)	More 1 of 2
Copyrig	Copyright 2000–2009 Agilent Technologies										

Figure 8-9: Out of Band emission at antenna terminals – GSM CH Middle


Figure 8-10: Out of Band emission at antenna terminals – GSM CH Middle

🔆 Agi	ilent									RL	Peak Search
Ref 40 Peak	dBm		Atten	20 dB				ا		.911 GHz .74 dBm	Next Peak
Log 10 dB/ Offst											Next Pk Right
32.5 dB DI											Next Pk Left
-13.0 dBm LgAv											Min Search
M1 S2 S3 FC AA	n _{mal} n - Manaer	and the second	www.co.ush	and the second	and the second	· · · · · · · · · · · · · · · · · · ·	opperation of the second second	h	waa ay waak		Pk-Pk Search
€(f): FTun Swp											Mkr → CF
 Start 3 #Res Bl		z		l Vi	 BW 1 M	 Hz	Swee			500 GHz 501 pts)	More 1 of 2
Copyri	ght 20	000-20	009 Ag	jilent T	echnol	ogies					

Figure 8-11: Out of Band emission at antenna terminals – GSM CH High

Figure 8-12: Out of Band emission at antenna terminals – GSM CH High

<u>GSM 850</u>

Figure 9-1: Band Edge emissions - GSM CH Low

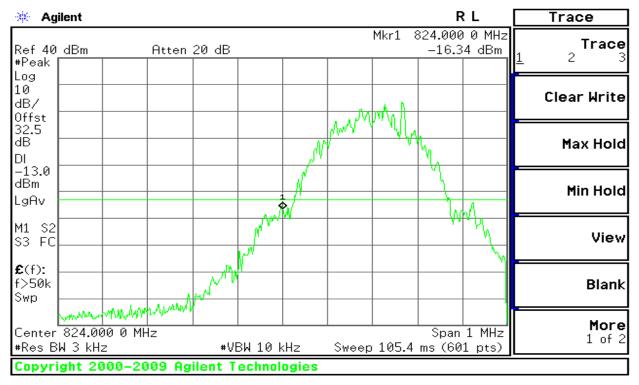
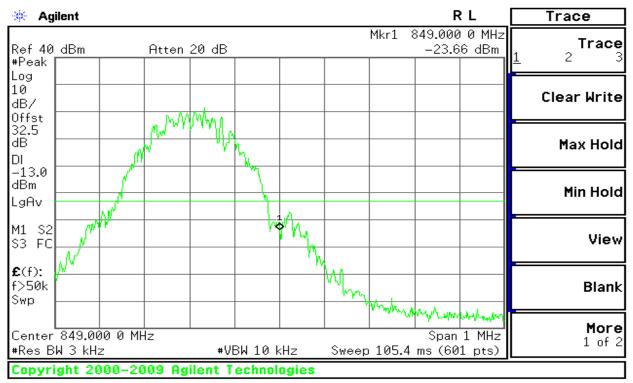



Figure 9-2: Band Edge emissions - GSM CH High

GPRS 850

Figure 9-3: Band Edge emissions - GPRS CH Low

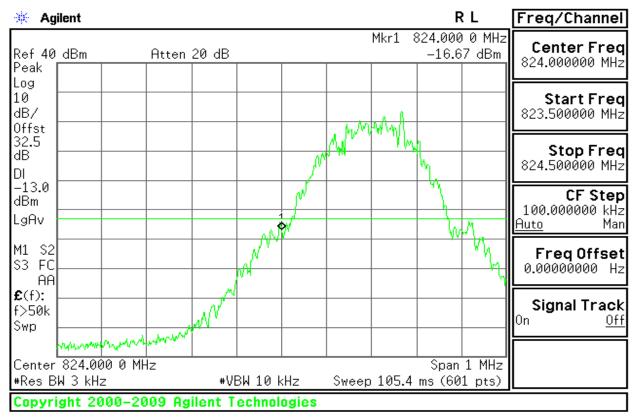
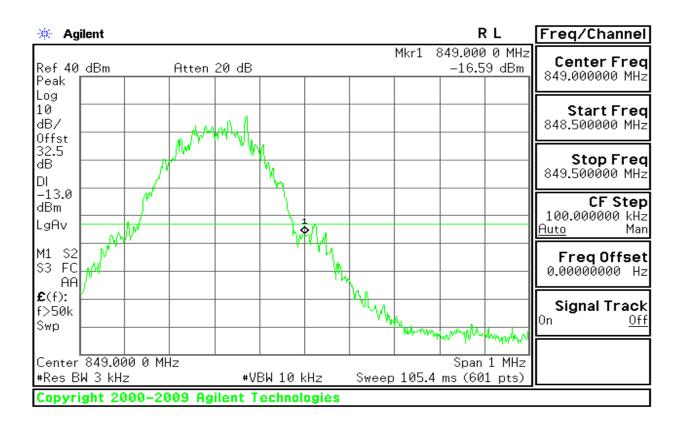



Figure 9-4: Band Edge emissions – GPRS CH High

<u>GSM 1900</u>

Figure 10-1: Band Edge emissions - GSM CH Low

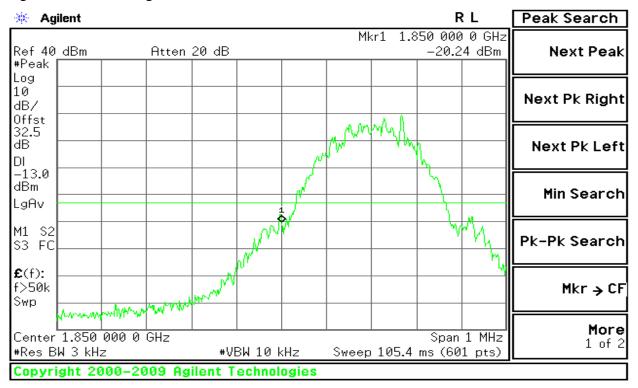
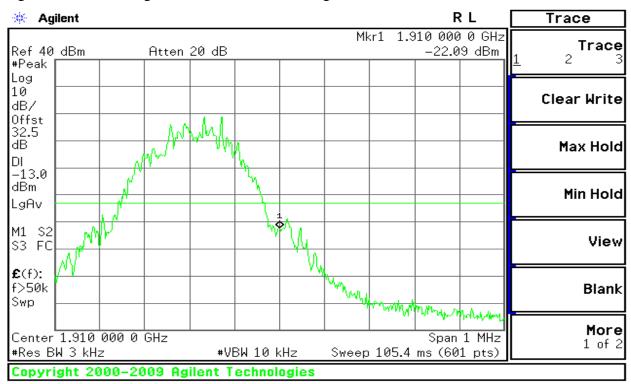
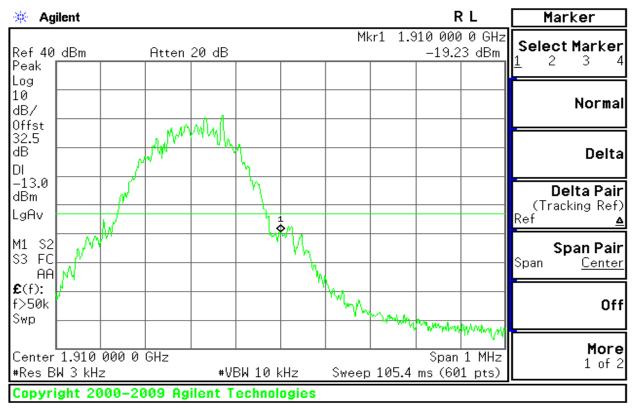



Figure 10-2: Band Edge emissions – GSM CH High



GPRS 1900

R L 🔆 Agilent Marker Mkr1 1.850 000 0 GHz Select Marker Ref 40 dBm Atten 20 dB -18.13 dBm 2 3 Peak Log 10 Normal dB/ Mar marketing Offst 32.5 dB Delta DL -13.0 Delta Pair dBm (Tracking Ref) LgAv Ref Δ ¢ M1 S2 Span Pair S3 FC Span Center AA **£**(f): f>50k Off Swp month work ding More Center 1.850 000 0 GHz Span 1 MHz 1 of 2 #Res BW 3 kHz #VBW 10 kHz Sweep 105.4 ms (601 pts) Copyright 2000–2009 Agilent Technologies

Figure 10-3: Band Edge emissions - GPRS CH Low

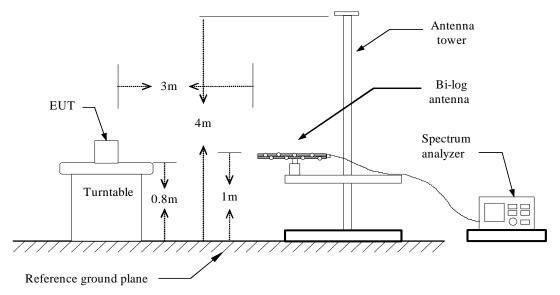
Figure 10-4: Band Edge emissions – GPRS CH High

FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

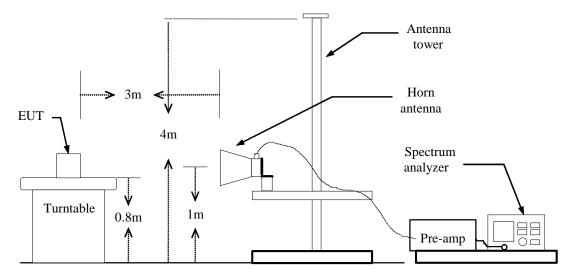
LIMIT

According to FCC §2.1053

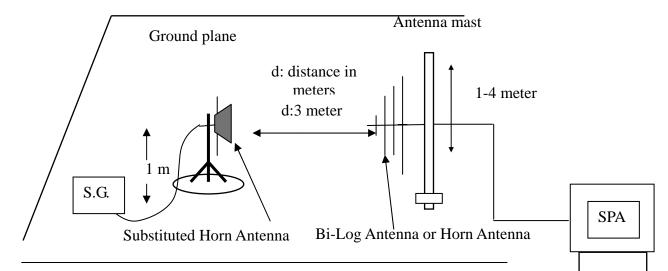
MEASUREMENT EQUIPMENT USED


	977 (Chamber (3m)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2009
EMI Test Receiver	R&S	ESPI3	101026	11/11/2009
Pre-Amplfier	MINI-circuits	ZFL-1000VH2	d041703	12/13/2009
Pre-Amplfier	Miteq	NSP4000-NF	870731	01/28/2010
Bilog Antenna	Sunol	JB1	A110204-2	11/22/2009
Horn-antenna	SCHWARZBECK	BBHA9120D	D:266	02/01/2010
PSG Analog Signal Generator	Agilent	E8257C	MY43321570	12/19/2009
Wireless communication test set	Agilent	8960	QB44051695	10/06/2009
Turn Table	СТ	CT123	4165	N.C.R
Antenna Tower	СТ	CTERG23	3256	N.C.R
Controller	СТ	CT100	95637	N.C.R
Site NSA	CCS	N/A	N/A	04/06/2010

Remark: Each piece of equipment is scheduled for calibration once a year.



Test Configuration



Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Radiated Spurious Emission Measurement Result

Below 1GHz

No emissions to be recorded. (No specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 850 / TX / CH 128

 $25^{\circ}C$ **Temperature:**

Humidity: 55 % RH

· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		
Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1646.66	52.44	V	-52.17	2.94	9.76	-45.35	-13.00	-32.35
1650.00	47.02	Н	-55.97	2.94	9.79	-49.12	-13.00	-36.12

Operation Mode: GSM 850 / TX / CH 190

Temperature: $25^{\circ}C$

Humidity: 55 % RH

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1673.33	52.41	V	-52.28	2.95	9.95	-45.28	-13.00	-32.28
1673.33	44.99	Н	-62.01	2.95	9.95	-50.99	-13.00	-37.99

Operation Mode: GSM 850 / TX / CH 251

Temperature: $25^{\circ}C$

Humidity: 55 % RH

munity.	50	// 111				1 Ulai Ity	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	101.
Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1696.66	51.62	V	-53.13	2.97	10.11	-45.99	-13.00	-32.99
1696.66	44.88	Н	-58.07	2.97	10.11	-50.93	-13.00	-37.93

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above shown only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

5. Spectrum setting:

a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.

b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Tested by: Jeson

Test Date: July 2, 2009

Ver. / Hor. Polarity:

Test Date: July 2, 2009

Tested by: Jeson

Ver. / Hor. **Polarity:**

Tested by: Jeson Polarity:

Ver / Hor

Test Date: July 2, 2009

Operation Mode: GPRS 850 / TX / CH 128

 $25^{\circ}C$ **Temperature:**

Humidity: 55 % RH

Tested by: Jeson

Polarity: Ver. / Hor.

Test Date: July 2, 2009

Jeson

Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1646.32	51.14	V	-53.47	2.94	9.76	-46.65	-13.00	-33.65
1648.12	45.72	Н	-57.27	2.94	9.79	-50.42	-13.00	-37.42

Operation Mode: GPRS 850 / TX / CH 190

 $25^{\circ}C$ **Temperature:**

Humidity: 55 % RH

·						•		
Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1674.56	51.31	V	-53.38	2.95	9.95	-46.38	-13.00	-33.38
1674.55	43.89	Н	-59.09	2.95	9.95	-52.09	-13.00	-39.09

Operation Mode: GPRS 850 / TX / CH 251

 $25^{\circ}C$ **Temperature:**

Humidity: 55 % RH

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1674.56	51.31	V	-53.38	2.95	9.95	-46.38	-13.00	-33.38
1674.55	43.89	Н	-59.09	2.95	9.95	-52.09	-13.00	-39.09

Test Date: July 2, 2009

Tested by:

Polarity:

Tested by: Jeson

Polarity: Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
1695.23	50.82	V	-53.93	2.97	10.11	-46.79	-13.00	-33.79
1695.23	45.68	Н	-58.87	2.97	10.11	-51.73	-13.00	-38.73

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above shown only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 5. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Below 1GHz

No emissions to be recorded. (No specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode: GSM 1900 / TX / CH 512

 $25^{\circ}C$ **Temperature:**

55 % RH Humidity:

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.00	40.74	V	-55.31	4.52	12.66	-47.17	-13.00	-34.17
3691.66	35.74	Н	-60.17	4.51	12.65	-52.00	-13.00	-39.00

Operation Mode: GSM 1900 / TX / CH 661

Temperature: $25^{\circ}C$

55 % RH Humidity:

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3758.33	43.34	V	-52.35	4.54	12.71	-44.17	-13.00	-31.17
3758.33	37.18	Н	-58.25	4.54	12.71	-50.07	-13.00	-37.07

Operation Mode: GSM 1900 / TX / CH 810

Temperature: $25^{\circ}C$

Humidity: 55 % RH

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3816.66	41.14	V	-54.26	4.60	12.74	-46.12	-13.00	-33.12
3908.33	37.53	Н	-57.07	4.87	12.67	-49.27	-13.00	-36.27

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above shown only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.

5. Spectrum setting:

a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.

b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Test Date: July 2, 2009

Tested by: Jeson

Polarity: Ver. / Hor.

Polarity:

Test Date: July 2, 2009

Ver. / Hor.

Tested by: Jeson

Polarity:

Test Date: July 2, 2009

Jeson Ver. / Hor.

Tested by:

Operation Mode: GPRS 1900 / TX / CH 512

$25^{\circ}C$ **Temperature:**

Humidity: 55 % RH

Test Date: July 2, 2009

Tested by: Jeson

Ver. / Hor. **Polarity:**

Test Date: July 2, 2009

Ver. / Hor.

Tested by: Jeson

Polarity:

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3712.56	39.54	V	-56.51	4.52	12.66	-48.37	-13.00	-35.37
3712.21	34.54	Н	-61.33	4.51	12.65	-53.20	-13.00	-40.02

Operation Mode: GPRS 1900 / TX / CH 661

 $25^{\circ}C$ **Temperature:**

Humidity: 55 % RH

		,				· · · · · · · · · · · · · · · · · · ·		
Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3761.66	42.14	V	-53.54	4.54	12.71	-45.37	-13.00	-32.37
3761.65	35.98	Н	-59.44	4.54	12.71	-51.27	-13.00	-38.27

Operation Mode: GPRS 1900 / TX / CH 810

 $25^{\circ}C$ **Temperature:**

Humidity: 55 % RH

Frequency (MHz)	level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	level (dBm)	Limit (dBm)	Margin (dB)
3761.66	42.14	V	-53.54	4.54	12.71	-45.37	-13.00	-32.37
3761.65	35.98	Н	-59.44	4.54	12.71	-51.27	-13.00	-38.27
Operation	peration Mode: GPRS 1900 / TX / CH 810					Test Date	e: July 2,	2009

Test Date:

Tested by: Jeson

Polarity: Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBd)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3819.32	38.94	V	-55.46	4.60	12.74	-47.32	-13.00	-34.32
3817.35	36.33	Н	-58.27	4.87	12.67	-50.47	-13.00	-37.47

Remark:

1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2. Measurements above shown only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

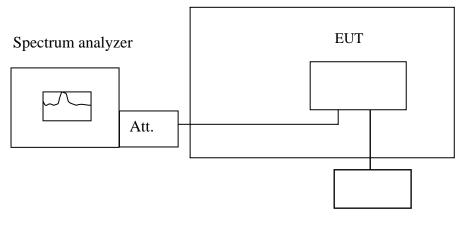
- 3. Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 5. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235.

Frequency Tolerance: 2.5 ppm


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC POWER SUPPLY	GW instek	GPS-3303C	E903131	04/15/2010
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2009
Wireless communication test set	Agilent	8960	QB44051695	10/06/2009
Temp. / Humidity Chamber	Kingson	THS-M1	242	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10° C increased per stage until the highest temperature of $+50^{\circ}$ C reached.

TEST RESULTS

Refe	Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C						
	Limit: ± 2	2.5 ppm = 2091.5 Hz	2				
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)			
	55	836600027	27				
	40	836600031	31				
	30	836600023	23				
3.8	20	836599985	-15	2091.5			
5.0	10	836600026	26	2091.3			
	0	836600027	27				
	-10	836600036	36				
	-20	836600038	38				

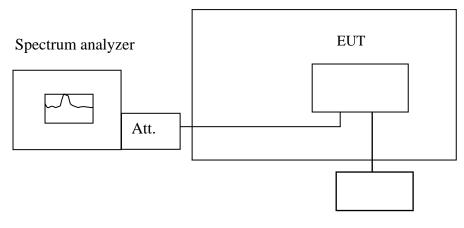
No non-compliance noted.

Refe	Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C					
	Limit: ±	2.5 ppm = 4700 Hz				
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)		
	55	1879999983	-17			
	40	1879999983	-17			
	30	1879999979	-21			
3.8	20	1880000015	15	4700		
5.8	10	1879999991	-9	4700		
	0	1879999977	-23			
	-10	1879999982	-18			
	-20	1879999986	-14			

FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235,


Frequency Tolerance: 2.5 ppm. MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC POWER SUPPLY	GW instek	GPS-3303C	E903131	04/15/2010
Spectrum Analyzer	Agilent	E4446A	MY44020154	08/16/2009
Wireless communication test set	Agilent	8960	QB44051695	10/06/2009
Temp. / Humidity Chamber	Kingson	THS-M1	242	05/26/2010

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector.

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 836.6 MHz @ 20°C						
	Limit: ± 2.5 ppm = 2091.5Hz					
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)		
4.2		836599981	-19			
3.8	20	836599985	-15	2091.5		
3.5	20	836599985	-15	2091.3		
3.3 End point		836599959	-41			

Refe	Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C					
	Limit: $\pm 2.5 \text{ ppm} = 4700 \text{ Hz}$					
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)		
4.2		1880000019	19			
3.8	20	1880000015	15	4700		
3.5	20	1880000015	15	4700		
3.3 End point		1880000013	13			

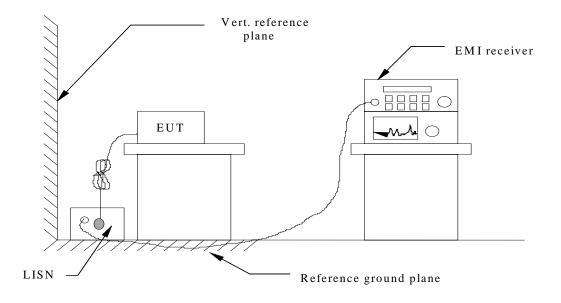
POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)			
Trequency Range (MIII2)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESI26	100068	02/11/2010
EMC Analyzer	Agilent	E7402A	US41160329	02/11/2010
LISN	FCC	FCC-LISN-50-50-2-M	01067	07/29/2009
LISN (EUT)	FCC	FCC-LISN-50-50-2-M	01068	07/29/2009
TRANSIENT LIMITER	SCHAFFNER	CFL9206	1710	03/15/2010
EMI Monitor control box	FCC	0-SVDC	N/A	N.C.R

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete..

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Operation	1 Mode:	Link n AC TC	node) DC CHA	RGER Te	July			
Temperat	ure:	25°C		Те	sted by:	Jeso		
Humidity	:	55% R	H					
Freq.	PEAK.	Q.P.	AVG	Q.P.	AVG	Margin	Factor	
(MHz)	Raw	Raw	Raw	Limit	Limit	(dB)	(d B)	Remark
(1/1112)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dBuV)			
0.487	29.56	20.82	15.01	56.36	46.36	-31.35	10.77	L1
0.631	32.15	21.41	16.11	56.00	46.00	-29.89	10.89	L1
1.184	30.94	20.48	13.48	56.00	46.00	-32.52	11.03	L1
4.557	34.62	25.78	21.27	56.00	46.00	-24.73	11.18	L1
7.090	35.24	26.32	21.32	60.00	50.00	-28.68	11.19	L1
12.188	35.37	26.17	18.35	60.00	50.00	-31.65	11.25	L1
0.639	30.46	25.02	21.51	56.00	46.00	-24.49	10.14	L2
1.158	26.83	25.66	18.68	56.00	46.00	-27.32	10.27	L2
3.498	27.32	22.76	21.99	56.00	46.00	-24.01	10.80	L2
6.400	30.65	18.70	15.13	60.00	50.00	-34.87	11.01	L2
12.220	30.47	18.90	16.11	60.00	50.00	-33.89	11.30	L2
15.971	31.26	20.15	14.68	60.00	50.00	-35.32	11.46	L2

Remark:

1. The measuring frequencies range between 0.15 MHz and 30 MHz.

2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.

3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.

4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9kHz

5. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)

Note:

Freq. = Emission frequency in KHz

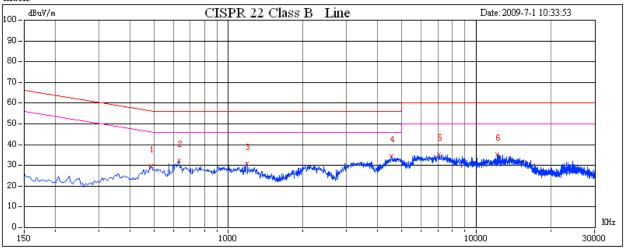
Factor (dB) = cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER (The TRANSIENT LIMITER included 10 dB ATTENUATION)

Amptd dBuV = Uncorrected Analyzer/Receiver reading + cable loss + Insertion loss of LISN+ Insertion loss of TRANSIENT LIMITER,

if it > 0.5 dB

Limit dBuV = *Limit stated in standard*

Margin dB = Reading in reference to limit

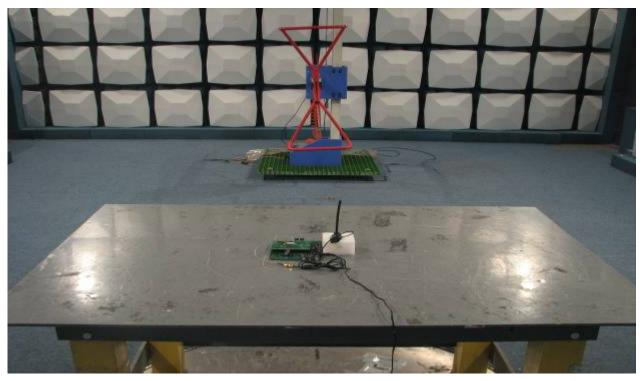

Calculation Formula

Margin (dB) = Amptd (dBuV) - Limit (dBuV)

<u>Test Plots</u> AC TO DC CHARGER

Conducted emissions (Line 1)

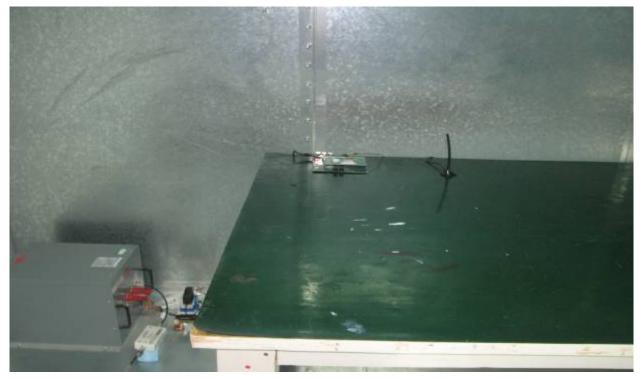
Conducted emissions (Line 2)	
Index:	


00 -	dBuV/m					1	C	ISP	PR 22 Class E	Neut	ral				_		Date: 2009-7-1 10:	:28:24	1
90 -								_							_				
0-								_							_	_			
0 -								_							_	_			
0-								+							_				
0-															_				
0-						1		_			_		_	4	_	_	5 6		
0-						<u></u>		_	2		3			¥		_	a la Čali ⁿ tičnim		
0 -	w	mm	hm	w.	With	r Vh	Yw	tvyu	and the state of the second second	WTH WAR	al we have	pper s	1					an a said that is a sur	
0-								_							_				
0-																			ĸ
15	50 .		-	-		-		10	ίοο		-	-	-			ιοό		. 300	joo

APPENDIX 1 PHOTOGRAPHS OF TEST SETUP

Radiated Emission Set up Photos

Front of view



Back of view

Conducted Emission Set Up Photos

