	Spectrum	₩							
Ref Level 46.0 Att	i0 dBm Offset 14 dB ● SWT		BWI 100 kHz BWI 1 MHz M	lada Auto Cuison					SG
Frequency Sv		SOUTHS VE		IOUE AUTO SWEEP)				01Rm Clrv
								M1[1]	-38.91 dE
D dBm									26.1830 G
D dBm									
D dBm									
5 dbiii									
) dBm									
dBm									
) d0m									
) dBm									
) dBm									
) dBm									
) dBm									
J dBm									فنسر
mound	ر. مارولى المحمد المالى	1		de las estas	X	. asky en	Adden and well where	why made and the most of the second	
dBm	www.	طريهي المحاصر	Mr. sugar walk hall have a	myone	1 minunteren	and the second			
0 GHz			1001 pt	s	2.	35 GHz/			26.5 G
	Spectrum	*							00:07:31
Ref Level 46.0	Spectrum 0 dBm Offset	t 42.00 dB ● RE							
IultiView 8 Ref Level 46.0 Att	OdBm Offset	t 42.00 dB ● RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				s
ultiView 8 Ref Level 46.0	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep)			M1[1]	so •1Rm Clr
ultiView 8 ef Level 46.0 tt requency Sy	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep) 			M1[1]	●1Rm Cirr -39,04 d
ultiView 8 ef Level 46.0 tt requency Sy	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Cirr -39,04 d
ultiView ef Level 46.0 tt requency Sy	OdBm Offset 14 dB ● SWT	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Cirr -39,04 d
ultiView 3 ef Level 46.0 tt requency Sv dBm-	OdBm Offset 14 dB ● SWT	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	01Rm Clr -39,04 d
ultiView 3 ef Level 46.0 tt requency Sv dBm-	OdBm Offset 14 dB ● SWT	t 42.00 dB ● RE		ode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView 8 ef Level 46.C tt requency S dBm	OdBm Offset 14 dB ● SWT	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView 8 ef Level 46.C tt requency S dBm	OdBm Offset 14 dB ● SWT	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView 8 ef Level 46.C tt rrequency S dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView = ef Level 46.C tt requency St dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView = ef Level 46.C tt requency St dBm dBm	OdBm Offset	t 42.00 dB ● RE		ode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView E ef Level 46.C tt requency St dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	01Rm Clr -39,04 d
dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	01Rm Clr -39,04 d
dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
altiView = ef Level 46.C tt requency S dBm dBm dBm dBm bm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
altiView = ef Level 46.C tt requency S dBm dBm dBm dBm bm	OdBm Offset	t 42.00 dB ● RE		ode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
altiView = ef Level 46.C tt requency S dBm dBm dBm dBm dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView = ef Level 46.C tt requency S dBm dBm dBm dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	01Rm Clr -39,04 d
altiView = ef Level 46.C tt requency S dBm dBm dBm dBm dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	01Rm Clr -39,04 d
altiView = ef Level 46.C tt requency S dBm dBm dBm dBm dBm dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	01Rm Clr -39,04 d
ultiView 3 ef Level 46.C tt requency S dBm dBm dBm dBm dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				MI[1]	01Rm Clr -39,04 d
altiView = ef Level 46.C tt requency S dBm dBm dBm dBm dBm dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Clr -39,04 d
ultiView 3 ef Level 46.0 frequency St dBm dBm dBm dBm dBm dBm dBm dBm	OdBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	01Rm Clr -39,04 d
UltiView 3 tef Level 46.0 Trequency St dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum 14 dB SWT weep	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	●1Rm Cirr -39,04 d
IultiView 3 Ref Level 46.0 Itt requency St dBm dBm dBm dBm dBm dBm dBm dBm	OdBm Offset 14 dB ● SWT	t 42.00 dB ● RE						M1[1]	●1Rm Cin -39.04 d
ultiView 3 ef Level 46.0 tt requency SV dBm dBm dBm dBm dBm) dBm) dBm) dBm) dBm) dBm	Spectrum 14 dB SWT weep	t 42.00 dB ● RE	3W 1 MHz M	lode Auto Sweep					•1Rm Clr -39,04 dl 26.2530 C
ultiView 3 ef Level 46.0 frequency St dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum 14 dB SWT weep	t 42.00 dB ● RE	3W 1 MHz M					M1[1]	●1Rm Cirr -39,04 d

00:08:44 11.11.2017

MultiView	Spectrum	¥							
Att	00 dBm Offset 14 dB SWT		BWI 100 kHz BWI 1 MHz M	lode Auto Sweep	1				SGL
1 Frequency S	weep							M1[1]	•1Rm Clrw -39.01 dBm
40 dBm									26.1360 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
	a solution	M				. August		and the state of the state	
-50 dBm	water and the second	C	10 marshall marshe	montherman	Remained	and for the state of the	- manager and and and	and the second of the second	
3.0 GHz			1001 pt	s	2	.35 GHz/			26.5 GHz
)[]						Aborted		11.11.2017
00:09:57 11.	11.2017								
MultiView Ref Level 46.	Spectrum	t 42.00 dB = RI	BW 100 kHz						SGL
MultiView	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	Iode Auto Sweep					⊽ SGL ●1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				м1[1]	●1Rm Clrw -38.73 dBm
MultiView Ref Level 46. Att	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				м1[1]	●1Rm Clrw -38.73 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView Bef Level 46.t Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clw -38.73 dBm 26.2070 GHz
MultiView Bef Level 46.t Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.73 dBm
MultiView B Ref Level 46.t Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clw -38.73 dBm 26.2070 GHz
MultiView B Ref Level 46.t Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clw -38.73 dBm 26.2070 GHz
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M		Amynant			M1[1]	● 1Rm Clrw -38,73 dBm 26,2070 GHz

00:11:09 11.11.2017

20M -2630MHz-Port 1~4:

fultiView 😁 Spect	Offset 42.00 dB = R	BW 100 kHz						SGL
Att 14 dB ● DC	SWT 500 ms VI	BW 1 MHz M	lode Auto Sweep)				
Frequency Sweep							M1[•1Rm Clrw 1] -41.09 dBr
) dBm								523.00 kH
dBm								
dBm								
dBm								
IBm								
I dBm								
abiii								
l dBm								
dBm								
dBm ^{M1}								
·								
ا dBm	man and a second and a second	۵٬۰۰۰٬۰۰۰ 1001 pt	han an a	ac	9.1 kHz/	-	and have a second second	10.0 MH
								10.11.2017
:33:16 10.11.2017						Aborred		22:33:15
ultiView 🕀 Spect	Offset 42.00 dB ■ R	BW 100 kHz				Aborted	- And	
ultiView B Spect ef Level 46.00 dBm tt 14 dB •	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SG
ultiView : Spect ef Level 46.00 dBm tt 14 dB • c requency Sweep	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep	>			M1[1]	●1Rm Clrv -39,77 df
ultiView Spect ef Level 46.00 dBm tt 14 dB requency Sweep	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				●1Rm Clrv -39,77 df
ILITIVIEW IN Spect af Level 46.00 dBm tt 14 dB I requency Sweep JBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 df
dBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 df
dBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 df
ILITIVIEW IN Spect of Level 46.00 dBm tt 14 dB I requency Sweep dBm dBm dBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 df
ultiView ↔ Spect ef Level 46.00 dBm 14 dB ● requency Sweep dBm dBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 dE
UltiView # Spect ef Level 46.00 dBm tt 14 dB • comparison comparison dBm dBm dBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 dE
ultiView # Spect ef level 46.00 dBm tt 14 dB • requency Sweep dBm dBm bm bm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 df
ultiView Spect ef level 46.00 dBm t 14 dB • c 14 dB • dBm 0	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 dE
ultiView Spect ef level 46.00 dBm t 14 dB • c 14 dB • dBm 0	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 dE
ultiView Spect ef Level 46.00 dBm 14 dB • tt 14 dB • crequency Sweep dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 dE
ultiView Spect ef Level 46.00 dBm 14 dB • crequency Sweep dBm dBm dBm	Offset 42.00 dB ■ R	BW 100 kHz M	lode Auto Sweep					●1Rm Clrv -39,77 df
ultiView Spect ef Level 46.00 dBm 14 dB • crequency Sweep dBm dBm dBm	Offset 42.00 dB ■ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv -39,77 df
ultiView Spect tef Level 46.00 dBm 14 dB • C 14 dB • G	Offset 42.00 dB • R SWT 500 ms VI	BW 1 MHz M						•18m Citw •39,77 dB 513.00 ki
ultiView 🕀 Spect	Offset 42.00 dB ■ R	BW 100 kHz M						●1Rm Clrw -39,77 dB

22:34:29 10.11.2017

MultiView	🗐 Spectrum	- ₩							\bigtriangledown
Ref Level 46.	00 dBm Offse	et 42.00 dB ● RI							SGL
Att DC	14 dB 🖷 SWT	500 ms VE	3WI 1 MHz M	lode Auto Sweep	1				
1 Frequency S	weep							M1[1]	●1Rm Clrw -40.68 dBm
40 dBm									523.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
N .									
-30 dBm									
J. M1									
-40 dam									
-50 dBm	www.willonaly.com	Markey Januar	- and he had an factor		annyarhand	Manan	Vanmertheard	and Malmura and sal	ᠿᢉᢑᡮᠵᢍᢍᠴᡐᡇᠯᡀᠴᡇ
9.0 kHz	¥		1001 pt	s	99	9.1 kHz/			10.0 MHz
							Aborted		
22:35:41 10	11.2017								
MultiView	Spectrum								
		et 42.00 dB = RI							SGL
Ref Level 46. Att	00 dBm Offse			lode Auto Sweep	,				⊽ SGL
Ref Level 46. Att DC	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				11114	• 1Rm Clrw
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -39.39 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -50 dBm	00 dBm Offse 14 dB • SWT	et 42.00 dB = RI						M1[1]	•1Rm Clrw -39.39 dBm 513.00 kHz
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	00 dBm Offse 14 dB • SWT	200 dB = Ri 500 ms VI	3W 1 MHz M			9.1 kHz/			• 1Rm Clrw -39.39 dBm 513.00 kHz
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	00 dBm Offse 14 dB • SWT	200 dB = Ri 500 ms VI				9.1 kHz/			•1Rm Clrw -39.39 dBm 513.00 kHz

22:36:54 10.11.2017

MultiView	Spectrum	₩Ì							\bigtriangledown
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,				SGL
1 Frequency S								M1[1]	•1Rm Clrw -43.97 dBm
40 dBm									937,200 MHz
30 dBm									
20 dBm									
10 dBm									
10 dbin									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-to ubin						a di sa		1	M1
-50 dBm	ymoughnering	Mundyman	Morrishand	monthemather	man werder	molorywoona	and a second and the second	ingthe margaret	
10.0 MHz			1001 pt	s	9	9.0 MHz/			1.0 GHz
)[Aborted		10.11.2017
22:33:33 10.	11.2017								
MultiView	Spectrum	*							
MultiView 8 Ref Level 46.0	00 dBm Offse	t 42.00 dB = R	BW 100 kHz						SGL
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,				
Ref Level 46.0 Att 1 Frequency S	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,			M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL
Ref Level 46.0 Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att 1 Frequency S	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,			M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att T Frequency S 40 dBm- 30 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att T Frequency S 40 dBm- 30 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att T Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm- 0 dBm- -20 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1 Rm Clrw -43.77 dBm 955.000 MHz
Ref Level 46.0 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.77 dBm
Ref Level 46.0 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 1 MHz M		and the second sec				SGL •1Rm Clrw -43.77 dBm 955.000 MHz 955.000 MHz
Ref Level 46.0 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 1 MHz M		and the second sec	т			SGL • 1 Rm Clrw -43.77 dBm 955.000 MHz

22:34:46 10.11.2017

MultiView		¥							▽
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI 500 ms VI		lode Auto Sweep	1				SGL
1 Frequency S								M1[1]	•1Rm Clrw -43.59 dBm
40 dBm									941.150 MHz
30 dBm									
20 dBm									
10 dBm									
10 UBIII									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
					an a diskala dina sana sa	the second second			M1 Junear
-50 dBm	dummen up tribute	hunder and the second	www.marker.com	hundrender	handler a started work	houndradio	mannadayada	Maria and a second of a	
10.0 MHz			1001 pts	S	9	9.0 MHz/			1.0 GHz
][]						Aborted		10.11.2017 22:35:58
22:35:59 10.	11.2017								
		*							
MultiView Ref Level 46.0	Spectrum 00 dBm Offse	t 42.00 dB ∈ RI	BW 100 kHz						SGL
MultiView	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					•1Rm Clrw
MultiView F Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrw
Ref Level 46.0	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView F Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView Bef Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 30 dBm 30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency 30 dBm 30 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency 30 dBm 30 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.64 dBm 933.240 MHz
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					• 1Rm Clrw -43.64 dBm 933.240 MHz
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.64 dBm
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz 3W 1 MHz M			45%/e%/www.jum.ut			• 1Rm Clrw -43.64 dBm 933.240 MHz

22:37:11 10.11.2017

MultiView 🕀	Spectrum	₩							∇
Ref Level 46.0 Att	0 dBm Offse 20 dB = SWT	t 42.00 dB ∈ R 500 ms V	BW 100 kHz BW 1 MHz M	Node Auto Swee	p				SGL
1 Frequency Sw	veep							M1[1]	●1Rm Clrw 22.32 dBm
40 dBm								MI[1]	2.63140 GHz
30 dBm									
								M1	
20 dBm									
10 dBm									
10 060									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40.dBm					A the last of the state of the		and the state of t	- Way	fremely mendering
at Bud Browning with the state of the state	he what have not a second		Man Man Market	Man Maria	MUNDERSON	derened in			
-50 dBm									
1.0 GHz			1001 pt	s	20	00.0 MHz/			3.0 GHz
							Aborted		10.11.2017 22:33:50
22:33:51 10.1	1.2017								
22:33:51 10.1 MultiView 8	~	¥							
MultiView 8 Ref Level 46.0	Spectrum			Anda Auto Swee					SGL
MultiView 8	Spectrum			Mode Auto Swee	p	1			•1Rm Clrw
MultiView Ref Level 46.0 Att I Frequency Sw	Spectrum			Mode Auto Swee	p			M1[1]	•1Rm Clrw
MultiView B Ref Level 46.0 Att	Spectrum			Mode Auto Swee	p			M1[1]	●1Rm Clrw 22.29 dBm
MultiView Ref Level 46.0 Att I Frequency Sw	Spectrum			vlode Auto Swee	P			M1[1]	●1Rm Clrw 22.29 dBm
MultiView B Ref Level 46.0 Att I Frequency Sw 40 dBm	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView B Ref Level 46.0 Att I Frequency Sw 40 dBm	Spectrum			Mode Auto Swee	P			M1[1]	●1Rm Clrw 22.29 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView Ref Level 46.0 Att I Frequency Sw 40 dBm 30 dBm	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView Image: Constraint of the second seco	Spectrum			Mode Auto Swee	p				●1Rm Clrw 22.29 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView Image: Constraint of the second seco	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView Ref Level 46.0 Att T Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView Ref Level 46.0 Att T Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView Image: Constraint of the second seco	Spectrum			Mode Auto Swee	p				●1Rm Clrw 22.29 dBm
MultiView Image: Constraint of the second seco	Spectrum			Mode Auto Swee	P				●1Rm Clrw 22.29 dBm
MultiView Image: Constraint of the second seco	Spectrum OdBm Offse 20 dB = SWT veep	500 ms V	BW 1 MHz N						●1Rm Clrw 22.29 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OdBm Offse 20 dB = SWT veep				P				●1Rm Clw 22.29 dBm 2.63740 GHz
MultiView Image: Constraint of the second seco	Spectrum OdBm Offse 20 dB = SWT veep	500 ms V	BW 1 MHz N						●1Rm Clw 22.29 dBm 2.63740 GHz
MultiView Image: Constraint of the second seco	Spectrum OdBm Offse 20 dB = SWT veep	500 ms V	BW 1 MHz N		5 (JAn (Marka)) (Marka)) (Marka)				●1Rm Clw 22.29 dBm 2.63740 GHz

22:35:03 10.11.2017

MultiView 🕀 Spectrum 🛛 🐇			\bigtriangledown
Ref Level 46.00 dBm Offset 42.00 dB ● ● Att 20 dB ● SWT 500 ms	RBW 100 kHz VBW 1 MHz Mode Auto St	weep	SGL
1 Frequency Sweep			●1Rm Clrw M1[1] 22.24 dBm
40 dBm			2,63540 GHz
30 dBm			M1
20 dBm			MI
10 dBm			
0 dBm			
U UBIII			
-10 dBm			
-20 dBm-			
-30 dBm			
wt9.4Bm	Mahman marine and and all and	1/1	man Commenced
-50 dBm			
1.0 GHz	1001 pts	200.0 MHz/	3.0 GHz
22:36:16 10.11.2017			22:36:16
MultiView Spectrum Ref Level 46.00 dBm Offset 42.00 dB ●	RBW 100 kHz		SGL
	VBW 1 MHz Mode Auto St	weep	•1Rm Clrw
40 dBm			M1[1] 22.04 dBm 2.63740 GHz
+6 dbm			
30 dBm			
20 dBm			MI
20 dem			
10 dBm	1001 pts	200.0 MHz/	

22:37:29 10.11.2017

MultiView	Spectrum	₩							\bigtriangledown
Att	00 dBm Offset 14 dB = SWT	t 42.00 dB ● F 500 ms \	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -39.10 dBm
40 dBm									26.1130 GHz
00 d0-									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o abin									
-10 dBm									
-20 dBm									
-30 dBm									
									M1
-40 dBm									- M
manny.	under all me		and when the	weight weight	norman	mour we	munumum	man	www
-50 dBm		(and a set of the set	1001 pt			.35 GHz/			26.5 GHz
3.0 GHZ	Υ Π		1001 pt	5	Z		Aborted		10.11.2017
22:34:08 10.	.11.2017								
MultiViou	Spectrum	*							
Ref Level 46.	Spectrum	t 42.00 dB ● F	RBW 100 kHz						SGL
	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)	1	1		SGL
Ref Level 46. Att 1 Frequency S	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL
Ref Level 46. Att	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46. Att 1 Frequency S	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46.7 Att T Frequency S 40 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46, Att 1 Frequency S 40 dBm-	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46.7 Att T Frequency S 40 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46.1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz MBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46.1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46.1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz //BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -39.14 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -39,14 dBm 26,1130 GHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offset 14 dB • SWT	t 42.00 dB ● F		lode Auto Sweep				M1[1]	SGL •1Rm Cirw -39,14 dBm 26,1130 GHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offset 14 dB = SWT weep	t 42.00 dB ● F	RBW 100 kHz M					M1[1]	SGL •1Rm Clrw -39.14 dBm 26.1130 GHz

22:35:21 10.11.2017

MultiView	Spectrum	₩							
Ref Level 46.0 Att	00 dBm Offset 14 dB ● SWT	t 42.00 dB = F 500 ms - V	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)				SGL
1 Frequency Sv	weep							M1[1]	●1Rm Clrw -38.96 dBm
40 dBm									26,4880 GHz
30 dBm									
ee /e									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 ubm									
-30 dBm									
									м
-40 dBm									ەتلىم مەللىم مەللىم
m when	and marker war		and the second	when were	muunum	numpresentation	White ware and	www.may	
-50 dBm		- Crange and a start of the							
3.0 GHz			1001 pt	s	2	.35 GHz/	Aborted		26.5 GHz 10.11.2017
							-		
22.26.24 10 1	1 2017								
22:36:34 10.1									
MultiView 8	Spectrum	₩ 42.00 dB = 1	28W 100 kHz						SGI
MultiView 3	Spectrum	t 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep	,				SGL
MultiView 8 Ref Level 46.0 Att 1 Frequency Sv	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep	,			M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 3	Spectrum	t 42.00 dB ∈ F		lode. Auto Sweep				M1[1]	SGL
MultiView Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep	, 			м1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency Sv	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep	,			M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 9 Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 9 Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 9 Ref Level 46.0 Att 1 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 9 Ref Level 46.0 Att 1 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweer				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 9 Ref Level 46.0 Att 1 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 9 Ref Level 46.0 Att 1 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 9 Ref Level 46.0 Att 1 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView Image: Constraint of the second seco	Spectrum	t 42.00 dB ∈ F		lode Auto Sweer				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView 3 Ref Level 46.0 Att 1 Frequency SV 40 dBm 20 dBm 10 dBm -10 dBm	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView Image: Constraint of the second seco	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.89 dBm
MultiView Image: Constraint of the second seco	Spectrum	t 42.00 dB ∈ F		lode Auto Sweep				M1[1]	● 1 Rm Clrw -38.89 dBm 26.2530 GHz
MultiView Image: Constraint of the second seco	Spectrum	t 42.00 dB ∈ F			, 			M1[1]	SGL • 1 Rm Cirw -38.89 dBm 26.2530 GHz
MultiView 9 Ref Level 46.0 Att 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -30 dBm -30 dBm	Spectrum 14 dB SWT weep	t 42.00 dB ∈ F						M1[1]	● 1 Rm Clrw -38.89 dBm 26.2530 GHz

22:37:46 10.11.2017

20M -2655MHz-Port 1~4:

dBm					al far and all the little for				
dBm									
dBm									
dBm								-	
		1	1						
dBm									
3m									
dBm									
10									
dBm									
dBm									
dBm								M1[1]	-42.66 d 513.00 l
; requency S	Sweep				1				●1Rm Clr
ef Level 46. It		et 42.00 dB = R 500 ms V	BW 100 kHz BW 1 MHz M	1ode Auto Sweep)				S
ultiView		ı ≱							
02:04 10.	.11.2017								
) kHz	Υ Υ		1001 pt	· · ·	1	9.1 kHz/			10.0 MI
dBm	ownerthrappopul	n Markan Markan dar	manungethendeland	handerson half of the	Durwand	wargeboongelike	A Manala Magana Marka	-	n almadate
dBrit									
<u>ь</u> М1									
dBm									
dBm									
dBm									
3m									
dBm									
dBm									
dBm									
abili								M1[1	39.73 d] 513.00
	sweep								●1Rm Cln
t requency S	14 dB ● SWT	555 ms VI	BWV 1 MHz N	Haro Sweet	-				

23:03:17 10.11.2017

Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep DC 1 Frequency Sweep	SGL •1.Rm Clrw -41.99 dBm 523.00 kHz
1 Frequency Sweep M1[1 40 dBm 30	-41.99 dBm
40 dBm 40	-41.99 dBm 523.00 kHz
20 dBm	
10 dBm	
0 dBm	
-10 dBm	
-20 dBm-	
-30 dBm-	
-40 d8m/4	
-50 dBm - when the second seco	10.0 MHz
Aborted	10.11.2017
23:04:30 10.11.2017	
MultiView 🕀 Spectrum 🐇	
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep	SGL
DC 1 Frequency Sweep	•1Rm Clrw
40 dBm	-40.22 dBm 513.00 kHz
30 dBm-	
20 dBm	
10 dBm-	
0 dBm	
-10 dBm	
-20 dBm	
-30 dBm	
-40 ¢Brit	
-40 ¢Brit	10.0 MHz

23:05:42 10.11.2017

MultiView	Spectrum	*							▼
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = 1 500 ms	RBW 100 kHz VBW 1 MHz	Mode Auto Sw	/eep				SGL
1 Frequency S								M1[1]	●1Rm Clrw -43,83 dBm
40 dBm						_		(WI+[+]	909.510 MHz
30 dBm									
20 dBm			+	-		+	+	<u> </u>	
10 dBm									
10 000	\Box	\Box	Τ			\neg	T	Ţ	
0 dBm									
-10 dBm							-		
-20 dBm						1			
-30 dBm									
-50 ubm			\top	\square		\top	\square		
-40 dBm									мн
					where are and for the way	munun	mandeline	Jan marger and	ahrengutututu
50 dBm	aling the way work	growthe hadrand	partentifuntant	direction to a constraint of the	- Adv. A		and the second		
10.0 MHz)) (1001	pts		99.0 MHz/			1.0 GHz
							Aborted		23:02:21
23:02:22 10.	11.2017								
MultiView	Spectrum	*							\bigtriangledown
Ref Level 46. Att	00 dBm Offse 14 dB • SWT	t 42.00 dB = 1 500 ms	RBW 100 kHz VBW 1 MHz	Mode Auto Sw					SGL
1 Frequency S	Sweep			Mode Face En				M1[1]	●1Rm Clrw -43,27 dBm
40 dBm						_		M1[1]	939.180 MHz
30 dBm									
20 dBm									
10 dBm									
10 000									
0 dBm			_						
									1

99.0 MHz/

1001 pts

23:03:34 10.11.2017

-20 dBm

-30 dBm-

-40 dBm

-50 dBm

MI general

1.0 GHz

MultiView	Spectrum	*							\bigtriangledown
Ref Level 46.0 Att	14 dB 🖷 SWT	t 42.00 dB = RI 500 ms VE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	
40 dBm									966.870 MHz
30 dBm									
20 dBm									
20 UBIII									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 abii									
-30 dBm									
-40 dBm									M1
Mall Landson	an Look and the adventual of the	whilemand	e a a autor d'autorité	malumahamanda	mound Markath	moundance	hyphythemerichen	an the product	moundary
-50 dBm	an wanter and	and the marked and							
10.0 MHz	Y		1001 pt	s	99	9.0 MHz/		4343	1.0 GHz 10.11.2017
][]						Aborted		
23:04:47 10.	11.2017								
MultiView	🕤 Spectrum	₩							▽
Att	14 dB 😑 SWT	t 42.00 dB RI 500 ms VI	BWI 100 kHz BWI MHz M	lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	 1Rm Clrw -43.28 dBm
40 dBm									933.240 MHz
30 dBm									
20 dBm									
10 d8m									
10 dBm									

1001 pts

99.0 MHz/

23:06:00 10.11.2017

0 dBm·

-10 dBm

-20 dBm

-30 dBm-

-40 dBm

 wholework

1.0 GHz

MultiView	🗄 Spectrum	¥							∇
Ref Level 46 Att	20 dB 🖷 SWT	et 42.00 dB = R 500 ms V	NBW 100 kHz /BW 1 MHz M	Iode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw 21.95 dBm
40 dBm									2.65530 GHz
30 dBm									
20 dBm								M1 T	
10 dBm									
0 dBm									
o ubm									
-10 dBm									
-20 dBm									
-30 dBm									
								\mathcal{A}	
tto dem	how when the second	and the second days	municipungun	Annummer	early will mark the way	www.www.dhuterty/Vando wad	Alitan a nation a national da	al Jankasaan	waddabellow Warrell
			· ·						
-50 dBm			1001 pt		20	0.0 MHz/			3.0 GHz
1.0 GHZ	Ĭ		1001 pt	3	20		Aborted	 490	10.11.2017
00.00.00 10	44 0047								
23:02:39 10	.11.2017								
		*							
MultiView Ref Level 46	Spectrum	et 42.00 dB = R	RBW 100 kHz						SGL
MultiView	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz IBW 1 MHz M	1ode Auto Swee	p	1			●1Rm Clrw
MultiView Ref Level 46 Att	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz YBW 1 MHz M	1ode Auto Swee	p			M1[1]	●1Rm Clrw
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	1ode Auto Swee	p			M1[1]	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz IBW 1 MHz N	Node Auto Swee	P			M1[1]	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	KBW 100 kHz KBW 1 MHz M	Aode Auto Swee	P			M1[1]	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	P			M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	NBW 100 kHz NBW 1 MHz N	Node Auto Swee	P			M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	P			M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Mode Auto Swee				M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz RBW 1 MHz N	Node Auto Swee	P			M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz M	Node Auto Swee	P			M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz M	Node Auto Swee				M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz N	Node Auto Swee	P			M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offso 20 dB SWT	et 42.00 dB = R	RBW 100 kHz M	Node Auto Swee	P			M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum 20 dB offs 20 dB SWT weep	et 42.00 dB P R 500 ms V						M1	●1Rm Clrw 22.49 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 20 dB offs 20 dB SWT weep	et 42.00 dB = R		Node Auto Swee	P			M1	• 1Rm Clrw 22.49 dBm 2.65530 GHz
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum 20 dB offs 20 dB SWT weep	et 42.00 dB P R 500 ms V						M1	• 1Rm Clrw 22.49 dBm 2.65530 GHz
MultiView Ref Level 46 • Att 1 1 10 0 0 0 -10 -20 -30 -30 -30 -40	Spectrum 20 dB offs- 20 dB SWT Weep	et 42.00 dB P R 500 ms V				0.0 MHz/		M1	• 1Rm Clrw 22.49 dBm 2.65530 GHz

23:03:52 10.11.2017

MultiView	Spectrum	¥							\bigtriangledown
RefLevel 46 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms		Mode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw 22.40 dBm
40 dBm									2.65730 GHz
30 dBm									
20 dBm								M1	
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm								\mathcal{A}	
-40 dBm								L. Y. marcu	Julia Montal Market
in a coloration	anterlad recorded		- Mar har when the	when the defendence of the	and and a second a	adharwallata, tar. a a	ala manan da da babbandara		
-50 dBm									
1.0 GHz			1001 pt	s	20	0.0 MHz/			3.0 GHz
							Aborted	 490	
23:05:05 10.	.11.2017								
MultiView	Spectrum	¥							∇
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I	RBW 100 kHz VBW 1 MHz M	Mode Auto Swee	p				SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			м1[1]	●1Rm Clrw 22.21 dBm
MultiView Ref Level 46 • Att	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1[1]	●1Rm Clrw 22.21 dBm
MultiView 3 Ref Level 46 Att 1 Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Node Auto Swee	р			M1[1]	●1Rm Clrw 22.21 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	р				●1Rm Clrw 22.21 dBm
MultiView 3 Ref Level 46 Att 1 Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1[1]	●1Rm Clrw 22.21 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView Batt Ref Level 46 40 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView Batt Ref Level 46 40 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView Batt Ref Level 46 40 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView B Ref Level 46 40 Att 30 10 dBm 30 10 dBm 30 -10 dBm 30	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	p			M1	●1Rm Clrw 22.21 dBm
MultiView B Ref Level 46 40 Att 30 30 dBm 30 20 dBm 30 10 dBm 30 -10 dBm 30	5.00 dBm Offse 20 dB SWT	t 42.00 dB = I		Mode Auto Swee	P			M1	●1Rm Clrw 22.21 dBm
MultiView B Ref Level 46 40 Att 30 1 Frequency S 40 dBm 30 dBm 30 20 dBm 30 10 dBm 30 -10 dBm 30 -20 dBm 30	Spectrum .00 dBm Offsee 20 dB SWT SWCEP	tt 42.00 dB ● F 500 ms ● F						M1	●1Rm Clrw 22.21 dBm
MultiView B Ref Level 46 40 Att 30 10 dBm 30 10 dBm 30 -10 dBm 30	Spectrum .00 dBm Offsee 20 dB SWT SWCEP	tt 42.00 dB ● F 500 ms ● F						M1	• 1Rm Cirw 22.21 dBm 2.65730 GHz
MultiView B Ref Level 46 40 Att 30 1 Frequency S 40 dBm 30 dBm 30 20 dBm 30 10 dBm 30 -10 dBm 30 -20 dBm 30	Spectrum .00 dBm Offsee 20 dB SWT SWCEP	tt 42.00 dB ● F 500 ms ● F						M1	• 1Rm Cirw 22.21 dBm 2.65730 GHz
MultiView Bef Level 46 • Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm -30 dBm	Spectrum .00 dBm Offsee 20 dB SWT SWCEP	tt 42.00 dB ● F 500 ms ● F				0.0 MHz/		M1	• 1Rm Clrw 22.21 dBm 2.65730 GHz

23:06:17 10.11.2017

MultiView	Spectrum	¥							
Att	00 dBm Offset 14 dB ● SWT	t 42.00 dB ● RI 500 ms VI	BWI100 kHz BWI1 MHz №	1ode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -39.05 dBm
40 dBm									26.2300 GHz
30 dBm									
00 00.0									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
00 d0									
-20 dBm									
-30 dBm									
									M1
-40 dBm									and the during the
-50'dBm	4 mer how when a me	, nl	and when a second sector of the	un manunder	Munumun	mun and and and and and and and and and an	Murannon	when when the	and a second
3.0 GHz		Chi confinitio	1001 pt	5	2	.35 GHz/			26.5 GHz
)[-			Aborted		10.11.2017
23:02:57 10.	11.2017								
		¥							∇
MultiView Ref Level 46.	Spectrum 00 dBm Offset	t 42.00 dB = RI	BW 100 kHz	tede Auto Supor					SGL
MultiView	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	1ode Auto Sweep		1	1	MIGI	•1Rm Clrw
MultiView Ref Level 46. Att	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	1ode Auto Sweep	,			M1[1]	•1Rm Clrw
MultiView R Ref Level 46. Att I Frequency S	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView R Ref Level 46. Att I Frequency S	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView 3 Ref Level 46. Att T Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweer				M1[1]	●1Rm Clrw -38.85 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView 8 Ref Level 46, Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView 8 Ref Level 46, Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView B Ref Level 46, Att 40 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.85 dBm 26.1600 GHz
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.85 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum O dBm Offset 14 dB SWT weep	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.85 dBm 26.1600 GHz
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm 30 dBm	OO dBm Offset	t 42.00 dB = RI	BW 100 kHz N					M1[1]	• 1Rm Clrw -38.85 dBm 26.1600 GHz
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm 30 dBm	Spectrum O dBm Offset 14 dB SWT weep	t 42.00 dB = RI	BW 100 kHz M			35 GHz/		M1[1]	• 1Rm Clrw -38.85 dBm 26.1600 GHz

23:04:09 10.11.2017

0 d8m			الاسترسینی مدینا ماسیا 1001 pt:	man and a second and a	/ Manual Manua Manual Manual		Multiple and the second	and a start and the second	26.5 Gł
0 dBm			الم	month and a second of the	man	- Mar Marine Contraction	Merringen	and the second	and a second
0 dBm							n		Munum
0 dBm									
) dBm									
) dBm									
I dBm		1	1						
I dBm	1								
Bm									
dBm			+						
dBm									
dBm									
dBm			+						26.2530
								M1[1]	-38.73 d
it requency S	14 dB SWT	500 ms V	'BW 1 MHz M	lode Auto Sweep)				●1Rm Cli
ef Level 46.	00 dBm Offse	et 42.00 dB ∈ P							s
ultiView	Spectrum								
05:22 10	11.2017								
							Abbreau		
0 GHz	Y		1001 pt	s	2	.35 GHz/	-		26.5 G
		W.	1001						04 5 4
dBm	www.	4P	and the second second	harrow my among	Monwoor	menonenholle	and march a sound by the	Mar m	~~ ×
	L .	Л							
dBm									
dBm									
dBm									
) dBm									
Bm									
dBm									
dBm									
dBm		1	1						
									26.1360 (
dBm								M1[1]	-38.73 c
		500 ms V	'BW 1 MHz M	lode Auto Sweep)				●1Rm Clr
	14 dB 😑 SWT		BW 100 kHz						S
Frequency S		500 ms V	BW 1 MHz M	lode Auto Sweer	b				

23:06:35 10.11.2017

20M -2680MHz-Port 1~4:

	t 42.00 dB ● RI 500 ms VE	BW 100 kHz 3W 1 MHz M	1ode Auto Sweep					SGL
Frequency Sweep								01Rm Clrw
							M1[1] -42.31 dBr 523.00 kH
D dBm								
) dBm								
D dBm								
) dBm								
dBm								
0 dBm								
0 dBm								
0 dBm								
0 d8 d9								
v I								
io dBm - upwaamwww.www.	maprovent	mappendiation	mannant	Million and and and and and and and and and an	www.www.www.www	- Ormanth white work	handerstand	whythere where the
.0 kHz		1001 pt	s	99	9.1 kHz/			10.0 MH
	- ₩							
tultiView # Spectrum Ref Level 46.00 dBm Offse Att 14 dB • SWT	et 42.00 dB = RI	BW 100 kHz 3W 1 MHz M	1ode Auto Sweep					
AultiView 🕀 Spectrum Ref Level 46.00 dBm Offse Att 14 dB • SWT	et 42.00 dB = RI	BW 100 kHz 3W 1 MHz M	1ode Auto Sweep				M1[1]	●1Rm Cirw -41,16 dB
Spectrum Ref Level 46.00 dBm Offse Att 14 dB = SWT C Frequency Sweep	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
AultiView D Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT C Frequency Sweep	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
AultiView D Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT C Frequency Sweep	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
IultiView Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT IC Frequency Sweep I dBm I dBm	et 42.00 dB = RI	BW 100 kHz 3W 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
IultiView Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT IC Frequency Sweep I dBm I dBm	et 42.00 dB = RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
IultiView Spectrum Ref Level 46.00 dBm Offse tut 14 dB SWT C State SWT Frequency Sweep I dBm I dBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
IultiView Spectrum Ref Level 46.00 dBm Offse tut 14 dB SWT C State SWT Frequency Sweep I dBm I dBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
IultiView Spectrum Ref Level 46.00 dBm Offse Att 14 dB WT C G G Frequency Sweep idBm IdBm idBm IdBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT CC Idem Idem 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
IultiView D Spectrum Ref Level 46.00 dBm Offse Nut 14 dB SWT C Frequency Sweep dBm dBm dBm dBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweer				M1[1]	●1Rm Clrw -41,16 dB
Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT C 14 dB SWT D dBm 0 dBm 0 dBm D dBm 0 dBm 0 dBm D dBm 0 dBm 0 dBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT C 14 dB SWT D dBm 0 dBm 0 dBm D dBm 0 dBm 0 dBm D dBm 0 dBm 0 dBm	et 42.00 dB = RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT CC Frequency Sweep Image: Sweet and Sweet	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
AultiView :: Spectrum Ref Level 46.00 dBm Offse Aut 14 dB • SWT CC Frequency Sweep 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Cirw -41,16 dB
AultiView Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT C Frequency Sweep 0 dBm 0 dBm	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41,16 dB
Ref Level 46.00 dBm Offse	et 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -41.16 dB
AultiView Spectrum Ref Level 46.00 dBm Offse Att 14 dB SWT C Frequency Sweep 0 dBm 0 dBm	et 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep					SGL •1Rm Clrw

23:34:52 10.11.2017

MultiView	Spectrum	¥							∇
Att	i0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE 500 ms VE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency Sv	weep								01Rm Clrw
								M1[1]	-40.61 dBm 513.00 kHz
40 dBm									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 d8m									
V									
-50 dBm	ewanie Miertan Dea	per monte with	www.www.www.	name and and and	whomene	indread magned	where the the second	hourseman	ol and a second second
9.0 kHz	1		1001 pt	S	99	9.1 kHz/			10.0 MHz
							Aborted		
23:36:04 10.1	1.2017								
MultiView 8									
Ref Level 46.0		t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep)				SGL
Ref Level 46.0 Att DC	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3₩ 100 kHz 3₩ 1 MHz M	lode Auto Sweep)				SGL ●1Rm Clrw
Ref Level 46.0 Att DC 1 Frequency Sv	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw
Ref Level 46.0 Att DC 1 Frequency Sv	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency SV 40 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency SV 40 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency SV 40 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	W 100 kHz W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.84 dBm
Ref Level 46.0 Att DC I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE	3W 1 MHz M						•1Rm Clrw -40.84 dBm 523.00 kHz
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -50 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = RE							•1Rm Clrw -40.84 dBm 523.00 kHz

23:37:17 10.11.2017

MultiView	🗄 Spectrum	(L L
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = F 500 ms V	NBW 100 kHz NBW 1 MHz M	lode Auto Sweep					SGL
Frequency S								M1[1]	 1Rm Clrw -43.73 dB
0 dBm									930.270 M
0 dBm									
0 dBm									
0 dBm									
dBm									
10 dBm									
20 dBm									
30 dBm									
40 dBm									M1
	a constante		when the second was	www.	mannahanpua	un velom pertonen	hummenter	mound	www.
50 dBm	Jaraha Marin	anter and the second second							
1/4						9.0 MHz/			1.0 GH
0.0 MHz	11.2017		1001 pt:	S	9		Aborted 🚺		10.11.2017
40 10.0 MHz 3:33:56 10. MultiView	Spectrum			S	<u>y</u>		Aborted	 470	
10.0 MHz 3:33:56 10. MultiView Ref Level 46.0 Att	OO dBm Offse	t 42.00 dB = F	88W 100 kHz	s lode Auto Sweep			Aborted 🧧	aya	
(4) 10.0 MHz 3:33:56 10. MultiView Ref Level 46.0 Att Frequency S	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz				Aborted	M1[1]	SG • 1 Rm Clrw -43,75 dB
(4) 10.0 MHz 3:33:56 10. MultiView Ref Level 46.0 Att Frequency S	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz				Aborted		SG • 1 Rm Clrw -43,75 dB
10.0 MHz 3:33:56 10. MultiView 8 Ref Level 46.4 Att Frequency S	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz				Aborted		●1Rm Clrw -43.75 dB
(4) 10.0 MHz 3:33:56 10. MultiView E Ref Level 46.(Att Frequency S 0 dBm 0 dBm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz				Aborted		SGI ●1Rm Cirw -43,75 dB
10.0 MHz 3:33:56 10. MultiView E RefLevel 46.4 Att Frequency S 10 dBm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						●1Rm Clrw -43.75 dB
(4) 10.0 MHz 3:33:56 10. 3:33:56 10. MultiView 8 Ref Level 46.(Att Frequency S 0 dBm 0 dBm 0 dBm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						SGI ●1Rm Cirw -43,75 dB
10.0 MHz 3:33:56 3:33:56 10.0 MHz 3:33:56 10.0 MHz	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz				Abortad		●1Rm Clrw -43.75 dB
10.0 MHz 10.0 MHz 3:33:56 10.0 MHz 3:33:56 10.0 MHz	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						●1Rm Clrw -43.75 dB
(4) 10.0 MHz 10.0 MHz 3:33:56 10. MultiView E Ref Level 46.0 Att Frequency S 0 d8m 0 d8m 0 d8m	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						SGI ●1Rm Cirw -43,75 dB
10.0 MHz 10.0 MHz 3:33:56 10.0 MHz 3:33:56 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MBm 10.0 MBm 10.0 MBm 10.0 MBm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						●1Rm Clrw -43.75 dB
(/) 10.0 MHz 10.0 MHz 3:33:56 10.0 MHz 3:33:56 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10 dBm 10 dBm 10 dBm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						●1Rm Clrw -43.75 dB
10.0 MHz 10.0 MHz 3:33:56 10.0 MHz 3:33:56 10.0 MHz 10.0 MHz	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						SGI ●1Rm Clrw -43.75 dB
10.0 MHz 10.0 MHz 3:33:56 10.0 MHz 3:33:56 10.0 MHz 10.0 MHz	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						SGI ●1Rm Clrw -43.75 dB
10.0 MHz 10.0 MHz 3:33:56 10.0 MHz 3:33:56 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10.0 Mm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						● 1Rm Clrw -43.75 dB 968.850 MH
10.0 MHz 10.0 MHz 3:33:56 10.0 MHz 3:33:56 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10.0 MHz 10.0 Mm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz						● 1Rm Clrw -43.75 dB 968.850 MH
(/4) 10.0 MHz 3:33:56 3:33:56 10.0 MHz Status Ref Level 46.0 Att Frequency S 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm 20 dBm 30 dBm	OO dBm Offse	t 42.00 dB = F	RBW 100 kHz	lode Auto Sweep				M1[1]	SGL

MultiView									
Ref Level 46. Att	00 dBm Offse 14 dB ● SWT	t 42.00 dB ⊜ RE 500 ms VE	BW 100 kHz BW 1 MHz M	Inde Auto Sween					SGL
1 Frequency S			1		1		1		O1Rm Clrw
40 dBm								M1[1]	-43.72 dBm 915.440 MHz
40 UBM									
30 dBm									
30 UBIII									
00.40-2									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
					montheman	WWW.ILongHarrisath	Mummhmin	production of the second	MI Northern Marines
50 dBm	manufrante	moundary	moun you bolor	Mr. and and A	N 10 N N N N N N N N N N N N N N N N N N	a collect a control to	200 Jan 6		
ATT T)	9								
10.0 MHz	0		1001 pts	s	99	9.0 MHz/			1.0 GHz
Areh.	Υ		1001 pt	s	99	9.0 MHz/	Aborted	100 B	1.0 GHz 10.11.2017
10.0 MHz)[1001 pt	S	99	9.0 MHz/	Aborted 🚺	11111 AVA	1.0 GHz 10.11.2017
Areh.	11.2017		1001 pt:	S	99	9.0 MHz/	Aborted		1.0 GHz
10.0 MHz 23:36:22 10.	11.2017 Spectrum		1001 pt:	S	9!	9.0 MHz/	Aborted	490	1.0 GHz 10.11.2017 ▼
23:36:22 10.	Spectrum	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017
10.0 MHz 23:36:22 10.	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	s Iode Auto Sweep		9.0 MHz/	Aborted		10.11.2017 21:30:21
10.0 MHz 10.0 MHz 23:36:22 10. MultiView B Ref Level 45.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted	ници ФО м1[1]	10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 23:36:22 10. MultiView 8 Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ \$GL ●1Rm Clrw
10.0 MHz 10.0 MHz 23:36:22 10. MultiView 4 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView B Ref Level 45.1 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView 1 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView 4 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView 1 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView 1 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10.0 MHz Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10.0 MHz Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm
10.0 MHz 10.0 MHz 23:36:22 10. MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz			9.0 MHz/	Aborted		10.11.2017 ▼ SGL ●1Rm Cirw -43.73 dBm

1001 pts

99.0 MHz/

23:37:34 10.11.2017

-40 dBm

-50 dBm

Ju

1.0 GHz

MultiView		₩								\bigtriangledown
Ref Level 46 Att	5.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F 500 ms N	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	p					SGL
1 Frequency S	Sweep								M1[1]	 1Rm Clrw 22.26 dBm
40 dBm										2.67930 GHz
30 dBm										
								M1		
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
								photo		
1 th day many	munchaman	wy hybridden	human	moundy	monghtenerset	amor wanted to the	<mark>, Anacherallyanderande</mark> r	ed l	and the state of t	and a straight the second straight the
-50 dBm										
1.0 GHz	Υ		1001 pt	s	20	0.0 MHz/	a la contra de la		100	3.0 GHz
							Aburteu		NAME OF TAXABLE	
23:34:14 10.	11 2017									
2010111110										
MultiView		*								
MultiView Ref Level 46	Spectrum	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					SGL
MultiView	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz IBW 1 MHz M	Mode Auto Swee	р	1			M1[1]	●1Rm Clrw
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw
MultiView Ref Level 46 Att T Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	p				M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att T Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	p			M1	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P			141	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att TFrequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att TFrequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p			MI	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p			MI	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee				MI	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	P			M13	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee				M1 X	M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M		P				M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p			M1 X	M1[1]	• 1Rm Clrw 22.16 dBm 2.67930 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 42.00 dB = F 500 ms							M1[1]	●1Rm Clrw 22.16 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 20 dB offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms							M1[1]	• 1Rm Clrw 22,16 dBm 2.67930 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	Spectrum 20 dB offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms							M1[1]	• 1Rm Claw 22.16 dBm 2.67930 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 20 dB offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms				0.0 MHz/				• 1Rm Clrw 22,16 dBm 2.67930 GHz

23:35:26 10.11.2017

MultiView	🗄 Spectrum	¥								∇
Ref Level 46. Att	.00 dBm Offse 20 dB = SWT	et 42.00 dB ● R 500 ms V	NBW 100 kHz /BW 1 MHz M	Iode Auto Swee	p					SGL
1 Frequency S	weep								M1[1]	• 1Rm Clrw 22.45 dBm
40 dBm										2.68530 GHz
30 dBm										
								N	1	
20 dBm								ſ		
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-20 ubiii-										
-30 dBm										
								www		
-40 dBm	the state of the days	ha ha ha an talan sa ha ta ta an	monound	and the second	emulia en entra altra	and and the second second second	and the second second	ſ),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	and mound and
annesses all on the policy of	. A white she was a set	anoundrawheath	Margh all and a second	monor	annardhhimter hi					
-50 dBm										
1.0 GHz			1001 pt	S	20	0.0 MHz/				3.0 GHz
][Aborted		100	10.11.2017
23:36:39 10.	11.201/									
										
MultiView	Spectrum		RBW 100 kHz							SGL
Ref Level 46.	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz /BW 1 MHz M	1ode Auto Swee	p					SGL ●18m Clow
MultiView Ref Level 46.	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz /BW 1 MHz M	Aode Auto Swee	p				M1[1]	●1Rm Clrw 22.14 dBm
Ref Level 46.	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz KBW 1 MHz N	/lode Auto Swee	p				M1[1]	•1Rm Clrw
MultiView B Ref Level 46. Att T Frequency S 40 dBm-	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	XBW 100 kHz YBW 1 MHz M	1ode Auto Swee	p				M1[1]	●1Rm Clrw 22.14 dBm
MultiView Ref Level 46. Att Frequency S	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz IBW 1 MHz N	Node Auto Swee	p					●1Rm Clrw 22.14 dBm
MultiView E Ref Level 46. • Att 1 Frequency S 40 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz M	1ode Auto Swee	P			l.		●1Rm Clrw 22.14 dBm
MultiView B Ref Level 46. Att T Frequency S 40 dBm-	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	XBW 100 kHz /BW 1 MHz M	Node Auto Swee	p			N, N		●1Rm Clrw 22.14 dBm
MultiView P Ref Level 46. • Att 1 Frequency S 40 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	XBW 100 KHz /BW 1 MHz M	Aode Auto Swee	P			Ņ		●1Rm Clrw 22.14 dBm
MultiView E Ref Level 46. • Att 1 Frequency S 40 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	P			N P		●1Rm Clrw 22.14 dBm
MultiView P Ref Level 46. Att 1 Frequency S 40 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Node Auto Swee	P			N N		●1Rm Clrw 22.14 dBm
MultiView E Ref Level 46. Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz IBW 1 MHz N	Node Auto Swee	p					●1Rm Clrw 22.14 dBm
MultiView E Ref Level 46. Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz M	Node Auto Swee	P			N, N		●1Rm Clrw 22.14 dBm
MultiView Ref Level 46. • Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm 0 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz M	Node Auto Swee	P			N N F		●1Rm Clrw 22.14 dBm
MultiView Ref Level 46. • Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm 0 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	NBW 100 kHz M	Node Auto Swee	P			N N N		●1Rm Clrw 22.14 dBm
MultiView Perfector Ref Level 46. • Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	XBW 100 kHz M	Node Auto Swee	P			N P		●1Rm Clrw 22.14 dBm
MultiView Perfector Ref Level 46. • Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	XBW 100 KHz M	Node Auto Swee						●1Rm Clrw 22.14 dBm
MultiView B Ref Level 46. Att 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = R	XBW 100 KHz M	Node Auto Swee	P			N. N		● 1Rm Clrw 22.14 dBm 2.68730 GHz
MultiView B Ref Level 46. Att 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 42.00 dB P R 500 ms V						N. N		• 1Rm Clrw 22.14 dBm
MultiView B Ref Level 46. Att 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm -10 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 42.00 dB P R 500 ms V						N. N		● 1Rm Clrw 22.14 dBm 2.68730 GHz
MultiView B Ref Level 46. Att 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm -10 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 42.00 dB P R 500 ms V						N. C.		● 1Rm Clrw 22,14 dBm 2.68730 GHz
MultiView B Ref Level 46. 40 Att 30 10 dBm 30 20 dBm 30 10 dBm 30 -10 dBm 30 -30 dBm 30 -30 dBm 30	Spectrum .00 dBm Offse 20 dB SWT weep	et 42.00 dB P R 500 ms V				0.0 MHz/		N N N N N N N N N N N N N N N N N N N		● 1Rm Clrw 22,14 dBm 2.68730 GHz

23:37:52 10.11.2017

MultiView	Spectrum	₩							∇
RefLevel 46. Att	14 dB 🔿 SWT	: 42.00 dB ● I 500 ms	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw -39.17 dBm
40 dBm									26.1600 GHz
00 dB									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o abiii									
-10 dBm									
-20 dBm									
-30 dBm									
									M1
-40 dBm									Hudden
martonia	moremontene		with a support support	many marine	mound	un durant was	howwww.	whyell-getweeter	ward all an
-50 dBm		have been addressed	1001 pt	5		35 GHz/			26.5 GHz
510 GHZ	Ĭ		1001 pt	3	2		Aborted	1111) AM	10.11.2017
23:34:31 10.	11 2017								
	11.2017								
		*							∇
MultiView Ref Level 46.	OO dBm Offset	: 42.00 dB = 1	RBW 100 kHz						SGL
MultiView Ref Level 46. Att	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz M	Iode Auto Sweep)				•1Rm Clrw
MultiView Ref Level 46. Att	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep				M1[1]	•1Rm Clrw
MultiView Ref Level 46. Att I Frequency S	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView Ref Level 46. Att I Frequency S	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweer				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz V	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz V	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz V	lode Auto Sweep				M1[1]	●1Rm Clrw -39.02 dBm
MultiView Barl Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm	Spectrum Offset 14 dB = SWT Weep	: 42.00 dB = 1	RBW 100 kHz V					M1[1]	●1Rm Clrw -39.02 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = 1	RBW 100 kHz VBW 1 MHz N					M1[1]	●1Rm Clrw -39.02 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -20 dBm 30 dBm -30 dBm -30 dBm	Spectrum Offset 14 dB = SWT Weep	: 42.00 dB = 1	RBW 100 kHz V VBW 1 MHz N			35 GHz/		M1[1]	●1Rm Clrw -39.02 dBm

23:35:44 10.11.2017

MultiView		*							▽
Att	.00 dBm Offset 14 dB = SWT	: 42.00 dB RE 500 ms VE	BWI 100 kHz BWI 1 MHz M	lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw -38.35 dBm
40 dBm									26.2070 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-10 0811									
-20 dBm									
-30 dBm									
									M1
-40 dBm		л							No. Mr. Marker
-50'dBm	and when and the same		and and a state of the product of the	manymour	munour	March Julian horan	har and the second second	muludum	~~ ~~
3.0 GHz			1001 pt	s	2	.35 GHz/			26.5 GHz
][]						Aborted	I III III III	10.11.2017 23:36:56
	11 0017								
23:36:57 10.	.11.2017								
		¥							∇
MultiView Ref Level 46.	••• Spectrum	: 42.00 dB = RE	BW 100 kHz						SGL
MultiView	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
MultiView Ref Level 46. Att 1 Frequency S	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL
MultiView Ref Level 46. Att	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm dBm d0 dBm l0 dBm l0 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm dBm d0 dBm l0 dBm l0 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -38.69 dBm 26.1600 GHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,69 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offset 14 dB SWT	: 42.00 dB = RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -38.69 dBm 26.1600 GHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	Spectrum 00 dBm Offset 14 dB • SWT weep	: 42.00 dB = RE	3W 1 MHz M						SGL • 1Rm Clrw -38.69 dBm 26.1600 GHz 26.1600 GHz Mi
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offset 14 dB • SWT weep	: 42.00 dB = RE	BW 100 kHz 3W 1 MHz M						SGL •1Rm Clrw -38.69 dBm 26.1600 GHz

23:38:09 10.11.2017

Double Carrier: 5M+5M-2640MHz-Port1~4:

1ultiView 🕀 Spe	ctrum 🐳							
	Offset 42.00 dB ● F							sg
C	● SWT 500 ms \	'BW 1 MHz M	lode Auto Sweep					
Frequency Sweep							MIL	●1Rm Clrw
D dBm							MIL	1] -40.71 dE 513.00 k
) dBm								
) dBm								
) dBm								
dBm								
0 dBm								
0 dBm								
0 dBm								
0 dBm								
io dBm	Whitework white white	www.alleyper-fearbara				hankerender	prophyran werys	na and the second
.0 kHz		1001 pt	s	99	9.1 kHz/			10.0 MH
						Aborted		08:37:52
37:53 13.11.201	7							

MultiView	Spectrum	₩							
Ref Level 46. Att	00 dBm Offse 14 dB = SWT		3W 100 kHz 3W 1 MHz M	ada Auto Sween					SGL
DC		500 ms VL		ode Adio Sweep					
1 Frequency S	weep							M1[1]	●1Rm Clrw -40.08 dBm
40 dBm									513.00 kHz
30 dBm									
SO UDIN									
20 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
A									
-30 dBm									
-40 d8m									
<i>v</i> ∖									
-50 dBm	u van hunnelikale	Maria Maria	myymmut	MALAN AND AND AND AND AND AND AND AND AND A	Manufrought herbicont moves.	and a charded with market	and the second		un wanter
9.0 kHz	Longe and the fail of	- 0.000 of 0000000 00	1001 pts			9.1 kHz/	n in den notre file die		10.0 MHz
	Υ Γ		2001 pt	-			Aborted		13.11.2017
L							_		

08:39:06 13.11.2017

	😁 Spectrur	ո ⊛[\bigtriangledown
Ref Level 46 Att	5.00 dBm Offe 14 dB = SW	et 42.00 dB = 500 ms	RBW 100 kHz VBW 1 MHz M	1ode Auto Sweep	,				SG
c Frequency									• 1Rm Clrv
								M1[1]	
dBm									513.00 K
dBm									
UBIII									
) dBm									
dBm									
IBm									
) dBm									
) dBm									
) dBm									
1.001									
р свт									
dBm	a specific the second show	Varallymaar		Warmer March Plan	phone and the state of	unununum	monphism	Manuperenting	manghand
0 kHz			1001 pt	S	99	9.1 kHz/			10.0 M
ultiView	Spectrur								
ultiView ef Level 46 tt		et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep	,				
ultiView ef Level 46 tt	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep	,				S ●1Rm Clr
ultiView ef Level 46 tt c requency	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep	,			M1[1]	●1Rm Clr -40.37 c
ultiView ef Level 46 tt c requency	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	10de Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 tt requency	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 tt requency	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep	,			M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 tt c requency dBm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep	,			M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 c requency dBm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep	,			M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 c requency dBm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 c requency dBm dBm dBm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 C requency dBm dBm dBm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 c requency dBm dBm dBm bm bm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz N	fode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 c requency dBm dBm dBm bm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz N	tode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 the set of t	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 the set of t	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz N	lode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ef Level 46 c requency dBm dBm dBm dBm dBm dBm dBm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	•1Rm Cir -40.37 d
ultiView ultiView ultiView tt def Level 46 C requency dem	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz VBW 1 MHz N	fode Auto Sweep				M1[1]	●1Rm Cir -40.37 d
ultiView ultiView ultiView tt def Level 46 C requency dem	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz N	fode Auto Sweep				M1[1]	●1Rm Cir -40,37 d
	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	VBW 1 MHz N	tode Auto Sweep					•1Rm Cirt -40.37 di 513.00 k
ultiView ef Level 46 c requency dBm	5.00 dBm Offe 14 dB • SW	et 42.00 dB =	RBW 100 kHz N						●1Rm Cir -40,37 d

MultiView	Spectrum								\bigtriangledown
Ref Level 46.0 Att	14 dB 🖷 SWT	et 42.00 dB ● RE 500 ms VE		1ode Auto Sweep					SGL
1 Frequency S	weep							M1[1]	
40 dBm		+						+	940.160 MHz
30 dBm								I	
30 ubm									
20 dBm		+							
10 dBm									
0 dBm			+					i	ļ!
-10 dBm									
-20 dBm				ļ	<u> </u>			i	ļ
-30 dBm		+						<u> </u>]	
-40 dBm									
					ander on the march	Line Loophers and the same	and the second s		munolumant
-50 dBm	- deren yn werder we	WMAN And Managerta	www.www.whoww	phrough manual a ut	Alebrand a stration	- And Angel Annal	M. Marian	alydddyrallar allar a e	
10.0 MHz			1001 pts	.S	99	9.0 MHz/			1.0 GHz
	Γ						Aborted		08:38:09
08:38:10 13.:									
Ref Level 46.0		1							SGL
Att 1 Frequency S	14 dB 🖷 SWT			1ode Auto Sweep					O1Rm Clrw
								M1[1]	
40 dBm									
30 dBm				ļ'	<u> </u>			I	
20 dBm									
10 dBm		<u> </u>	i	ļ	<u> </u>				
0 dBm			'	·'		[']	 	¹	<u> </u>

1001 pts

99.0 MHz/

08:39:23 13.11.2017

-10 dBm-

-20 dBm

-30 dBm-

-40 dBm-

 M1 White me

1.0 GHz

MultiView	Spectrum	*							
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI 500 ms VI	BWI 100 kHz BWI 1 MHz M	lode Auto Sweer)				SGL
1 Frequency S	Sweep	0001110							O1Rm Clrw
40 dBm								M1[1]	-43.90 dBm 956.980 MHz
10 0000									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-to abiii					under a			1	M1 mynowed twee
-50 dBm	and the second second	manham	www.whitehand	mound	Work warmer	Numprunumpr	letter of the start of the second s	hours and a second	
10.0 MHz			1001 pt	s	Q	9.0 MHz/			1.0 GHz
	Ύ		1001 pt	5			Aborted		13.11.2017
08:40:36 13.									
	11.2017								
MultiView	Spectrum		BW 100 bH						
Ref Level 46. Att	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
MultiView Ref Level 46.	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
Ref Level 46. Att	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweer				M1[1]	●1Rm Clrw -43.66 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView Ref Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.66 dBm
MultiView Ref Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm	OO dBm Offse	t 42.00 dB = RI		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.66 dBm
MultiView B Ref Level 46.t 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -20 dBm 30 dBm	OO dBm Offse 14 dB ● SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.66 dBm
MultiView B Ref Level 46.t 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -20 dBm 30 dBm	OO dBm Offse 14 dB ● SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	● 1Rm Clrw -43,66 dBm 921.370 MHz
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offse 14 dB ● SWT	t 42.00 dB = RI		lode Auto Sweep					●1Rm Clrw -43,66 dBm 921.370 MHz
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offse 14 dB ● SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	● 1Rm Clrw -43,66 dBm 921.370 MHz
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm -30 dBm	OO dBm Offse 14 dB ● SWT	t 42.00 dB = RI							● 1Rm Clrw -43,66 dBm 921.370 MHz

08:41:49 13.11.2017

MultiView	🗉 Spectrum	₩]							∇
RefLevel 40 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms - N		Node Auto Swee	р				SGL
1 Frequency	Sweep							M1[1]	●1Rm Clrw 24.48 dBm
40 dBm									2.62340 GHz
00 Jp.,									
30 dBm								M1	
20 dBm									
10 dBm									
0 dBm									
o ubiii									
-10 dBm									
-20 dBm									
-30 dBm									
50 dbiii								I MA	
_{ĸ7} 4Q.dBm J	an a hour should be	م. مىلاراتىلارىلارىلارىيەر بىرىكى	Lower of Ballery along	nnamentendrikker	Mulupunny	Mayrovander	alanta and and a factor of the second se	ty w w on where the	www.www.wyhow
			a defensed in our						
-50 dBm									
1.0 GHz	Υ		1001 pt	s	20	0.0 MHz/	Aborted		3.0 GHz 13.11.2017
08-28-28 12	11 2017								
08:38:28 13	.11.2017								
MultiView Ref Level 4			RBW 100 kHz						SGL
Ref Level 46 Att	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz M	Mode Auto Swee	p				⊽ SGL ●1Rm Clrw
Ref Level 40 Att 1 Frequency :	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p			M1[1]	●1Rm Clrw 25.23 dBm
Ref Level 46 Att	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p			M1[1]	●1Rm Clrw 25.23 dBm
Ref Level 40 Att 1 Frequency :	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 40 Att 1 Frequency 40 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		viode Auto Swee	P			M1[1]	●1Rm Clrw 25.23 dBm
Ref Level 40 Att 1 Frequency 40 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 4t Att I Frequency 40 dBm 30 dBm 20 dBm 20 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 44 Att 1 Frequency 40 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 4t Att I Frequency 40 dBm 30 dBm 20 dBm 20 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		viode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 4t Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 4t Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 4/ Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	P				●1Rm Clrw 25.23 dBm
Ref Level 4t Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 4/ Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				●1Rm Clrw 25.23 dBm
Ref Level 4t 1 Frequency: 40 dBm 30 dBm 20 dBm 9 10 dBm 9 -10 dBm 9	5.00 dBm Offse 20 dB = SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				• 1Rm Clrw 2.5.23 dBm 2.65730 GHz
Ref Level 4t Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Soo dBm Offse 20 dB SWT Sweep	st 42.00 dB = F 500 ms							●1Rm Clrw 25.23 dBm
Ref Level 4t Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm Offse 20 dB SWT Sweep	st 42.00 dB = F 500 ms							● 1Rm Clrw 25.23 dBm 2.65730 GHz
Ref Level 4/ Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Succession States and	st 42.00 dB = F 500 ms							• 1Rm Clrw 25,23 dBm 2,65730 GHz
Ref Level 4t Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Succession States and	st 42.00 dB = F 500 ms				0.0 MHz/			● 1Rm Clrw 25.23 dBm 2.65730 GHz

08:39:41 13.11.2017

MultiView	Spectrum	¥							\bigtriangledown
Ref Level 46 Att	20 dB 🖷 SWT	et 42.00 dB ● P 500 ms V	NBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw 25.18 dBm
40 dBm									2.65730 GHz
30 dBm								M1	
								1	
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
								MA	
	well more a starting the	al Martin Martin and Martin	encondres antes artes antes	Mr. advantitioned	anti-and and the shall be	Manna and and a	welling and a second second	J	Hannahannahannah
			A	adalan adalah di sa sa					
-50 dBm									
1.0 GHz	Y		1001 pt	s	20	10.0 MHz/			3.0 GHz
							Aborted		
08:40:53 13.	.11.2017								
MultiView	Spectrum	*							\bigtriangledown
MultiView		t 42.00 dB ● P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				SGL
MultiView Ref Level 46	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	р			мігії	SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 24.65 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 24.65 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 • Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 24.65 dBm
MultiView 8 Ref Level 46 Att T Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	P				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 • Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	P				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	P				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	ρ 				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	P				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 40 Att 30 10 dBm 30 10 dBm 30 -10 dBm 30	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	p				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● P		Mode Auto Swee	P				SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46	Spectrum Od Bm Offse 20 dB SWT SWeep	tt 42.00 dB ● F 500 ms ♥ V							SGL ●1Rm Clrw 24.65 dBm
MultiView B Ref Level 46 40 Att 30 10 dBm 30 10 dBm 30 -10 dBm 30	Spectrum Od Bm Offse 20 dB SWT SWeep	tt 42.00 dB ● F 500 ms ♥ V			P				SGL • 1Rm Clrw 24.65 dBm 2.65730 GHz
MultiView B Ref Level 46	Spectrum Od Bm Offse 20 dB SWT SWeep	tt 42.00 dB ● F 500 ms ♥ V							SGL • 1Rm Clrw 24.65 dBm 2.65730 GHz
MultiView B Ref Level 46 40 Att 30 10 dBm 30 20 dBm 30 10 dBm 30 -10 dBm 30 -30 dBm 30 -40 dBm 30	Spectrum Od Bm Offse 20 dB SWT SWeep	tt 42.00 dB ● F 500 ms ♥ V		W. M. Maralana (M. M.		0.0 MHz/			SGL • 1Rm Clrw 24.65 dBm 2.65730 GHz

08:42:06 13.11.2017

0 dBm	han the state of t	walling and the second second	میں	manan	pt marganet	.35 GHz/	- marine marine	nitantingthe Malante	26.5 G
0 dBm	Ampana		gall - Second Barder - Second	mana	Marryana	man	- marine mark	not market Mun	W Marken and
0 dBm		1							المعرب المراجع
0 dBm									
		1	1						
I dBm	1								
dBm									
Bm									
dBm									
awitt									
dBm									
dBm									
dBm								<u> </u>	26,1830
								M1[1]	-38,86 a
tt requency S	14 dB 🖷 SW1		VBW 1 MHz M	lode Auto Sweep)				•1Rm Cl
	Spectrur	n	RBW 100 kHz						s
	Con-trees	n 🐳							ſ
38:45 13	11.2017								
							Aborted		13.11.2017
0 GHz			1001 pt	<u> </u>	2	.35 GHz/	l	l	26.5 G
dBm-	and the Vi		and the stand of the	any many	Markan	maria and	- march		
	man	Jul .				لغ عام		All the state of the	
dBm									
ubiii									
dBm									
I dBm									
I dBm									
IBm									
dBm									
dBm									
dBm									
10									
									26,1830 (
dBm								M1[1]	
									O1Rm Clr
tt requency S	14 dB 😑 SW1	et 42.00 dB ● 1 500 ms	VBW 1 MHz M	lode Auto Sweep)				S

08:39:58 13.11.2017

	B Spectrum								▽
Ref Level 46.0 Att	00 dBm Offse 14 dB SWT		BWI100 kHz BWI1 MHzM	Inde Auto Sweer					SGL
Frequency S		500 ms VI		Idde Adto Sweep	,				●1Rm Clrw
								M1[1]	-38.92 dB
D dBm									26.1600 GH
10-1									
dBm									
dBm									
dBm									
3m									
dBm									
dBm									
dBm									
dBm									M
ubili									and the second
	with martin	М		And the second sec	Aug.	and and a start and	Mar mar and a particular	and many man	
dBm	Now Your	and the second sec	and the second state of th	- mound	1. a Mannerska	my			
0 GHz		· ·	1001 pt			.35 GHz/			26.5 GF
41:11 13.	11.2017						Aborted 🚺	11111111111	13.11.2017
	11.2017 Spectrum	×					Aborted 📘	 	13.11.2017
ultiView	Spectrum		BW 100 kHz				Aborted 📕		
Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		SG
ultiView ef Level 46.0	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep)		Aborted		SG
ultiView ef Level 46.0 tt requency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Aborted	M1[1]	●1Rm Clrv -38.71 dE
ultiView ef Level 46.0 tt requency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Aborted		SG ●1Rm Clrv -38.71 dE
ultiView ef Level 46.0 tt requency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep	>		Abortod		SG ●1Rm Clrv -38.71 dE
altiView a ef Level 46.0 tt requency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		●1Rm Clrv -38.71 dE
altiView of Level 46.0 te requency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		SG ●1Rm Clrv -38.71 dE
altiView 8 af Level 46.0 tt requency S i8m	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		SG ●1Rm Clrv -38.71 dE
altiView 8 of Level 46.0 tt requency S JBm JBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		SG ●1Rm Clrv -38.71 dE
altiView 8 Sf Level 46.0 t requency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		SG ●1Rm Clrv -38.71 dE
IltiView 8 of Level 46.0 t requency S IBm IBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		SG ●1Rm Clrv -38.71 dE
IltiView 8 ef Level 46.0 t requency S iBm iBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		●1Rm Clrv -38.71 dE
IltiView 8 If Level 46.0 requency S IBm IBm IBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		SG ●1Rm Clrv -38.71 dE
altiView a of Level 46.0 requency S MBm MBm MBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep			Abortod		SG ●1Rm Clrv -38.71 dE
altiView a of Level 46.0 requency S dBm dBm dBm dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		ode Auto Sweep			Aborted		SG ●1Rm Clrv -38.71 dE
ultiView 8 ef Level 46.0 fem dBm dBm dBm dBm dBm dBm dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					●1Rm Clrv -38.71 dE
ultiView 8 ef Level 46.0 tt requency S d8m d8m d8m m d8m m m m	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG ●1Rm Clrv -38.71 dE
ultiView 8 ef Level 46.0 fBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG ●1Rm Clrv -38.71 dE
ultiView 8 ef Level 46.0 frequency S dBm dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG ●1Rm Clrv -38.71 dE
dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG • 1Rm Clrv -38,71 dB
ultiView 8 ef Level 46.0 tt requency S dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		ode Auto Sweep					SG • 1Rm Clrv -38,71 dB
dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG ●1Rm Clrv -38.71 dE
dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG • 1Rm Clrv -38,71 dB
ultiView 8 ef Level 46.0 frequency S dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG • 1Rm Clrw -38,71 dB
ultiView 8 tef Level 46.0 terequency S dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				MI[1]	13.11.2017 [▼ SG ●1Rm Cirw -38.71 dB 26.4880 Gi
ultiView 8 .ef Level 46.0 46.0 irrequency S 8 dBm 6 dBm 6	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep					SG • 1Rm Clrv -38,71 dB
ultiView 8 ef Level 46.0 frequency S dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				MI[1]	SG • 1Rm Clrw -38,71 dB

08:42:23 13.11.2017

5M+5M-2655MHz-Port1~4:

MultiView	Spectrum	₩							
Ref Level 46.	00 dBm Offse	t 42.00 dB = RB	W 100 kHz	Inda Auto Curro					SGL
Att DC	14 dB ● SWT	SUU MS VB	SWY IMHZ M	lode Auto Sweep					
1 Frequency S	weep							M1[1Rm Clrw 1] -45.42 dBm
40 dBm									513.00 kHz
30 dBm									
20 dBm									
10 dBm									
10 000									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
M1									
-50 dBm	howwwww	he was have a strate was a strategy and the	manum	1 www. aleranday. and a second	munduline	an a	www.	waller ward ward	angendalyangengeng
9.0 kHz			1001 pt	S		9.1 kHz/			10.0 MHz
)[]						Aborted		13.11.2017 17:14:07
17:14:07 13.	11.2017								
	~	¥							
MultiView	Spectrum 00 dBm Offse	t 42.00 dB = RB							SGL
MultiView Ref Level 46. Att DC	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep	,				SGL
MultiView Ref Level 46. Att	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep	,		1	MILII	•1Rm Clrw
MultiView Ref Level 46. Att DC	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView Ref Level 46. Att DC T Frequency S	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep	,			M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC T Frequency S	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView 2 Ref Level 46. Att DC I Frequency S 40 dBm-	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView 2 Ref Level 46. Att DC I Frequency S 40 dBm-	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm- 30 dBm-	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB 500 ms VB		lode Auto Sweep				M1[1]	●1Rm Clrw -46.10 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB = RB				9.1 kHz/			●1Rm Clrw -46.10 dBm

17:15:20 13.11.2017

MultiView 8	Spectrum	¥							∇
	idBm Offse 14 dB ⊜ SWT			lode Auto Sweep	,				SGL
DC 1 Frequency Sw	еер							M1[1]	•1Rm Clrw -46.14 dBm
40 dBm									513.00 kHz
30 dBm									
50 dbiii									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 ¢6m									
60 M 1012									
-50 dBm	www.www.www.www.www.www.www.www.www.ww	ultydituditumiyd	1001 pt	nganta daradadala			hours have a second and a second	andiating and	10.0 MHz
9.0 kHz			1001 pt	5	99	9.1 kHz/	Aborted		13.11.2017
17:16:33 13.11	1.2017								
MultiView ®	Spectrum	¥							
	idBm Offse 14 dB ● SWT			lode Auto Sweep	1				SGL
DC 1 Frequency Swi	еер								01Rm Clrw
40 dBm								M1[1]	-46.25 dBm
30 dBm								M1[1]	-46.25 dBm 513.00 kHz
30 UBIII								M1[1]	
								M1[1]	
20 dBm								M1[1]	
								M1[1]	
								M1[1]	
10 dBm								M1[1]	
10 dBm								M1[1]	
10 dBm								M1[1]	
10 dBm								M1[1]	
10 dBm								M1[1]	
-30 dBm								M1[1]	
10 dBm								M1[1]	
10 dBm			1001 pt						

17:17:46 13.11.2017

MultiView	Spectrum	*							
Ref Level 46.0 Att	14 dB 🖷 SWT	t 42.00 dB = R 500 ms V		lode Auto Sweer)				SGL
1 Frequency S	weep					I		M1[1]	•1Rm Clrw -43.32 dBm
40 dBm									941.150 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									MI
-50 dBm	walter for an and the for the	White was he was here where	n land when the	www.www.	your when a start	manufamery	winnoutration	monorman	en all helder and a start
10.0 MHz			1001 pt		0	9.0 MHz/			1.0 GHz
10.0 10112	Y		1001 pt	5		9.0 MI 127	Aborted		13.11.2017
17:14:25 13.1	11.2017								
Ref Level 46.0		* t 42.00 dB ● R	BW 100 kHz						SGL
Att	14 dB 🖷 SWT		BW 1 MHz N	1ode Auto Sweep)				●1Rm Clrw
1 Frequency St	weep								
1 Frequency S	weep							M1[1]	-43.93 dBm 934.230 MHz
1 Frequency S	weep							M1[1]	-43.93 dBm 934.230 MHz
1 Frequency St 40 dBm	weep							M1[1]	-43.93 dBm 934.230 MHz
1 Frequency S	weep							M1[1]	-43.93 dBm 934.230 MHz
1 Frequency St 40 dBm	weep							M1[1]	-43.93 dBm 934.230 MHz
1 Frequency S 40 dBm	weep							M1[1]	-43.93 dBm 934.230 MHz
1 Frequency S 40 dBm	weep							M1[1]	-43.93 dBm 934.230 MHz
1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	weep							M1[1]	-43,99 dBm 934,230 MHz
1 Frequency St 40 dBm 30 dBm 20 dBm	weep							M1[1]	-43,93 dBm 934,230 MHz

1001 pts

99.0 MHz/

17:15:38 13.11.2017

-20 dBm

-30 dBm-

-40 dBm-

-50 dBm 10.0 MHz 1.0 GHz

MultiView	Spectrum	¥							∇
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI 500 ms VE		lode Auto Sweep					SGL
1 Frequency S		500 mis VI							●1Rm Clrw
40 dBm								M1[1]	-43.70 dBm 955.990 MHz
40 dbm									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-40 UBII									M1
Normandadadad	and a second street			and a superior and the low	unall white	www.	medulation	here where the sources	Mar Mar and and a
-50 dBm	and the stand of the second of	When you you with the	nuthingation	And the second second	•				
-50 dBm		ulthalynny _e thala		*					
10.0 MHz		introdynoon yn orae yn	1001 pt	*		9.0 MHz/	Aborted		1.0 GHz 13.11.2017
10.0 MHz		in the second		*			Aborted		
10.0 MHz				*			Aborted 🚺		
10.0 MHz 17:16:51 13. MultiView	Spectrum		1001 pt	*			Abortod		1.0 GHz 13.11.2017 ▼
10.0 MHz 17:16:51 13.: MultiView Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	*	9		Abortod 🚺		1.0 GHz 13.11.2017 ⊽ SGL
10.0 MHz 17:16:51 13.: MultiView Ref Level 46.0	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 ⊽ \$GL ●1Rm Clrw
10.0 MHz 17:16:51 13.: MultiView Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod	M1[1]	1.0 GHz 13.11.2017 ⊽ \$GL ●1Rm Clrw
10.0 MHz 17:16:51 13.3 MultiView B Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.3 MultiView B Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13. MultiView 9 Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13. MultiView 9 Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.: MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.: MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.: MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.: MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.: MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.: MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm
10.0 MHz 17:16:51 13.: MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt	S	9		Abortod		1.0 GHz 13.11.2017 SGL • 1Rm Clrw -43.27 dBm

1001 pts

99.0 MHz/

17:18:03 13.11.2017

-30 dBm-

-40 dBm

-50 dBm 10.0 MHz

1.0 GHz

D-f11	Spectrum	₩								\bigtriangledown
Ref Level 46. Att	20 dB 😑 SWT	t 42.00 dB ● F 500 ms V		Mode Auto Swee	p					SGL
1 Frequency S	weep								M1[1]	• 1Rm Clrw 24.47 dBm
40 dBm										2.67130 GHz
30 dBm									11	
									Ŷ	
20 dBm										
10 dBm										
0 dBm								_		
-10 dBm										
-20 dBm										
-30 dBm										
So abiii										
with dam www.	anan Janutan Mahadi	monghinghangh	www.howawhen	wayenwalapertape	alarm alandoning and shirts hatte	www.		f w	Junger and	wate personal Mary
			NOL DO DO DO DO DO	an alla an an t-li - a thai						
-50 dBm										
1.0 GHz	Y		1001 pt	S	20	0.0 MHz/		_		3.0 GHz
	,						Aborted		4,43	17:14:42
17:14:42 13.	11.2017									
MultiView	Spectrum	¥								∇
Ref Level 46. Att	.00 dBm Offse 20 dB • SWT	10 00 JB = E								
1 Frequency S		τ 42.00 dB ≡ F 500 ms - V	RBW 100 kHz /RW 1 MHz N		n					SGL
		500 ms V	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	•1Rm Clrw
40 dBm		12 42.00 dB ● F 500 ms V	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	•1Rm Clrw
40 dBm		t 42:00 aB ● F 500 ms V	BW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 24.70 dBm
40 dBm		t 42.00 dB ≡ H 500 ms V	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p					●1Rm Clrw 24.70 dBm
		t 42.00 dB = F	ABW 100 KHZ N	Mode Auto Swee	p			P	M1[1]	●1Rm Clrw 24.70 dBm
		t 42.00 dB = F	BW 100 KHz N	Mode Auto Swee	p			P		●1Rm Clrw 24.70 dBm
30 dBm		t 42.00 dB = F	BW 100 KHz N	Mode Auto Swee	p			P		●1Rm Clrw 24.70 dBm
30 dBm		t 42.00 dB = F	BW 100 KHz N	Mode Auto Swee	p			P		●1Rm Clrw 24.70 dBm
30 dBm		t 42.00 dB = F	BW 100 KHz N	Mode Auto Swee	p			P		●1Rm Clrw 24.70 dBm
30 dBm		t 42.00 dB = F	BW 100 KHz N	Mode Auto Swee				P		●1Rm Clrw 24.70 dBm
30 dBm		t 42.00 dB = F	BW 100 KHz N	Mode Auto Swee	p			P		●1Rm Clrw 24.70 dBm
30 dBm 20 dBm 10 dBm 0 dBm		t 42.00 db 9 F	BW 100 KHz M	Mode Auto Swee	p			P		●1Rm Clrw 24.70 dBm
30 dBm 20 dBm 10 dBm 0 dBm		t 42.00 db 9 F	BW 100 KHz N	Mode Auto Swee	P			P		●1Rm Clrw 24.70 dBm
30 dBm		t 42.00 dB = F	BW 100 KHz N	Mode Auto Swee	p			P		●1Rm Clrw 24.70 dBm
30 dBm		t 42.00 db 9 F	BW 100 KHz N	Mode Auto Swee						●1Rm Clrw 24.70 dBm
30 dBm	weep	500 ms V								●1Rm Clrw 24.70 dBm
30 dBm	weep	500 ms V								• 1Rm Cirw 24.70 dBm 2.67330 GHz
30 dBm	weep	500 ms V					איז			• 1Rm Cirw 24.70 dBm 2.67330 GHz
30 dBm	weep	500 ms V								● 1Rm Clrw 24.70 dBm 2.67330 GHz

17:15:55 13.11.2017

MultiView									▽
Ref Level 46 Att	5.00 dBm Offse 20 dB • SWT	et 42.00 dB ● R 500 ms V	NBW 100 kHz NBW 1 MHz N	Mode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1	•1Rm Clrw] 25.18 dBm
40 dBm									2.67330 GHz
30 dBm								M1	
								1	
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm	www.www.www.	Mudaridi di waka	the describe following out	the contract of the lat	an antalian and an an	Artacolor Researched	م. مېرومو ورومو	p	
		առուս եկանուտ օգտ	a ada dinanina canina	Collember on the dist					
-50 dBm									
1.0 GHz			1001 pt	S	20	0.0 MHz/			3.0 GHz
	Л						Aborted		17:17:08
17:17:08 13	.11.2017								
17:17:08 13 MultiView		*							\bigtriangledown
MultiView Ref Level 46	Spectrum	et 42.00 dB = R	RBW 100 kHz 18W 1 MHz 1	Mode Auto Swee	'n				SGL
MultiView	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R		Mode Auto Swee	p			M1E1	SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	NBW 100 kHz NBW 1 MHz M	Mode Auto Swee	p			M1[1	SGL
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	KBW 100 kHz KBW 1 MHz M	Mode Auto Swee	p			M1[1	SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	KBW 100 kHz IBW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	NBW 100 kHz BW 1 MHz M	Mode Auto Swee	p			M1[]	SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 Att Frequency 3 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 Att Frequency 9 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	NBW 100 KHz IBW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 Att Frequency 3 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	Mode Auto Swee	P				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	KBW 100 kHz BW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 KHz MHz MHz M	Mode Auto Swee	P				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = R	RBW 100 kHz N	Mode Auto Swee	p				SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 20 dB offse 20 dB SWT Sweep	et 42.00 dB • R 500 ms V							SGL •1Rm Clrw .] 24.69 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB • R 500 ms V	BW 100 kHz N						SGL •1Rm Clrw] 24.69 dBm 2.63740 GHz
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 20 dB offse 20 dB SWT Sweep	et 42.00 dB • R 500 ms V							SGL •1Rm Clrw] 24.69 dBm 2.63740 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -30 dBm -30 dBm	Spectrum 20 dB offse 20 dB SWT Sweep	et 42.00 dB • R 500 ms V		Jury-Laborations-					SGL •1Rm Clrw] 24.69 dBm 2.63740 GHz

17:18:21 13.11.2017

P (1) 1 (6)	Spectrum	*							
Att	00 dBm Offset 14 dB SWT		BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL
1 Frequency S	weep								○1Rm Clrw
								M1[1]	-38.95 dBn 26.2530 GH
10 dBm									
30 dBm									
20 dBm									
10 dBm									
) dBm									
10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M.
		0							
~ money	mann		in alway	and the second when	Monunum	noneground	Marin and Marine	mountant	
-50 dBm		- Charles and the second se	an de servicies						
3.0 GHz			1001 pt	S	2	35 GHz/	1		26.5 GHz
7:15:00 13.	11.2017								
	Spectrum Od dBm Offset		BW 100 kHz						SGL
MultiView 8 Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,				
MultiView 8 Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView 8 Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38,82 dBr
MultiView 8 Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38,82 dBr
MultiView 8 Ref Level 46.0 Att Frequency S 40 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView B Ref Level 46.0 Att Frequency S 40 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38,82 dBr
MultiView B Ref Level 46.0 Att Frequency S 40 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38,82 dBr
MultiView E Ref Level 46.0 Att Frequency S 40 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView E Ref Level 46.0 Att Frequency S 40 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView E Ref Level 46.0 Att Frequency S 40 dBm 30 dBm 20 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView E Ref Level 46.0 Att Frequency S 40 dBm 30 dBm 20 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView E Ref Level 46.0 Att IFrequency S Att 40 dBm Bm 30 dBm Bm 20 dBm Bm 10 dBm Bm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView E Ref Level 46.0 Att IFrequency S Att 40 dBm Bm 30 dBm Bm 20 dBm Bm 10 dBm Bm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38,82 dBr
MultiView E Ref Level 46.0 Att IFrequency S Att 40 dBm Bm 30 dBm Bm 20 dBm Bm 10 dBm Bm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView 8 Ref Level 46.0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView E Ref Level 46.0 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView E Ref Level 46.0 Att Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 10 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView Ref Level 46.0 Ref Level 46.0 46.0 IFrequency S 60 dBm 60 dBm 80 dBm 60 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				MI[1]	●1Rm Clrw -38.82 dBn
MultiView B Ref Level 46.0 Att Frequency S 40 dBm 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm 10 dBm 30 dBm 20 dBm 30 dBm 20 dBm 30 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBr
MultiView Product Ref Level 46.0 Att Frequency S i0 dBm 30	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	• 1Rm Clrw -38.82 dBr 26.1360 GH
MultiView Product Ref Level 46.0 Att Frequency S i0 dBm 30	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -38.82 dBn
MultiView Builtiview Builtiview <thbuiltiview< th=""> Builtiview Builtivie</thbuiltiview<>	Spectrum O dBm Offset 14 dB • SWT weep	t 42.00 dB = RI						M1[1]	• 1Rm Claw -38.82 dBn 26:1360 GH
MultiView Builtiview Builtiview <thbuiltiview< th=""> Builtiview Builtivie</thbuiltiview<>	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	• 1Rm Clrw -38.82 dBn 26.1360 GH
MultiView E Ref Level 46.0 Att IFrequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm 0 dBm	Spectrum O dBm Offset 14 dB • SWT weep	t 42.00 dB = RI						M1[1]	• 1Rm Clrw -38.82 dBn 26.1360 GH;

17:16:13 13.11.2017

	Spectrum								∇
Ref Level 46.0 Att	O0 dBm Offset 14 dB ● SWT	t 42.00 dB = RE	BWI 100 kHz BWI 1 MHz MI	lada Auto Sween					SGL
Frequency S		SUU MIS VE		ode Auto Sweep					o1Rm Clrw
								M1[1]	-38.90 dBi
0 dBm									26.1360 GH
D dBm									
) dBm									
abiii									
dBm									
dBm									
) dBm									
dom									
dBm									
I dBm									
									N
) dBm									
									A music
	and when been	<i></i>	in m	worky	moundance	as he we alway and	Man mayor My dear	ale outer who we	and the a
0 dBm	and the state	- Contraction and the second	الم ما ^{للم} را- المنور خالي ورك ^{الم} ار	United	a Martin	amalada.			
.0 GHz			1001 pt			.35 GHz/			26.5 Gł
:17:25 13.	11.2017						Aborted		17:17:25
	~						Aborted		13.11.2017
7:17:25 13. AultiView Ref Level 46.0	Spectrum		BW 100 kHz				Aborted		
fultiView Ref Level 46.0 Att	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep	,		Aborted		SG
IultiView	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		SG ●1Rm Clrv
IultiView Ref Level 46.0 Att Frequency S	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep	,		Aborted	M1[1]	●1Rm Clrv ●1Rm Clrv] -39,12 dE
IultiView Ref Level 46.0 Att Frequency S	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep	,		Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView af Level 46.0 tt Frequency S	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep	,		Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView a lef Level 46.0 itt requency S dBm-	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep	,		Aborted		●1Rm Cin ●1Rm Cin
ultiView a lef Level 46.0 itt requency S dBm-	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Cin ●1Rm Cin
ultiView 8 ef Level 46.0 tt dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Cin ●1Rm Cin
ultiView 8 ef Level 46.0 tt dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dl
ultiView 8 ef Level 46.0 tt requency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView 8 ef Level 46.0 tt frequency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView 8 ef Level 46.0 tt requency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView e ef Level 46.c tt requency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dl
ultiView B ef Level 46.0 tt requency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dl
ultiView a lef Level 46.0 tt requency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dl
ultiView 8 tef Level 46.0 Trequency S dBm dBm dBm dBm dBm dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Cin ●1Rm Cin
ultiView 8 tef Level 46.0 Trequency S dBm dBm dBm dBm dBm dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dl
dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView 8 ef Level 46.0 frequency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView 8 tef Level 46.0 Frequency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		●1Rm Clrv ●1Rm Clrv] -39,12 dE
ultiView 8 ef Level 46.0 frequency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		SG •1Rm Clrv] -39,12 dB
lultiView 8 kef Level 46.0 frequency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		• 1Rm Clav • 1Rm Clav • 26.2770 G
IultiView Ref Level 46.0	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE					Aborted		SG •1Rm Clrv] -39,12 dB
IultiView 8 Sef Level 46.0 Frequency S Idem Idem Idem Idem Idem Idem Idem Idem	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep			Aborted		SG •1Rm Clrv] -39,12 dB
IultiView B kef Level 46.0 Frequency S dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB = RE							SG •1Rm Clrv] -39,12 dB

17:18:38 13.11.2017

WX

5M+5M-2670MHz-Port1~4:

MultiView	🗉 Spectrum	*							∇
Ref Level 46.	00 dBm Offse	t 42.00 dB = RE		and a state Course					SGL
Att DC	14 dB ● SWT	SUU MIS VE		lode Auto Sweep					
1 Frequency S	weep							M1[●1Rm Clrw 1] -36.72 dBm
40 dBm									513.00 kHz
30 dBm									
20 dBm									
10 dBm									
10 000									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
M1									
-40 dBm									
W }									
-50 dBm	mahantanta	hand the work	manun	-	Mutherturburk	Marana	Wind water and the second	-	an and the second
9.0 kHz			1001 pt		99	9.1 kHz/			10.0 MHz
							Aborted		11.11.2017
15:55:10 11.	11.2017								
		¥							∇
MultiView Ref Level 46.	Spectrum 00 dBm Offse	t 42.00 dB 🖷 RE							SGL
MultiView Ref Level 46. Att DC	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep	,				
MultiView Ref Level 46. Att	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep	,			M1[1]	• 1Rm Clrw
MultiView Ref Level 46. Att DC I Frequency S	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC I Frequency S	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep	,			M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep	,			M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm-	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep					●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				MI[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep				M1[1]	●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE		lode Auto Sweep					●1Rm Clrw -36.05 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum O dBm Offse 14 dB SWT weep	t 42.00 dB = RE 500 ms VE						MI[1]	●1Rm Clrw -36.05 dBm

15:56:23 11.11.2017

MultiView	Spectrum	- ₩							\bigtriangledown
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RE		lode Auto Sweep					SGL
DC		SOUTHS VE	SAA TIAUUS IM	iode Auto Sweep	,				o 1 Des Clau
1 Frequency S	weep							M1[1]	●1Rm Clrw -37.75 dBm
40 dBm									513.00 kHz
30 dBm									
20 dBm									
20 0011									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm-									
V									
-50 dBm	and the second	haldforthought and	www.www.~~	r-conglimbolication	in white his many and	www.	1/m/wyrywanautaana	unpersonal	ethallite established and an
9.0 kHz	١٢		1001 pt	S	99	9.1 kHz/			10.0 MHz
							Aborted		
15:57:36 11.	11 2017								
15.57.50 11.	11.2017								
MultiView									
MultiView Ref Level 46.0	Spectrum 00 dBm Offse	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lade Auto Sween					SGL
MultiView Ref Level 46.0 Att DC	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep	,				SGL
MultiView Ref Level 46.0 Att DC	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep	,			M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView Ref Level 46.0 Att DC	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep	,			M1[1]	SGL
MultiView 8 Ref Level 46.0 Att DC 1 Frequency S 40 dBm-	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView Ref Level 46.0 Att DC I Frequency S	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView 8 Ref Level 46.0 Att DC 1 Frequency S 40 dBm-	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView 8 Ref Level 46.0 DC 1 Frequency S 40 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView 8 Ref Level 46.0 DC 1 Frequency S 40 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView 8 Ref Level 46.0 DC 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView 8 Ref Level 46.0 DC TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView B Ref Level 46.0 DC 1 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm 0 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView B Ref Level 46.0 DC 1 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm 0 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView B Ref Level 46.0 DC 1 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm 0 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView B Ref Level 46.0 Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView Bef Level 46.0 Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView Bef Level 46.0 Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView Bef Level 46.0 Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -30 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView B Ref Level 46.0 Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -0 dBm -10 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -36.69 dBm
MultiView B Ref Level 46.0 Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm -0 dBm -10 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE						M1[1]	SGL • IRm Cirw -36.69 dBm 513.00 kHz
MultiView B Ref Level 46.0 Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum OO dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 1 MHz M			9.1 kHz/		M1[1]	SGL •1Rm Clrw -36,69 dBm

15:58:48 11.11.2017

MultiView	Spectrum	*							
Ref Level 46. Att	14 dB 🖷 SWT	t 42.00 dB = R 500 ms V	BWI 100 kHz BWI 1 MHz M	lode Auto Sweer)				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -43.84 dBm
40 dBm									949.070 MHz
30 dBm									
20 dBm									
10 dBm									
10 0000									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
				www.goutstanderManner	. I warne the marking	MURANA AND THE	Managara and Salaha and S	where we want and work	M1 white more thank where
-50 dBm	1 pear the section of the	mynyhandun	hummuran.	www.youwara	Andria a chan		and a second and the second	er alfalligene e le 0	
10.0 MHz			1001 pt	s	9	9.0 MHz/			1.0 GHz
][Aborted		11.11.2017 15:55:27
45.55.00 44									
15:55:28 11.	.11.2017								
MultiView		¥							\bigtriangledown
MultiView Ref Level 46.	OO dBm Offse	t 42.00 dB = R	BW 100 kHz	Inde Auto Sween					SGL
MultiView	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				•1Rm Clrw
MultiView 3 Ref Level 46. Att 1 Frequency S	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView Ref Level 46. Att	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweer				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46, Att 1 Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46, Att 1 Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -10 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.77 dBm 939.180 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M						• 1Rm Clrw -43.77 dBm 939.180 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M						• 1Rm Clrw -43.77 dBm 939.180 MHz

15:56:40 11.11.2017

MultiView	Spectrum	¥							
RefLevel 46.0 Att	14 dB 🖷 SWT	t 42.00 dB RI 500 ms VI		lode Auto Sweep	1				SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -44.12 dBm
40 dBm									977.750 MHz
30 dBm									
20 dBm									
10 dBm									
0.40									
0 dBm									
-10 dBm									
-20 dBm									
20.40-									
-30 dBm									
-40 dBm									M1
Autor and			manderalle	all and when when we	up more man	How we way white		munderander	phonethyperset of the second
-50 dBm	upport the	principal and a second s	, , , , , , , , , , , , , , , , , , , ,						
10.0 MHz	Y		1001 pt	S	99	9.0 MHz/	Aborted		1.0 GHz 11.11.2017
	Л						Aborteu		
15:57:53 11.:	~								
Ref Level 46.0		¥ ± 42.00 dB ● RI	PW 100 kH-						SGL
Att 1 Frequency S	14 dB 🖷 SWT		BW 1 MHz M	lode Auto Sweep					•1Rm Clrw
								M1[1]	
40 dBm									9337240 MI12
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
-50 dBm	handrad-rain-warat		مردا الماسي ومدارية ومدارية المعام المراكب	maphilipplication	of an any the second second	why part when the states		alman and a start and a start and a start a start and a start a	when the work of the standy
-50 dBm 10.0 MHz			1001 -+		00				1.0.00-
10.0 MHZ			1001 pt	5		9.0 MHz/		1111) ANG	1.0 GHz

15:59:06 11.11.2017

MultiView	Spectrum	₩								\bigtriangledown
Ref Level 46 Att	5.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F 500 ms N	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	p					SGL
1 Frequency S	Sweep				F					●1Rm Clrw
40 dBm									M1[1]	25.51 dBm 2.65330 GHz
10 05.11										
30 dBm										
								MI		
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm								+	+	
								I M	\mathcal{N}	
AQ. dBm	ann gutututututu	handendensen	million hours	mullimuren	mangana	and a mark and the second	App.upd/hop.ppc.000	end -	- Www.www	d one water with the way of
-50 dBm										
1.0 GHz		1	1001 pt	S	20	0.0 MHz/		·		3.0 GHz
							Aborted		490	15:55:44
15:55:45 11	.11.2017									
MultiView	Spectrum		RBW 100 kHz							SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					
MultiView Ref Level 46	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	p				M1[1]	●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	p				M1[1]	O1Rm Clrw
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz N	vlode Auto Swee	p				M1[1]	●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 Att 1 Frequency 9	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	NBW 100 kHz /BW 1 MHz M	Node Auto Swee	P				M1[1]	●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	P					●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 • Att I Frequency \$ 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P					●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P					●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 3 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P					●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 • Att I Frequency \$ 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P					●1Rm Clrw 24.61 dBm
MultiView Ref Level 40 • Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P					●1Rm Clrw 24.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 3 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	P					●1Rm Clrw 24.61 dBm
MultiView Ref Level 40 • Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p					●1Rm Clrw 24.61 dBm
MultiView Ref Level 40 • Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p					●1Rm Clrw 24.61 dBm
MultiView Ref Level 40 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M		p					●1Rm Clrw 24.61 dBm
MultiView Ref Level 40 • Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M		p					●1Rm Clrw 24.61 dBm
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Offse 20 dB SWT Weep	et 42.00 dB = F 500 ms 1								●1Rm Clrw 24.61 dBm
MultiView Ref Level 40 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum Offse 20 dB SWT Weep	et 42.00 dB = F 500 ms 1								• 1Rm Clrw 24.61 dBm 2.68730 GHz
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Offse 20 dB SWT Weep	et 42.00 dB = F 500 ms 1								• 1Rm Clrw 24.61 dBm 2.68730 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Spectrum Offse 20 dB SWT Weep	et 42.00 dB = F 500 ms 1								• 1Rm Clrw 24.61 dBm 2.68730 GHz
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Offse 20 dB SWT Weep	et 42.00 dB = F 500 ms 1				0.0 MHz/				● 1Rm Clrw 24.61 dBm 2.68730 GHz

15:56:58 11.11.2017

MultiView										\bigtriangledown
RefLevel 46 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms \		Node Auto Swee	р					SGL
1 Frequency S	Sweep								M1[1]	•1Rm Clrw 25.19 dBm
40 dBm									I	2.65130 GHz
30 dBm								M1		
20 dBm									1	
10 dBm										
0 dBm										
-10 dBm										
10 0011										
-20 dBm										
-30 dBm										
40 dBm							4.4.1.1.1	141	1	
My service and	white the second states and the second se	angen and a stand of the stand	an a	rentermanyarrativ	gonalaythi	how the second	a o - ndoul a crodo dalla	per (j		0.00.00
-50 dBm										
1.0 GHz			1001 pt	s	20	0.0 MHz/				3.0 GHz
15:58:11 11 MultiView Ref Level 46	Spectrum		RBW 100 kHz							SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	p					⊽ SGL ●1Rm Clrw
MultiView Ref Level 46 Att I Frequency 9	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	p				M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 Att I Frequency 9	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		vlode Auto Swee	P				M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 3 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee				MI	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee				MIL	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 40 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee				MI	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 40 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			MIL V	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ F		Mode Auto Swee	P			MU	M1[1]	• 1Rm Cirw 25.61 dBm 2.65130 GHz
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB = F 500 ms • V						M1	M1[1]	●1Rm Clrw 25.61 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F 500 ms • V						M1	M1[1]	●1Rm Clrw 25,61 dBm 2.65130 GHz
MultiView Ref Level 46 • Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Spectrum	et 42.00 dB = F 500 ms • V								• 1Rm Clrw 25.61 dBm 2.65130 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB = F 500 ms • V				0.0 MHz/				●1Rm Clrw 25,61 dBm 2.65130 GHz

15:59:23 11.11.2017

MultiView	Spectrum	¥							
Ref Level 46. Att	14 dB 🖷 SWT	t 42.00 dB ● F 500 ms V		lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -39.07 dBm
40 dBm									26.1600 GHz
30 dBm									
20 dBm									
10.10									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
40 d0m									M1
-40 dBm		ച							Andrew
-50 dBm	monulan	مريد مىرىدى يەرىپىدىدى بىرىپ	and the second second second	and the work who	manun	mound we want	Murrow when we	when a show the property of the state of the	~~ ~~
3.0 GHz				s	2	.35 GHz/			26.5 GHz
)[Aborted		11.11.2017
15:56:03 11.	11.2017								
	Spectrum								
MultiView Ref Level 46.	00 dBm Offse	t 42.00 dB = F	RBW 100 kHz						SGL
MultiView 8 Ref Level 46. Att	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	1ode Auto Sweep					SGL ●1Rm Clrw
MultiView Ref Level 46. Att I Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	1ode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView 8 Ref Level 46. Att	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView Ref Level 46. Att I Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	XBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	lode Auto Sweep	,			M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz //BW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	tode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	XBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	XBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clw -38,91 dBm 26.1130 GHz
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.91 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offse 14 dB = SWT weep	t 42.00 dB = F		lode Auto Sweep				M1[1]	●1Rm Clw -38,91 dBm 26.1130 GHz
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F						M1[1]	• 1Rm Clrw -38.91 dBm 26.1130 GHz
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -20 dBm 30 dBm -10 dBm -10 dBm -30 dBm -30 dBm	OO dBm Offse 14 dB = SWT weep	t 42.00 dB = F	RBW 100 kHz M					M1[1]	●1Rm Clw -38,91 dBm 26.1130 GHz

15:57:15 11.11.2017

AultiView		et 42.00 dB ● RI	RW 100 PH-						s
Att	14 dB 🖷 SWT	500 ms VI	BW 100 kHz BW 1 MHz M	ode Auto Sweep)				
Frequency S	weep							M1[1	●1Rm Cln -38.88 dl
dBm									26,4880 0
dBm									
dBm									
dBm									
IBm									
I dBm									
dBm									
dBm									
I dBm		ļ							
		Л					4		and your all
dBm	marked was ling	W - with the second second	Mh	whom free exercises	Mun my and	and the second and the second	Mar marken and	alland and the for the second	rw ·
		040				.35 GHz/			26.5 0
58:28 11.	11.2017 Spectrum	• *	1001 pt:	5	2.		Aborted 📲	aya -	11.11.2017
58:28 11. ultiView 8 ef Level 46.0	Spectrum	et 42.00 dB = RI					Aborted 🚺	aya	11.11.2017
:58:28 11. ultiView 8 .ef Level 46.0	Spectrum	et 42.00 dB = RI	BW 100 kHz				Aborted	M1[1	11.11.2017
58:28 11. ultiView ef Level 46.0 tt requency S	Spectrum	et 42.00 dB = RI	BW 100 kHz				Aborted	M1[1	11.11.2017 S ●1Rm Cli -38.69 c
58:28 11. ultiView ef Level 46.0 tt requency S	Spectrum	et 42.00 dB = RI	BW 100 kHz				Abort of	M1[1	11.11.2017 S ●1Rm Cli -38.69 c
58:28 11. ultiView 8 ef Level 46. tt requency S	Spectrum	et 42.00 dB = RI	BW 100 kHz				Abort of	M1[1	11.11.2017 Sr ●1Rm Clr] -38.69 d
58:28 11. ultiView 8 ef Level 46. tt requency S	Spectrum	et 42.00 dB = RI	BW 100 kHz				Aborted	M1[1	11.11.2017 S ●1Rm Cli -38.69 c
dBm-	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Aborted	M1[1	11.11.2017 Sr ●1Rm Clr] -38.69 d
dBm-	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1	11.11.2017 Sr ●1Rm Clr] -38.69 d
58:28 11. ultiView E ef Level 46.0 tt requency S dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1	11.11.2017 Sr ●1Rm Clr] -38.69 d
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1	11.11.2017 Sr ●1Rm Clr] -38.69 d
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1,	11.11.2017 St ●1Rm Clr] -38.69 d
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1,	11.11.2017 Sr ●1Rm Clr] -38.69 d
58:28 11. ultiView E ef Level 46.0 tt requency S dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1,	11.11.2017 S ●1Rm Cli -38.69 c
58:28 11. ultiView E ef Level 46.0 tt requency S dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1,	11.11.2017 S ●1Rm Cli -38.69 c
58:28 11. ultiView E ef Level 46.0 tt requency S dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1,	11.11.2017 S ● 1Rm Cli - 38.69 c
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017 Sr ●1Rm Clr] -38.69 d
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1	11.11.2017 Sr ●1Rm Clr] -38.69 d
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1	11.11.2017
258:28 11. ultiView ef ef Level den den dBm den	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1	11.11.2017
258:28 11. ultiView 2 ef Level 46. tt requency S dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz					M1[1	11.11.2017 Sr • 1Rm Clr] -38,69 d 26,1600 C
	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod		11.11.2017 SI ●1Rm Clri

15:59:41 11.11.2017

10M+10M-2640MHz-Port1~4:

1ultiView									V
RefLevel 46 Att NC	.00 dBm Offse 14 dB ● SWT	et 42.00 dB ● RI 500 ms VI	BWI 100 kHz BWI 1 MHz M	lode Auto Sweep					SG
Frequency \$	Sweep							M1	●1Rm Clrw [1] -43.29 dB
) dBm									523.00 ki
) dBm									
dom									
) dBm									
) dBm									
dBm									
) dBm									
) dBm									
) dBm									
dBharr									
) dBm	-	A Shile and American	markedered and hard and and and and and and and and and an	anna maratha	offentionen Antoneo		and the second	Mariana ang ang ang ang ang ang ang ang ang	and the second
0 kHz			1001 pt			9.1 kHz/		· · · · · · · · · · · · · · · · · · ·	10.0 MH
							Aborted 📒		11.11.2017
IultiView Ref Level 46	E Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Aborted 🚺		14:16:30
ultiView Ref Level 46 Att C	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Abortod 👖		so
ultiView ef Level 46 tt C requency (Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	, ,		Abortod	M1[1	•1Rm Clru] -42.83 di
ultiView ef Level 46 tt C requency (Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Cint] -42.83 df
ultiView ef Level 46 tt requency 9	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Cint] -42.83 df
ultiView ef Level 46 tt C Trequency 8 dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Cint] -42.83 df
ultiView ef Level 46 tt C Trequency 8 dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Cint] -42.83 df
ultiView ef Level 46 c irequency 8 dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Clru] -42.83 di
ultiView ef Level 46 c irequency 9 dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Clru] -42.83 di
ultiView ef Level 46 c requency 9 dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Cint] -42.83 df
ultiView ef Level 46 tt crequency 8 dBm dBm dBm dBm Bm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortad		•1Rm Cint] -42.83 df
ultiView tef Level 46 C Trequency 8 dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortad		•1Rm Cint] -42.83 df
dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		• 1Rm Cirv] -42.83 dB
dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortad		•1Rm Cirv] -42.83 dB
IultiView Ref Level 46 C Frequency 8 dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortad		•1Rm Cint] -42.83 df
	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					• 1Rm Cirv] -42.83 dB
IultiView Ref Level 46 C Frequency 8 dBm	Spectrum .00 dBm Offse 14 dB SWT	et 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M				Aborted		●1Rm Clrw

14:17:43 11.11.2017

	Spectrum	¥							∇
Ref Level 46.00 Att	ÖdBm Offse 14 dB ● SWT	t 42.00 dB = RI 500 ms VI	BWI 100 kHz BWI 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency Sw	veep								•1Rm Clrw
40 dBm								M1[1]	-44.25 dBm 513.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
4									
-30 dBm									
-40 dBm									
-50 dBm	- and the of the product of the second se	and a configuration of	1001 pt		որդերի, հորելու հայուրը 00	9.1 kHz/	hanghamaanga	angenital and an and an and an	10.0 MHz
	[1001 pt	3			Aborted		11.11.2017
14:18:55 11.1	1.2017								
MultiView #	Spectrum	¥							
Ref Level 46.00 Att									\bigtriangledown
	JdBm Offse 14 dB ● SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,				SGL
DC 1 Frequency Sw	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,				SGL
DC	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL
DC 1 Frequency Sw	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,			M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	iode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm 20 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M	iode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,90 dBm
DC 1 Frequency Sw 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m -20 d8m -20 d8m -20 d8m -50 d8m -50 d8m	14 dB 🖷 SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M			9.1 kHz/		M1[1]	SGL • 1Rm Clrw -43,90 dBm

14:20:08 11.11.2017

MultiView	Spectrum	₩							
Ref Level 46. Att	00 dBm Offse 14 dB = SWT		BWI 100 kHz BWI 1 MHz M	lode Auto Sweer)				SGL
Frequency S	Sweep							M1[1]	• 1Rm Clrw -43.65 dBr
40 dBm									994.560 MH
30 dBm									
20 dBm									
l0 dBm									
) dBm									
10 dBm									
20 dBm									
-30 dBm									
40 dBm									
40 UBIII					a0			1.0144	
50 dBm	up you have when the have	half and a state of the state o	any any presents	when we will have a start of the second start o	opport and the	munumber	y how the how more thank the second second	provenental	
10.0 MHz			1001 pt	s	99	9.0 MHz/			1.0 GH
							Aborted		11.11.2017
4:16:47 11.	11.2017								
MultiView	Spectrum	<u></u>							
	00 dBm Offse		RW 100 kHz						SGL
Att Frequency S	14 dB 🖷 SWT		BW 1 MHz M	lode Auto Sweep)				•1Rm Clrw
ency a	, weep							M1[1]	-43.88 dB
40 dBm									922.360 MH
30 dBm									
20 dBm									
u uom									

10 dBm

0 dBm-

-30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -10 dBm -10

14:18:00 11.11.2017

M1 Withmyrik

1.0 GHz

MultiView	🗊 Spectrum								\bigtriangledown
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB (500 ms	RBW 100 kHz VBW 1 MHz M	Inde Auto Sweer	`				SGL
1 Frequency S		000			1	8	1		●1Rm Clrw
40 dBm		I						M1[1]	-43.91 dBm 962.910 MHz
40 uBm									
30 dBm									
30 UDIII									
20 dBm		L							
20 0011		1							
10 dBm		L							
10 0011		1							
0 dBm		L							
o ubili		1							
-10 dBm		L							
-10 050		1							
-20 dBm									
-20 0011		1							
-30 dBm		L							
-50 0011		1							
-40 dBm		l							
-40 UBIII									M1
-50 dBm	manpenperal	Munnun	www.	nofminimeter	www.martilley.	Hallwhy Manueld	where we	monormoutored	who save a Marie
			1001 pts			9.0 MHz/			1.0 GHz
10.0 MHz									
][Aborted		11.11.2017 14:19:12//
		*					Aborted 📒	496	11.11.2017
MultiView Ref Level 46.	OO dBm Offse	t 42.00 dB «	• RBW 100 kHz				Aborted 🚺		11.11.2017
MultiView Ref Level 46. Att	OO dBm Offse 14 dB • SWT		• RBW 100 kHz	lode Auto Sweep			Aborted 📗		11.11.2017 1410-12 SGL
MultiView Ref Level 46. Att 1 Frequency S	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted	M1[1]	11.11.2017 ▼ ▼ SGL ● 1Rm Cirw -43.65 dBm
MultiView Ref Level 46. Att I Frequency S	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ \$GL ●1Rm Clrw
MultiView Ref Level 46. Att I Frequency S 40 dBm-	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ ▼ SGL ● 1Rm Cirw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ ▼ SGL ● 1Rm Cirw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ ▼ SGL ● 1Rm Cirw -43.65 dBm
MultiView Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ ▼ SGL ● 1Rm Cirw -43.65 dBm
MultiView Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ ▼ SGL ● 1Rm Cirw -43.65 dBm
MultiView Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Abortod		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Aborted		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB «	• RBW 100 kHz				Abortod		11.11.2017 ▼ SGL ● 1Rm Clrw -43.65 dBm

1001 pts

99.0 MHz

14:20:25 11.11.2017

1.0 GHz

MultiView	Spectrum								∇
Ref Level 46 Att	20 dB 🖷 SWT	t 42.00 dB ● F 500 ms N		Mode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw 22.53 dBm
40 dBm									2.65730 GHz
30 dBm									
20 dBm								MI	
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm								Ny.	
-40.dBm	All power and the work	Aller to the tool of the			and the second of the	A NACE OF COMMENTS	بولاك هاكاروك بحرك القرار ورحدها	, Linder and Linder	potratidation (Human Party-
a a sandanga	VCC-IBWards - and - and		alan an the she was the	of and and the second					
-50 dBm									
1.0 GHz	Υ Υ		1001 pt	s	20	0.0 MHz/			3.0 GHz
							Aborted		
14:17:05 11.	.11.2017								
MultiView	Spectrum	*							
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F	RBW 100 kHz VBW 1 MHz I	Mode Auto Swee	p				SGL
MultiView Ref Level 46	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p			M1[1]	●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p			M1[1]	●1Rm Clrw
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p			M1[1]	●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att I Frequency S	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p			M1[1]	●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att T Frequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	P				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	P				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att T Frequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	P				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	P				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	p				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	t 42.00 dB ● F		Mode Auto Swee	P				●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum .00 dB offse 20 dB SWT weep	t 42.00 dB = F 500 ms							●1Rm Clrw 22.63 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum .00 dB offse 20 dB SWT weep	t 42.00 dB = F 500 ms							• 1Rm Clrw 22.63 dBm 2.65730 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Spectrum .00 dB offse 20 dB SWT weep	t 42.00 dB = F 500 ms							• 1Rm Clrw 22.63 dBm 2.65730 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum .00 dB offse 20 dB SWT weep	t 42.00 dB = F 500 ms							● 1Rm Clrw 22.63 dBm 2.65730 GHz

14:18:17 11.11.2017

MultiView						
Ref Level 4 Att	20 dB 🖷 SWT 5	.00 dB ● RBW 100 kHz 00 ms VBW 1 MHz N	Iode Auto Sweep			SGL
1 Frequency	Sweep				M1[1]	 1Rm Clrw 22.35 dBm
40 dBm						2.65330 GHz
30 dBm						
					MI	
20 dBm						
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
					Vly	
-40 dBm	- Juli formation hall and and		Burned reading dy at the work	aliperter of the product of the second of th		and the state of the second second
			and the second			
-50 dBm						
1.0 GHz	· · ·	1001 pt	S	200.0 MHz/		3.0 GHz
14:19:30 1.						
14:19:30 1: MultiView Ref Level 4 Att	6.00 dBm Offset 42.	.00 dB • RBW 100 kHz 00 ms VBW 1 MHz N	Node Auto Sweep			SGL
MultiView	Spectrum Spectrum Provide the sector of the		1ode Auto Sweep		M101	●1Rm Clrw
Ref Level 4	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz 00 ms VBW 1 MHz N	Node Auto Sweep		M1[1]	●1Rm Clrw 22.21 dBm
MultiView Ref Level 4 Att 1 Frequency	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz 00 ms VBW 1 MHz N	Node Auto Sweep		M1[1]	●1Rm Clrw 22.21 dBm
MultiView Ref Level 4 Att 1 Frequency	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz 00 ms VBW 1 MHz N	Node Auto Sweep		M1[1]	●1Rm Clrw 22.21 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm- 30 dBm-	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz 00 ms VBW 1 MHz N	Node Auto Sweep		M1[1]	●1Rm Clrw 22.21 dBm
MultiView Ref Level 4 Att I Frequency 40 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm- 30 dBm-	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level • Att 1 Frequency 40 dBm 30 dBm 20 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level 2 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level 2 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level 2 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level 2 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level 2 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			●1Rm Clrw 22.21 dBm
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum Spectrum Provide the sector of the	00 dB RBW 100 kHz N	Node Auto Sweep			• 1Rm Clrw 22.21 dBm 2.65530 GHz
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	00 ms VBW 1 MHz N				●1Rm Clrw 22.21 dBm
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum					• 1Rm Clrw 22.21 dBm 2.65530 GHz
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Spectrum	00 ms VBW 1 MHz N				• 1Rm Claw 22.21 dBm 2.65530 GHz
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	00 ms VBW 1 MHz N		200.0 MHz/		• 1Rm Clrw 22.21 dBm 2.65530 GHz

14:20:43 11.11.2017

14:18:35 11.11.2017

MultiView	Spectrum	¥							
Ref Level 46. Att	14 dB 😑 SWT	t 42.00 dB ● I 500 ms	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -39.19 dBm
40 dBm									26.1360 GHz
30 dBm									
00 d0									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
									M1
-40 dBm									M. M. W. W.
-50 dBm	month more war	ful	and walk and a stranger	any manually	Monorm	Margane Martham	man	funder and have a series	we we
3.0 GHz		w		s	2	.35 GHz/			26.5 GHz
][Aborted		11.11.2017
14:19:47 11.	11.2017								
Multi\/iew									
Ref Level 46.	Spectrum 00 dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz						SGL
	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)				SGL
Ref Level 46. Att 1 Frequency S	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				м1[1]	SGL
Ref Level 46. Att	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46. Att 1 Frequency S	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46, Att 1 Frequency S 40 dBm-	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46, Att 1 Frequency S 40 dBm-	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				м1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46. Att 1 Frequency S 40 dBm- 30 dBm-	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 KHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.80 dBm 26.1830 GHz
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38,80 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 KHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.80 dBm 26.1830 GHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	OO dBm Offse	t 42.00 dB ⊜ I						M1[1]	SGL •1Rm Cirw -38,80 dBm 26.1830 GHz 26.1830 GHz M1 M1 M1
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse	t 42.00 dB ⊜ I	RBW 100 kHz M					M1[1]	SGL •1Rm Clrw -38.90 dBm 26.1830 GHz

14:21:00 11.11.2017

10M+10M-2655MHz-Port1~4:

IultiView		1	RW 100 kHz						SGL
Att C	14 dB = SWT	500 ms	/BW 1 MHz M	1ode Auto Sweep	0				30
Frequency S	weep							M1[•1Rm Clrw 1] -43.51 dB
) dBm									513.00 ki
) dBm									
) dBm									
) dBm									
dBm									
0 dBm									
0 dBm									
) dBm									
0 dBrom									
V Y									
	muunuuu	withmention	warman	-	mymmutututututu	the for the second second	hallo and have	manhorman	ware produced and
									10.0 MH
:53:41 11.	11.2017 Spectrun	1 ¥	1001 pt	S	99	09.1 kHz/	Aborted 📘	490	11.11.2017
:53:41 11. IultiView Ref Level 46.0	Spectrum	et 42.00 dB = F	RBW 100 kHz			29.1 KH2/	Aborted 🧻		11.11.2017
:53:41 11. IultiView E Ref Level 46.0 Att C	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F				99.1 KH2/	Aborted		11.11.2017 11.50111 56
:53:41 11. ultiView 8 kef Level 46.0 utt C	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz			J95.1 KH2/	Aborted	M1[1]	11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
:53:41 11. AultiView Ref Level 46.0 Att C Frequency S	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz			J95, I KH2/	Aborted		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
:53:41 11. ultiView B tef Level 46.0 C Frequency S dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz			99.1 KH2/	Aborted		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
:53:41 11. ultiView B tef Level 46.0 C Frequency S dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz)))	Aborted		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
ItiView E ef Level 46.0 C Trequency S dBm-	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz)))	Abortod		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
ItiView B sef Level 46.0 C Trequency S dBm dBm dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz				Abortod		11.11.2017 ▼ SG ● 18m Clrw -44.30 dB
ItiView B sef Level 46.0 C Trequency S dBm dBm dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz				Aborted		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz				Abortod		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz				Abortod		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
In the second se	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz				Abortod		11.11.2017 ▼ ▼ SG ● 18m Clav −44.30 dE
:53:41 11. ultiView E Ref Level 46.0 C Frequency S dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz						11.11.2017 ▼ SG ● 18m Clrw -44.30 dB
	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz				Abortod		11.11.2017 ▼ SG ●1Rm Claw -44,30 dB
:53:41 11. lultiView E Ref Level 46.0 Sc Frequency S 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz						11.11.2017 ▼ SG ●1Rm Claw -44,30 dB
:53:41 11. IultiView E Ref Level 46.0 Itt C Frequency S dBm dBm dBm dBm dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz						11.11.2017 ▼ SG ● 18m Clrw -44.30 dB
:53:41 11. ultiView E E kef Level 46.0 C Trequency S dBm dBm dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz						11.11.2017 ▼ SG ● 18m Clrw -44.30 dB
:53:41 11. IultiView E Ref Level 46.0 C Frequency S dBm	Spectrum OO dBm Offso 14 dB SWT	et 42.00 dB = F	RBW 100 kHz						11.11.2017 ▼ SG ●1Rm Claw -44,30 dB
:53:41 11. IultiView E Ref Level 46.0 Itt C Frequency S dBm dBm dBm dBm dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum OO dBm Offs 14 dB SWT	et 42.00 dB = F	RBW 100 kHz	Node Auto Sweep		99.1 KH2/			11.11.2017 ▼ SG

14:54:54 11.11.2017

MultiView	Spectrum	₩							▽
Ref Level 46. Att	00 dBm Offse 14 dB ● SWT	t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency S	weep								●1Rm Clrw
40 dBm								M1[1]	-42.96 dBm 513.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o ubin-									
-10 dBm									
-20 dBm									
-30 dBm									
- Nuk									
-40 dBm									
-50 dBm	-	Withow With Marine	Analy Maria	John and an and a start of the	and the all all all and the	an the second		MCXCD-Georgeology	www.waagafraglaalita
9.0 kHz	~		1001 pt			9.1 kHz/			10.0 MHz
	Л						Aborted		11.11.2017
14:56:07 11	11.2017								
	Spectrum								
Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
Ref Level 46. Att DC	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw
Ref Level 46. Att DC	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R	BW 1 MHz M	Node Auto Sweep				M1[]]	●1Rm Clrw -43.69 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M			9.1 kHz/			●1Rm Clrw -43.69 dBm

14:57:19 11.11.2017

	\bigtriangledown
Ref Level 46.00 dB Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep	SGL
1 Frequency Sweep	•1Rm Clrw
40 dBm	[1] -43.17 dBm 947.090 MHz
30 dBm	
20 dBm	
10 dBm	
0 dBm	
-10 dBm	
-20 dBm-	
-20 ubin-	
-30 dBm	
-40 dBm-	191
Marine and the second day is a second where the second where the second and the second second and the second s	www.mighunghow
-50 dBm	•
10.0 MHz 1001 pts 99.0 MHz/	1.0 GHz
Abarted	11.11.2017 14:53:58
14:53:59 11.11.2017	
MultiView 🗄 Spectrum 🖌	
Ref Level 46.00 dBm Offset 42.00 dB	SGL
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep	
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep Mile Mile Mile Mile Mile	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep 1 Frequency Sweep 1	O1Rm Clrw
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep Mile Mile Mile Mile Mile	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep 40 dbm 30 dBm 30 dBm 100 kHz 100 kHz	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep 40 dbm 30 dBm 30 dBm 100 kHz 100 kHz	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep 40 dbm	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep 40 dbm	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep	●1Rm Clrw [1] -43.66 dBm
Ref Level 45.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep Image: Sweet state stat	●1Rm Clrw [1] -43.66 dBm
Ref Level 45.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep	●1Rm Clrw [1] -43.66 dBm
Ref Level 45.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep MI Mode Auto Sweep MI 40 dbm	●1Rm Clrw [1] -43.66 dBm
Ref Level 45.00 dbm Offset 42.00 db RBW 100 kHz Att 14 db SWT 500 ms VBW 1 MHz Mode Auto Sweep 1 Frequency Sweep Image: Sweet state stat	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz Mode Auto Sweep 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep 40 dBm MI 30 dBm <	1Rm Cliw -43.66 dBm 958.960 MHz
Ref Level 46.00 dfm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep I Frequency Sweep	1Rm Cliw -43.66 dBm 958.960 MHz
Ref Level 46.00 dfm Offset 42.00 dB RBW 100 kHz Mode Auto Sweep 1 frequency Sweep	●1Rm Clrw [1] -43.66 dBm
Ref Level 46.00 dfm Offset 42.00 dB RBW 100 kHz Att 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep Hrequency Sweep	1Rm Cliw -43.66 dBm 958.960 MHz

14:55:11 11.11.2017

MultiView	Spectrum	₩							
Ref Level 46. Att	14 dB 🖷 SWT	t 42.00 dB ● RE 500 ms VE	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	•1Rm Clrw
40 dBm								M1[1]	-43.70 dBm 916.430 MHz
30 dBm									
20 dBm									
10.10									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-+0 0811					و و الم اللون			the second second	M1 whoever where
-50 dBm	for hange blong	Monthewayupen	during the design	grange and the state	Jewer war	an had had had a solar	war William whether	When we	
10.0 MHz			1001 pt	s	9'	9.0 MHz/			1.0 GHz
							Aborted		11.11.2017 14:56:24
14.56.04 14									
14:56:24 11.	11.2017								
		<u> </u>							
MultiView	Spectrum 00 dBm Offse	t 42.00 dB = RE	BW 100 kHz						SGL
MultiView Ref Level 46. Att	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				⊽ SGL ●1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView Ref Level 46. Att	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				м1[1]	• 1Rm Clrw -43.75 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView Bef Level 46.t Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm
MultiView Bef Level 46.t Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clw -43.75 dBm 960.930 MHz
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -43.75 dBm 960.930 MHz
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		unter					• 1Rm Clw -43.75 dBm 960.930 MHz
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 1 MHz M	unter		9.0 MHz/			• 1Rm Clw -43.75 dBm 960.930 MHz

14:57:37 11.11.2017

MultiView	🗄 Spectrum 🛛 🐳							∇
Ref Level 46 Att	5.00 dBm Offset 42.00 20 dB = SWT 500 r	dB ⊜ RBW 100 kHz ms VBW 1 MHz M	Iode Auto Swee	D				SGL
1 Frequency S	Sweep			-			M1[1]	•1Rm Clrw
40 dBm							M1[1]	22.79 dBm 2.64140 GHz
30 dBm								
							M1	
20 dBm								
10 dBm								
0 dBm								
-10 dBm								
00 d0-								
-20 dBm								
-30 dBm								
50 dbm							<u>//\</u>	
-40.dBm	ا فروند المحمد المحمد المحمد المحمد ال	and the second		Lawrence and the adults office	to a construction of the second			-
o same, andre	generation which we have been and	an and the share and	and an	keentalliks in the second s				
-50 dBm								
1.0 GHz			S	200).0 MHz/			3.0 GHz
][Aborted	1111 1 4/0	11.11.2017
14:54:16 11	.11.2017							
14.24.10 11								
MultiView	🗄 Spectrum 🔺	dB ● RBW 100 kHz						SGL
MultiView Ref Level 46 Att	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz ms VBW 1 MHz N	1ode Auto Swee	p				SGL
MultiView Ref Level 46 Att I Frequency S	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ⊜ RBW 100 kHz ms VBW 1 MHz N	1ode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 Att	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz ms VBW 1 MHz N	Node Auto Swee	p			M1[1]	SGL
MultiView Ref Level 46 Att T Frequency S 40 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz ms VBW 1 MHz M	Aode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 Att I Frequency S	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz ms VBW 1 MHz N	Node Auto Swee	p				SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB RBW 100 kHz ms VBW 1 MHz N	Mode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 Att T Frequency S 40 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB = RBW 100 kHz ms VBW 1 MHz N	Mode Auto Swee	P				SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 • Att I Frequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB = RBW 100 kHz m ms VBW 1 MHz N	Mode Auto Swee	p				SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB = RBW 100 kHz N	Node Auto Swee	p				SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 Att I Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz n ms VBW 1 MHz n	1ode Auto Swee	p				SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 • Att I Frequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz ms VBW 1 MHz N	Node Auto Swee					SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 Att I Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz M ms VBW 1 MHz M	Mode Auto Swee	P				SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 40 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB ● RBW 100 kHz M ms VBW 1 MHz M	Vode Auto Swee					SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 40 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB = RBW 100 kHz M	Mode Auto Swee					SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB = RBW 100 kHz N	Node Auto Swee					SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 46 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB = RBW 100 kHz N	Mode Auto Swee	P				SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 40 • Att T Frequency 8 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offset 42.00 20 dB • SWT 500 r	dB = RBW 100 kHz N	Node Auto Swee					SGL •1Rm Clrw 22,29 dBm 2.66730 GHz
MultiView Ref Level 40 • Att T Frequency 8 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum *	ms VBW 1 MHz N	Node Auto Swee					SGL ●1Rm Clrw 22,29 dBm
MultiView Ref Level 40 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum *	ms VBW 1 MHz N						SGL •1Rm Clrw 22,29 dBm 2.66730 GHz
MultiView Ref Level 46 Att I Frequency S 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m -20 d8m	Spectrum *	ms VBW 1 MHz N						SGL •1Rm Clrw 22,29 dBm 2.66730 GHz
MultiView Ref Level 40 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum *	ms VBW 1 MHz N	John of the state					SGL •1Rm Clrw 22,29 dBm 2.66730 GHz

14:55:29 11.11.2017

D-f1 1 22 2	Spectrum	¥						\bigtriangledown
Ref Level 46.0 Att		12.00 dB ● RB 500 ms VB		Iode Auto Swee	p			SGL
1 Frequency Sv	weep						M1[1]	•1Rm Clrw 22.02 dBm
40 dBm							WILI	2.64340 GHz
30 dBm								
							M1	
20 dBm								
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
-50 0811								
40 dBm							La	and the state of the
Pather Borth Manual	wynadder groedwydd	Mingraha	mun war		ahoone on the Analos	and manage a	a for the second se	
-50 dBm								
1.0 GHz			1001 pts	5	20	0.0 MHz/		3.0 GHz
	1					, i l	Aborted	11.11.2017
14:56:42 11.1	1 2017							
	Υ							
MultiView 8			100 kH-					
Ref Level 46.0 Att	00 dBm Offset 4 20 dB = SWT	¥ 12.00 dB ● RB 500 ms VB		1ode Auto Swee	p			SGL
Ref Level 46.0	00 dBm Offset 4 20 dB = SWT			1ode Auto Swee	p		M1[1]	●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att	00 dBm Offset 4 20 dB = SWT			1ode Auto Swee	p		M1[1]	●1Rm Clrw
Ref Level 46.0 Att 1 Frequency Sv	00 dBm Offset 4 20 dB = SWT			1ode Auto Swee	p		M1[1]	●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att 1 Frequency Sv	00 dBm Offset 4 20 dB = SWT			lode Auto Swee	p		M1[1]	●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att 1 Frequency Sv 40 dBm	00 dBm Offset 4 20 dB = SWT			Iode Auto Swee				●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att 1 Frequency Sv 40 dBm	00 dBm Offset 4 20 dB = SWT			Iode Auto Swee	p		M1[1]	●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency SV 40 dBm 30 dBm 20 dBm	00 dBm Offset 4 20 dB = SWT			Node Auto Swee	p			●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency Sv 40 dBm- 30 dBm-	00 dBm Offset 4 20 dB = SWT			Node Auto Swee				●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offset 4 20 dB = SWT			Node Auto Swee	p			●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency SV 40 dBm 30 dBm 20 dBm	00 dBm Offset 4 20 dB = SWT			Node Auto Swee				●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 4 20 dB = SWT			1ode Auto Swee				●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offset 4 20 dB = SWT			10de Auto Swee	2			●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 4 20 dB = SWT			Node Auto Swee	p			●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 4 20 dB = SWT			Node Auto Swee				●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	00 dBm Offset 4 20 dB = SWT			Node Auto Swee				●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 4 20 dB = SWT			Node Auto Swee				●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Do dBm Offset 4 20 dB • SWT weep	500 ms VB	W 1 MHz N					●1Rm Clrw 22.24 dBm
Ref Level 46.0 Att I Frequency Sy 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	00 dBm Offset 4 20 dB = SWT	500 ms VB	W 1 MHz N	Auto Swee	P			• 1Rm Clw 22.24 dBm 2.64340 GHz
Ref Level 46.0 Att I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Do dBm Offset 4 20 dB • SWT weep	500 ms VB	W 1 MHz N					• 1Rm Clw 22.24 dBm 2.64340 GHz
Ref Level 46.0 Att I Frequency Sy 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Do dBm Offset 4 20 dB • SWT weep	500 ms VB	W 1 MHz N	April (U. Marketon April Marketon)				• 1Rm Clrw 22.24 dBm 2.64340 GHz

14:57:54 11.11.2017

MultiView	🗄 🛾 Spectrum								∇
Ref Level 46. Att	14 dB 😑 SWT	t 42.00 dB ● P 500 ms V		lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	• 1Rm Clrw -39.03 dBm
40 dBm									26.2070 GHz
30 dBm									
20 dBm									
10 dBm									
TO OBII									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
io abiii	, dha an	м				C. It.			- Muchander "
-50 dBm	and when the second	r Ulintee chet weeren en opperer an	water and water	a symmetry	Munum	way was welly	wheneverthe	werd for the work of the second second	r v
3.0 GHz			1001 pt	s	2	.35 GHz/			26.5 GHz
][Aborted	I	11.11.2017
14:54:33 11.	11.2017								
MultiViow	Spectrum	*							
	00 dBm Offset	¥ t 42.00 dB ● P	BW 100 kHz						SGL
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ● R 500 ms V	BW 100 kHz 'BW 1 MHz M	lode Auto Sweep)				
Ref Level 46. Att 1 Frequency S	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ● R 500 ms V	RBW 100 kHz IBW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ● R 500 ms V	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL
Ref Level 46, Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB = SWT	¥ 42.00 dB ● R 500 ms V	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. Att 1 Frequency S	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46, Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ● P 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46.7 Att TFrequency S 40 dBm- 30 dBm-	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ● P 500 ms ¥	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46.7 Att T Frequency S 40 dBm- 30 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB • P 500 ms • V	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB = SWT	¥ 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB = R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ♥ P 500 ms ¥	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB ● P 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB • R 500 ms V	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB • R 500 ms V	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB = SWT	¥ 42.00 dB • R 500 ms V	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	00 dBm Offse 14 dB = SWT	¥ t 42.00 dB • P 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -39.05 dBm 26.0660 GHz
Ref Level 46. 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB • P 500 ms • V	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL IRm Clrw -39.05 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse 14 dB = SWT weep	t 42.00 dB • P 500 ms • V	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -39.05 dBm 26.0660 GHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB • P 500 ms • V						M1[1]	SGL •1Rm Clrw -39.05 dBm 26.0660 GHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse 14 dB = SWT weep	t 42.00 dB • P 500 ms • V	BW 100 kHz M					M1[1]	SGL •1Rm Clrw -39.05 dBm 26.0660 GHz

14:55:46 11.11.2017

MultiView	Spectrum	₩							
Ref Level 46. Att	14 dB 😑 SWT	t 42.00 dB ● 500 ms	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -39.05 dBm
40 dBm									26.1830 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 000									
-30 dBm									
									M1
-40 dBm									
us many	and	M	and the second	want in month	Munum	where where where	man man	monumenter	W Martin
-50 dBm		- La contraction	1001			.35 GHz/			26.5 GHz
3.0 GHz	Y		1001 pt	S	2	.35 GHZ/	Aborted		11.11.2017
14:56:59 11.	11 2017								
		×							
MultiView	Spectrum		RBW 100 kHz						SGL
MultiView Ref Level 46. Att	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)				⊽ SGL
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView Ref Level 46. Att	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView 3 Ref Level 46.1 Att 1 Frequency S 40 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView 3 Ref Level 46.1 Att 1 Frequency S 40 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				м1[1]	●1Rm Clrw -39.09 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView B Ref Level 46, Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39,09 dBm 26.2070 GHz
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.09 dBm
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum O dBm Offse 14 dB = SWT Weep	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M Image: I	lode Auto Sweep				M1[1]	●1Rm Clrw -39,09 dBm 26.2070 GHz
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm 30 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M					M1[1]	●1Rm Clrw -39,09 dBm 26.2070 GHz
MultiView Bef Level 46.t Ref Level 46.t Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm -30 dBm	Spectrum O dBm Offse 14 dB = SWT Weep	t 42.00 dB 🖷	RBW 100 kHz W VBW 1 MHz M Image: Im			35 GHz/		M1[1]	●1Rm Clw -39.09 dBm 26.2070 GHz

14:58:12 11.11.2017

10M+10M-2670MHz-Port1~4:

	🗉 Spectrum								
Att	.00 dBm Offse 14 dB = SWT			lode Auto Sweep)				SG
C Frequency S	Sweep							141	• 1Rm Clrw
) dBm								MI	[1] -35.21 dB 513.00 kl
) dBm									
) dBm									
) dBm									
dBm									
0 dBm									
0 dBm									
0 dBm									
.) dBm									
0 dBm	-	mutalities	an the second	unpungunum	walthed in politics	and water	unor the most	-	and the second
.0 kHz				s	99	9.1 kHz/			10.0 MH
	.11.2017 Spectrum	¥					Aborted 🚺		11.11.2017
1ultiView Ref Level 46	B Spectrum	t 42.00 dB = R		lode Auto Sweer)		Aborted 🧧		11.11.2017 15.2120
IultiView Ref Level 46 Att 90	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep)		Aborted	4,46 	
lultiView Ref Level 46 Att C Frequency (Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep			Aborted	M1[:	●1Rm Clrv .] -37.35 dE
IultiView Ref Level 46 Att C Frequency \$	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep	,		Abortod		●1Rm Clrw .] -37,35 dB
IultiView Ref Level 46 Att C Frequency S	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep	, ,		Aborted		●1Rm Clrv .] -37.35 dE
IultiView Ref Level 46 Att C Frequency S	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep			Abortod		●1Rm Clrw .] -37,35 dB
IultiView Ref Level 46 Att C Frequency S dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep			Aborted		●1Rm Clrv .] -37,35 dE
dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Clrv .] -37.35 dE
dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Clrv .] -37.35 dE
dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Clrv .] -37.35 dE
IultiView Ref Level 46 CC G 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Clrw .] -37,35 dB
IultiView Ref Level 46 OC IFrequency 5 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Clrw .] -37,35 dB
IultiView Ref Level 46 CC Image: Second	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Clrw .] -37,35 dB
Ref Level 46 Att OC Frequency S 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Cirw .] -37.35 dB
AultiView Ref Level 46 Att C Frequency 8 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Cirw .] -37.35 dB
AultiView Ref Level 46 Att C Frequency 8 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Cirw .] -37.35 dB
AultiView Ref Level 46 Att C Frequency 8 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep					●1Rm Clrw .] -37.35 dB
AultiView Ref Level 46 Att D ABm D D D D D D D D D D <tr< td=""><td>Spectrum .00 dBm Offse 14 dB SWT</td><td>t 42.00 dB = R</td><td>BW 1 MHz N</td><td>lode Auto Sweep</td><td></td><td></td><td></td><td></td><td>11.11.2017</td></tr<>	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 1 MHz N	lode Auto Sweep					11.11.2017

15:24:40 11.11.2017

MultiView	Spectrum	₩							∇
Ref Level 46. Att	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency S	weep		1		1		1		●1Rm Clrw
40 dBm								M1[1]	-36.54 dBm 513.00 kHz
30 dBm									
20 dBm									
20 0011									
10 dBm									
0.40									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
11 ¹									
-43 dBm									
-50 dBm	ula way way and	hilliparylikityy	an manually	hermoniantanta	what was and	March Contraction	an Illine Illine		
9.0 kHz			1001 pt	-		99.1 kHz/	100 · · · · · · · · ·		10.0 MHz
][]						Aborted		11.11.2017 15:25:52
15:25:53 11.	11.2017								
MultiView	Spectrum	¥							
Ref Level 46. Att	00 dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
Ref Level 46.	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)	1	1		●1Rm Clrw
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw
Ref Level 46. Att DC	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC I Frequency S 40 dBm-	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse 14 dB = SWT	it 42.00 dB • R 500 ms • V	BW 1 MHz M					M1[1]	●1Rm Clrw -35.91 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz M					M1[1]	●1Rm Clrw -35.91 dBm

15:27:05 11.11.2017

MultiView	Spectrum	₩							
RefLevel 46.0 Att	14 dB 😑 SWT	t 42.00 dB ● R 500 ms V		lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	 1Rm Clrw -43.93 dBm
40 dBm									936.210 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o ubin									
-10 dBm									
-20 dBm									
-30 dBm									
50 dbiii									
-40 dBm									M1
Antonesale	الالام الملك المراجع	ANA AN LAST SEC. M.M.	automation	and you have been and you	mumber	annound white	hundrengelight	en marganetica	wellow when we we
-50 dBm	of much study and	an Anthron Manual and							1.0.01
10.0 MHz	Y		1001 pt	S		9.0 MHz/	Aborted		1.0 GHz 11.11.2017
15:23:45 11.	11.2017								
15:23:45 11.									
MultiView Ref Level 46.0	Spectrum 00 dBm Offse	t 42.00 dB ∈ R							SGL
MultiView	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)	1			●1Rm Clrw
MultiView Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw
MultiView R Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView Baseline Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView Baseline Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.11 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep				M1[1]	• 1Rm Clw -44.11 dBm 942.140 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R							●1Rm Clrw -44.11 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R		lode Auto Sweep	- Angelin angeness			M1[1]	• 1Rm Clrw -44,11 dBm 942.140 MHz
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 1 MHz M						• 1Rm Clrw -44,11 dBm 942.140 MHz

15:24:57 11.11.2017

MultiView	Spectrum	₩							∇
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = R 500 ms V		lode Auto Sweep)				SGL
1 Frequency S								14154	•1Rm Clrw
40 dBm								M1[1]	-43.93 dBm 961.920 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
					talls and	L.			M1
-50 dBm	wowy you when	nden villander prover	han manufacture	manum	mahan mahah	the application	willing with the second	phone water	00.0
10.0 MHz			1001 pt	s	Q	9.0 MHz/			1.0 GHz
	Y		1001 pt				Aborted	4/0	11.11.2017
15:26:10 11.	.11.2017								
15:26:10 11. MultiView		*							
MultiView Ref Level 46.	Spectrum	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	Inde Auto Sweer	, ,				SGL
MultiView	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)	1			SGL
MultiView Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				м1[1]	SGL
MultiView Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm d0 dBm d0 dBm l0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm d0 dBm d0 dBm l0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	iode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -43,79 dBm 984.670 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -43,79 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz M	iode Auto Sweep					SGL • 1Rm Clrw -43,79 dBm 984.670 MHz

15:27:23 11.11.2017

MultiView		¥								
Ref Level 46 Att	20 dB 🖷 SWT	t 42.00 dB = R 500 ms V		Mode Auto Swee	p					SGL
1 Frequency S	Sweep								M1[1]	●1Rm Clrw 22.43 dBm
40 dBm										2.65530 GHz
30 dBm										
								M1		
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
								NV		
AD dBm	Lagundagenta Malio - Malio	- And and a second second	the match some amount	how when the start of the start	mongore the free	and work work the second	apadaphentertertati		T ^{hang} yahan by	- way the plan and a particular
			A seconde de	l'escalado o c						
-50 dBm										
1.0 GHz			1001 pt	S	20	0.0 MHz/				3.0 GHz
							Aborted		1,951	
15:24:02 11	.11.2017									
15:24:02 11 MultiView		¥								
MultiView Ref Level 46	Spectrum	¥ t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	Mode Auto Swee	q					SGL
MultiView	5.00 dBm Offset 20 dB SWT	¥ t 42.00 dB ● R 500 ms V		Mode Auto Swee	p				M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att	5.00 dBm Offset 20 dB SWT	¥ t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offset 20 dB SWT	k 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offset 20 dB SWT	¥ 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offset 20 dB SWT	¥ t 42.00 dB ● R 500 ms ¥	BW 100 kHz BW 1 MHz M	Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offset 20 dB SWT	t 42.00 dB • R 500 ms • V	BW 100 kHz BW 1 MHz M	Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offset 20 dB SWT	k 42.00 dB P R 500 ms V	BW 100 kHz BW 1 MHz N	Mode Auto Swee	p			M1	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offset 20 dB SWT	¥ ± 42.00 dB ● R 500 ms ¥	BW 100 kHz BW 1 MHz M	Mode Auto Swee	p			M1	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offset 20 dB SWT	¥ t 42.00 dB ● R 500 ms ¥	BW 100 kHz BW 1 MHz M	Mode Auto Swee	P			Ma	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offset 20 dB SWT	t 42.00 dB • R 500 ms • V	BW 100 kHz BW 1 MHz M	Mode Auto Swee	P			MI		●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offset 20 dB SWT	t 42.00 dB P R 500 ms V	BW 100 kHz N	Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offset 20 dB SWT	t 42.00 dB • R 500 ms v	BW 100 kHz BW 1 MHz N	Mode Auto Swee	P			M1 *	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offset 20 dB SWT	t 42.00 dB • R 500 ms v	BW 100 kHz BW 1 MHz N	Mode Auto Swee				M1	M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offset 20 dB SWT	t 42.00 dB • R 500 ms • V	BW 100 kHz N	Mode Auto Swee	p				M1[1]	●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offset 20 dB SWT	t 42.00 dB P R 500 ms V	BW 100 kHz N	Mode Auto Swee	P					●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offset 20 dB = SWT weep	500 ms V	BW 1 MHz N							●1Rm Clrw 22.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offset 20 dB = SWT Sweep	500 ms V	BW 1 MHz N						M1[1]	• 1Rm Clrw 22.09 dBm 2.65530 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offset 20 dB = SWT weep	500 ms V	BW 1 MHz N						M1[1]	• 1Rm Clrw 22.09 dBm 2.65530 GHz
MultiView Ref Level 46 • Att 1 1 10 0 0 -10 -20 -30 -30 -30 -40 -10 -20 -30 -30 -30 -30 -30 -30 -30	Spectrum .00 dBm Offset 20 dB = SWT weep	500 ms V	BW 1 MHz N						M1[1]	• 1Rm Clrw 22.09 dBm 2.65530 GHz

15:25:15 11.11.2017

MultiView		(▽
Ref Level 46 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms V		Mode Auto Swee	p					SGL
1 Frequency S	Sweep								M1[1]	 1Rm Clrw 22.49 dBm
40 dBm									—	2.65730 GHz
30 dBm										
20 dBm								M1	N	
20 0011										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
								MV		
r40,dBm-u-d/kgy	have been the form	gunneterent	Mununungen	www.	Withour Withour	Marked and a second of the	ang	od	-โรเซียาวสุขาวส	and and the planter of the
-50 dBm										
-50 dBm			1001 pt		20	0.0 MHz/				3.0 GHz
1.0 012	Y		1001 pt	5	20	10.0 MI 127	Aborted		100	11.11.2017
15:26:28 11	.11.2017									
15:26:28 11										
MultiView	Spectrum	et 42.00 dB = F	RBW 100 kHz							SGL
MultiView	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p					●1Rm Clrw
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	NBW 100 kHz /BW 1 MHz M	Mode Auto Swee	P				M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P				M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	p			M1	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz IBW 1 MHz N	Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	р 			M1	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M	Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	XBW 100 KHz M	Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M	Mode Auto Swee				MI	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	P			MI	M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M	Mode Auto Swee					M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum 20 dB offs 20 dB SWT weep	et 42.00 dB = F 500 ms V							M1[1]	●1Rm Clrw 22.26 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 0.00 dBm Offs. 20 dB = SWT Weep	et 42.00 dB = F 500 ms V							M1[1]	• 1Rm Cirw 22.26 dBm 2.65130 GHz
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum 20 dB offs 20 dB SWT weep	et 42.00 dB = F 500 ms V							M1[1]	• 1Rm Clrw 22.26 dBm 2.65130 GHz
MultiView Ref Level 46 • Att 1 1 10 0 0 0 -10 -20 -30 -30 -10 -20 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30	Spectrum 20 dB offs 20 dB SWT weep	et 42.00 dB = F 500 ms V								• 1Rm Clrw 22.26 dBm 2.65130 GHz

15:27:40 11.11.2017

MultiView	Spectrum	¥							
Δtt	00 dBm Offset 14 dB SWT			lode Auto Sweep	1				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -38.67 dBm
40 dBm									26.0890 GHz
00 10-									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
10 10-									M1
-40 dBm	a when the	м				A			an many and the
-50 dBm	have ween and	- Jon Martine -	nederal March de altabilitation March	mulingun	Munu	whenever and	Sweetherweiter	h	~
3.0 GHz	Y		1001 pt	S	2	.35 GHz/			26.5 GHz
							Aborted		
15:24:19 11.	11 2017								
MultiView	Spectrum	*							
MultiView Ref Level 46. Att	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep	,				SGL ●18m Claw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView Ref Level 46. Att	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep	,			M1[1]	•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB ⊜	PRBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB ⊜	PRBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm-	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm-	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView Barl Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				MI[1]	●1Rm Clrw -39.23 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ⊜	P RBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39,23 dBm 26.2300 GHz
MultiView Barl Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.23 dBm
MultiView Bart Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm 30 dBm	OO dBm Offset	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M					MI[1]	●1Rm Clrw -39,23 dBm 26.2300 GHz
MultiView Bart Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -0 dBm -30 dBm -30 dBm -30 dBm -30 dBm	Spectrum O dBm Offset 14 dB SWT Weep	t 42.00 dB ⊜						M1[1]	• 1Rm Clrw -39.23 dBm 26.2300 GHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum O dBm Offset 14 dB SWT Weep	t 42.00 dB ⊜	RBW 100 kHz VBW 1 MHz M					MI[I]	●1Rm Cltw -39,23 dBm 26.2300 GHz

15:25:32 11.11.2017

MultiView		¥							
RefLevel 46. Att	14 dB 🔿 SWT	t 42.00 dB ⊜ I 500 ms	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw -39.12 dBm
40 dBm									26.1360 GHz
00 10-									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
00 d0									
-20 dBm									
-30 dBm									
									M1
-40 dBm									M. A. Marker
-50 dBm	www.	and a second	and the assessment of the world	Meren physerolder	mound	and when and any	Monor when the	www.	and W
3.0 GHz				s	2	.35 GHz/			26.5 GHz
)[Aborted	4,40	11.11.2017 15:26:44
15:26:45 11.	.11.2017								
MultiView	Spectrum	₩							∇
MultiView Ref Level 46. Att	00 dBm Offset	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep)				SGL
Ref Level 46.	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrw
Ref Level 46. Att	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	•1Rm Clrw
Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att T Frequency S 40 dBm- 30 dBm-	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att T Frequency S 40 dBm- 30 dBm-	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 KHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm 26.1130 GHz
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 KHz VBW 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -38.89 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offset 14 dB = SWT	t 42.00 dB ● I	RBW 100 kHz VBW 1 MHz N					M1[1]	●1Rm Clrw -38.89 dBm 26.1130 GHz
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	OO dBm Offset 14 dB = SWT weep	t 42.00 dB ● I				35 GHz /		M1[1]	• 1Rm Clrw -38.89 dBm 26.1130 GHz
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offset 14 dB = SWT weep	t 42.00 dB ● I	RBW 100 KHz M			Nummun menu 35 GHz/		M1[1]	●1Rm Clrw -38.89 dBm 26.1130 GHz

15:27:58 11.11.2017

15M+15M-2640MHz-Port1~4:

MultiView									
Att	00 dBm Offse 14 dB ● SWT			1ode Auto Sweep	1				SGL
DC Frequency S	weep							MI	• 1Rm Clrw [1] -40.42 dBi
0 dBm									513.00 kF
) dBm									
) dBm									
) dBm									
dBm									
ubiii									
0 dBm									
20 dBm									
0 dBm									
կ ի, M1									
ю двт									
i0 dBm			a data da		where here to a local				
	en hand when the second s	- work for the for the for the for the start of the for the start of t	all of the for the former the	anderstrander	runneyemeternetund	warmen and and a second	- one - were addressed		10.014
:58:22 11.	11.2017 Spectrum	×	1001 pt	S	<u>9</u> 9	9.1 kHz/	Aborted 🚺		10.0 MF 11.11.2017
9:58:22 11. 1ultiView Ref Level 46.0	Spectrum	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Aborted 🚺		11.11.2017 09:53:22
2:58:22 11. fultiView Ref Level 46.0 Att	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz	s 10de Auto Sweep		9.1 kHz/	Aborted 📘	 430	11.11.2017
:58:22 11. IultiView E Ref Level 46.0 Att CC Frequency S	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Aborted	M1[1	•1Rm Clrv] -39,47 df
2:58:22 11. IultiView E Ref Level 46.0 Att Frequency S	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Aborted		11.11.2017
:58:22 11. IultiView R Ref Level 46.0 Mt C Frequency S dBm—	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		•1Rm Clrv] -39,47 df
:58:22 11. IultiView B Ref Level 46.0 Att C Frequency S	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		•1Rm Clrv] -39,47 df
:58:22 11. IultiView E Ref Level 46.0 Att C Frequency S o dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
:58:22 11. IultiView E Ref Level 46.0 Itt C Frequency S dBm dBm dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
:58:22 11. IultiView E Ref Level 46.0 Att C Frequency S dBm dBm dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
:58:22 11. fultiview E Ref Level 46.0 Att CC Frequency S d dBm d dBm dBm dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Aborted		11.11.2017
:58:22 11. ultiView B Ref Level 46.0 CC Frequency S dBm dBm dBm dBm dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
:58:22 11. ultiView B Ref Level 46.0 CC Frequency S dBm dBm dBm dBm dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		•1Rm Clrv] -39,47 df
2:58:22 11. Initial State 145.0 Att 20 Frequency S 20 0 dBm 20	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
2:58:22 11. fultiview B Ref Level 46.0 Att C Frequency S 0 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
D:58:22 11. AultiView Automatical states Ref Level 46.0 Att C Frequency S D D dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
D:58:22 11. AultiView Automatical states Ref Level 46.0 Att C Frequency S D D dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
Ref Level 46.0 Att OC Frequency S 0 dBm	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz			9.1 kHz/	Abortod		11.11.2017
D:58:22 11. MultiView B Ref Level 46.0 OdBm 0 0 dBm 0 0 dBm<	Spectrum OO dBm Offse 14 dB = SWT	t 42.00 dB 🖷 RE	3W 100 kHz	lode Auto Sweep		9.1 kHz/	Abortod		10.0 MH 11.11.2017 ▼ SG ● 1Rm Cirw J -39,47 dB 513.00 kł

09:59:35 11.11.2017

MultiView	🗊 Spectrum	₩							\bigtriangledown
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz N	lode Auto Sweep)				SGL
DC 1 Frequency S	weep			1	1				O1Rm Clrw
40 dBm								M1[1]	-40.78 dBm 513.00 kHz
30 dBm									
20 dBm									
20 0011									
10 dBm									
0 dBm									
o ubin-									
-10 dBm									
-20 dBm									
-30 dBm									
AMM1									
-40 dBm									
-50 dBm	myrnymagranterso	where we wanter		moundurate		and the second	-	www.walkalm	and an and the second second
9.0 kHz	Y		1001 pt	S	99	9.1 kHz/			10.0 MHz
	Л						Aborted		
10:00:48 11.	11 2017								
MultiView	Spectrum		BW 100 kHz						SGL
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				⊽ SGL
MultiView Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw
MultiView Ref Level 46. Att DC I Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC I Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum O dBm Offse 14 dB SWT weep	et 42.00 dB = R 500 ms V	BW 1 MHz N					M1[1]	●1Rm Clrw -40.35 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = R							●1Rm Clrw -40.35 dBm

10:02:01 11.11.2017

MultiView	🗉 Spectrum	₩							∇
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB ● R 500 ms V		ode Auto Sweep	1				SGL
1 Frequency S								M1[1]	• 1Rm Clrw
40 dBm								MI[1]	-43.30 dBm 943.130 MHz
10 4011									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									MI
al an train					monterproperties	mperhore the mark me	an pypoly productor	4 where where where	MI
50 dBm	windrand when he	New Or water	an har war war war	Abase a construction of				* · ·	
10.0 MHz			1001 pt	S	99	9.0 MHz/			1.0 GHz
	Л						Aborted		11.11.2017 09:58:39
09:58:40 11.	11 2017								
00100110 111	11.2017								
		×							
MultiView	Spectrum		RW 100 kHz						SGI
MultiView Ref Level 46.0 Att	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep					SGL
MultiView Ref Level 46.0	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView Ref Level 46.0 Att	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	•1Rm Clrw
MultiView R Ref Level 46.0 Att 1 Frequency S	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				м1[1]	●1Rm Clrw -43.59 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView 8 Ref Level 46. Att T Frequency S 40 dBm-	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView 8 Ref Level 46. Att T Frequency S 40 dBm-	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView 8 Act Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView B Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView 8 Act Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw -43.59 dBm
MultiView B Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep					• 1Rm Clrw -43.59 dBm 975.770 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -20 dBm 30 dBm -30 dBm -30 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	• 1Rm Clrw -43.59 dBm 975.770 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm	OO dBm Offse	t 42.00 dB = R			Luber Man my	. arcade			• 1Rm Clrw -43.59 dBm 975.770 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -20 dBm 30 dBm -30 dBm -30 dBm	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M		Luber Man my				• 1Rm Clrw -43.59 dBm 975.770 MHz

09:59:52 11.11.2017

MultiView	Spectrum	¥							\bigtriangledown
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB RE 500 ms VE		lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -43.80 dBm
40 dBm								MI[1]	948.080 MHz
30 dBm									
20 dBm									
10 dBm									
10 0000									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
50 dbiii									
-40 dBm									M1
				manaprover	-	www.	warmon	undergraphyconally	warmon
-50 dBm	when alf and the	antro-cytrately-solarism	and how have a second	y~~~~					
10.0 MHz	Y		1001 pt	S	9	9.0 MHz/			1.0 GHz
10:01:05 11.	11.2017							 	
MultiViou	Spectrum								
MultiView Ref Level 46.	00 dBm Offse	t 42.00 dB = RE	3W 100 kHz						SGL
	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep)				SGL
Ref Level 46. Att 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46. Att	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL
Ref Level 46. Att 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz SW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,89 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,89 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,89 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,89 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL •1Rm Clrw -43.89 dBm 946.100 MHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M						SGL •1Rm Clrw -43.89 dBm 946.100 MHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep		a hydr fra will a three		M1[1]	SGL ●1Rm Clrw -43,89 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M						SGL •1Rm Clrw -43.89 dBm 946.100 MHz 946.100 MHz
Ref Level 46. 1 Frequency S 40 d8m 30 d8m 20 d8m 10 d8m 10 d8m -10 d8m -20 d8m -30 d8m -40 d8m	00 dBm Offse 14 dB • SWT	t 42.00 dB = RE					Aborted		SGL • 1Rm Cirw -43.89 dBm 946.100 MHz 946.100 MHz

10:02:18 11.11.2017

MultiView		*						\bigtriangledown
Ref Level 46 Att	20 dB 🖷 SWT	42.00 dB = RE 500 ms VB		/lode Auto Swee	p			SGL
1 Frequency S	Sweep						M1[1]	●1Rm Clrw 20.82 dBm
40 dBm								2.65730 GHz
30 dBm								
00 d0							M1	
20 dBm								
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
							0 by	
AQ dam menunda	powww.elewworker.	may have may have a	montalities	which which we have the	Monthrymhite	Charles and the second second	a mar and the stand of the stan	aligner and a second and
-50 dBm			1001					0.0.011-
1.0 GHz	Y		1001 pt:	S	20	0.0 MHz/	Aborted	3.0 GHz 11.11.2017
00.59.57 11	11 2017							
09:58:57 11.	_							
MultiView	Spectrum	₩ 42.00 dB ● BB	3W 100 kHz					SG
MultiView Ref Level 46 Att	Spectrum 5.00 dBm Offset 20 dB SWT	¥ 42.00 dB ● RE 500 ms VB		Iode Auto Swee	p			⊽ SGL ●1Rm Clrw
MultiView 8 Ref Level 46 Att 1 Frequency S	Spectrum 5.00 dBm Offset 20 dB SWT	¥ 42.00 dB ● RE 500 ms VB	3W 100 kHz 3W 1 MHz N	1ode Auto Swee	p		м1[1]	●1Rm Clrw 20.94 dBm
MultiView Ref Level 46 Att	Spectrum 5.00 dBm Offset 20 dB SWT	¥2.00 dB ● RB 500 ms VB	3W 100 kHz 3W 1 MHz N	1ode Auto Swee	p		M1[1]	●1Rm Clrw 20.94 dBm
MultiView 3 Ref Level 46 Att 1 Frequency S 40 dBm-	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RB 500 ms VB	3W 100 kHz 3W 1 MHz N	Mode Auto Swee	p		M1[1]	●1Rm Clrw 20.94 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB = RE 500 ms VB	3W 100 kHz W 1 MHz N	Mode Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView 3 Ref Level 46 Att 1 Frequency S 40 dBm-	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RE 500 ms VB	3W 100 kHz 3W 1 MHz N	1ode Auto Swee	p		M1[1]	●1Rm Clrw 20.94 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB = RB 500 ms VB	3W 100 kHz 3W 1MHz N	/lode Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RB 500 ms • VB	3W 100 kHz N 3W 1 MHz N	Mode Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RE 500 ms • VB	3W 100 kHz N 3W 1 MHz N	Mode Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RE 500 ms VB	3W 100 kHz N	Mode Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RB 500 ms • VB	3W 100 kHz N	Node Auto Swee	p			●1Rm Clrw 20.94 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RE 500 ms • VB	3W 100 kHz N	Node Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RE 500 ms • VB	3W 100 kHz N	Node Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView B Ref Level 46 40 Att 30 10 dBm 30 10 dBm 30 10 dBm 30 -10 dBm 30	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RE 500 ms • VB	3W 100 kHz N	Node Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView Bef Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm	Spectrum 5.00 dBm Offset 20 dB SWT	42.00 dB • RE 500 ms • VB	3W 100 kHz N	Mode Auto Swee	P			●1Rm Clrw 20.94 dBm
MultiView B Ref Level 46	Spectrum .00 dBm Offset 20 dB SWT weep	500 ms VB	3W 1 MHz N					●1Rm Clrw 20.94 dBm
MultiView Bef Level 46 • Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offset 20 dB SWT weep	500 ms VB	3W 1 MHz N	Auto Swee				• 1Rm Cirw 20.94 dBm 2.65130 GHz
MultiView Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offset 20 dB SWT weep	500 ms VB	3W 1 MHz N					• 1Rm Cirw 20.94 dBm 2.65130 GHz
MultiView Bef Level 46 • Att 1 10 dBm 30 dBm 20 dBm 10 dBm 10 dBm -0 dBm -10 dBm -30 dBm -30 dBm -30 dBm	Spectrum .00 dBm Offset 20 dB SWT weep	500 ms VB	3W 1 MHz N	1442				• 1Rm Clrw 20.94 dBm 2.65130 GHz

10:00:10 11.11.2017

MultiView									▽
Ref Level 46 Att	20 dB 😑 SWT	et 42.00 dB ● F 500 ms V	RBW 100 kHz /BW 1 MHz M	/lode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw 20.62 dBm
40 dBm									2.64740 GHz
30 dBm									
20 dBm								M1	
20 0011									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
								44	والمراجع والمراجع
AR APM Windowed	a the hyper and a second	multuration	Manual Manuar	mourtonerry	manna	x made line account of	allocole ² e, ^{og} ender	end freedom and a second	han harby trouble
-50 dBm									
1.0 GHz			1001 pt	5	20	0.0 MHz/			3.0 GHz
110 GHZ	Y		1001 pt	3	20		Aborted		11.11.2017
						,			
10:01:23 11.	.11.2017								
10:01:23 11. MultiView Ref Level 46	Spectrum	et 42.00 dB = F	RBW 100 kHz						SGL
Ref Level 46	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz VBW 1 MHz M	1ode Auto Swee	p				
MultiView Ref Level 46 Att 1 Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz VBW 1 MHz N	Aode Auto Swee	p			M1[1]	SGL •1Rm Clrw 20.71 dBm
Ref Level 46	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	1ode Auto Swee	p			M1[1]	SGL
MultiView Ref Level 46 Att 1 Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	/lode Auto Swee	p			M1[1]	SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Aode Auto Swee	P				SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Node Auto Swee	P			M1[1]	SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 Att TFrequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Node Auto Swee	р 				SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	1ode Auto Swee	P				SGL 01Rm Clrw 20.71 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Node Auto Swee	P				SGL 01Rm Clrw 20.71 dBm
MultiView Ref Level 46 Att TFrequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Node Auto Swee	P				SGL 01Rm Clrw 20.71 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Node Auto Swee	p				SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz ////////////////////////////////////	Node Auto Swee	P				SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Node Auto Swee	P				SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P				SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P				SGL •1Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Od Bm Offse 20 dB SWT SWeep	200 dB = F 500 ms V							SGL 01Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Offse 20 dB SWT Sweep	200 dB = F 500 ms V							SGL 01Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Od Bm Offse 20 dB SWT SWeep	200 dB = F 500 ms V							SGL 01Rm Clrw 20.71 dBm
MultiView Ref Level 46 • Att 1 10 20 0 0 0 -10 -20 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30	Spectrum Od Bm Offse 20 dB SWT SWeep	200 dB = F 500 ms V				0.0 MHz/			SGL 01Rm Clrw 20.71 dBm

10:02:35 11.11.2017

	00 dBm Offse								sg
Att Frequency S	14 dB SWT	500 ms VI	BW 1 MHz M	ode Auto Sweep)				●1Rm Cln
								M1[1]] -38.99 dI
dBm									26.1360 6
dBm									
dBm									
dBm									
Bm									
I dBm									
I dBm									
dBm									
I dBm									and the second s
	and all and all all all all all all all all all al	4		welly	Marrielander	Herry all March and	a mana the	and mouth we	www
dBm	and and	Contraction of the second of the	Manager and a children of the second se	What was a set of the		00000 (000			
						25 CH=7			26.5 G
59:15 11. ultiView	Spectrum		1001 pt	5	2.	35 GHz/	Aborted 📲	 630	11.11.2017 09:59:14
:59:15 11. ultiView 6 :ef Level 46.	Spectrum 00 dBm Offse	et 42.00 dB ∈ RI	BW 100 kHz				Aborted 🧧	490	11.11.2017 09:59:14
:59:15 11. ultiView ef Level 46.1	Spectrum	et 42.00 dB ∈ RI					Abortod		11.11.2017 00.011 SI 01Rm Clri
59:15 11. ultiView ef Level 46. tt requency S	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Aborted	M1[1]	11.11.2017
59:15 11. ultiView ef Level 46. tt requency S	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
ef Level 46. tt requency S	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
ef Level 46. tt requency S	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
dBm-	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
59:15 11. ultiView 6 ef Level 46. tt requency S dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Aborted	M1[1]	11.11.2017
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Aborted	M1[1]	11.11.2017
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Aborted	M1[1]	11.11.2017
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	■ 1Rm Clri = -38.99 d 26.1600 C
dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017
:59:15 11. ultiView Image: Comparison of the second se	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz				Abortod	M1[1]	11.11.2017 Sr • 1Rm Cli -38,99 d 26,1600 d
259:15 11. ultiView 6 ef Level 46. tt frequency S dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz					M1[1]	11.11.2017 (
259:15 11. ultiView 6 ef Level 46.1 tt frequency S dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum	et 42.00 dB ∈ RI	BW 100 kHz	ode Auto Sweep					11.11.2017
259:15 11. ultiView 6 ef Level 46. tt frequency S dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum OodBan Offse 14 dB • SWT weep	et 42.00 dB ∈ RI	BW 100 kHz						11.11.2017 Sr • 1Rm Cli -38,99 d 26,1600 d

10:00:27 11.11.2017

MultiView	Spectrum	*							\bigtriangledown
Att	00 dBm Offse 14 dB = SWT		RBW 100 kHz VBW 1 MHz M	lode Auto Sweep	1				SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -38.50 dBm
40 dBm									26.1830 GHz
30 dBm									
30 UBIII									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
00 da-									
-20 dBm									
-30 dBm									
									M1
-40 dBm									n. m. Marthand
-50 dBm	mont		المستر المست	wellen musserente	Mandershame	alle warden	Julian Marrow	www.www.www.www.www.www.www.www.www.ww	~~ ~
3.0 GHz		<u> </u>		s	2	.35 GHz/			26.5 GHz
)[]						Aborted	4,40	11.11.2017 10:01:40
10:01:40 11.	11.2017								
MultiView	Spectrum	₩							∇
Ref Level 46.	00 dBm Offset	t 42.00 dB 🖷		lode Auto Sweep					⊽ SGL
	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrw
Ref Level 46. Att	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	•1Rm Clrw
Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 45. Att 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		iode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷		iode Auto Sweep				M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB 🖷						M1[1]	●1Rm Clrw -38.51 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	OO dBm Offse 14 dB • SWT weep	t 42.00 dB 🖷			Antonythere	35 GHz /		M1[1]	• 1Rm Clrw -38.51 dBm 26.4880 GHz
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse 14 dB • SWT weep	t 42.00 dB 🖷			Antonythere			M1[1]	●1Rm Clrw -38.51 dBm

10:02:53 11.11.2017

15M+15M-2655MHz-Port1~4:

	Spectrum	-							
tef Level 46. Att C	.00 dBm Offse 14 dB ● SWT	t 42.00 dB ● I 500 ms N	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep	0				SG
Frequency S	Sweep							M1[•1Rm Clrw [1] -46.02 dB
dBm									513.00 k
dBm									
dBm									
dBm									
Bm									
) dBm									
ı dBm									
) dBm									
dBm									
U Mi									
dBm - کی اس اب 0 kHz	a yan ana ana ana ana ana ana ana ana an	and the second second	1001 pt	te	Monora and the	9.1 kHz/	how how when he had	and a second second	10.0 MI
	Y								11.11.2017
		 `					Aborted	446	10:39:17
ultiView ef Level 46.	Spectrum Offse	et 42.00 dB ∈ F	RBW 100 kHz	Mada Auto Success			Aborted	eyta	10:39:17
ultiView ef Level 46. tt	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep)		Abortori		so
ultiView ef Level 46. tt c requency S	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep			Abortori	M1[1	•1Rm Clrv -45.30 dl
ultiView ef Level 46. tt C irequency S	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Vode Auto Sweep					•1Rm Circ -45.30 df
ultiView ef Level 46. tt requency \$ dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep					•1Rm Clrv -45.30 dl
ultiView ef Level 46. tt C irequency S dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep					• 1Rm Cirv -45.30 dB
ultiView af Level 46. tt prequency S JBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep					•1Rm Circ -45.30 df
ultiView ef Level 46. c requency S dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep					•1Rm Circ -45.30 df
ultiView ef Level 46. c requency 8 dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweer					•1Rm Circ -45.30 df
ultiView ef Level 46. C irequency 8 dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep					•1Rm Circ -45.30 df
ultiView ef Level 46. C Frequency S dBm dBm dBm dBm Bm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz M BW 1 MHz M	Mode Auto Sweer					•1Rm Circ -45.30 df
ultiView ef Level 46. C Trequency S dBm dBm dBm dBm bm dBm bm dBm bm dBm dBm bm dBm dBm bm dBm dBm dBm dBm dBm dBm dBm dBm dBm dB	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweer					• 1Rm Cirv -45.30 dB
ultiView ef Level 46. tt c requency S dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz V VBW 1 MHz N	Mode Auto Sweep					• 1Rm Cirv -45.30 dB
ultiView ef Level 46. tt c requency S dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep					•1Rm Circ -45.30 df
ultiView ef Level 46. tt frequency S dBm dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz VBW 1 MHz N	Mode Auto Sweep					• 1Rm Cirv -45.30 dB
ef Level 46. tt C C Tequency S dBm	Spectrum 00 dBm Offse 14 dB SWT	et 42.00 dB ∈ F	RBW 100 kHz M BW 1 MHz N	Mode Auto Sweep					SG ●1Rm Cirv

10:40:31 11.11.2017

MultiView	Spectrum	ı ∦							▽
Ref Level 46. Att	00 dBm Offse 14 dB SWT	et 42.00 dB ● RI 500 ms VI	BWI 100 kHz BWI 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency S	weep								●1Rm Clrw
40 dBm								M1[1]	-43.71 dBm 513.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o ubiii									
-10 dBm									
00 40									
-20 dBm									
-30 dBm									
14									
-40 dBm									
-50 dBm-	Merria and the second of the second	molemanika		ang	muunn	manhaman	Hynamichan	and the state of t	admp-of-mov-alling
9.0 kHz	Y		1001 pt	S		9.1 kHz/			10.0 MHz
	Л						Aborted		
10:41:44 11	11.2017								
	~								
	Spectrum		RW 100 kHz						
		t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				 SGL
Ref Level 46. Att	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep)			M1[1]	●1Rm Clrw
Ref Level 46. Att DC	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		iode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		iode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R		iode Auto Sweep				M1[1]	●1Rm Clrw -44.58 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	00 dBm Offse 14 dB ● SWT	t 42.00 dB = R						M1[1]	• 1Rm Cirw -44.58 dBm 523.00 kHz
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R 500 ms VI	BW 1 MHz M			99.1 kHz/			●1Rm Clrw -44.58 dBm

10:42:56 11.11.2017

MultiView	Spectrum	₩							
Ref Level 46. Att	14 dB 🖷 SWT	t 42.00 dB • RE 500 ms VE		lode Auto Sweep					SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw -43.90 dBm
40 dBm									944.120 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
-50 dBm	hour hours and hours	Mulmuninar	mountworketer	gran warman	guinant basinger	unpround	mananananta	a norman and h	not deleterally and the
10.0 MHz			1001 pt:	s		9.0 MHz/			1.0 GHz
							Aborted		11.11.2017
10:39:35 11.	11 2017								
	1112017								
MultiView		¥							∇
MultiView Ref Level 46.	O dBm Offset	t 42.00 dB ● RE		Inde Auto Sween					SGL
MultiView	OO dBm Offset	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep)	1		M1[1]	•1Rm Clrw
MultiView Ref Level 46. Att	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView Bef Level 46. Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 20 dBm 20 dBm 10 dBm -10 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	• 1Rm Clrw -43.78 dBm
MultiView Bef Level 46. Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB ● RE		lode Auto Sweep				M1[1]	● 1Rm Clrw -43.78 dBm 949.070 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm	OO dBm Offset	t 42.00 dB ● RE	3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.78 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm	OO dBm Offset	t 42.00 dB ● RE		Whether and the second					• 1Rm Clrw -43.78 dBm 949.070 MHz
MultiView Bef Level 46. Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -20 dBm 30 dBm -30 dBm -30 dBm	OO dBm Offset	t 42.00 dB ● RE	3W 1 MHz M	Whether and the second					● 1Rm Clrw -43.78 dBm 949.070 MHz

10:40:48 11.11.2017

MultiView	Spectrum	*							
Ref Level 46.0 Att	14 dB 🖷 SWT	t 42.00 dB ● R 500 ms V		lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	1Rm Clrw -43.70 dBm
40 dBm									941.150 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o ubin									
-10 dBm									
-20 dBm									
-30 dBm									
So dam									
-40 dBm									M1
Anna	المرعد والمراجع المراجع		un and a second	manunghanun	monortypymen	annanantanta	governdered and	mangunum	munterent
-50 dBm	1990 and a second s	anderestrations a							
10.0 MHz			1001 pt	s	99	9.0 MHz/	Aborted		1.0 GHz 11.11.2017
10:42:01 11.1	11 2017								
	~								
Ref Level 46.0		★ t 42.00 dB ● R	BW 100 kHz						SGL
Att 1 Frequency S	14 dB 😑 SWT	500 ms V		lode Auto Sweep)				●1Rm Clrw
								M1[1]	
40 dBm									
30 dBm									
20 dBm									
10 dBm									
10 00.00									
0 dBm									
-10 dBm									
						1	1		
-20 dBm									
-20 dBm									
-20 dBm									
-30 dBm									
									Mi
-30 dBm	anti varmatu de Maria	Mr.M.M.Margueri		unterprovement	gunation on the	u-A-Al-Adamasinana		entry werny wer	M1 MJ Wybyww
-30 dBm	sed prever with the	an a			Alda autorial		er for the second s	and the manufacture of the second	M1

10:43:14 11.11.2017

MultiView 🗄	Spectrum	₩						\bigtriangledown
RefLevel 46.0 Att	20 dB 🖷 SWT	42.00 dB ● RB 500 ms VB	BW 100 kHz BW 1 MHz N	/lode Auto Swee	p			SGL
1 Frequency Sw	veep						MILLI	●1Rm Clrw 20.28 dBm
40 dBm							M1[1]	2.66730 GHz
30 dBm								
20 dBm							M1	
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
							r · ·	- under and the mail
-40, dBm - hu - hu / ul	and more thank the second s	ber workey many	dy	nationary	have glow harded and	(the provide the second of th	and a second	- un Alder and a state of the s
-50 dBm								
1.0 GHz	ſ		1001 pt	S	20	0.0 MHz/	Aborted W0	3.0 GHz
10:39:53 11.1	1.2017							
MultiView	~	*						
MultiView 8 Ref Level 46.0	Spectrum	42.00 dB = RB	3W 100 kHz	Ande Auto Swee				SGL
MultiView 8	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	BW 100 kHz BW 1 MHz N	1ode Auto Swee	p			●1Rm Clrw
MultiView Ref Level 46.0 Att 1 Frequency Sw	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz SW 1 MHz N	Aode Auto Swee	p		M1[1]	●1Rm Clrw
MultiView Ref Level 46.0	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz 8W 1 MHz N	1ode Auto Swee	p		M1[1]	●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att T Frequency Sw 40 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz SW 1 MHz N	/lode Auto Swee	p		M1[1]	●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz 3W 1 MHz N	Node Auto Swee	P		M1[1]	●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency SW 40 dBm 30 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz W 1 MHz N	Aode Auto Swee	P		M1[1]	●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att T Frequency Sw 40 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz SW 1 MHz N	Aode Auto Swee	P			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency SW 40 dBm 30 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz 1 MHz N	Node Auto Swee	р 			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz W 1 MHz N	Node Auto Swee	P			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz W 1 MHz N	Node Auto Swee	P			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz W 1 MHz N	Node Auto Swee	p			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz N W 1 MHz N	Node Auto Swee	P			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 • Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz N	Node Auto Swee	P			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 • Att 1 Frequency Sw 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz W 1 MHz N	Node Auto Swee	P			●1Rm Clrw 20.40 dBm
MultiView Image: Constraint of the second seco	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz 8W 1 MHz N	Node Auto Swee	P			●1Rm Clrw 20.40 dBm
MultiView Image: Constraint of the second seco	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz N	Node Auto Swee				●1Rm Clrw 20.40 dBm
MultiView Image: Constraint of the second seco	Spectrum 00 dBm Offset 4 20 dB SWT	42.00 dB = RB	3W 100 kHz N	Node Auto Swee	P			• 1Rm Cirw 20.40 dBm 2.66530 GHz
MultiView Ref Level 46.0 Att 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 0 dBm Offset 4 20 dB = SWT veep	42.00 dB = RB 500 ms VB	<u>w 1 MHz N</u>		P			●1Rm Clrw 20.40 dBm
MultiView Ref Level 46.0 Att 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 0 dBm Offset 4 20 dB = SWT veep	42.00 dB = RB 500 ms VB	<u>w 1 MHz N</u>	Node Auto Swee				• 1Rm Clrw 20.40 dBm 2.66530 GHz
MultiView Ref Level 46.0 Att 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 0 dBm Offset 4 20 dB = SWT veep	42.00 dB = RB 500 ms VB	<u>w 1 MHz N</u>					• 1Rm Clrw 20.40 dBm 2.66530 GHz
MultiView Ref Level 46.0 Att 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 0 dBm Offset 4 20 dB = SWT veep	42.00 dB = RB 500 ms VB	<u>w 1 MHz N</u>			0.0 MHz/		• 1Rm Clrw 20.40 dBm 2.66530 GHz

10:41:06 11.11.2017

MultiView	Spectrum	₩							∇
Ref Level 46 Att	20 dB 🖷 SWT	et 42.00 dB ● P 500 ms V	NBW 100 kHz /BW 1 MHz M	Node Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw 20.57 dBm
40 dBm									2.66330 GHz
30 dBm									
20 dBm								M1 T	
10 dBm									
0 dBm									
-10 dBm									
00 d0m									
-20 dBm									
-30 dBm									
								۲°۲	mound
atter demonstration	un non a survey and	mannowww.	Munuhung	nonwetherder	amphonestation	altranoper de	appen Amphonese	of) produce designed	hadine fatter of the same fatter
-50 dBm									
1.0 GHz			1001 pt	s	20	0.0 MHz/			3.0 GHz
][Aborted	1 10	11.11.2017 10:42:17
10:42:18 11	11.2017								
10.42.10 11.									
MultiView		*							
MultiView Ref Level 46 Att	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	p				SGL
MultiView Ref Level 46 Att	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 Att	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	р 			M1[1]	SGL
MultiView Ref Level 46 Att I Frequency S 40 dBm-	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	p			M1[1]	SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 Att T Frequency S	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	p				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz BW 1 MHz M	Node Auto Swee	P			M1[1]	SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 Att T Frequency S 40 dBm 30 dBm 20 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 Att T Frequency S 40 dBm 30 dBm 20 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	P				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz N	Mode Auto Swee	P				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz N	Mode Auto Swee	p				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz N	Mode Auto Swee	p				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz N	Mode Auto Swee					SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 • Att 1 Frequency 9 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m	.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz N	Mode Auto Swee	P				SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB P R 500 ms V							SGL IRm Clrw 20.97 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB P R 500 ms V							€ 1Rm Clrw 20.97 dBm 2.66330 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB P R 500 ms V							SGL • 1Rm Clrw 20.97 dBm 2.66330 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB P R 500 ms V		Work J. View Marchine		0.0 MHz/			SGL • 1Rm Clrw 20,97 dBm 2.66330 GHz

10:43:31 11.11.2017

	Spectrum		DW 100 54-						
tt	00 dBm Offse 14 dB SWT		BW 100 kHz BW 1 MHz M	ode Auto Sweep)				S
Frequency S	weep							M1[1]	●1Rm Clr -38.89 d
dBm									26.1600 0
dBm									
dBm									
dBm									
IBm									
) dBm									
) dBm									
, abiii									
-									
I dBm									
) dBm									a work
monthing	mounter	1	male	my marken	mundum	mummum	mound	munun	
rdBm		- Carlos and a start of the sta							
0 GHz			1001 pt	5	2	.35 GHz/			26.5 G
40:10 11. ultiView	Spectrum						Aborted	676	
:40:10 11. IultiView Ref Level 46.	Spectrum 00 dBm Offse	t 42.00 dB = R		ode Auto Sweer	,		Aborted		
:40:10 11. ultiView	OO dBm Offse	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep)		Aborted		So 1Rm Clr
:40:10 11. ultiView ef Level 46. tt -requency S	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep)		Aborted	M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt -requency S	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt requency \$	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Clr -38.96 d 26.2770 C
den:10 11. ultiView ef Level 46. tt requency S	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Clr ●18m Clr] -38,96 d
40:10 11. ultiView ef Level 46. tt Trequency S dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Clr ●18m Clr] -38,96 d
dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt requency \$ dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt requency \$ dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt requency S dBm dBm dBm dBm dBm D dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView sef Level 46. tt requency S dBm dBm dBm dBm dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt dBm dBm dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt dBm dBm dBm dBm dBm dBm dBm 0 dBm 0 dBm 0 dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep				M1[1]	●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt dBm dBm dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep					●1Rm Clr ●18m Clr] -38,96 d
:40:10 11. ultiView ef Level 46. tt requency S dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep					●1Rm Clr ●18m Clr] -38,96 d
dBm	OO dBm Offse	t 42.00 dB = R		ode Auto Sweep					●1Rm Clr ●18m Clr] -38,96 d

10:41:23 11.11.2017

MultiView	🗉 🛛 Spectrum	₩							∇
Ref Level 46. Att	14 dB 😑 SWT	t 42.00 dB ● F 500 ms V	NBW 100 kHz NBW 1 MHz M	lode Auto Sweep	,				SGL
1 Frequency S	weep		1					M1[1]	●1Rm Clrw -38.86 dBm
40 dBm								MI[1]	26.0890 GHz
30 dBm									
20 dBm									
10 dBm									
10 dbm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
00 4011									
-40 dBm									
and the start of the	in purchase	1		Charling to the second s	No. And	- mohum	Muramyorty and	al an agent application	wwwwww
-50 dBm	and the second s	harden professioner	and property of the Market	- "hann	2 maria	- multur -		• •	
3.0 GHz	Y		1001 pt	S	2	.35 GHz/			26.5 GHz
							Aborted		
10:42:36 11.	11.2017								
MultiView	Spectrum	*							\bigtriangledown
Ref Level 46. Att	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	lode Auto Sweep	,				SGL
Ref Level 46.	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz I'BW 1 MHz M	lode Auto Sweep	,			MI[1]	•1Rm Clrw
Ref Level 46. Att	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrw
Ref Level 46. Att 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	XBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46. Att 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46.7 Att TFrequency S 40 dBm- 30 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46, Att 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz //BW 1 MHz M	lode Auto Sweep				м1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46.7 Att TFrequency S 40 dBm- 30 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz RBW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	BBW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	BBW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	RBW 100 kHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46. 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	BBW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clw -38,98 dBm 26.2070 GHz
Ref Level 46. 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm- -20 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = F	BW 100 kHz M //BW 1 MHz M	lode Auto Sweep				M1[1]	• 1Rm Clrw -38.98 dBm
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse 14 dB = SWT weep	t 42.00 dB = F	RBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clw -38,98 dBm 26.2070 GHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = F						M1[1]	• 1Rm Clrw -38.98 dBm 26.2070 GHz
Ref Level 46. 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse 14 dB = SWT weep	t 42.00 dB = F	BBW 100 kHz M			35 GHz/		MI[1]	●1Rm Clw -38,98 dBm 26.2070 GHz

10:43:49 11.11.2017