53.4 dBm	MultiView 🕀 Spectrum	🛛 🖾 LTE	X						∇
L Coplure Buffer S L Cinv 3 EVM vs Carrier O 1 Avg 0 2 Min 0 3 Max 5 Power Spectrum O 1 Cinv 55 4 dbm 19 % 19 % 19 % 19 % 19 % 19 % 19 % 19 % 10 % 1							All		SGL
Frame Results 1/1 Mean Max Limit Min		t 43.40 dB MIMO					av 15 Dowor Spo	ctrum	
65.4 dBm 19 % 19 % 58.6 dBm/Hz 59.6 dB			UT CIIW SE	VIVI VS Carr			ax 5 Power spe	ctrum	
14 % 14 % 14 % 14 % 14 % 14 % 14 % 14 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 12 % 14 % 14 % 12 % 14 % 11 % 11 % 11 % 12 % 11 % 11 % 12 % 11 % 11 % <td< td=""><td>65.4 dBm</td><td></td><td>18 %</td><td>/0</td><td></td><td></td><td></td><td></td><td>+ + + +</td></td<>	65.4 dBm		18 %	/0					+ + + +
12 % 12 % 10 %	53.4 dBm		16 9	/6			-66 dBm/Hz		
12 % 12 % 10 %			14 3	/6			-74 dBm/Hz		V
5.4 dam 10.9 dam			12 0	6 ¹					
0.4 dar 6.6 dar 9 % 0.0 ms			10.0	1 1 1 1 1 1	hiltinii bi kubala kiba	hitin historia			
6.6 dBm 6 % 100 dBm/hz 100 dBm/hz 10.6 dBm 100 dBm/hz 114 dBm/hz 114 dBm/hz 30.6 dBm 100 dBm/hz 114 dBm/hz 114 dBm/hz 30.6 dBm 2.01 ms 2.01 ms 15.36 MHz 15.36 MHz 122 dBm/hz 20.0 ms 2.01 ms 2.01 ms 15.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MHz 15.36 MHz 3.07 MHz 15.36 MHz 3.07 MHz/ 15.36 MHz 100 dBm/hz 122 dBm/hz 120 dBm/hz 15.36 MHz	h de seu dise bit e dit en de la site de la relation de se di de de se de la desenda d	la shi cu ku dharata si ni dhala ni a	12 I I I I I I I I I I I I I I I I I I I		MALLE L'AND .				
13.6 dBm				100 C 10		• Max control			
1.3.5 dam 1.4.5 dam/4 1.4.5 dam/4 1.4.5 dam/4 1.4.5 dam/4 3.0.6 dam 2.01 ms/ 20.1 ms/ 20.1 ms 1.5.36 MHz 1.5.36 MHz 1.5.36 MHz 3.07 MHz/ 1.5.36 MHz 3.07 M				and the second second	والبابية للمربقة الجليل				
Co. 0 ms 2.01 ms/ 20.1 ms -15.36 MHz 3.07 MHz/ 15.36 MHz -15.36 MHz	-18.6 dBm				and the second second second second	ara la sa l			
D.0 ms 2.01 ms/ 20.1 ms/ 20.1 ms/ 20.1 ms/ 20.1 ms/ 20.1 ms/ 15.36 MHz 15.36 MHz 15.36 MHz 3.07 MHz/ 15.36 M	-30.6 dBm		2 %	+ + +			-122 dBm/Hz		
2 Result Summary 4 Constellation Diagram Frame Results 1/1 Mean Max Limit Min EVM PDSCH QPSK (%) 7.88 7.88 18.50 7.88 EVM PDSCH 16QAM (%) 6.28 6.28 13.50 6.28 EVM PDSCH 46QAM (%) 6.28 6.28 9.00 Points Measured : 16564 EVM PDSCH 256QAM (%) 6.96 7.11 6.61 6.96 EVM PDSCH 256QAM (%) 5.26 5.55 4.97 Frequency Error (hz) 0.02 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Quarkature Error (*) -0.01 0.06 -0.08 I/Q Quarkature Error (*) -0.01 0.06 -0.08 RSTP (dBm) 42.47 42.60 42.34 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 42.42 42.43 42.40						15.00 M			15.06 Mile
Frame Results 1/1 Mean Max Limit Min EVM PDSCH QPSK (%) 7.88 7.88 13.50 7.88 EVM PDSCH 16QAM (%) 6.28 6.28 13.50 6.28 EVM PDSCH 16QAM (%) 800 900 6.28 900 EVM PDSCH 256QAM (%) 7.04 7.11 6.61 EVM PMS Channel (%) 7.04 7.19 6.69 EVM Phys Channel (%) 5.26 5.55 4.97 Frequency Error (hz) 0.002 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (dB) -42.20 -41.153 -42.79 I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.60 42.34 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 12.00 42.42		ms/		5.36 MHZ	3.07 MHZ/			3.07 MHZ/	15.30 MHZ
Prame Results 1/1 Mean Max Linit Min EVM PDSCH 16QAM (%) 7.88 7.88 18.50 7.88 EVM PDSCH 16QAM (%) 6.28 6.28 13.50 6.28 EVM PDSCH 16QAM (%) 6.28 9.00 9.00 9.00 EvM PDSCH 256QAM (%) 6.66 7.11 6.61 EVM PDSCH 256QAM (%) 5.26 5.55 4.97 Frequency Error (hz) 0.02 1.47 1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (dB) -42.20 -41.53 -42.79 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Gain Imbalance (dB) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.60 42.34 Crest Factor (dB) 10.20 42.47 42.60						4 Constell	ation Diagram	N.C.	
EVM PDSCH 16QAM (%) 6.28 6.28 13.50 9.00 EVM PDSCH 256QAM (%) 9.00 9.00 9.00 9.00 Results for Selection Subframes All Selection Ant 1, Frame Results 1/1 9.00 6.96 7.11 6.61 EVM Phys Channel (%) 7.04 7.19 6.69 6.97 6.97 Frequency Error (ht2) 0.02 1.47 1.20 1.20 1.20 Sampling Error (ppm) 0.10 0.35 -0.08 -0.02 -0.02 I/Q Gisti (dB) -42.20 -41.53 -42.79 -0.02 -0.02 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 -0.02 I/Q Gain Imbalance (dB) -0.01 0.06 -0.08 -0.02 I/Q Gain Imbalance (dB) 42.47 42.60 42.34 -0.02 SSI (dBm) 42.47 42.60 42.34 -0.02 Power (dBi) 10.20 -0.20 -0.20 -0.20 Crest Factor (dB) 10.20 -0.20 -0.20 -0.20 <tr< td=""><td>Frame Results 1/1</td><td>Mean</td><td>Мах</td><td>Limit</td><td>Min</td><td>Points Measu</td><td>red : 165644</td><td></td><td></td></tr<>	Frame Results 1/1	Mean	Мах	Limit	Min	Points Measu	red : 165644		
EVM PDSCH 640AM (%) 9.00 EVM PDSCH 256QAM (%) 9.00 EVM PDSCH 256QAM (%) 6.96 Results for Selection Subframes All, Selection Ant 1, Frame Results EVM All (%) 6.96 EVM Phys Channel (%) 7.04 Frequency Error (Hz) 0.002 Sampling Error (ppm) 0.10 0.10 0.35 Ogain Imbalance (dB) -0.00 1/Q Quarature Error (°) -0.01 QSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 Values 42.43 Values 42.40 Verst Factor (dB) 10.20								1	
EVM PDSCH 256QAM (%) All, Selection Ant I, Frame Results 1/1 Results for Selection Subframes All, Selection Ant I, Frame Results 1/1 6.61 EVM All (%) 6.96 7.11 6.61 EVM Phys Channel (%) 7.04 7.19 6.69 EVM Phys Signal (%) 5.26 5.55 4.97 Frequency Error (ht2) 0.02 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (db) -42.20 -41.53 -42.79 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Gise Imbalance (dB) -0.00 0.02 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.50 42.42 Power (dBm) 10.20 42.50 42.42 Crest Factor (dB) 10.20 - -	EVM PDSCH 16QAM (%)	6.28	6.28	13.50	6.28				
Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM All (%) 6.96 7.11 6.61 EVM Phys Channel (%) 7.04 7.19 6.69 EVM Phys Signal (%) 5.26 5.55 4.97 Frequency Error (hz) 0.02 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (dB) -42.20 -41.53 -42.79 I/Q Quadrature Error (°) -0.00 0.02 -0.02 I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 42.50 42.42				9.00			- 🛎 🔬 🏄	👘 👛 🖉 🚈	6
EVM All (%) 6.96 7.11 6.61 EVM Phys Channel (%) 7.04 7.19 6.69 EVM Phys Signal (%) 5.26 5.55 4.97 Frequency Error (Hz) 0.002 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (dB) -42.20 -41.53 -42.79 I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.55 42.63 42.45 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 - -									R.
EVM Phys Channel (%) 7.04 7.19 6.69 EVM Phys Signal (%) 5.26 5.55 4.97 Frequency Error (Hz) 0.02 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (db) -42.20 -41.53 -42.79 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.50 42.42 Power (dB) 10.20 - - Crest Factor (dB) 10.20 - -	Results for Selection Subfra	mes All, Selection	Ant 1, Frame	Results 1/	1				
EVM Phys Signal (%) 5.26 5.55 4.97 Frequency Error (hz) 0.02 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (dB) -42.20 -41.53 -42.79 I/Q Quarkaruere Error (°) -0.00 0.02 -0.02 I/Q Quarkaruere Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.50 42.42 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20								100 A	
Frequency Error (Hz) 0.02 1.47 -1.20 Sampling Error (ppm) 0.10 0.35 -0.08 //Q Offset (dB) -42.20 -41.53 -42.79 //Q Qain Imbalance (dB) -0.00 0.02 -0.02 //Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSS1 (dBm) 42.55 42.63 42.42 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 - -	EVM Phys Channel (%)	7.04	7.19		6.69		<u>á</u> . 🛋	1 🛋 🗋 🛥	e .
Sampling Error (ppm) 0.10 0.35 -0.08 I/Q Offset (dB) -42.20 -41.53 -42.79 J/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.50 42.42 Power (dBm) 42.47 42.50 42.42							- 1	- 💭 🐂	F
I/Q Offset (dB) -42.20 -41.53 -42.79 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 QSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.50 42.42 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 10.20 42.42	Frequency Error (Hz)								
I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.47 42.63 42.50 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20							<u>998</u>	/	
I/Q Quadrature Error (°) -0.01 0.06 -0.08 RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.55 42.63 42.50 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20	I/Q Offset (dB)						, inter		
RSTP (dBm) 12.00 12.02 11.97 OSTP (dBm) 42.47 42.60 42.34 RSSI (dBm) 42.55 42.63 42.50 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 42.50 42.42	I/Q Gain Imbalance (dB)					1		🧶 🍕	¢
OSTP (dBm) 42:47 42:60 42:34 RSSI (dBm) 42:55 42:63 42:50 Power (dBm) 42:47 42:50 42:42 Crest Factor (dB) 10:20 42:50 42:42	I/Q Quadrature Error (°)						and the second	dila	
RSSI (dBm) 42.55 42.63 42.50 Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20									
Power (dBm) 42.47 42.50 42.42 Crest Factor (dB) 10.20 42.42 42.42						1			
Crest Factor (dB) 10.20									
			42.50		42.42		and States	- The The State of	
Sync Found	Crest Factor (dB)	10.20				1			
Sync Found						1	43		
Sync Found 🗢 Ready 👬 🖽 🖽 🖽 🕬							-		
			Sync Found				Ready		11.11.2017

12:57:03 11.11.2017

MultiView 🖽 Spectrum	tte	X						∇
Ref Level 47.40 dBm Freq Att 25 dB Offse	2.66 GHz Mode t 43.40 dB MIMC			Time 20.1 ms	Subframe All			SGL
1 Capture Buffer	L 45,40 UD MIMC	01 Clrw 3 E			2 Min O 3 Max	5 Power Spec	trum	O1 Clrw
Frame Start Offset : 1.282897 ms						bi ower opec		
65.4 dBm		18	%			-58 dBm/Hz		
53.4 dBm		16	%			-66 dBm/Hz		
		14	%			-74 dBm/Hz		V I
		12	%	_		-82 dBm/Hz		
and the second second second		10		والمتابع المراجع المراجع المراجع المراجع	i. Ilianda	-90 dBm/Hz		
وفاقت غماره ومحاجبات الماطر فللأراث التركي أورائي	i de sé dite d'a collecter de l'Alacia de la destil de la			terihi da terihi a		-98 dBm/Hz		
the will filter to see that the filter	The solution of the state	69	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and tarrin bits and children		-106 dBm/Hz		
-6.6 dBm				nin di panganan kang pang manang kang bagi pang Kang pang pang pang pang pang pang pang p	of the state of th			
-18.6 dBm		4 %		w state breach an		-114 dBm/Hz		
-30.6 dBm		2 %				-122 dBm/Hz		
	ms/	20.1 ms -1	5.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary					4 Constellatio			
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured :	165644		
EVM PDSCH QPSK (%)	7.71	7.71	18.50	7.71			1	
EVM PDSCH 16QAM (%)	6.18	6.18	13.50	6.18				
EVM PDSCH 64QAM (%)			9.00			🛋 i 🚵	i 👝 💒	
EVM PDSCH 256QAM (%)					-	See 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	- 🐨 🏸	
Results for Selection Subfra	ames All, Selectio	n Ant 1, Frame	Results 1	/1			1 1 1	
EVM All (%)	6.82	6.96		6.46		a and a second		
EVM Phys Channel (%)	6.90	7.04		6.54		i in the second	1 in	,
EVM Phys Signal (%)	5.09	5.37		4.75		💭 💭 💭	N 19 19	6
Frequency Error (Hz)	-0.04	1.13		-1.43				
Sampling Error (ppm)	0.09	0.31		-0.05		RÙ -		ter en
I/Q Offset (dB)	-42.18	-41.51		-42.72			as	
I/Q Gain Imbalance (dB)	-0.00	0.02		-0.02		-	🥽 📲	i.
I/Q Quadrature Error (°)	-0.01	0.05		-0.08		A MARY	Sides.	
RSTP (dBm)	11.98	12.01		11.96			I 🦛 👘	
OSTP (dBm)	42.46	42.59		42.32		200 A. A.	in the second	
RSSI (dBm)	42.53	42.62		42.49			: 💭 👯	
Power (dBm)	42.46	42.49		42.41			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Crest Factor (dB)	10.33							
						1		
		Sync Found				-		11.11.2017

12:57:31 11.11.2017

20M -2680MHz-TM2.0-Port 1 ~4:

MultiView 🕀 Spectrum	ETE														′
		e DL FDD, 20 M				Subframe	All							SG	Ľ
	t 43.40 dB MIM			Count 1 of 1 (
1 Capture Buffer		●1 Clrw 3	3 EVM vs Ca	rrier oll A	∕g o 2	Min 0 3 M	1ax][5 Po۱	ver Sp	ectrun	1 I		0	1 Cln	w
Frame Start Offset : 6.317323 ms															
65.4 dBm			18 %					-58 dB	1 I I						
53.4 dBm			16 %					-66 dB	()			-			-
M N A DE DO DE			14 %					-74 dB	m <mark>/H</mark> z			-			-
Berand Staterititistitistit i thriterethi	da sa na mandihini mili	11 111111111111 1	12 %				_	-82 dB	m/Hz			_			_
			10 %					-90 dB	m/Hz			_			_
A settember site blak skonter hans an stissebet	والالتفاد المرور والا		8%					-98 dB	· · ·						
-o.o da incentrativativativativativativativativativativ	kan ta katiki (j. 16. Katika da k		6%	ի տիլեփի կ		114.1		- T	Bm/Hz—						
	adra – a dadra di Liga (
-18.6 dBm			4 %					-114 d							-
-30.6 dBm			2 %					-122 d	Bm/Hz—						-
0.0 ms 2.01	ms /	20.1 ms	-15.36 MHz	3.07 MHz		15.36 M		-151	36 MH-	, 3	07 MH	2/	15.3	6 MF	77
2 Result Summary	may	2011113	10.00 0002	5107 10112		Constell					07 11	27	10.0		1
Frame Results 1/1	Mean	Max	Limit	Mi		Points Measu			ram	Sec.					-
EVM PDSCH OPSK (%)	Mean	Max	18.50	IV.	<u>. </u>					1967					
EVM PDSCH QPSK (%) EVM PDSCH 160AM (%)			13.50							8 1. A					
EVM PDSCH 16QAM (%) EVM PDSCH 640AM (%)	5,29	5,29	9.00	5.2						S. 1. 25					
EVM PDSCH 64QAM (%)	5.29	5.29	9.00	5.2	۶ II					· · ·					
Results for Selection Subfra	ames All. Selecti	on Ant 1. Fran	ne Results 1	/1	- 11			1		8 J.		.			
EVM All (%)	3.10	3.50	ne results 1	2.8	5			1				100			
EVM Phys Channel (%)	5.17	5.66		4.8			1997			S 8					
EVM Phys Signal (%)	1,86	2,46		1.5			12					1.1			
Frequency Error (Hz)	-1,96	-0.27		-3.7						8 i 🎉					
Sampling Error (ppm)	0.01	0.08		-0.0			يورون ا						de la companya de la		—
I/O Offset (dB)	-45,41	-44,46		-46,5						8 de 1					
I/O Gain Imbalance (dB)	-0.14	-0.07		-0.2											
I/O Quadrature Error (°)	0.62	0.86		0.3						e 1967					
RSTP (dBm)	11.72	11.72		11.7				17 L		· *					
OSTP (dBm)	22.62	23.62		21.5				1		6 kg		.			1
RSSI (dBm)	35.53	35.72		35.4						6 A.					
Power (dBm)	30.80	31.86		30.4						o					
Crest Factor (dB)	15.83									8 - KB					
										1					- 1
								_	_	578			11 11 2	017	=
		Sync Foi	und				÷					REF			

12:44:36 11.11.2017

MultiView 🕫 Spectrum	🔆 🖾 🛛 LTE	X											,	∇
Ref Level 47.40 dBm Freq Att 25 dB Offse		e DL FDD, 20 MH				e All							s	GL
Att 25 dB Offse 1 Capture Buffer	t 43.40 dB MIM		EVM vs Cal	Count 1 of 1 (1) 1 0 2 Min 0 3	Mav	5 Do	wor S	pectru	m			O1 Ch	
Frame Start Offset : 2.693819 ms							5 0		pecut	1 1				
65.4 dBm		18	3 %				-58 de	3m <mark>/Hz</mark> —	_			_		
53.4 dBm		16	5 %				-66 de	3m <mark>/Hz</mark> —	_			_		
ALE REPARTS AND A DEPARTMENT OF A DEPARTMENT	i den dered stat verdiger	41 11 1 1 1 1 1 1	4 %				-74 de	3m/Hz—	_			_		
PERIODE CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT		12	2 %				-82 de	3m/Hz-						
			0%					3m/Hz—						
ան հանդես հերկություն հանդես է հերկելու հերկելու հերկելու հերկելու հերկելու հերկելու հերկելու հերկելու հերկելո	بالتاب فساد بالتا	here . 1. mar. 1. 18						3m/Hz—						
in a feither black of shirt a straight a str	dar Lalla de La Xalacia - Ula Vikinia		%					dBm/Hz-						
			· () · · ·	I THE REAL PROPERTY IN				· · ·						
-18.d dBm			% 					iBm/Hz-						
-30.6 dBm		2	%	a			-122 6	iBm/Hz-						
0.0 ms 2.01	ms/	20.1 ms	15.36 MHz	3.07 MHz/	15.36	MHz	-15.	36 MF	lz :	3.07 N	IHz/	15	.36 M	Hz
2 Result Summary					4 Conste			gram						_
Frame Results 1/1	Mean	Мах	Limit	Min	Points Mea	sured :	11228		1					
EVM PDSCH QPSK (%)			18.50											
EVM PDSCH 16QAM (%)			13.50						12					
EVM PDSCH 64QAM (%)	4.03	4.03	9.00	4.03					14					
EVM PDSCH 256QAM (%)							1. Sau 1.		38		100			
Results for Selection Subfra			e Results 1								. 🌪			
EVM All (%)	2.23	2.48		2.05					&					
EVM Phys Channel (%)	3.72	3.98		3.41										
EVM Phys Signal (%)	1.33	1.75		1.14			14		14					
Frequency Error (Hz)	-2.37	-0.29		-3.93				· · · · ·	1.1	10 - D'				
Sampling Error (ppm) I/O Offset (dB)	0.00	0.06		-0.05					Sec. 1					
	-45.33 -0.09	-44.81 -0.04		-46.04 -0.15					S. 10					
I/Q Gain Imbalance (dB) I/Q Quadrature Error (°)	-0.09	-0.04 0.68		-0.15										
RSTP (dBm)	11.72	11.72		11.70					51 J 1		÷.			
OSTP (dBm)	22.61	23.62		21.56			- Ö.)				٠			
RSSI (dBm)	35.52	35.71		35.47				2.0	<u>例</u> [] 3					
Power (dBm)	30.79	31.86		30.47										
Crest Factor (dB)	15.81	01100							* 1					
									*					
			nd			÷	_	_				11.11	2017	_

12:45:03 11.11.2017

	MultiView 🕀 Spectrum	S LTE	X											
1 Capture Buffer • 1 Ginv 3 EVM vs Carrier • 1 Avg • 2 Min • 3 Max 5 Power Spectrum • 1 Clrw 65 4 dam 19 % 19 % 19 % 6 % dam/hz 10 %							ame All							SGL
Frame Bater Offect 1. 174782 ins 18		t 43.40 dB MIM												
65.4 dbm 19.% 19.% 56.6 dbm/H2 56.6 dbm/H2 56.6 dbm/H2 65.4 dbm 19.% 19.% 19.% 56.6 dbm/H2 56.6 dbm/H2 56.6 dbm/H2 56.6 dbm/H2 56.6 dbm/H2 56.6 dbm/H2 57.0 dbm/H2 19.% 19.% 19.% 19.% 19.% 57.0 dbm/H2 19.% 56.6 dbm/H2 56.6 dbm/H2 56.6 dbm/H2 56.6 dbm/H2 57.0 dbm/H2 19.%			O1 Clrw	<u>3 EVM vs Ca</u>	rier O1 A	go2 Min	<u>3 Max</u>	5 Po	wer Spe	ectrun	<u>ו</u>			01 Clrv
S3.4 dim Is				19.96										
14% 14% 14% 14% 14% 14% 14% 14% 14% 14% 14% 12% 14% 12% 14% 12% 14% 14% 12% 14% 12% 14% 12% 12% 14% 12% 12% 14% 12% 12% 14% 14% 14% 14% 12% 14% 14% 14% 14% 12% 12% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 11% 1								1						
12 12 12 12 12 12 12 12 12 12 13 14<		يرتقد والمتقر بواجرة الرق						1						
10 % 10 % 90 dpm/h2 0 90 dpm/h2 18 d dpm 10 % 10 % 90 dpm/h2 0 0 18 d dpm 10 % 10 % 90 dpm/h2 0 0 0 18 d dpm 10 % 10 % 10 % 0	41,4-1E(r			1				1	17				-	
International Workshowski warden w	Seren Shreenedhick, or	Neren Annerethis.	. 5. 65. 1. 616.616	12 %				-82 dE	sm/Hz				-	
c: dam 106 dBm/Hz 106 dBm/Hz 106 dBm/Hz 114 dBm/Hz -306 dBm 2.01 ms/ 2.01 ms/ 2.01 ms/ 113.50 dHz 113.66 mHz 122 dBm/Hz 124 dBm/Hz -306 dBm 2.01 ms/ 2.01 ms/ 2.01 ms/ 15.36 MHz 3.07 MHz/ 15.36			1. A.	10 %				-90 de	sm/Hz				-	
18 p dpm	a ba Ba Itami tikati dalaman tikati d	ի հեղակու հարդած, դեկ է թեր	antala di Anto and	8%				-98 de	sm/Hz			_	-	
3ab dam 2.01 ms/ 20.1 ms/ 20.1 ms/ 20.1 ms/ 1.22 dam/Hz/ 1.22 dam/Hz/ 1.22 dam/Hz/ 1.33 dMHz/ 1.33 dMHz/ 1.32 dam/Hz/ 1.32 dam/Hz/ 1.32 dam/Hz/ 1.32 dam/Hz/ 1.33 dMHz/ 1.32 dam/Hz/ 1.33 dMHz/ 1.33 dMH	o: dBm billing tig all i a big bil		JETT, KARALI	6 %				-106	iBm/Hz			_		
3ab dam 2.01 ms/ 20.1 ms/ 20.1 ms/ 20.1 ms/ 1.22 dam/Hz/ 1.22 dam/Hz/ 1.22 dam/Hz/ 1.33 dMHz/ 1.33 dMHz/ 1.32 dam/Hz/ 1.32 dam/Hz/ 1.32 dam/Hz/ 1.32 dam/Hz/ 1.33 dMHz/ 1.32 dam/Hz/ 1.33 dMHz/ 1.33 dMH	- 86 dBm		1.	4 %	ل الأراب الرباب ال			-114	iBm/Hz-					
O.0 ms 2.01 ms 20.1 ms -15.36 MHz 3.07 MHz -15.36 MHz 3.07 MHz 15.36 MHz 3.07 MHz 10.00 MHz 10.00 MHz <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>- í i</td> <td></td> <td></td> <td></td> <td></td> <td></td>									- í i					
0.0 ms 2.01 ms/ 20.1 ms -15.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MHz/ 15.36 MHz 15.36 MHz 15.36 MHz 3.07 MHz/ 15.36 MHz 15.					A 11/14 14461 6			-122 0						
Frame Results 1/1 Mean Max Limit Min EVM PDSCH QFSK (%) 18.50 19.50 19.50 19.50 EVM PDSCH 16QAM (%) 4.10 9.00 4.10 9.00 4.10 EVM PDSCH 256QAM (%) 2.24 2.50 2.07 10.50 11.33 1.77 1.15 EVM PDSCh Selection Sampling Error (hz) 1.33 1.77 1.15 1.15 1.133 1.77 1.15 1.133 1.77 1.15 1.15 1.15 1.133 1.77 1.15 1.1	0.0 ms 2.01	ms/	20.1 ms	-15.36 MHz	3.07 MHz	/ 15.	36 MHz	-15.	36 MHz	3.	07 MI	Iz/	15	36 MH
Praine Results 1/1 Mean Max Linite Min EVM PDSCH 16QAM (%) 13.50 13.50 13.50 EVM PDSCH 16QAM (%) 4.10 9.00 4.10 Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 10.20 2.07 EVM APPSCH 256QAM (%) 2.24 2.50 2.07 EWM Phys Channel (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (Hz) -1.82 -0.38 -3.14 Sampling Error (ppm) 0.00 0.05 -0.03 I/Q Offset (dB) -44.81 -46.22 11.70 I/Q Gain Imbalance (dB) -0.08 -0.04 -0.13 I/Q Quadrature Error (°) 0.38 0.50 0.26 RSTI (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86 30.47 4.48 Even (dBm) <	2 Result Summary								ram					
EVM PDSCH 16QAM (%) 4.10 13.50 EVM PDSCH 64QAM (%) 4.10 9.00 4.10 Pesults for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM PDSCH 36QAM (%) 2.24 2.50 2.07 Presults for Selection Subframes All, Selection Ant 1, Frame Results 1/1 1 EVM Phys Channel (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (Hz) -1.82 -0.38 -3.14 Sampling Error (ppm) 0.00 0.05 -0.03 I/Q Odifset (dB) -45.30 -44.81 -46.22 I/Q Quadrature Error (P) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 I/Q Quadrature Error (P) 0.38 0.50 0.26 RSTP (dBm) 22.62 23.62 21.58 RST (dBm) 30.79 31.86 30.47 Power (dBm) 15.86 30.47 4.10	Frame Results 1/1	Mean	Мах	Limit	Mi	n Points	Measured :	11228		1				
EVM PDSCH 4dQAM (%) 4.10 9.00 4.10 EVM PDSCH 256QAM (%) 2.41 2.50 2.07 Results for Selection A1.7 3.45 EVM Phys Signal (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (hz) -1.82 -0.38 -3.14 Sampling Error (ppm) 0.00 0.05 -0.03 I/Q Offset (dB) -45.30 -44.81 -46.22 I/Q Quarburg Error (P) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 30.79 31.86 30.47 Power (dBm) 30.79 31.86 30.47	EVM PDSCH QPSK (%)			18.50										
EVM APpSCH 256QAM (%) All, Selection Ant I, Frame Results 1/1 Results for Selection Subframes All, Selection Ant I, Frame Results 1/1 EVM APPSCH 256QAM (%) 2.24 2.50 2.07 EVM Phys Channel (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (Hz) -1.82 -0.38 -3.14 Sampling Error (ppm) 0.00 0.05 -0.03 I/Q Offset (dB) -45.30 -44.41 -46.22 I/Q Gain Imbalance (dB) -0.08 -0.04 -0.13 I/Q Offset (dB) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 PSI (dBm) 33.79 31.86 30.47 Crest Factor (dB) 15.86				13.50						8 - 1 B				
Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM All (%) 2.24 2.50 2.07 EVM Phys Channel (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (Hz) -1.82 -0.38 -3.14 Sampling Error (ppm) 0.00 0.055 -0.03 I/Q Odfset (dB) -45.30 -44.81 -46.22 I/Q Quadrature Error (°) 0.38 0.50 0.266 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSS1 (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86 30.47		4.10	4.10	9.00	4.1	5				12				
Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM All (%) 2.24 2.50 2.07 EVM Phys Channel (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (hz) -1.82 -0.38 -3.14 Sampling Error (ppm) 0.00 0.05 -0.03 I/Q Offset (dB) -45.30 -44.81 -46.22 I/Q Quartarue Error (°) 0.38 0.50 0.26 RSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 30.79 31.86 30.47 Power (dBm) 15.86 30.47 4.17									\$ 9	× 3.				
EVM Phys Channel (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (Hz) -1.82 -0.38 -3.14 Sampling Error (pm) 0.00 0.05 -0.03 I/Q Offset (dB) -45.30 -44.81 -46.22 I/Q Gain Imbalance (dB) -0.08 -0.04 -0.13 I/Q Quadrature Error (°) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86	Results for Selection Subfra	ames All, Selecti	on Ant 1, Frai	ne Results 1	/1					1.1		٠.		
EVM Phys Channel (%) 3.75 4.17 3.45 EVM Phys Signal (%) 1.33 1.77 1.15 Frequency Error (Hz) -1.82 -0.38 -3.14 Sampling Error (pm) 0.00 0.05 -0.03 I/Q Offset (dB) -45.30 -44.81 -46.22 I/Q Quadrature Error (°) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86	EVM All (%)	2.24	2.50		2.0	7								
Frequency Error (Hz) -1.82 -0.38 -3.14 Sampling Error (ppm) 0.00 0.05 -0.03 I/Q Offset (dB) -45.30 -44.81 -46.22 I/Q Quadrature Error (°) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47	EVM Phys Channel (%)	3.75	4.17		3.4	5		- X						
Hrequency thror (Hz) -1.32 -0.38 -3.14 Sampling thror (ppm) 0.00 0.05 -0.03 I/Q Offset (dB) -45.30 -44.81 -46.22 I/Q Quadrature Error (P) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSS1 (dBm) 30.79 31.86 30.47 Power (dBm) 15.86 -0.13 I/C creat Factor (dB) 15.86 -0.17	EVM Phys Signal (%)	1.33	1.77					1.66					×	
I/Q Offset (dB) -45.30 -44.81 -46.22 I/Q Gain Imbalance (dB) -0.08 -0.04 -0.13 I/Q Quadrature Error (°) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 QSTP (dBm) 22.62 23.62 21.58 RSS1 (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86 30.47	Frequency Error (Hz)	-1.82	-0.38		-3.1	4				1 1 1 1				
I/Q Gain Imbalance (dB) -0.03 -0.04 -0.13 I/Q Quadrature Error (°) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 15.86		0.00	0.05		-0.0	3		¥.					68 .	
I/Q Quadrature Error (°) 0.38 0.50 0.26 RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47	I/Q Offset (dB)	-45.30	-44.81		-46.2	2				() 🔌				
RSTP (dBm) 11.71 11.72 11.70 OSTP (dBm) 22.62 23.62 21.58 RSS1(dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47														
OSTP (dBm) 22.62 23.62 21.58 RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86 4										1 - N				
RSSI (dBm) 35.52 35.71 35.47 Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86								- 4 🔔				<u></u>		
Power (dBm) 30.79 31.86 30.47 Crest Factor (dB) 15.86 30.47 2000 2000										1.4		- 1		
Crest Factor (dB) 15.86									1 de 1					
Crest Factor (dB) 15.86			31.86		30.4	7			8 3	1.85				
	Crest Factor (dB)	15.86												
Supersonnel and sector										*				
			Sunc Eq	und			_	D o	a di s	10000			11.11	.2017

12:45:30 11.11.2017

MultiView 🕀 Spectrum	ा हा LTE											ſ	∇
			1Hz Capture	Time 20.1 ms	s Subfram	e All							SGL
	t 43.40 dB MIMC			Count 1 of 1 (1		0 / 11							
1 Capture Buffer		01 Clrw	3 EVM vs Car	rier O1 Avg	;●2 Min●3	Мах	5 Pow	er Spe	ctrum			010	Irw
Frame Start Offset : 51764513 ms 65.4 dBm			18 %				-58 dBm	41-					
53.4 dBm			16 %				-66 dBm						
	فالمنافر بالمافر بمقتر												
(+)) # depoint of the first of the first of the first of the			14 %				-74 dBm	1 11					
a sa ang sa	and the substitutes	and the second	12 %				-82 dBm						í
and the second			10 %				-90 dBm						<u> </u>
t i fals le J a d'Andri a su als útri títh na ma trá an haidir.	n it stiller, bill i die tide	u a fit da tu di l	8 %				-98 dBm	/Hz		-			
-5.5 dBrr			6 %	┟┧╴╫╫╢┼╶╁╖╬╁╴╶╂┨╴			-106 dB	n/Hz				_	_
-18.6 dBm		<u>, tan 111</u>	4 %	┟╬╼╫╫╻┿╼┼╸╎┦╼╸┨┨╴			-114 dB	n/Hz		_		_	
-30.6 dBm			2 %	╶╏╾╟┼╢╏┶╾┠ _{╗╗} ╴╏╼╸ <mark>╴</mark> ┨╴		-	-122 dB	n/Hz		_	+	_	
		20.1		A D D D D D D D D D D D D D D D D D D D									
0.0 ms 2.01	ms/	20.1 ms J	-15.36 MHz	3.07 MHz/	15.36		-15.3		3.0	07 MHz	7	15.36 M	лнz
2 Result Summary					4 Conste			am					
Frame Results 1/1	Mean	Мах	Limit	Min	Points Mea	surea :	11228						
EVM PDSCH QPSK (%)			18.50										
EVM PDSCH 16QAM (%)			13.50						1.8				
EVM PDSCH 64QAM (%)	5.18	5.18	9.00	5.18					1.1				
EVM PDSCH 256QAM (%)							1		de de la	- A. 💊	1 - S		
Results for Selection Subfra			ne Results 1							3	e		
EVM All (%)	3.04	3.46		2.84					180				
EVM Phys Channel (%)	5.06	5.65		4.75					1				
EVM Phys Signal (%)	1.82	2.46		1.55		12			1 80				
Frequency Error (Hz)	-2.43	0.23		-4.26		100	-49 ba	2. J.A.	141	adv.	14 MA		
Sampling Error (ppm)	-45,34	0.10		-0.06	-11	1.1	Sec.		1.1		1000		
I/Q Offset (dB) I/O Gain Imbalance (dB)	-45.34 -0.13	-44.46 -0.06		-46.41 -0.20					18				
I/Q Gain Imbalance (db) I/Q Quadrature Error (°)	-0.13	-0.06		-0.20					de				
RSTP (dBm)	11.70	11.71		11.69					1.18		Se - 397		
OSTP (dBm)	22.61	23.61		21.55			1 👋 .		12	- A. 📲	È de la		
RSSI (dBm)	35.51	35.70		35.46			1964.00		1.6	- 18 - ¹⁸			
Power (dBm)	30.79	31.85		30.46					1				
Crest Factor (dB)	15.38	51.05		50.40					1.5				
					-11			1					
							_				uno 11	.11.201	7
		Sync Fo	und			÷		Y		1/1	REF		

12:45:57 11.11.2017

20M -2680MHz-TM3.1-Port 1 ~4:

MultiView 🗄 Spectrum								
				.	0.1.6			
RefLevel 47.40 dBm Freq Att 25 dB Offse	2.68 GHz Mo at 43.40 dB MIN			Time 20.1 ms Count 1 of 1 (1)	Subframe All			SGL
1 Capture Buffer	St 40.40 dD 1411		BEVM vs Cai		2 Min • 3 Max	5 Power Spe	rtrum	O1 Clrw
Frame Start Offset : 9.929747 ms						bi onci ope		
65.4 dBm			18 %			-58 dBm/Hz		
53.4 dBm		in the second between the state of the	16 %			-66 dBm/Hz		
			14 %			-74 dBm/Hz		
			12 %			-82 dBm/Hz		<u> </u>
and the second second second			10 %			-90 dBm/Hz		
, mandalah ang a sila di kalan ing kalang kalang kanang kanang kanang kanang kanang kanang kanang kanang kanang	tikliki kasha cinkishi kasha add	and the state of the second state of	1 Internet	والمتحديد والمحاد والمحافظ أفأ وسيتك والمحا	يتربهما والال			
5.4 dBm			в %	considered to some telland offer Harbeit de	L same base	-98 dBm/Hz		
-6.6 dBm				erentijn vielenije ere begen voerbaar. Kans ondertierend alle die entrefsielende	Net teaching a state	-106 dBm/Hz		
-18.6 dBm			4 %	a new tale of the state of the last	and a sure of the	-114 dBm/Hz		
-30.6 dBm			2 %			-122 dBm/Hz		
0.0 ms 2.01	hanna an bana a		15.06 MU	3.07 MHz/	15.06 MU	-15.36 MHz		15.36 MHz
	ms/	20.1 ms j	-15.36 MHz	3.07 MHZ/	*		3.07 MHz/	15.30 MHZ
2 Result Summary			1		4 Constellatio	n Diagram		
Frame Results 1/1	Mean	Max	Limit	Min	Points Measureu	103044		
EVM PDSCH QPSK (%)			18.50				Last where seen	
EVM PDSCH 16QAM (%)			13.50					
EVM PDSCH 64QAM (%)	6.50	6.50	9.00	6.50				
EVM PDSCH 256QAM (%)								
	ames All, Selec		ne Results 1					
EVM All (%)	6.49	6.61		6.28				<u> </u>
EVM Phys Channel (%)	6.48	6.60		6.28				
EVM Phys Signal (%)	6.63	6.97		6.36				
Frequency Error (Hz)	0.25	1.98		-1.91				
Sampling Error (ppm)	-0.01	0.23		-0.33				
I/Q Offset (dB)	-41.85	-41.45		-42.23				
I/Q Gain Imbalance (dB)	-0.00	0.02		-0.02			Section Sec.	
I/Q Quadrature Error (°)	0.02	0.22		-0.09				
RSTP (dBm)	11.54	11.57		11.51				
OSTP (dBm)	42.33	42.41		42.21				
RSSI (dBm)	42.36	42.43		42.30	. 🛛 🛣			
Power (dBm)	42.34	42.37		42.32	I 🦲			<u> </u>
Crest Factor (dB)	10.12						a state and the second s	200 C
								11.11.2017
		Sync Foi	ind		¢	Ready	REF C	

12:07:13 11.11.2017

Att 25 dB Offset 1 Capture Buffer Frame Start Offset 1.163805 ms 55.4 dBm 53.4 dBm 54.4 dBm 1.163805 ms 54.4 dBm 54.4 dBm 1.163805 ms 1.163805 ms 54.4 dBm 1.163805 ms 1.163805 ms 1.163805 ms 54.4 dBm 1.163805 ms 1.163805 ms 1.163805 ms		CINW 3 E 1	Frame (VM vs Car %	Count 1 of 1 (1)	Ali antesta	5 Power Spec -58 dBm/H2 -66 dBm/H2 -74 dBm/H2 -90 dBm/H2 -90 dBm/H2 -98 dBm/H2 -106 dBm/H2 -114 dBm/H2 -114 dBm/H2 -122 dBm/H2	trum	SGL
1 Capture Buffer Frame Btart Offset : 1. /63805 ms 65.4 dBm 53.4 dBm 54.4 dBm 54.4 Bm -18.6 dBm -18.6 dBm		• 1 Cirw 3 E 18 18 16 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10	VM vs Car %	rier O1 Avg		-58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -82 dBm/Hz -90 dBm/Hz -98 dBm/Hz -106 dBm/Hz -114 dBm/Hz	trum	
Franciskart Offset : 1. 163805 ms 65.4 dBm 53.4 dBm 54.4 Bm 54.4 Bm 54.4 Bm 54.4 Bm -6.6 JBm -18.6 dBm		16 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10		and third in the statistic basis with the	Ali antesta	-58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -82 dBm/Hz -90 dBm/Hz -98 dBm/Hz -106 dBm/Hz -114 dBm/Hz		
5,2 pm 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	i i i i i i i i i i i i i i i i i i i	14 12 10 8 9 6 9 4 9 2 9		and third in the statistic basis with the	Ali antesta	-74 dBm/Hz -82 dBm/Hz -90 dBm/Hz -98 dBm/Hz -106 dBm/Hz -114 dBm/Hz		
-6.6 dBm -18.6 dBm		49 49 29		and third in the statistic basis with the	Ali antesta	-98 dBm/Hz -106 dBm/Hz -114 dBm/Hz		
	s/	2 %	6 (1), (20, 1	นา.ณี.สาวที่ สาวประกับสาวได้สาวได้	- (14) and (24) and (24)			
-30.6 dBm	s/	20.1 ms -1						
0.0 ms 2.01 ms			5.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MH
2 Result Summary					4 Constellatio	n Diagram		
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured		Sec. 1	
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 160AM (%)			13.50					
EVM PDSCH 640AM (%)	6.24	6.24	9.00	6.24				
EVM PDSCH 2560AM (%)						i di setta d	Sec. Sec.	
Results for Selection Subfram	ies All, Select	ion Ant 1, Frame	Results 1	/1				
EVM All (%)	6.23	6.36		6.06	ll 🌛		all all the	
EVM Phys Channel (%)	6.22	6.37		6.04	l 🧠			
EVM Phys Signal (%)	6.38	6.77		6.08			Sec. March 1964	
Frequency Error (Hz)	-0.07	2.11		-1.34				
Sampling Error (ppm)	-0.03	0.23		-0.29		Calle alle der	Same and the second	100 - C
I/Q Offset (dB)	-41.82	-41.33		-42.09	II 🗧 📒			
I/Q Gain Imbalance (dB)	-0.00	0.02		-0.02			Sec. Sec. Sec.	
I/Q Quadrature Error (°)	0.02	0.20		-0.09				
RSTP(dBm)	11.53	11.56		11.50				
OSTP (dBm)	42.31	42.39		42.20	🦲			
RSSI (dBm)	42.35	42.42		42.29				
Power (dBm)	42.33	42.36		42.30				
Crest Factor (dB)	9.99				. · · · · · · · · · · · · · · · · · · ·			
		Sync Found	I		÷	Ready		11.11.2017

12:07:40 11.11.2017

	2.68 GHz Mode			Time 20.1 ms				SGL
	t 43.40 dB MIMC			Count 1 of 1 (1)				
1 Capture Buffer		o1 Clrw	3 EVM vs Cai	rier OIAvg	●2 Min●3 Max	5 Power Spec	trum	O1 Clrw
Frame Start Offset : 6.883211 ms 65.4 dBm			18 %			-58 dBm/Hz		
53.4 dBm			16 %			-66 dBm/Hz		
1574 0001								
			14 %			-74 dBm/Hz		
			12 %			-82 dBm/Hz		
 Description of the second se Second second se	hadd an of a standard	die Graf Jonierus	10 %			-90 dBm/Hz		
5.4 cBm	A THE REPORT DURING THE PARTY OF THE	L'ALTAN MALAN	8%	athan it to a har sat bit	all	-98 dBm/Hz		+ + +
-6.6 dBm	20 0.3 101	1 1 1	6%	and the second sec	a find at about a	-106 dBm/Hz		
-18.6 dBm		1	4%	a politika na inglesi ing kong kong kong kong kong kong kong ko	an an ann an	-114 dBm/Hz		
-30.6 dBm			2%	and the second se		-122 dBm/Hz		
			2 %			1 -122 dBm/Hz		
0.0 ms 2.01	ms/	20.1 ms	-15.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary	11107	2011 110)(10100	0.01	4 Constellatio		0.01 0.0127	10100
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured :	165644	18 · ·	
EVM PDSCH OPSK (%)			18.50		"		1	
EVM PDSCH 16QAM (%)			13.50				100 Mar 1990	
EVM PDSCH 640AM (%)	6.04	6.04	9.00	6.04				
EVM PDSCH 2560AM (%)	0.04	0.04	9.00	0.04		and the state	the second second	
	ames All, Selectio	n Ant 1 Fra	me Deculte 1	/1				
EVM AII (%)	6.03	6.15	The Results 1	5.88	-			
EVM Phys Channel (%)	6.02	6.14		5.86				
EVM Phys Channel (%)	6.18	6.51		5.90				
Frequency Error (Hz)	-0.05	1.91		-2.12	- 1 🧉			
Sampling Error (ppm)	-0.03	0.23		-0.31				200 .
I/O Offset (dB)	-41,83	-41.39		-42.06	- 🛛 🦯 🦉		1 👛 🌰 🍅 1	
I/Q Onset (db) I/O Gain Imbalance (dB)	-0.00	0.02		-42.06			1999 - See - See - S	
I/Q Quadrature Error (°)	0.02	0.02		-0.02	1 🧀		100 X X X X X X X X X X X X X X X X X X	
RSTP (dBm)	11.51	11.54		11.48	- 1 🔍	s 👡 🖅 💭	199 🐨 🎊	
OSTP (dBm)	42.30	42.37		42.18		s in the second s	100 of	
RSSI (dBm)	42.30	42.37		42.18			1 11 11 11 11 11	
Power (dBm)	42.33	42.34		42.27	- 🛛 🛛 🍛		the second	
Crest Factor (dB)	10.07	42.54		42.29				
Greschactor (ub)	10.07				-11		aller passie dans	
								11.11.2017
		Sync Fo	und		÷	Ready	REP C	

12:08:08 11.11.2017

Ref Level 47.40 dBm Freq 2.68 GHz Mode DL FDD, 20 MHz Capture Time 20.1 ms Subframe All SGL Ref Level 43.40 dB MIMO 1Tx / 1 RF Frame Count 1 of 1 (1) Sdum 01 Avg 0 2 Min 0 3 Max S Power Spectrum 01 Cinv Ref Level 40.40 dB MIMO 1Tx / 1 RF Frame Count 1 of 1 (1) Sdum/tz 01 Cinv Sdum 01 Avg 0 2 Min 0 3 Max S Power Spectrum 01 Cinv Sdum 01 Avg 0 2 Min 0 3 Max Sdum 01 Cinv Sdum 01 Cinv Sdum Sdum OI Avg 0 2 Min 0 3 Max Sdum OI Avg 0 2 Min 0 3 Max Sdum Sdum OI Avg 0 2 Min 2 Max Sdum OI Avg 0 2 Min 2 Max Sdum OI Avg 0 2 Min 2 Max Sdum Sdum Sdum OI Avg 0 2 Min 2 Max Sdum Sdum OI Avg 0 2 Min 2 Max	MultiView 🗄 Spectrum		X						\bigtriangledown
1 Capture Builder • 1 Cirw 3 EVM vs Carrier 0 1 Avg • 2 Min • 3 Max 5 Power Spectrum • 1 Cirw 53.4 dbm 53.4 dbm 53.4 dbm 58 dbm/Hz 58						Subframe All			SGL
Frame Brant Offset : 9, 499793 ms Image: Construct offset : 9, 499793 ms Image: Construct offset : 9, 499793 ms 53.4 dBm Image: Construct offset : 9, 499793 ms Image: Construct offset : 9, 499793 ms Image: Construct offset : 9, 499793 ms 53.4 dBm Image: Construct offset : 9, 499793 ms 53.4 dBm Image: Construct offset : 9, 499793 ms 53.4 dBm Image: Construct offset : 9, 499793 ms 53.4 dBm Image: Construct offset : 9, 499793 ms 18.6 dBm Image: Construct offset : 9, 499793 ms 30.6 dBm Image: Construct offset : 9, 499793 ms Image: Construct offset : 9, 499793 ms Image: Construct offset : 105644 Image: Construct offset : 105644 Construct offset : 10501 ms Constellation Diagram Points Measu		et 43.40 dB MIM				O Min CO May			OI Clau
65.4 dBm 18 % 18 % 18 % 18 % 18 % 18 % 18 % 18 % 19 % 10 %				EVIVIVSCA			<u>3 Power spec</u>	un	
14 % 14 % 14 % 14 % 12 % 14 % 12 % 14 % 12 % 12 % 12 % 12 % 10 % 12 % 10 % 12 % 10 %			1	.8 %			-58 dBm/Hz		+
12 % 1 12 % 1 10 % 1	53.4 dBm		1	.6 %			-66 dBm/Hz		
12 % 12 % 10 % 82 dBm/Hz 90 dBm/Hz 54 dBm 10 % 10 % 90 dBm/Hz 90 dBm/Hz -18.6 dBm 10 % 10 % 90 dBm/Hz 90 dBm/Hz -30.6 dBm 10 % 10 % 90 dBm/Hz 90 dBm/Hz -30.6 dBm 10 % 10 % 10 % 90 dBm/Hz 10 % 2.01 ms/ 20.1 ms/ 20.1 ms -15.36 MHz 3.07 MHz/ 15.36 MHz -15.36 MHz -15.36 MHz -10 dBm/Hz -10 dBm/Hz -11 dBm/Hz -12 dBm/Hz -12 dBm/Hz -12 dBm/Hz -12 dBm/Hz -11 dBm/Hz -12 dBm/Hz -13 dB Mz 3.07 MHz/ 15.36 MHz 3.07 MHz/ 15.36 MHz -15.36 MHz -15.36 MHz -15.36 MHz 3.07 MHz/ 15.36 MHz -15.36 MHz -16 dB AB -10 dB AB -10 dB AB -10 dB AB -10 dB			1	4 %			-74 dBm/Hz		
1100 into the financial and intervention of the interve									
6.4 dBm 6.6 dBm 98 dBm/Hz									
S. Hole Hole Hole Hole Hole Hole Hole Hole	till tal som at te detail i det i et alle and tale det time detaile detaile som	alandar at a fan binn die 101, die	HILLING AND DESIGNATION OF A	I I I I I I I I I I I I I I I I I I I	والمكافر ورريا فالرورية الملتقان والمتعا	il canci			
-18.6 dBm -30.6 dBm -30.6 dBm -40.6 dBm -40.6 dBm -114 dBm/Hz -114 dBm/Hz -114 dBm/Hz -114 dBm/Hz -114 dBm/Hz -114 dBm/Hz -122 dBm/Hz -125 dBm/Hz -125 dBm/Hz -125 dBm/Hz -126 dBm/Hz		i i fi i i fin			en sele dat man en skinet e kantinder	L de gardle de est			
1.8.5 adam 2.01 ms/ 20.1 ms 14.8 adam/12 14.4 adam/12 14.2 adam/12 12.4 adam/12 12.5 adam/				Illustrate to	ta pata na ang sita at a si a diang s	out a stip to a			
I I				%	and the state of the second second	and a second sec	1 1		+ + +
0.0 ms 2.01 ms/ 20.1 ms -15.36 MHz 3.07 MHz/ 15.36 MHz 15.36 MHz 15.36 MHz 3.07 MHz/ 15.36 MHz 15.	-30.6 dBm		2	%			-122 dBm/Hz		
2 Result Summary 4 Constellation Diagram Frame Results 1/1 Mean Max Limit Min EVM PDSCH 40PSK (%) 18.50 Points Measured : 165644 EVM PDSCH 16QAM (%) 6.54 6.54 9.00 6.54 EVM PDSCH 64QAM (%) 6.54 6.54 9.00 6.54 EVM PDSCH 56QAM (%) 6.53 6.69 6.39 EVM PDSCH Selection Subframes All, Selection Ant 1, Frame Results 1/1 Points Measured : 165644 EVM Phys Channel (%) 6.52 6.68 6.37 EVM Phys Signal (%) 6.65 6.94 6.37 Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Gein Imbalance (dB) -0.00 0.02 -0.09 I/Q Gfme Irror (%) 0.02 0.22 -0.09 I/Q Elfmin 11.55 11.58 11.51	0.0 mg			15 36 MIL	2.07.14157	15.26 MU	15.26 MU	2.07.04157	15.06 MU
Frame Results 1/1 Mean Max Limit Min EVM PDSCH QPSK (%) 18.50 18.50 18.50 19.00 10.50 EVM PDSCH 64QAM (%) 6.54 6.54 9.00 6.54 6.54 9.00 6.54 EVM PDSCH 256QAM (%) 6.53 6.69 6.39 6.39 6.39 EVM Phys Channel (%) 6.52 6.68 6.37 6.37 EVM Phys Signal (%) 6.65 6.94 6.37 Frequency Error (Hz) 1.01 2.53 -0.55 Samping Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Cain Imbalance (dB) -0.00 0.002 -0.02 I/Q Quadrature Error (°) 0.02 0.22 -0.09 RSTP (dBm) 11.55 11.58 11.51		msz	20.1 ms j -	-15.30 MILZ	3.07 MHZ7		<u></u>	3.07 MHZ7	13.30 MILZ
There results (%) There results (%) There results (%) EVM PDSCH 16QAM (%) 13.50 EVM PDSCH 56QAM (%) 6.54 Results for Selection Subframes All, Selection Ant 1, Frame Results EVM PDSCH 256QAM (%) 6.53 Results for Selection Subframes Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 1/Q Offset (dB) -41.85 -41.45 -41.49 -42.18 -40.02 RSTP (dB) 11.55 Signed (%) 0.02 -0.09 -0.01 RSTP (dBm) 11.55								¥12.1	
EVM PDSCH 16QAM (%) 13.50 EVM PDSCH 64QAM (%) 6.54 6.54 9.00 EVM PDSCH 256QAM (%) 6.54 9.00 6.54 Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM PDSCH 46QAM (%) 6.53 6.69 6.39 6.37 Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM All (%) 6.52 6.68 6.37 6.57 6.94 6.37 EVM Phys Signal (%) 6.55 6.94 6.37 6.55 6.94 6.37 Frequency Error (hz) 1.01 2.53 -0.54 6.37 6.55 Sampling Error (ppm) -0.01 0.22 -0.034 6.37 6.34 I/Q Gisin Imbalance (dB) -41.85 -41.49 -42.18 6.37 6.37 I/Q Quadrature Error (°) 0.02 0.22 -0.09 6.37 6.37 6.37 RSTP (dBm) 11.55 11.58 11.51 6.37 6.37 <td></td> <td>Mean</td> <td>Мах</td> <td></td> <td>Min</td> <td>Points Measureu .</td> <td>100044</td> <td></td> <td></td>		Mean	Мах		Min	Points Measureu .	100044		
EVM PDSCH 64QAM (%) 6.54 6.54 9.00 6.54 EVM PDSCH 256QAM (%) All, Selection Ant I, Frame Results 1/1 Frame Results 1/1 Frame Results 1/1 EVM All (%) 6.53 6.69 6.39 6.39 EVM Phys Channel (%) 6.52 6.68 6.37 6.37 Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.149 -42.18 I/Q Quadrature Error (%) 0.02 -0.02 -0.09 RSTP (dBm) 11.55 11.58 11.51						1		The state of the	
EVM APDSCH 255QAM (%) All, Selection All, Frame Results 1/1 Results for Selection Subframes All, Selection 6.69 6.39 EVM All (%) 6.53 6.69 6.39 EVM Phys Channel (%) 6.52 6.68 6.37 Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Quadrature Error (°) 0.02 0.02 -0.09 RSTP (dBm) 11.55 11.58 11.51									
Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM All (%) 6.53 6.69 6.39 EVM Phys Channel (%) 6.55 6.68 6.37 EVM Phys Signal (%) 6.65 6.94 6.37 Frequency Error (hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Quadrature Error (°) 0.02 0.02 -0.02 I/Q Quadrature Error (°) 0.02 0.22 -0.09 RSTP (dBm) 11.55 11.58 11.51		6.54	6.54	9.00	6.54				22
EVM All (%) 6.53 6.69 6.39 EVM Phys Channel (%) 6.52 6.68 6.37 EVM Phys Signal (%) 6.65 6.94 6.37 Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Cliss It (dB) -41.85 -41.49 -42.18 I/Q Quadrature Error (°) 0.002 -0.02 -0.09 RSTP (dBm) 11.55 11.58 11.51		and a still Colored	ing Aug 1 France	- Decides 1	/1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
EVM Phys Channel (%) 6.52 6.68 6.37 EVM Phys Signal (%) 6.65 6.94 6.37 Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Quadrature Error (°) 0.00 0.02 -0.02 I/Q Quadrature Error (°) 0.02 0.22 -0.09 RSTP (dBm) 11.55 11.58 11.51				ie Results 1,					and the second sec
EVM Phys Signal (%) 6.65 6.94 6.37 Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) 0.02 0.02 -0.09 RSTP (dBm) 11.55 11.58 11.51									
Frequency Error (Hz) 1.01 2.53 -0.55 Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (db) -41.85 -41.49 -42.18 I/Q Gain Imbalance (db) -0.00 0.02 -0.02 I/Q Qudrature Error (°) 0.02 0.22 -0.09 RSTP (dbm) 11.55 11.58 11.51									Sec. A.
Sampling Error (ppm) -0.01 0.25 -0.34 I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) 0.02 0.22 -0.09 RSTP (dBm) 11.55 11.58 11.51									
I/Q Offset (dB) -41.85 -41.49 -42.18 I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) 0.02 0.22 -0.09 RSTP (dBm) 11.55 11.58 11.51						l Nas	la sul sul sul		<u> </u>
I/Q Gain Imbalance (dB) -0.00 0.02 -0.02 I/Q Quadrature Error (°) 0.02 0.22 -0.09 RSTP (dBm) 11.55 11.58 11.51						🧉			
I/Q Quadrature Error (°) 0.02 0.22 -0.09 RSTP (dBm) 11.55 11.58 11.51									
RSTP (dBm) 11.55 11.58 11.51								A 🗳 🍊	<u> </u>
									Sec.
						1 i i i i i i i i i i i i i i i i i i i	- 19 10 - A		<u> </u>
RSSI (dBm) 42.37 42.44 42.31							e ta de la casa de la c		Sec. S
Non (doin) 42.37 42.32 Power (dBm) 42.35 42.37						- i i i i i i i i i i i i i i i i i i i		100 Mar 1990	
Crest Factor (dB) 10.13			.2.07		12.52				.
		10110							1999 1997
Sync Found Control Sync Found Co			Sync Fou	nd .			Ready	K. ₩1	11.11.2017

12:08:36 11.11.2017

20M -2680MHz-TM3.2-Port 1 ~4:

Att 25 dB Offset 43.40 dB MIMO 1 Tx / 1 Rx Frame Count 1 of 1 (1) 1 Capture Buffer 0 1 Cirw 3 EVM vs Carrier 0 1 Avg 0 2 Min 0 3 Max 5 Power Spectrum 0 1 Cirw	MultiView 🗄 Spectrum	🛛 🖾 LTE	X						
1 Conjunc Buffer • 1 Cirv 3 EVM vs Carrier • 1 Avg • 2 Min • 3 Max 5 Power Spectrum • 0 1 Cinv 55.4 dtm 18 % 18 % 19 % 19 % 19 % 10 % <td></td> <td></td> <td></td> <td></td> <td></td> <td>Subframe All</td> <td></td> <td></td> <td>SGL</td>						Subframe All			SGL
Frame Beat Offet: 6.406/032 ins 98 dpm/42 53.4 dpm 18 % 53.4 dpm 19 % 19 % 19 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 10 % 11 % 10 % 12 % 10 % 13 % 10 % 14 % 10 % 12 % 10 % 13 % 10 % 14 % 10 % 13 % 10 % 14 % 10 % 12 % 11 % 13 % 15.36 MHz 2.01 ms -15.36 MHz 2.01 ms -15.36 MHz 2.01 ms -15.36 MHz <td></td> <td></td> <td></td> <td></td> <td></td> <td>02 Min 03 Max</td> <td>5 Power Sper</td> <td>rtrum</td> <td>O1 Cine</td>						02 Min 03 Max	5 Power Sper	rtrum	O1 Cine
53.4 dBm 16.% 10.% 10.% 9.% <td>Frame Start Offset : 6.908432 ms</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Frame Start Offset : 6.908432 ms								
1+3/2 1+3/2 1-4 <							1 1 1		
12 % 12 % 12 % 12 % 12 % 10 %	53.4 dBm		10	5 %			-66 dBm/Hz		
10 % 0 %			1-	1%			-74 dBm/Hz		
4.4 dn			1:	2 %			- 82 dBm/Hz		<u> </u>
A. dtm	A DAMAGE AND A DAMAGE AND A DAMAGE AND A	and the second second	11	n %			-90 dBm/Hz		
6.6 dsm 6.6 dsm 6.8 dsm	n Marginge van de Konstin die keine keinen das de Konstein. Die eine kind d	a di salah di katali atti, li Juli hadika i d	Install Held I. Star 100411						
18.6 dbm 114 dbm/Hz 114 dbm/Hz 30.6 dbm 2.01 ms/ 20.1 ms/ 20.1 ms/ 114 dbm/Hz 2 Result Summary 115.36 MHz 3.07 MHz/ 122 dbm/Hz 124 dbm/Hz 2 Result Summary 115.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MHz/	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	a se de contra de la		Alexed a La J	helling an ever the half the set of	100 A 100 A 100 A	T T		
1-8.0 dpm 1-8.0 dpm 1-8.0 dpm 1-8.0 dpm 1-12 dpm/n2 1-12 dpm/n2 30.0 dpm 2.01 ms/ 20.1 ms/ 20.1 ms 1-15.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MHz/					n waa in dhaala ay ahay na ahay na ahay Maana dhalada ahay na dhalada dhalada	an an ann an Anna an Anna an Anna Anna			
L Loi ms 2.01 ms/ 20.1 ms -15.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MLz/ </td <td></td> <td></td> <td></td> <td>-70</td> <td></td> <td>11 P. 11 P.</td> <td></td> <td></td> <td></td>				-70		11 P. 11 P.			
0.0 ms 2.01 ms 20.1 ms -15.36 MHz 3.07 MHz/ 15.36 MHz 3.07 MHz/ <td></td> <td></td> <td>2</td> <td>%</td> <td></td> <td></td> <td>-122 dBm/Hz</td> <td></td> <td></td>			2	%			-122 dBm/Hz		
2 Result Summary 4 Frame Results 1/1 Mean Max Limit Min EVM PDSCH QPSK (%) 6.51 6.51 6.51 6.51 EVM PDSCH 16QAM (%) 6.37 6.37 13.50 6.51 EVM PDSCH 50QAM (%) 6.35 6.56 6.13 EVM PDSCH 50CH 64QAM (%) 6.35 6.56 6.13 EVM PDSCH 256QAM (%) 6.35 6.56 6.13 EVM Phys Channel (%) 6.337 5.60 5.17 Frequency Error (Hz) -0.40 0.66 -1.85 Sampling Error (ppm) -0.06 0.16 -0.26 I/Q Ouffset (dB) -42.04 -41.15 -42.90 I/Q Quarture Error (P) 0.00 0.02 -0.01 I/Q Quarture Error (9) 0.00 0.02 -0.06 RSTI (dBm) 42.10 42.10 41.19 RSSI (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20 42.12 42.08	0.0 ms 2.01	ms /	20.1 ms -	15 36 MHz	3.07 MHz/	15 36 MHz	-15 36 MHz	3.07 MHz/	15 36 MH
Frame Results 1/1 Mean Max Limit Min EVM PDSCH QPSK (%) 6.51 6.51 18.50 6.51 EVM PDSCH 16QAM (%) 6.37 6.37 13.50 6.37 EVM PDSCH 16QAM (%) 6.37 6.37 13.50 6.37 EVM PDSCH 256QAM (%) 6.35 6.56 6.13 EVM PMS Channel (%) 6.35 6.56 6.13 EVM Phys Channel (%) 6.37 5.37 5.60 5.17 Frequency Error (Hz) -0.40 0.66 -1.85 -42.90 I/Q Offset (dB) -42.04 -41.15 -42.90 -42.04 I/Q Quadrature Error (9) 0.00 0.02 -0.01 -0.66 I/Q Quadrature Error (9) 0.00 0.02 -0.06 -0.66 RSIP (dBm) 42.10 42.10 41.99 -42.04 -41.15 RSI (dBm) 42.17 42.20 42.08 -42.08 -42.04 Crest Factor (dB) 10.20 -42.04 -41.15 -42.08 -4		11137	2011 113]	10100 14112	5107 141127			5107 101127	10.00 000
EVM PDSCH QPSK (%) 6.51 6.51 18.50 6.51 EVM PDSCH 16QAM (%) 6.37 6.37 13.50 6.37 EVM PDSCH 64QAM (%) 6.37 6.37 13.50 6.37 EVM PDSCH 256QAM (%) 9.00 9.00 9.00 9.00 Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM PDSCH 256QAM (%) 6.35 6.56 6.13 EVM Phys Channel (%) 6.37 5.60 5.17 Frequency Error (Hz) -0.40 0.66 -1.85 Sampling Error (pm) -0.06 0.16 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Gian Imbalance (dB) 0.00 0.025 -0.01 I/Q Quadrature Error (°) 0.000 0.055 -0.06 RSTP (dBm) 42.10 42.10 41.99 RSSI (dBm) 42.10 42.10 42.08 Crest Factor (dB) 10.20 42.08 42.08		Mean	Max	Limit	Min	Points Measured	: 165644		
EVM PDSCH 16QAM (%) 6.37 6.37 13.50 6.37 EVM PDSCH 64QAM (%) 9.00 9.00 9.00 9.00 Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 1 1 1 EVM PDSCH 64QAM (%) 6.35 6.56 6.13 EVM Phys Channel (%) 6.35 6.56 6.13 EVM Phys Channel (%) 5.37 5.60 5.17 Frequency Error (Hz) -0.40 0.66 -1.85 Sampling Error (ppm) -0.06 0.16 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Quartarue Error (°) 0.00 0.022 -0.01 I/Q Quartarue Error (°) 0.00 0.025 -0.06 RSTI (dBm) 42.10 42.10 41.99 RSSI (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20 - -	·					1	1		
EVM PDSCH 64QAM (%) 9.00 EVM PDSCH 256QAM (%) 9.00 Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM All (%) 6.35 6.56 6.13 EVM Phys Channel (%) 5.37 5.60 5.17 Frequency Error (Hz) -0.40 0.666 -1.85 Sampling Error (ppm) -0.06 0.16 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Quadrature Error (9) 0.00 0.02 -0.01 I/Q Quadrature Error (9) 0.00 0.05 -0.06 RSTP (dBm) 11.56 11.57 11.54 RSTP (dBm) 42.10 42.10 41.99 RSSI (dBm) 42.10 42.08 - Crest Factor (dB) 10.20 - -									
EVM APPSCH 255 QAM (%)		0.07	0107		0.07				
Results for Selection Subframes All, Selection Ant 1, Frame Results 1/1 EVM All (%) 6.35 6.56 6.13 EVM Phys Signal (%) 5.37 5.60 5.17 Frequency Error (Hz) -0.40 0.66 -1.85 Sampling Error (ppm) -0.00 0.016 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Qain Imbalance (dB) 0.00 0.02 -0.01 I/Q Quadrature Error (°) 0.00 0.05 -0.06 RSTP (dBm) 11.56 11.57 11.54 Power (dBm) 42.10 42.10 41.19 RSSI (dBm) 42.10 42.10 42.08 Crest Factor (dB) 10.20 - -				5100			and the second second	and the second	and the second se
EVM Phys Channel (%) 6.40 6.60 6.17 EVM Phys Signal (%) 5.37 5.60 5.17 Frequency Brar (Hz) -0.40 0.66 -1.85 Sampling Error (pm) -0.06 0.16 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Quadrature Error (°) 0.00 0.055 -0.01 I/Q Quadrature Error (°) 0.00 0.055 -0.06 RSTP (dBm) 11.56 11.57 11.54 OSTP (dBm) 42.17 42.200 42.16 Power (dBm) 42.10 41.99 42.08 Crest Factor (dB) 10.20		mes All, Selection	Ant 1, Fram	e Results 1	/1				
EVM Phys Signal (%) 5.37 5.60 5.17 Frequency Error (Hz) -0.40 0.66 -1.85 Sampling Error (ppm) -0.06 0.16 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Qain Imbalance (dB) 0.00 0.02 -0.01 I/Q Qaintarue Error (°) 0.00 0.05 -0.06 RSTP (dBm) 11.56 11.57 11.54 OSTP (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20 - -						1			
Frequency Error (Hz) -0.40 0.66 -1.85 Sampling Error (ppm) -0.06 0.16 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Quartature Error (°) 0.00 0.02 -0.01 I/Q Quartature Error (°) 0.00 0.05 -0.06 RSIP (dBm) 11.56 11.57 11.54 RSIP (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20	EVM Phys Channel (%)	6,40	6.60		6.17	9			ile:
Sampling Error (ppm) -0.06 0.16 -0.26 I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Gain Imbalance (dB) 0.00 0.02 -0.01 I/Q Quadrature Error (°) 0.00 0.05 -0.06 RSTP (dBm) 11.56 11.57 11.54 OSTP (dBm) 42.06 42.10 41.99 RSSI (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20	EVM Phys Signal (%)	5.37	5.60		5.17				
I/Q Offset (dB) -42.04 -41.15 -42.90 I/Q Giffset (dB) 0.00 0.02 -0.01 I/Q Quadrature Error (°) 0.00 0.05 -0.06 RSTP (dBm) 11.56 11.57 11.54 QSTP (dBm) 42.06 42.10 41.99 RSSI (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20		-0.40	0.66		-1.85	· · · · · ·	dan	1000 C 100	2.
J/Q Gain Imbalance (dB) 0.00 0.02 -0.01 I/Q Quadrature Error (°) 0.00 0.05 -0.06 RSTP (dBm) 11.56 11.57 11.54 OSTP (dBm) 42.06 42.10 41.99 RSSI (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20	Sampling Error (ppm)	-0.06	0.16		-0.26		÷	7	Vi
J/Q Quadrature Error (°) 0.00 0.05 -0.06 RSTP (dBm) 11.56 11.57 11.54 OSTP (dBm) 42.06 42.10 41.99 RSSI (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20	I/Q Offset (dB)	-42.04	-41.15		-42.90	-		1	*9 :
RSTP (dBm) 11.56 11.57 11.54 OSTP (dBm) 42.06 42.10 41.99 RSSI (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20 42.10 42.08	I/Q Gain Imbalance (dB)	0.00	0.02		-0.01				
OSTP (dBm) 42.06 42.10 41.99 RSSI (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20	I/Q Quadrature Error (°)	0.00	0.05		-0.06	, ŝ	and a second	A CONTRACT OF	
RSSI (dBm) 42.17 42.20 42.16 Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20			11.57				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 🍊	
Power (dBm) 42.10 42.12 42.08 Crest Factor (dB) 10.20 42.08 10.20 10.20	OSTP (dBm)	42.06	42.10		41.99		in 🔜 🚽 👘	l and the second	
Crest Factor (dB) 10.20						. 1			
			42.12		42.08	1 3	and the second	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<i>.</i>
	Crest Factor (dB)	10.20							
						1	1		
			0						11.11.2017

12:52:05 11.11.2017

MultiView 🗄 Spectrum	tte	X						∇
Ref Level 47.40 dBm Freq		DL FDD, 20 MHz		Time 20.1 ms	Subframe All			SGL
	t 43.40 dB MIMC			ount 1 of 1 (1)				
1 Capture Buffer		●1 Clrw 3 E	VM VS Car	rier OIAVgC	2 Min • 3 Max	5 Power Spec	trum	O1 Clrv
Frame Start Offset : 6.732206 ms 65.4 dBm		18 4	~			-58 dBm/Hz		
53.4.dBm		16 9				-66 dBm/Hz		
			1			T 1/1		
		14 9				-74 dBm/Hz		
		12 9				-82 dBm/Hz		
nakula kaniliki alah cahi di <mark>kabiki k</mark> isi	ua atanan ba kanar 36	distributed in 10.5	%			-90 dBm/Hz		
5.4 dBm		8%		anna hAistin dhallta, anna Aireanna Airean		-98 dBm/Hz		
-6.6 dBm		6 %		ina in president data bagiliy nate Western, Medicen Marin yang basing Pranto Series (Medicenter)	A STORY OF	-106 dBm/Hz		
-18.6 dBm		4 %	Jugarda	¹⁷ n ^a n an tao an tao ang	in disa.iti	-114 dBm/Hz		
-30.6 dBm		2 %				-122 dBm/Hz		
0.0 ms 2.01	ms/	20.1 ms -1	5.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MH
2 Result Summary					4 Constellatio	n Diagram		
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured :	165644		
EVM PDSCH QPSK (%)	6.47	6.47	18.50	6.47			2	
EVM PDSCH 16QAM (%)	6.31	6.31	13.50	6.31	1.5	and canada		1960-a
EVM PDSCH 64QAM (%)			9.00					
EVM PDSCH 256QAM (%)					1	an 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19		1000
	ames All, Selectio	n Ant 1, Frame	Results 1	/1				
EVM All (%)	6.29	6.51		6.05			1	
EVM Phys Channel (%)	6.34	6.56		6.10				
EVM Phys Signal (%)	5.31	5.59		5.08	1 👘			
Frequency Error (Hz)	-0.67	0.78		-2.84		a.		14 11.2
Sampling Error (ppm)	-0.04	0.18		-0.26	.5	6		1993
I/Q Offset (dB)	-42.06	-41.21		-42.96		Sec. Alter		
I/Q Gain Imbalance (dB)	0.00	0.02		-0.01	1 3			
I/Q Quadrature Error (°)	0.00	0.06		-0.06		मार्ट विक्रम	1000	are .
RSTP(dBm)	11.55	11.56		11.53		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	i 🌰 👘	
OSTP (dBm)	42.05	42.08		41.98		in 💭 🗤 👘	l constant 🔜	
RSSI (dBm)	42.16	42.19		42.15	1			
Power (dBm)	42.09	42.11		42.07	1 3	ent and		
Crest Factor (dB)	10.31							
		Sync Found				Æ		- 11 11 2017

12:52:33 11.11.2017

MultiView 🗄 Spectrum	🗄 🖾 LTE	X							∇
				Time 20.1 m		ne All			SGL
Att 25 dB Offset 1 Capture Buffer	: 43.40 dB MIMO		EVM vs Car	count 1 of 1 (1) 1 0 2 Min 0 3	Max	5 Power Spe	atuu usa	O1 Clrw
Frame Start Offset : 1.83671 ms			EVMVSCar	rier OIAVQ		i Max	5 Power Spec	urum	
65.4 dBm		1	.8 %				-58 dBm/Hz		
53.4.dBm		1	6 %			_	-66 dBm/Hz		
			4 %				-74 dBm/Hz		
			2 %						
			1 In d	المرابطين المراب	11 116		-82 dBm/Hz		
ה המשירה המשירה האירה להיות להיות לאור לא היו האיר איני איני איני איני איני איני איני א	di kanan da kana kala da kana kana ka	illinger in the state of the second second	.0 %	and the second state of th			-90 dBm/Hz		
5.4 dBm	the second of the second s	8			11 04 (<u>6 641</u>		-98 dBm/Hz		
-6.6 dBm		6	%	in an	ng Congeneration al chiefe differencia		-106 dBm/Hz		
-18.6 dBm		4	%	A. Male of sound time that	arthu rasart	+	-114 dBm/Hz		
-30.6 dBm		2	%				-122 dBm/Hz		
0.0 ms 2.01 r	ms/	20.1 ms	15.36 MHz	3.07 MHz/	15.36	MHz	-15.36 MHz	3.07 MHz	/ 15.36 MH
2 Result Summary						ellatior	Diagram		
Frame Results 1/1	Mean	Мах	Limit	Min	Points Mea	asured : :	165644		
EVM PDSCH QPSK (%)	7.36	7.36	18.50	7.36				1. C.	
EVM PDSCH 16QAM (%)	7.57	7.57	13.50	7.57		1.28	in interest	· · · · · · · · · · · · · · · · · · ·	- methoda
EVM PDSCH 64QAM (%)			9.00						
EVM PDSCH 256QAM (%)						<u></u>	San Martin	- See 🚈	Sec. 1
Results for Selection Subfra	mes All, Selection	n Ant 1, Fram	ne Results 1	/1					
EVM All (%)	7.40	7.63		7.15					
EVM Phys Channel (%)	7.45	7.67		7.19		100			
EVM Phys Signal (%)	6.52	6.70		6.34			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sec. Sec.	
Frequency Error (Hz)	-0.77	0.30		-3.28		25	and a second	19.032	10.00
Sampling Error (ppm)	-0.07	0.21		-0.33					<u>, 1911</u>
I/Q Offset (dB)	-42.05	-41.05		-43.18			1		
I/Q Gain Imbalance (dB)	0.00	0.02		-0.01					
I/Q Quadrature Error (°)	0.01	0.08		-0.08		20	A CONTRACTOR	and the second se	
RSTP (dBm)	11.53	11.55		11.51			1 🗥 👘 👘	1 🧉	
OSTP (dBm)	42.03	42.07		41.96		میں مذہب	and the states	1 . See 📜	
RSSI (dBm)	42.15	42.17		42.13					
Power (dBm)	42.07	42.09		42.05		1	2 - N.S.	1 Anna Charles	Sec. 1
Crest Factor (dB)	10.29						the state of the s		
		0							II.11.20 <u>17</u>
		Sync Fou	na				Ready	1/0	REF 12.53.01

12:53:01 11.11.2017

MultiView 🕀 Spectrum	E LTE	X						
Ref Level 47.40 dBm Freq Att 25 dB Offset	2.68 GHz Mode t 43.40 dB MIM	DL FDD, 20 MHz		Time 20.1 ms ount 1 of 1 (1)	Subframe All			SGL
1 Capture Buffer	L 43,40 UD MIIM	• 1 Cirw 3 E			2 Min • 3 Max	5 Power Spec	trum	O1 Clrw
Frame Start Offset : 140.282951 us						brower opec		
65.4 dBm		18	%			-58 dBm/Hz		
53.4.dBm		16	%			-66 dBm/Hz		
		14	%			-74 dBm/Hz		
		12	%			-82 dBm/Hz		
		10	السيار ل	الألب والمتعارفة		-90 dBm/Hz		
ار بې ايا بې	k a Velskillet, letter av bitter, blad att år att b			and a second of the second	a dhatha an a'	-98 dBm/Hz		
-6.6 dBm		6%		ላግ የሚሰው መስተኛ የሚያ አንድ ምርዓ ይጣታል። የትርቡ የሚያ አስተኛ በአስር የአስር የሆኑ በላግ አንድ የ	the second s	-106 dBm/Hz		
			daday A.	adapted between the other	A PE pallent			
-18.6 dBm		4 %	,	- Contract		-114 dBm/Hz		
-30.6 dBm		2 %				-122 dBm/Hz		
).0 ms 2.01 r	ms/	20.1 ms -1	5.36 MHz	3.07 MHz/	15 36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary	1137	20.11113	5150 1411 12	3.07 141127	4 Constellatio		5.07 141127	15.50 14112
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured	: 165644		
EVM PDSCH QPSK (%)	7.15	7,15	18.50	7.15				
EVM PDSCH 160AM (%)	7.28	7.28	13.50	7.28		ata a		
EVM PDSCH 18QAM (%)	7.20	7.20	9.00	7.20	4		1 and 1 a	
EVM PDSCH 2560AM (%)			9.00		1	Star March		and the second
	mes All, Selecti	on Ant 1, Frame	Results 1,	/1		and the subscript		
EVM AII (%)	7.15	7.36		6.94		. · · · · · · · · · · · · · · · · · · ·	1	
EVM Phys Channel (%)	7.19	7.40		6.98	1		1000	No. 1
EVM Phys Signal (%)	6.23	6.48		6.00	🦓			
Frequency Error (Hz)	0.03	1.34		-1.22	1	Sales	a contraction of the second	1777 C
Sampling Error (ppm)	-0.05	0.21		-0.30		1977 842		-44 <u>8</u> 7
I/Q Offset (dB)	-42.05	-41.04		-43.06		Sec. Sec.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second sec
I/Q Gain Imbalance (dB)	0.00	0.02		-0.01				
I/Q Quadrature Error (°)	0.00	0.06		-0.08	- 7	999 () () () () () () () () ()		1997 C
RSTP (dBm)	11.52	11.53		11.50				
OSTP (dBm)	42.02	42.06		41.95		ales and a sales	l haife 🔜	Adama
RSSI (dBm)	42.13	42.15		42.12				
Power (dBm)	42.06	42.08		42.04	1 👌	and Same	1. San	and a star
Crest Factor (dB)	10.25					n e entre		
		Sync Found		,				11 11 2017

12:53:29 11.11.2017

20M -2680MHz-TM3.3-Port 1 ~4:

MultiView 🕀 Spectrum	🛛 🖾 🖾 LTE	\mathbb{X}						∇
Ref Level 47.40 dBm Freg	2.68 GHz Mode	DL FDD, 20 MH	z Capture	Time 20.1 ms	Subframe All			SGL
Att 25 dB Offse	t 43.40 dB MIMC) 1 Tx / 1 R>	Frame (Count 1 of 1 (1)				
1 Capture Buffer		01 Clrw 3	EVM vs Car	rier O1 Avg	2 Min O3 Max	5 Power Spec	ctrum	O1 Clrw
Frame Start Offset : 3.524144 ms								
65.4 dBm			%			-58 dBm/Hz		
53.4 dBm		16	%			-66 dBm/Hz		
		14	%			-74 dBm/Hz		
		12	%			-82 dBm/Hz		
and the second second second second second		10	%	N Kuratah Multi sa bila nam	h à lohad	-90 dBm/Hz		
distriction of the local sector of the secto	, ali di che il fonga da la didida da la 11. 11. 11. 11.	والمتباغة فالمتباد		a manuful daba dan berteka	ill des	-98 dBm/Hz		
-6.6 dBm	a second de la secondada	6	1004-0	WARDARD RANGER LEADING	Date & Avenue	-106 dBm/Hz		
			and the second s	anibit/Man Alas No.	WHAT AND			
-18.6 dBm		4				-114 dBm/Hz		
-30.6 dBm		2 4	%			-122 dBm/Hz		
0.0 ms 2.01		20.1 ms - :	5.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary				,	4 Constellatio	n Diagram	,	
Frame Results 1/1	Mean	Max	Limit	Min	Points Measured	: 165644	1. Sec. 1.	
EVM PDSCH OPSK (%)	8.79	8.79	18.50	8.79				
EVM PDSCH 160AM (%)	6,90	6.90	13.50	6,90				
EVM PDSCH 64QAM (%)			9.00			100 C	1 in 1990 in 19	
EVM PDSCH 256QAM (%)								
	ames All, Selectio	n Ant 1, Frame	e Results 1	/1		New York Street		
EVM All (%)	7,75	7.83		7,51		Steel St.	Charles Street	
EVM Phys Channel (%)	7,83	7,92		7,59			200 Jan 200 Ja	
EVM Phys Signal (%)	6.00	6,25		5.69				×
Frequency Error (Hz)	0.21	2,24		-1.61			1	
Sampling Error (ppm)	-0.03	0.24		-0.39		<u>後)</u>		<u> </u>
I/Q Offset (dB)	-42.32	-41.63		-42.70			مصر بيفتني	
I/Q Gain Imbalance (dB)	0.00	0.02		-0.00				ř.
I/Q Quadrature Error (°)	0.04	0.11		-0.07		and the second se	1.01.010	
RSTP (dBm)	11.51	11.53		11.48				
OSTP (dBm)	41.96	42.15		41.89		See 2 and	1	
RSSI (dBm)	42.08	42.12		42.00				
Power (dBm)	41.98	42.04		41.95		Sector Sector	1. 1995	
Crest Factor (dB)	10.22							
					1			
		Sync Foun	a .			Pondu — I		11.11.2017
		sync Foun	u		· · · ·	Ready	REF C	

12:56:21 11.11.2017

	2.68 GHz Mode 43.40 dB MIM	DL FDD, 20 MHz		Time 20.1 ms ount 1 of 1 (1)	Subframe A				SGL
Capture Buffer	43,40 db MIIM	• 1 Clrw 3 E			●2 Min●3 Max	5 Power Spec	trum	01	Clrw
Frame Btart Offset 3.118297 ms 55.4 dBm		18 % 16 % 14 % 12 %	%						
44 58 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		6 % 2 %		(Kali kulo bada kali ku Kali kulo kulo kulo kulo kulo kulo kulo kulo		-90 dBm/Hz -98 dBm/Hz -106 dBm/Hz -114 dBm/Hz -122 dBm/Hz			
0.0 ms 2.01 r		20.1 ms -15	5.36 MHz	3.07 MHz/	15.36 MH;	z -15.36 MHz	3.07 MHz/	15.36	MHz
Result Summary				· · ·	4 Constellati	on Diagram			
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured	: 165644	10		
EVM PDSCH QPSK (%)	9.13	9.13	18.50	9.13	1	9			
EVM PDSCH 160AM (%)	7.13	7.13	13.50	7.13					
EVM PDSCH 640AM (%)			9.00						
EVM PDSCH 256QAM (%)									
Results for Selection Subfrar	mes All, Selectio	on Ant 1, Frame	Results 1,	/1			1 A A		
EVM All (%)	8.04	8.15		7.80		diversity -	State of State		
EVM Phys Channel (%)	8.12	8.23		7.89		A	Section 1 Section		
EVM Phys Signal (%)	6.30	6.55		5.93		- El Contra de C		r.	
Frequency Error (Hz)	-0.22	1.41		-2.27					
Sampling Error (ppm)	-0.02	0.28		-0.39		in the second		Qu	
I/Q Offset (dB)	-42.36	-41.63		-42.80			مقرر ملاق		
I/Q Gain Imbalance (dB)	0.00	0.02		-0.00				8	
I/Q Quadrature Error (°)	0.04	0.12		-0.07		and the second se			
RSTP (dBm)	11.50	11.52		11.46					
OSTP (dBm)	41.95	42.14		41.88					
RSSI (dBm)	42.07	42.11		41.99				i i	
Power (dBm)	41.97	42.02		41.94		Contraction of Contraction	1 THE		
Crest Factor (dB)	10.14								
		Sync Found						11.11.20	17

12:56:49 11.11.2017

MultiView # Spectrum	🗄 🖾 LTE	X						∇
Ref Level 47.40 dBm Freq Att 25 dB Offse				Time 20.1 ms ount 1 of 1 (1)	Subframe All			SGL
1 Capture Buffer		01 Clrw 3 E	VM vs Car	ier O1 Avg	2 Min O3 Max	5 Power Spec	trum	O1 Clrw
Frime Etart Offset : 911.458454 µs 6514 dBm 534 dBm 71 Januar Jan	a tadan sələnərində i	8 %	% % % %		dela tra	-58 dBm/Hz -66 dBm/Hz -74 dBm/Hz -82 dBm/Hz -90 dBm/Hz -98 dBm/Hz		
-6,5 dBm -19,6 dBm -30,6 dBm		6 % 4 % 2 %	6 hittige			-106 dBm/Hz -114 dBm/Hz -122 dBm/Hz		
0.0 ms 2.01	ms/	20.1 ms -1	5.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary					4 Constellatio	n Diagram		
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured :	165644	No. 1	
EVM PDSCH QPSK (%)	8,71	8.71	18.50	8,71		12		
EVM PDSCH 160AM (%)	6.85	6.85	13.50	6.85				
EVM PDSCH 640AM (%)			9.00			10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	1 An	
EVM PDSCH 256QAM (%)					1		A State of the second sec	
Results for Selection Subfra	mes All, Selection	Ant 1, Frame	Results 1,	/1			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
EVM All (%)	7.69	7.80		7.42		Sugar State	a and a second	
EVM Phys Channel (%)	7.77	7.89		7.51			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
EVM Phys Signal (%)	5.94	6.16		5.55	3	.	- 🐨 🐨	P.
Frequency Error (Hz)	-0.04	1.33		-1.95		6		
Sampling Error (ppm)	-0.03	0.25		-0.37	1	kije		10. · · · · · · · · · · · · · · · · · · ·
I/Q Offset (dB)	-42.32	-41.63		-42.76		36.		
I/Q Gain Imbalance (dB)	0.00	0.02		-0.00				ę.
I/Q Quadrature Error (°)	0.04	0.12		-0.06		-71 (A. 1977)	and the second second	
RSTP (dBm)	11.54	11.56		11.50				
OSTP (dBm)	41.99	42.18		41.92		Sec. Sec.	345	
RSSI (dBm)	42.11	42.15		42.03	3			
Power (dBm)	42.01	42.06		41.98		india Collec	1	
Crest Factor (dB)	10.14							
						<u> </u>		
		Sync Found	i		¢	Ready		11.11.2017

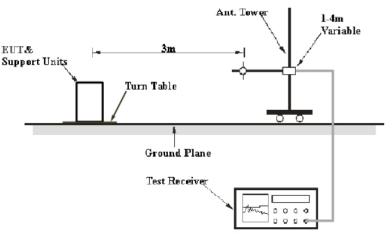
12:57:17 11.11.2017

MultiView 🗄 Spectrum								\bigtriangledown
RefLevel 47.40 dBm Freq Att 25 dB Offse	2.68 GHz Mod t 43.40 dB MIM	e DL FDD, 20 MHz O 1 Tx / 1 Rx		Time 20.1 ms Count 1 of 1 (1)	Subframe All			SGL
1 Capture Buffer	81 43,40 GB MIN		VM vs Car		2 Min • 3 Max	5 Power Spec	trum	O1 Clrw
Frame Start Offset : 6.230614 ms								
65.4 dBm		18	· · · ·			-58 dBm/Hz		
53.4 dBm		16	%			-66 dBm/Hz		
		14	%			-74 dBm/Hz		
		12	%			-82 dBm/Hz		
and the second second second		10	%			-90 dBm/Hz		
<u>y ki </u>	with this build at a third to b	Million has a so	1 1000	ويعاطيه والمتار والمتعادية	Marker Mark	-98 dBm/Hz		
-6.6 dBm	and the state of t	69		La fille al la fidificada méthodor		-106 dBm/Hz		
			5. 1 H	bentlembellik and teta heise				
-18.6 dBm		4 %	o			-114 dBm/Hz		
-30.6 dBm		2 %	·			-122 dBm/Hz		
0.0 ms 2.01		20.1 ms -1	5.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MH
2 Result Summary	mor	2011110)(-1		0101 11112,	4 Constellatio		0101 11112,	10100
Frame Results 1/1	Mean	Мах	Limit	Min	Points Measured :	165644	64 - C	
EVM PDSCH QPSK (%)	8.27	8.27	18.50	8,27				
EVM PDSCH 160AM (%)	6.57	6.57	13.50	6.57				
EVM PDSCH 64QAM (%)	0.07	0.07	9.00	0.07			نس ا	ń.
EVM PDSCH 2560AM (%)			5.00		3			
	ames All, Selecti	on Ant 1, Frame	Results 1	/1				
EVM All (%)	7.32	7.47		7.03		Concerned and the second	Sec. 1	
EVM Phys Channel (%)	7.40	7.56		7.11		de la como	100 L	
EVM Phys Signal (%)	5.58	5.84		5.31		.	- 💭 📲	2
Frequency Error (Hz)	0.07	1.14		-1.58				
Sampling Error (ppm)	-0.03	0.20		-0.35		and the second se		(1)5-1-
I/Q Offset (dB)	-42.26	-41.68		-42.64				
I/Q Gain Imbalance (dB)	0.00	0.02		-0.00				
I/Q Quadrature Error (°)	0.03	0.12		-0.07		and the second s		
RSTP(dBm)	11.53	11.55		11.49				
OSTP (dBm)	41.97	42.17		41.91			and the second	
RSSI (dBm)	42.10	42.14		42.02	1			
Power (dBm)	41.99	42.05		41.97		and	1	-
Crest Factor (dB)	10.39							
								11 11 0017

12:57:45 11.11.2017

3.4. Spurious Emissions Radiated

3.4.1.Applicable Standard: FCC§2.1053


The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESU40	SB8501/09	2017.3.21	2018.3.20
Schwarzbeck	Bilog Antenna	VULB9163	SB3955	2017.3.21	2018.3.20
R&S	Horn Antenna	HF906	SB3435	2017.1.3	2018.1.2
R&S	Preamplifier	SCU-03	SB8501/14	2017.3.6	2018.3.5
R&S	Preamplifier	SCU-18	SB8501/17	2017.3.6	2018.3.5

3.4.2.Test Equipment List and Details

***statement of traceability:** SMQ attests that all calibration has been performed per the A2LA requirements, traceable to NIM.

3.4.3.Test Procedure

1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.

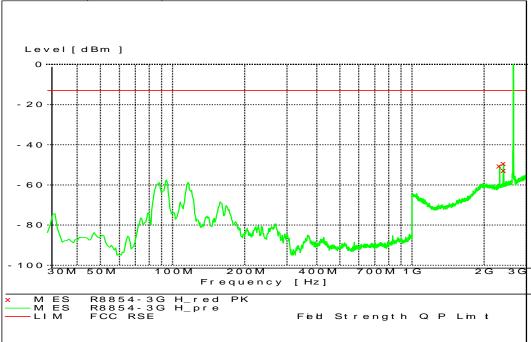
2. The RRU Controlled by CPRI via to set the EUT to its maximum power at the required channel.

3. Set the spectrum analyzer to measure peak hold with the required settings.

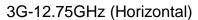
4. Place the measurement antenna in a horizontal orientation. Rotate the EUT 360 . Raise the measurement antenna at 1.5 meters increments and rotate the EUT 360 at maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.

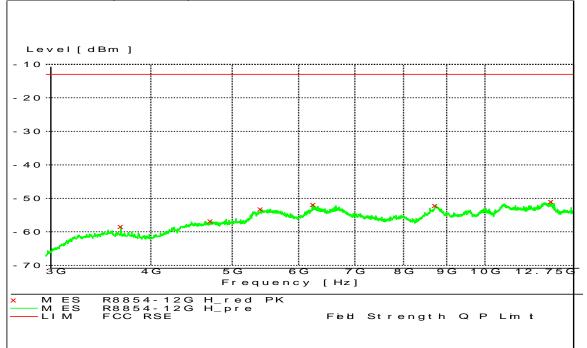
Spectrum analyzer settings: RBW=VBW=1MHz

3.4.4.Environmental Conditions


Temperature:	26°C
Relative Humidity:	60 %
ATM Pressure:	1009 mbar

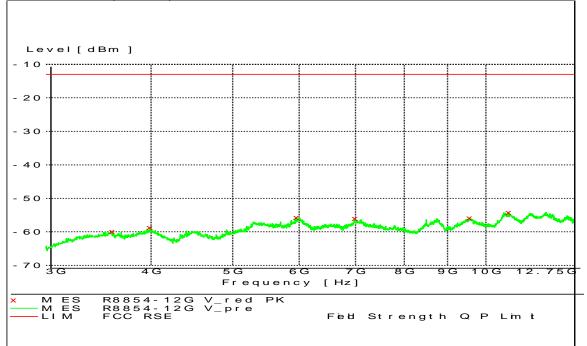
3.4.5.Test Result: Pass


3.4.6.Test Mode: Transmitting LTE


3.4.7.Test Data

30M-3GHz (Horizontal)


Frequency	Level	Azimuth	Height	Polarization	Transd	Limit	Margin
MHz	dBm	deg	cm		dBm	dBm	dB
2323.200000	-50.57	273.10	100.0	HOR	-102.8	-13	37.6
2409.600000	-49.42	24	200.0	HOR	-102.8	-13	36.4
2417.600000	-52.86	154.8	100.0	HOR	-102.8	-13	39.9
2651.200000	0.18	273.1	100.0	HOR	-102.8	-13	-13.2


Frequency	Level	Azimuth	Height	Polarization	Transd	Limit	Margin
MHz	dBm	deg	cm		dBm	dBm	dB
3684.800000	-58.48	57.1	200	HOR	-89.1	-13	45.5
4712.000000	-56.72	301.9	200	HOR	-84.7	-13	43.7
5409.600000	-53.2	156.8	100	HOR	-80.4	-13	40.2
6248.000000	-51.87	100.2	200	HOR	-77.1	-13	38.9
8725.000000	-52.22	156.8	100	HOR	-72.5	-13	39.2
11995.600000	-50.94	245.6	200	HOR	-72.8	-13	37.9

30M-3GHz (Vertical)

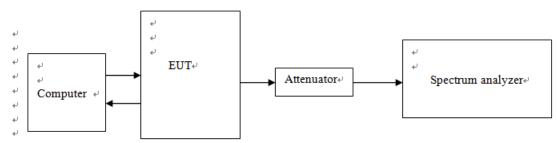
Frequency	Level	Azimuth	Height	Polarization	Transd	Limit	Margin
MHz	dBm	deg	cm		dBm	dBm	dB
2414.400000	-45.35	260.90	200	VER	-101.2	-13	32.4
2648.000000	-2.22	39.50	100	VER	-99.6	-13	-10.8

Frequency	Level	Azimuth	Height	Polarization	Transd	Limit	Margin
MHz	dBm	deg	cm		dBm	dBm	dB
3598.400000	-59.96	175.20	100	HOR	-89.5	-13	47.0
3988.800000	-58.71	244.60	100	HOR	-87.3	-13	45.7
5956.800000	-55.74	209.90	100	HOR	-81.7	-13	42.7
6996.800000	-56.02	189.40	200	HOR	-79.8	-13	43.0
9566.800000	-55.89	8.10	100	HOR	-77.9	-13	42.9
10647.800000	-54.17	84.60	200	HOR	-76.2	-13	41.2

3.5. Spurious Emissions At Antenna Terminals

3.5.1.Applicable Standard: FCC§2.1051, §27.53

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified.


3.5.2.Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Signal & Spectrum Analyzer	FSW26	SB12724/01	2017.6.19	2018.6.18
DTS	DTS 40dB Attenuator	DTS100-40-3-1	09112005	2017.03.15	2018.03.15

*statement of traceability: SMQ attests that all calibration has been performed per the A2LA requirements, traceable to NIM.

3.5.3.Test Procedure

EUT Setup:

REMARKS: Attenuator loss (dB)=40dB, Cable Loss (dB)=1.5dB.

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kilohertz or greater. However, in the 100 kilohertz bands immediately outside and adjacent to a licensee's frequency block, a resolution bandwidth of at least 30 kHz may be employed. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

3.5.4.Environmental Conditions

Temperature:	20 °C
Relative Humidity:	53 %
ATM Pressure:	1009 mbar

- 3.5.5.Test Result: Pass
- 3.5.6.Test Mode: Transmitting LTE
- 3.5.7.Test Data:

MultiView	🕤 Spectrum	₩							∇
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RE		lode Auto Sweep					SGL
DC		SOUTHS VE	54¥ 11∜IIIZ IV	iode Auto Sweep	1				
1 Frequency S	weep	1				1		MIE	●1Rm Clrw 1] -39.62 dBm
40 dBm								WIL	513.00 kHz
40 dBm-									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
h									
-30 dBm									
1 i M ¹									
-40 dBm									
-50 dBm	my with which which	براسد بولامه المرسية الم	pyphingstrad	Muldun mary	al que to many many many	Anna and and and and and and and and and	monumenter	-	mounder
9.0 kHz		1	1001 pt		1	99.1 kHz/	1	1	10.0 MHz
	Ύ						Aborted	4/9	10.11.2017
<u> </u>									
16:44:36 10.:	11.2017								
na lutrat	Carl at the second	M							

DC Frequency Sweep	iB ● SWT 500 ms	VDI 10002	Mode Auto owe	ср ————————————————————————————————————				o 1 Des Clau
0 dBm							M1[1]	● 1Rm Clrw -38.54 dB 513.00 kF
D dBm								
) dBm								
) dBm								
dBm								
) dBm								
) dBm								
1 dBm								
) dBm								
0 dBm	monimum	1001			99.1 kHz/	war walke getter	and the second	10.0 MH

16:45:48 10.11.2017

Page 401 of 736

ultiView	😑 Spectrum	n ∰[l
Att	5.00 dBm Offs 14 dB = SWT	et 42.00 dB ∈ 500 ms	RBW 100 kHz VBW 1 MHz M	ode Auto Sweep				SGL
C Frequency								●1Rm Clrw
							M1[1]	
dBm								
) dBm								
) dBm								
dBm								
dBm								
) dBm								
0.40								
0 dBm								
0 dBm								
11 402								
0 dBm								
0 dBm								
.0 kHz	(Halman Maria Maria	www.houthal.	1001 pt:	•	999.1 kHz/	M. M. Marine and Ma	and the second se	10.0 MF
5 14 12	Y		1001 pt.	-		Aborted		10.11.2017
:47:01 10 IultiView	Spectrum					Aborted	aya)	
:47:01 10 IultiView Ref Level 46 Att	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈				Aborted		SG
:47:01 10 ultiView Ref Level 46 Att C	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Aborted	M1[1]	●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Iult C Frequency	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Aborted		●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Itt C Frequency dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Aborted		●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Att C Frequency	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Abortod		●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Ktt C Frequency dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Aborted		●1Rm Cin -39,78 di
:47:01 10 IultiView Ref Level 46 Ktt C Frequency dBm dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz					●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Att C Frequency dBm dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Aborted		●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Att C Frequency dBm dBm dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Abortod		●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Att C Frequency dBm dBm dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz					●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Att C Frequency dBm dBm dBm dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz					●1Rm Cin -39,78 di
:47:01 10 IultiView Ref Level 46 Att C Frequency dBm dBm dBm dBm dBm 0 dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Abortod		●1Rm Clrv -39,78 df
:47:01 10 IultiView Ref Level 46 Att C Frequency dBm dBm dBm dBm dBm 0 dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Aborted		●1Rm Clrv -39,78 df
5:47:01 10 AultiView Ref Level 46 Att O dBm 0 dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz					●1Rm Clrw -39,78 dB
i:47:01 10 fultiview Ref Level 46 Att Sc Frequency 0 dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz					●1Rm Clrw -39,78 dB
:47:01 10 IultiView Ref Level 46 Att C Frequency 0 dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz			Abortod		•1Rm Clrv -39,78 dE
i:47:01 10 IultiView Ref Level 46 Att Odem 0 dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB = 500 ms	RBW 100 kHz VBW 1 MHz M	ode Auto Sweep		Aborted		●1Rm Clrw -39.78 dB
:47:01 10 IultiView Ref Level 46 Att C Frequency 0 dBm	5.00 dBm Offse 14 dB • SWT	et 42.00 dB ∈	RBW 100 kHz	iode Auto Sweep	999.1 kHz/			● 11 m Cinv SG ● 17 m Cinv 59,78 dB 513.00 ki

MultiView									▽
Ref Level 46. Att	14 dB 🖷 SWT	t 42.00 dB = RI 500 ms VI		lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw -43.84 dBm
40 dBm									952.030 MHz
30 dBm									
20 dBm									
20 0011									
10 dBm									
0 dBm									
-10 dBm									
-10 080									
-20 dBm									
-30 dBm									
-40 dBm									M1 William Manual
-50 dBm	myyumphrame	hundre guterblan	water much por much	whonenershall	and the stand of the state of t	Windunsel	uniphyria	hunderstilleren	A
10.0 MHz			1001 pt	s	99	9.0 MHz/			1.0 GHz
][]						Aborted		10.11.2017 16:44:53
16:44:53 10	.11.2017								
		*							
MultiView Ref Level 46.	Spectrum	t 42.00 dB = RI	BW 100 kHz						SGL
MultiView	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
MultiView Ref Level 46. Att 1 Frequency S	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL
MultiView Ref Level 46. Att	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm d0 dBm d0 dBm l0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm d0 dBm d0 dBm l0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	iode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -43.66 dBm 932.250 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -43,66 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI			eyen male Manub				SGL • 1 Rm Cirw -43.66 dBm 932.250 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M		eyen male Manub	9.0 MHz/			SGL •1Rm Clrw -43.66 dBm 932.250 MHz

16:46:06 10.11.2017

MultiView	Spectrum	*							∇
Ref Level 46.0 Att	14 dB 🖷 SWT	t 42.00 dB ● R 500 ms V		lode Auto Sweep					SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -43.81 dBm
40 dBm									918.410 MHz
30 dBm									
20 dBm									
10 dBm									
0.40									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-30 UBM									
-40 dBm									M1
within the second second			along and a strategictor	ute the month and	pur writer when be the	and and a second and a second		an a	Moundante
-50 dBm	a <u>a dallan</u> lord music m	- Allander per and a second							
10.0 MHz	Y		1001 pt	s	99	9.0 MHz/	Aborted 1		1.0 GHz 10.11.2017
16:47:19 10.									
Ref Level 46.0		* t 42.00 dB ● R	RW 100 kHz						SGL
Att 1 Frequency S	14 dB 🖷 SWT		BW 1 MHz M	lode Auto Sweep					•1Rm Clrw
								M1[1]	
40 dBm									
30 dBm									
20 dBm									
10 40-1									
10 dBm									
10 dBm									
0 dBm									
0 dBm									
0 dBm									
0 dBm									
0 dBm									M1
0 dBm					Af Aller and Internet				MI
0 dBm						۰ ۵.0 MHz/			1.0 GHz

16:48:31 10.11.2017

Art 20 db # WI 500 m WW 1 Mit Mode Auto Surge Mit Joint Surge 10 db m		🗄 Spectrum 🚽	*					\bigtriangledown
10.000 M1(1) 22.3000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 1000 10.000 1000 1000 1000 10000 10.000 1000 <th>Att</th> <th>20 dB 🖷 SWT - 5</th> <th></th> <th></th> <th>ep</th> <th></th> <th></th> <th>SGL</th>	Att	20 dB 🖷 SWT - 5			ep			SGL
00 80	1 Frequency S	Sweep					M1[1]	
10 00m	40 dBm							2.62140 GHz
10 00m								
10 den	30 dBm						M1	
10 den	20 dBm							
0 den i								
10 dm	10 dBm							
10 dm								
20 dm	0 dBm							
20 dm	-10 dBm-							
30 dm	-10 0011							
49.8% 49.4% <td< td=""><td>-20 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	-20 dBm							
49.8% 49.4% <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
Bill Billion and an an and an and an and an and an and an and an an and an and an and an and an and an and an	-30 dBm						<u>h</u>	
50 dbm 1001 pts 200.0 MHz/ 3.0 GHz 6:45:10 10.11.2017 10112037 6:45:10 10.11.2017 Image: Control of the state of the	40 dBm						at a subscription of the second second	
1.0 GHz 1001 pts 200.0 MHz/ 3.0 GHz 6:45:10 10.11.2017 IIIII00 MM IIII00 MM 6:45:10 10.11.2017 IIII00 MM IIII00 MM Ref level 46:00 dBm Offset: 42:00 dB * RBW 100 HE SGL 0.0 dBm IIII00 MM IIII00 MM 40 dBm IIII00 MM IIII00 MM 10 dBm IIII00 MM IIII00 MM 10 dBm IIII00 MM IIII00 MM 10 dBm IIII00 MM IIII00 MM 30 dBm IIII00 MM IIII00 MM 10 dBm IIII00 MM IIII00 MM 30 dBm IIII00 MM IIII00 MM 30 dBm IIII00 MM IIII00 MM 10 dBm IIII00 MM IIII00 MM 30 dBm IIII00 MM IIII00 MM 30 dBm IIII00 MM IIII00 MM IIII00 MM 10 dBm IIII00 MM IIII00 MM IIII00 MM 30 dBm IIII00 MM IIII00 MM IIII00 MM 10 dBm IIII00 MM IIIII00 MM IIIII00 MM 30 dBm IIIIIII00 MM IIIIIIII00 MM IIIIIIII00 MM	atter and the survey	man when you had had had	warmungahilight	mandersonanterreginger	Gundly when produced and	Marth Same and Change and	and a second	
6/45:10 10.11.2017 Multiview Spectrum	-50 dBm							
6:45:10 10.11.2017 Multiview: Spectrum Ref Level 40:00 dbm Offset 42:00 db RBW 100 KHz Sold Sold Signification Sold Signification S	1.0 GHz		10	01 pts	200	1.0 MHz/		3.0 GHz
MultiView Spectrum v sci Att 20.dB SWI 500 ms VBW 1 Mtz Mode Auto Sweep Sci IFFequency Sweep Sci Sci Sci Sci Sci IFFequency Sweep Sci Sci Sci Sci Sci 10 dbm Sci][Aborted	10.11.2017 16:45:10
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz SGL Att 20 dB SW1 500 ms VBW 1 MHz Mode Auto Sweep • 1 Am City 27.83 dBm 2.62340 GHz	16:45:10 10	.11.2017						
Att 20 dB * SWT 500 ms VBW 1 MHz Mode Auto Sweep I Frequency Sweep								
I Frequency Sweep • I Rm Clw 40 dsm M1[1] 27.83 dBm 30 dsm 26.2340 GHz 20 dsm 1 10 dsm 1	MultiView	🗄 Spectrum 🚽	*					∇
10 dBm 2.62340 GHz 30 dBm 1 20 dBm 1 10 dBm 1	Ref Level 46	5.00 dBm Offset 42	2.00 dB = RBW 100 k		en			SGL
20 dBm Image: state	RefLevel 46 ● Att	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k		ep		MID	●1Rm Clrw
20 dBm Image: state	RefLevel 46 ● Att	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k		ep		м1[1]	●1Rm Clrw 27.83 dBm
10 dBm Image: state	Ref Level 46 Att 1 Frequency 9	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k		ep		т	●1Rm Clrw 27.83 dBm
10 dBm Image: state	Ref Level 46 Att 1 Frequency 9	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k				M1[1]	●1Rm Clrw 27.83 dBm
0 dBm Image: state s	Ref Level 46 Att 1 Frequency 4 40 dBm	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k				M1[1]	●1Rm Clrw 27.83 dBm
10 dBm	Ref Level 46 Att 1 Frequency 40 40 dBm-	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k		ep		M1[1]	●1Rm Clrw 27.83 dBm
10 dBm	Ref Level 46 Att 1 Frequency 4 40 dBm	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k		ep		M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 46 Att 1 1 Frequency 40 dBm 30 dBm 20 dBm 20 dBm	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k				M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 46 Att 1 1 Frequency 40 dBm 30 dBm 20 dBm 20 dBm	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k				M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 40 1 Frequency 40 40 dBm 30 30 dBm 30 20 dBm 30 10 dBm 30	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k		ep		M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 40 1 Frequency 40 dBm	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k		ep		M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 40 1 Frequency 40 40 dBm 30 30 dBm 30 20 dBm 30 10 dBm 30	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k				M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 46 Att 1 1 Frequency 40 dBm	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k				M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 46 Att 1 1 Frequency 40 dBm	5.00 dBm Offset 42 20 dB • SWT 5	2.00 dB = RBW 100 k				M1[1]	●1Rm Clrw 27.83 dBm
	Ref Level 4t 1 Frequency 40 dBm	5.00 dBm Offset 42 20 dB = SWT 5 weep	00 dB = RBW 100 k 500 ms VBW 1 M	Hz Mode Auto Swe				• 1Rm Cirw 27.83 dBm 2.62340 GHz
map uc-	Ref Level 4t 1 Frequency 40 dBm	5.00 dBm Offset 42 20 dB = SWT 5 weep	00 dB = RBW 100 k 500 ms VBW 1 M	Hz Mode Auto Swe				• 1Rm Cirw 27.83 dBm 2.62340 GHz
	Ref Level 44 1 Frequency 40 dBm 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm 30 dBm	5.00 dBm Offset 42 20 dB = SWT 5 weep	00 dB = RBW 100 k 500 ms VBW 1 M	Hz Mode Auto Swe				• 1Rm Cirw 27.83 dBm 2.62340 GHz
Notice Notice Notice Notice Aborted 10.11.2017 10.11.2017	Ref Level 4t 1 Frequency 40 dBm	5.00 dBm Offset 42 20 dB = SWT 5 weep	00 dB = RBW 100 k 500 ms VBW 1 M					• 1Rm Cirw 27.83 dBm 2.62340 GHz

16:46:23 10.11.2017

MultiView									∇
Ref Level 46 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms V		Node Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	• 1Rm Clrw 28.71 dBm
40 dBm									2.62340 GHz
30 dBm								M1	
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 0011									
-30 dBm									
40 dBm	malenature	handerstelling	an a	unipative and a second second	muhalihaput	metho physer was the form	<mark></mark>	and the second s	the strategic and the second
-50 dBm			1001						0.0.011-
1.0 GHz	Y		1001 pt	5	20	10.0 MHz/	Aborted		3.0 GHz 10.11.2017
	11 2017								
16.47.36 10									
16:47:36 10		M							
MultiView	Spectrum		RBW 100 kHz						SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p				⊽ SGL ●1Rm Clrw
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	р			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	р			M1[1]	●1Rm Clrw
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	NBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M	Mode Auto Swee	P			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	P			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	P			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz M	Mode Auto Swee	P			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz N		p			M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum	200 dB = F 500 ms V						M1[1]	• 1Rm Clrw 28,28 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	200 dB = F 500 ms V	RBW 100 kHz N					M1[1]	●1Rm Clrw 28.28 dBm 2.62340 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum	200 dB = F 500 ms V						M1[1]	●1Rm Clrw 28.28 dBm 2.62340 GHz
MultiView Ref Level 46 • Att 1 1 30 30 30 30 30 40 30 30 40 30 30 40 30 30 30 40 30 40 40 10 40 -10 40 -20 40 -30 40 -30 40	Spectrum	200 dB = F 500 ms V				0.0 MHz/		M1[1]	●1Rm Clrw 28.28 dBm 2.62340 GHz

16:48:49 10.11.2017

MultiView	Spectrum	¥							
Att	00 dBm Offset 14 dB SWT		BW 100 kHz BW 1 MHz M	lode Auto Sweep	1				SGL
1 Frequency S	weep							M1[1]	•1Rm Clrw -38.74 dBm
40 dBm									26.4880 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-10 0500									
-20 dBm									
-30 dBm									
									M
-40 dBm		ж							Non Marine
-50 dBm	manne	r"	and the second state of the second	under and when y	Mummun	Well town the	hala preserve portan	and mouth of seconds	···· •
3.0 GHz		<i>•</i>	1001 pt	s	2	.35 GHz/			26.5 GHz
][Aborted		10.11.2017
16:45:28 10.	11.2017								
		*							
MultiView Ref Level 46.	Spectrum	t 42.00 dB = R							SGL
MultiView	OO dBm Offset	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep		1	1		•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView Ref Level 46. Att	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView 3 Ref Level 46.1 Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46, Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView 8 Ref Level 46, Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46, Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm- 0 dBm- -10 dBm-	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	• 1Rm Clrw -39.16 dBm 26.1130 GHz
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Bef Level 46.1 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm 30 dBm	OO dBm Offset	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Cltw -39.16 dBm 26.1130 GHz
MultiView Bef Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum O dBm Offset 14 dB SWT weep	t 42.00 dB = R							●1Rm Cltw -39.16 dBm 26.1130 GHz

16:46:41 10.11.2017

MultiView		¥							∇
Ref Level 46. Att	14 dB 😑 SWT	t 42.00 dB ● R 500 ms V		lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -38.99 dBm
40 dBm									26.2530 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o ubili-									
-10 dBm									
-20 dBm									
-30 dBm									
-50 0511									
-40 dBm									
and and and a series	un anna			many.	Munderson	the month with	manner	and flores and as a second second	well have a free the second of the
-50 dBm			and the second s	- may der - w					
3.0 GHz	Y		1001 pt	s	2	.35 GHz/	Aborted		26.5 GHz 10.11.2017
	11 2017								
16:47:53 10.									
MultiView	Spectrum	¥ t 42.00 dB ● R	BW 100 kHz						SGL
	OO dBm Offset	t 42.00 dB ● R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				⊽ SGL ●1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView Ref Level 46. Att	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	OO dBm Offset	t 42.00 dB ● R		lode Auto Sweep				M1[1]	• 1Rm Clrw -38.77 dBm 26.1830 GHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	Spectrum O dBm Offset 14 dB • SWT Weep	t 42.00 dB ● R		lode Auto Sweep				M1[1]	●1Rm Clrw -38.77 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offset	t 42.00 dB ● R						M1[1]	• 1Rm Clrw -38.77 dBm 26.1830 GHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Spectrum 00 dBm Offset 14 dB SWT weep	t 42.00 dB ● R					Aurenau Maria	M1[1]	• 1Rm Clrw -38.77 dBm 26.1830 GHz

16:49:06 10.11.2017

5M -2655MHz-Port 1~4:

	Spectrum		BW 100 kHz						SGL
.tt C	14 dB 🖷 SWT		BW 1 MHz M	lode Auto Sweep	•				
requency	Sweep							M1[1Rm Clrw 1] -40.51 dB
dBm									513.00 kł
dBm									
dBm									
dBm									
Bm									
dBm									
40									
dBm									
I dBm									
dBm									
I dBm	mener water	and a start and a start of the	hlundendfrankenda	and the analysis and the second	ana	mand-manager and	juin provinsi	www.www.white	alunder to so the
าเนา			1001 pt	\$	90	9.1 kHz/			10.0 Mł
16:15 10 ultiView	Spectrum						Aborted 🧧	 498	10.11.2017
:16:15 10 ultiView tef Level 46 .tt		t 42.00 dB = RI					Aborted 📘		10.11.2017
16:15 10 ultiView ef Level 46 tt	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted		10.11.2017 SG •1Rm Cirv
16:15 10 ultiView ef Level 46 tt requency	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
16:15 10 ultiView ef Level 46 tt requency dBm—	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
16:15 10 ultiView ef Level 46 tt requency	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
16:15 10 of Level 46 tt requency dBm	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 1 Rm Cirv -40.66 df
16:15 10 altiView of Level 46 tt 2 requency #Bm	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
16:15 10 ultiView ef Level 46 tt 2 dam	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
16:15 10 ultiView ef Level 46 tt c requency JBm JBm JBm	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
16:15 10 ultiView ef Level 46 tt requency JBm JBm JBm JBm JBm JBm JBm	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
16:15 10 ultiView ef Level 46 tt 2 requency d8m d8m	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	MI[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
:16:15 10 ultiview 46 ef Level 46 2 requency 48m d8m 48m	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 ▼ SG ●1Rm Clrw -40,66 dB
16:15 10 ultiView ef Level 46 tt c requency d8m d8m d8m d8m d8m d8m d8m	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 ▼ SG ●1Rm Clrw -40,66 dB
:16:15 10 UltiView 46 cf 10 requency 46 dBm 48	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 5G • 18m Clav -40.66 dB
0 kHz 116:15 10 116:	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 ▼ SG ●1Rm Clrw -40,66 dB
:16:15 10 ultiView ef ustriction ef c requency dBm dBm	Spectrum 5.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz				Aborted		10.11.2017 ▼ SG

17:17:28 10.11.2017

MultiView 8	Spectrum	¥							
Ref Level 46.0 Att	0 dBm Offse	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz N	lode Auto Sweep					SGL
DC		500 ms VL		Iode Adto Sweep	,				0.15 01
1 Frequency Sv	weep							M1[1]	•1Rm Clrw -40.98 dBm
40 dBm									513.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
ή <u>.</u>									
-30 dBm									
-40 dBro									
-50 dBm									
9.0 kHz		mannapar	1001 pt	and many and	Mundah Mahan	9.1 kHz/	and and all and all and	the main on the and the forther than a	10.0 MHz
910 KHZ	1		1001 pt	3	25		Aborted		10.11.2017
							_		
17:18:40 10.1									
MultiView	~	¥							
MultiView 8 Ref Level 46.0	Spectrum	t 42.00 dB = RE	3W 100 kHz	Inda Auto Swaan					SGL
MultiView B Ref Level 46.0 Att DC	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep	,				
MultiView B Ref Level 46.0 Att DC	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	1ode Auto Sweep				м1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 Att DC 1 Frequency Sy	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz N	lode Auto Sweep	,			M1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 Att DC 1 Frequency Sy	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 Att DC 1 Frequency Sy	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency St 40 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency St 40 dBm- 30 dBm-	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 DC 1 Frequency SV 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 DC 1 Frequency SV 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 3 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView Image: Constraint of the second seco	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView Image: Constraint of the second seco	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE	3W 100 kHz N	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
MultiView 9 Ref Level 46.0 Att DC 1 Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -0 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE 500 ms VE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -40.96 dBm
Multiview 9 Ref Level 46.0 Att DC 1 Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm 6 -10 dBm -0 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE						M1[1]	• 1Rm Cirw -40.96 dBm 523.00 kHz
MultiView 9 Ref Level 46.0 Att DC 1 Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -0 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB • SWT	t 42.00 dB = RE 500 ms VE	3W 100 kHz 3W 1 MHz M			//////////////////////////////////////			●1Rm Clrw

17:19:53 10.11.2017

MultiView	⊞ Spectrum								∇
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RE 500 ms VE	BW 100 kHz BW 1 MHz M	Inde Auto Sweer					SGL
1 Frequency S		300 110 12						M1[1]	•1Rm Clrw
40 dBm								M1[1]	-43.68 dBm 929.290 MHz
TO GOM									
30 dBm								L	
20 dBm									
10 dBm									
0 dBm				I					
-10 dBm				I					
-20 dBm									
-30 dBm									
-40 dBm									M1
6.6 × 1.1 × 1				wanter	your delabourness	mounderprove	wardenthelloperation	handerspreaked	Jadulwonderne
-50 dBm	armeterstand-workshow had	way our shaden	madamanylivation	multival	•				
10.0 MHz			1001 pts	S	99	9.0 MHz/			1.0 GHz
	T						Aborted		10.11.2017
<u> </u>							-		
17:16:32 10.	11.2017								
								-	17:15:32
MultiView	Spectrum		3W 100 kHz						
Ref Level 46.0	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	ode Auto Sweep					SGL
MultiView Ref Level 46.0	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
Ref Level 46.0	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep	,			M1[1]	SGL
MultiView 8 Ref Level 46.0 Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S 40 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S 40 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	l ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	o de Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView 8 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView 8 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView 8 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43.36 dBm
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -43.36 dBm 942.140 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RE	BW 100 kHz BW 1 MHz M					M1[1]	SGL •1Rm Clrw -43,36 dBm 942,140 MHz

99.<u>0 MHz/</u>

1001 pts

17:17:45 10.11.2017

10.0 MHz

1.0 GHz

MultiView	🗄 Spectrum	*							\bigtriangledown
Ref Level 46.0 Att		t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	- to Auto Sween					SGL
1 Frequency S		500 ms VI	BW IMHZ M	Iode Auto Sweep)				●1Rm Clrw
								M1[1]	-43.38 dBm
40 dBm									956.980 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
10 0011									
-20 dBm									
-20 UBII									
-30 dBm			1						
-40 dBm									MI
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a water and the second	att an	manna	and the second	mounduman
stated to an interface of	and the second second second		Additional states and a second states of the	Her hand of the marker	Marine making	walkan halme	ally the prover of the second	your house where the who	
-50 dBm	angel Matheman and and	mapermension	lighternormonium	hermanyana	- John and warned	en a grand and and and and and and and and and	an ma hanak harar	American	
-50 dBm	an jula da kili karan kila an ju	anay and a second s	1001 pts	•		9.0 MHz/	ultratus dannaa ferlanaga	- American and American	1.0 GHz
mout		www.p	<u>եղիռայուտուտության</u> 1001 pt։	•			Aborted		1.0 GHz
10.0 MHz	11.2017	aminina ana ana ana ana ana ana ana ana an	կցիս _{ան} տարատերանե 1001 pts	•			Aborted		1.0 GHz
10.0 MHz			<u>ໄລໄທເລັນທາວທ່ວນມີນີ້</u> 1001 pts	•			Aborted		10.11.2017 17:18:57
10.0 MHz 17:18:58 10.	Spectrum			•			Abortod [10.11.2017 17:18:57 ▼
10.0 MHz 17:18:58 10. MultiView Ref Level 46.0	Spectrum	t 42.00 dB = RI	BW 100 kHz	S	9		Aborted		10.11.2017
10.0 MHz 17:18:58 10.	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		S	99		Abortod		10.11.2017 ▼ SGL ●1Rm Clrw
10.0 MHz 17:18:58 10. MultiView B Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Abortod		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 17:18:58 10. MultiView Ref Level 46.4	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Abortod		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.10 MHz 17:18:58 17:18:58 10.0 MHz 11.0 MHz 11.0 MHz 12.0 MHz 12.0 MHz 13.0 MHz 14.0 MHz 14.0 MHz 14.0 MHz	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Abortod		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 17:18:58 10. MultiView B Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.0 MHz 17:18:58 17:18:58 10.0 MHz 10.0 MHz 11.0 MHz 12.0 MHz 12.0 MHz 130 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.10 MHz 17:18:58 17:18:58 10.0 MHz 11.0 MHz 11.0 MHz 12.0 MHz 12.0 MHz 13.0 MHz 14.0 MHz 14.0 MHz 14.0 MHz	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.0 MHz 17:18:58 17:18:58 10.0 MHz 10.0 MHz 11.0 MHz 12.0 MHz 12.0 MHz 130 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.0 MHz 17:18:58 17:18:58 10.0 MHz 10.0 MHz 11.0 MHz 12.0 MHz 12.0 MHz 130 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.0 MHz 17:18:58 17:18:58 10.0 MHz 17:18:58 10.0 MHz 17:18:58 10.0 MHz 10.0 MHz 11 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.0 MHz 17:18:58 17:18:58 10.0 MHz 17:18:58 10.0 MHz 17:18:58 10.0 MHz 10.0 MHz 11 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 10.0 MHz 17:18:58 10.0 MHz 17:18:58 10.0 MHz 10 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ●1Rm Clrw
10.0 MHz 10.0 MHz 17:18:58 10.0 MHz 17:18:58 10.0 MHz 10 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Aborted		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm
10.0 MHz 17:18:58 17:18:58 17:18:58 17:18:58 17:18:58 10 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz	S	99		Abortod		10.11.2017 ▼ SGL ● 1Rm Clrw -43,96 dBm

99.0 MHz/

1001 pts

17:20:11 10.11.2017

-30 dBm

-40 dBm-

-50 dBm-

10.0 MHz

MI

1.0 GHz

 \square

D ()	Spectrum	₩							\bigtriangledown
Att	20 dB 😑 SWT	et 42.00 dB = F 500 ms - N		Mode Auto Swee	p				SGL
1 Frequency	Sweep							M1[1]	• 1Rm Clrw 27.17 dBm
40 dBm									2.65530 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 0011									
-30 dBm									
-40 daminu	www.uhundloon	mangerillanang	mounterener	Whyterstown	to and the second	You all the state of the state	اڭ دېلام يېرى يېرى مېږى	h laanaa	An grander war
-50 dBm			1001						0.0.011-
1.0 GHz	Υ		1001 pt	s	20	0.0 MHz/	Aborted		3.0 GHz 10.11.2017
17:16:50 10) 11 2017								
	_								
MultiView	🔠 Spectrum	*							
	6.00 dBm Offse		RBW 100 kHz						SG
Att	20 dB 🖷 SWT	et 42.00 dB ● F		Mode Auto Swee	p				SGL
 Att 1 Frequency 	20 dB 🖷 SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
Att	20 dB 🖷 SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
Att Frequency do dBm	20 dB 🖷 SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
 Att 1 Frequency 	20 dB 🖷 SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
Att Frequency do dBm	20 dB 🖷 SWT	et 42.00 dB ● F	RBW 100 kHz MHz M	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
Att Frequency do dBm dBm dBm	20 dB 🖷 SWT	et 42.00 dB ● F	RBW 100 kHz MHz M	Mode Auto Swee	p			MI[1]	●1Rm Clrw 27.28 dBm
Att Frequency do dBm dBm dBm	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 KHz M MHz MHz M	Mode Auto Swee	P			M1[1]	●1Rm Clrw 27.28 dBm
Att Frequency dom	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 KHz MHZ MHZ MHZ M	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
Att Frequency 40 dBm 30 dBm 20 dBm	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 KHz MHZ	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
Att Frequency dom	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 KHz M	Mode Auto Swee	p			MI[1]	●1Rm Clrw 27.28 dBm
Att Frequency dBm dBm dBm dBm dBm dBm dBm	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 kHz MHz MHz	Mode Auto Swee	p				●1Rm Clrw 27.28 dBm
Att Frequency dBm dBm dBm dBm dBm dBm dBm	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 kHz MHz MHz	Mode Auto Swee	P			M1[1]	●1Rm Clrw 27.28 dBm
Att I Frequency 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm -10 dBm -20 dBm	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 kHz MHz MHz	Mode Auto Swee	p			M1[1]	●1Rm Clrw 27.28 dBm
Att Frequency A0 dBm J0 dBm O dBm O dBm -10 dBm	20 dB 🖷 SWT	et 42.00 dB ● F	ABW 100 kHz MHz N //BW 1 MHz N N	Mode Auto Swee	p			MI[1]	●1Rm Clrw 27.28 dBm
Att I Frequency 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm	20 dB • SWT Sweep	et 42.00 dB = F 500 ms							●1Rm Clrw 27.28 dBm
Att I Frequency 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm -10 dBm -20 dBm	20 dB • SWT Sweep	et 42.00 dB = F 500 ms						MI(1)	• 1Rm Clrw 27.28 dBm 2.65330 GHz
Att I Frequency 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm	20 dB • SWT Sweep	et 42.00 dB = F 500 ms						M1(1)	• 1Rm Clrw 27.28 dBm 2.65330 GHz
Att I Frequency 40 dBm 40 dBm 20 dBm 20 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm	20 dB • SWT Sweep	et 42.00 dB = F 500 ms		Lolismonie Langertanger				MI[1]	• 1Rm Clrw 27.28 dBm 2.65330 GHz

17:18:03 10.11.2017

MultiView	Spectrum	*							
Ref Level 46 Att	20 dB 🖷 SWT	et 42.00 dB ● R 500 ms V		Node Auto Swee	р				SGL
1 Frequency S	Sweep							M1[1]	
40 dBm									2.65530 GHz
30 dBm							T		
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm							1	۱.	
Andem	and and all and the	aka AMIN Akata ar	t i dubiene secto	a state of the second	de casoniña readadada	an and a constant of	 1	L.	and the second second
e e la construction	Andrew and an and	an an an an an Anna Anna Anna A	of marketing	and an and a second	ala fa an				
-50 dBm									
1.0 GHz)r		1001 pt	S	20	0.0 MHz/			3.0 GHz
17:19:15 10.	Spectrum								
MultiView Ref Level 46	Spectrum	et 42.00 dB = R		Mode Auto Swee	p				SGL
MultiView Ref Level 46	Spectrum	et 42.00 dB = R	NBW 100 kHz NBW 1 MHz N	Mode Auto Swee	p			м1[1]	●1Rm Clrw 28.21 dBm
MultiView Ref Level 46	Spectrum	et 42.00 dB = R	NBW 100 kHz NBW 1 MHz N	Mode Auto Swee	p			M1[1]	●1Rm Clrw
MultiView 3 Ref Level 46 Att 1 Frequency S 40 dBm-	Spectrum	et 42.00 dB = R	NBW 100 kHz NBW 1 MHz N	Mode Auto Swee	p		M1	M1[1]	●1Rm Clrw 28.21 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S	Spectrum	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	p		EM.	M1[1]	●1Rm Clrw 28.21 dBm
MultiView 3 Ref Level 46 Att 1 Frequency S 40 dBm-	Spectrum	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	p		MI	M1[1]	●1Rm Clrw 28.21 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum	et 42.00 dB = R	NBW 100 kHz NBW 1 MHz N	Mode Auto Swee	p		EW.	M1[1]	●1Rm Clrw 28.21 dBm
MultiView 8 Ref Level 46 Att Frequency S 40 dBm	Spectrum	et 42.00 dB = R	NBW 100 kHz NHZ MHZ M	Mode Auto Swee	P		LW.	M1[1]	●1Rm Clrw 28.21 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	p		MI	M1[1]	●1Rm Clrw 28.21 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum	et 42.00 dB = R	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	P		TTM T	M1[1]	●1Rm Clrw 28.21 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Mode Auto Swee			TW.	M1[1]	●1Rm Clrw 28.21 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum	et 42.00 dB = R	NBW 100 kHz BW 1 MHz M	Mode Auto Swee	P		¥	M1[1]	●1Rm Clrw 28.21 dBm
MultiView B Ref Level 46 • Att 1 Frequency S 40 dBm	Spectrum	et 42.00 dB = R	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	P		EM.	M1[1]	●1Rm Clrw 28.21 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum	et 42.00 dB = R	BW 100 kHz N	Mode Auto Swee	P			M1[1]	●1Rm Clrw 28.21 dBm
MultiView Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 42.00 dB = R	BW 100 kHz BW 1 MHz N	Mode Auto Swee				M1[1]	• 1Rm Clrw 28.21 dBm 2.65330 GHz
MultiView Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum Od Bm Offse 20 dB SWT Weep	et 42.00 dB • R 500 ms V	RBW 100 kHz N					M1[1]	●1Rm Clrw 28.21 dBm
MultiView Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 42.00 dB • R 500 ms V					M	M1[1]	●1Rm Clrw 28.21 dBm 2.65330 GHz
MultiView Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm	Spectrum .00 dBm Offse 20 dB SWT weep	et 42.00 dB • R 500 ms V				0.0 MHz/		M1[1]	●1Rm Clrw 28.21 dBm 2.65330 GHz

17:20:28 10.11.2017

MultiView		*							
Ref Level 46. Att	00 dBm Offset 14 dB ● SWT	t 42.00 dB ● RI 500 ms VI	BWI 100 kHz BWI 1 MHz M	lode Auto Sweer					SG
Frequency S									O1Rm Clrv
								M1[1]	-39.21 dE 26.1830 G
) dBm									20110000
) dBm									
) dBm									
dBm									
iBm									
) dBm									
d D an									
) dBm									
) dBm									
) dBm									
rdBm	mound	446504	المسلحات والمعالية والمعالية والمعالية والمعالية والمعالية والمسالية	way how would	Modernound	whow when which	- Magner Willing	and a marked the second	~~~~
ubiii									
	11.2017		1001 pt	S	2	.35 GHz/	Aborted 📕	 490	26.5 G
.0 GHz :17:07 10. lultiView		ž	1001 pt:	S	2	.35 GHZ/	Aborted 🧧	111111) 490	10.11.2017
:17:07 10. ultiView	Spectrum	t 42.00 dB ⊜ RI	BW 100 kHz			.35 GHz/	Aborted 🧧	 490	10.11.2017
:17:07 10. ultiView ef Level 46. tt	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI				35 GH2/	Aborted 📲		10.11.2017 1717 05 50
217:07 10. ultiView ef Level 46. tt	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz			35 GHZ/	Aborted	M1[1]	10.11.2017 50 • 1 Rm Cir -39,26 d
17:07 10. ultiView ef Level 46. tt requency S	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz			35 GHZ/	Aborted	M1[1]	10.11.2017 1711016 50 • 1 Rm Clr -39,26 d
17:07 10. ultiView ef Level 46. tt requency S	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz			35 GHZ/	Aborted	M1[1]	10.11.2017 1711016 50 • 1 Rm Clr -39,26 d
:17:07 10. ultiView 6 ef Level 46. tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz			35 GHZ/	Aborted	M1[1]	10.11.2017 50 • 1 Rm Cir -39,26 d
e 17:07 10. ultiView 8 ef Level 46. tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 50 • 1 Rm Cir -39,26 d
17:07 10. ultiView E ef Level 46. tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 50 • 1 Rm Cir -39,26 d
17:07 10. ultiView E ef Level 46. tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 50 • 1 Rm Cir -39,26 d
17:07 10. ultiView E ef Level 46. tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 50 • 1 Rm Cir -39,26 d
17:07 10. ultiView E ef Level 46. tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz			35 GH2/	Aborted	M1[1]	10.11.2017 50 • 1 Rm Cir -39,26 d
17:07 10. ultiView E ef Level 46. tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 1711016 50 • 1 Rm Clr -39,26 d
17:07 10. ultiView E ef Level 46,1 tt requency S dBm dBm dBm dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 1711016 50 • 1 Rm Clr -39,26 d
IT:07 10.	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 1711016 50 • 1 Rm Clr -39,26 d
17:07 10. ultiView E ef Level 46.1 tt requency S dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz				Aborted	M1[1]	10.11.2017 1711010 50 • 1 Rm Clr -39,26 d
IT:07 10.	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	10.11.2017 1711010 50 • 1 Rm Clr -39,26 d
ITT:07 10.	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	10.11.2017 1711010 50 • 1 Rm Clr -39,26 d
dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	10.11.2017 1711010 50 • 1 Rm Clr -39,26 d
IT:07 10.	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	10.11.2017 1711010 50 • 1 Rm Clr -39,26 d
dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	10.11.2017 1711010 50 • 1 Rm Clr -39,26 d
dBm	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	•10.11.2017 SC •1Rm Clri -39.26 d 26.1830 C
:17:07 10. ultiView F 46.1 def Level 46.1 46.1 itt	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	•10.11.2017 SC •1Rm Cln -39.26 di 26.1830 C
:17:07 10. ultiView F 46.1 def Level 46.1 46.1 itt	Spectrum O dem Offset 14 de SWT weep	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	•10.11.2017 SC •1Rm Cln -39.26 di 26.1830 C
:17:07 10. ultiView E Acf Level 46.1 tt Frequency S dBm dBm dBm dBm	Spectrum O dem Offset 14 de SWT weep	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	•10.11.2017 SC •1Rm Cln -39.26 di 26.1830 C
:17:07 10. ultiView F 46.1 def Level 46.1 46.1 itt	Spectrum OO dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz					M1[1]	26.5 G 10.11.2017 SG ●1Rm ClrV -39.26 dl 26.1830 G

17:18:20 10.11.2017

Doff and 460	Spectrum	¥	PW 100 kH-						SGL
Att	14 dB SWT	500 ms VE	BW 100 KHZ BW 1 MHZ M	lode Auto Sweep)				561
l Frequency S	weep							MILI	 1Rm Clrw -38.59 dB
40 dBm								M1[1]	26.2070 GF
io doni									
80 dBm									
20 dBm									
.0 dBm									
dBm									
doni -									
10 dBm									
20 dBm									
30 dBm									
40 dBm									
									1 month
Super way	andreament		and a meterie	In my men was a return	Murrowenson	and we have	how when when	and we all when a second and a second second	AN W.
50 dBm		- Contraction of the second							
3.0 GHz			1001 pt	S	2.	.35 GHz/			26.5 GF
1ultiView	Spectrum								
MultiView Ref Level 46.0	Spectrum	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lade Auto Sweer)				
MultiView Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SG • 1Rm Clrv
MultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep) 			M1[1]	• 1 Rm Clrv - 38,96 dB
MultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1 Rm Clrv - 38,96 dB
MultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1 Rm Clrv - 38,96 dB
AultiView Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrv -38,96 dE
MultiView Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	•1Rm Clrv -38,96 dE
MultiView 8 Ref Level 46.4 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1 Rm Clrv - 38,96 dB
AultiView 8 Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	• 1 Rm Clrv - 38,96 dB
MultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S o dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv ●1Rm Clrv
AultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					• 1 Rm Clrv - 38,96 dB
MultiView R Ref Level 46.0 Att Frequency S 0 dBm 0 dBm 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					●1Rm Clrv ●1Rm Clrv
MultiView R Ref Level 46.0 Att Frequency S 0 dBm 0 dBm 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					• 1 Rm Clrv - 38,96 dB
MultiView Ref Level 46.0 Ref Level 46.0 46.0 Att Frequency S 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 0 dBm 0 <td>Spectrum D0 dBm Offset 14 dB SWT</td> <td>t 42.00 dB = RI</td> <td>BW 100 kHz BW 1 MHz M</td> <td>lode Auto Sweep</td> <td></td> <td></td> <td></td> <td>M1[1]</td> <td>●1Rm Clrv ●1Rm Clrv</td>	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrv ●1Rm Clrv
MultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S 0 d8m 0 0 d8m 0 0 d8m 0 d8m 0 0 d8m 0 d8m 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrv ●1Rm Clrv
MultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S 0 0 dBm 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	ode Auto Sweep				M1[1]	●1Rm Clrw ●18m Clrw
MultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S 60 dBm 30 dBm 60 dBm 30 dBm 60 dBm 10 dBm 60 dBm 10 dBm 60 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38,96 dB
MultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S 0 00 dBm 0 00 dBm 0 00 dBm 0 00 dBm 0 10 dBm 0 10 dBm 0 10 dBm 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38,96 dB
MultiView Ref Level 46.0 Ref Level 46.0 46.0 Att Frequency S ID dBm 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -38,96 dB
MultiView Aut Ref Level 46.0 46.0 Att Frequency S 40 dBm 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm 10 dBm 30 dBm 20 dBm 30 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGi • 1 Rm Claw -38,96 dw 26,2300 Gl
MultiView Aut Ref Level 46.0 46.0 Att Frequency S 40 dBm 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm -20 dBm 30 dBm -30 dBm 30 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw 38.96 dB 26.2300 Gł
Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	● 1Rm Clrw -38,96 dB 26,2300 GF
MultiView Aut Ref Level 46.0 46.0 40 dBm 30 30 dBm 30 20 dBm 30 10 dBm 30 20 dBm 30 30 dBm 30 30 dBm 30 40 dBm 30 40 dBm 40	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M					M1[1]	● 1Rm Clrw -38,96 dB 26,2300 GF
MultiView Aut Ref Level 46.0 46.0 Att Frequency S 40 dBm 30 dBm 30 dBm 30 dBm 10 dBm 30 dBm -20 dBm 30 dBm -30 dBm 30 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M					M1[1]	

17:20:46 10.11.2017

5M -2687.5MHz-Port 1~4:

MultiView	🗐 Spectrum	₩							\bigtriangledown
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI 500 ms VI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	1				SGL
DC 1 Frequency S	weep								01Rm Clrw
40 dBm								M1[1] -41.30 dBm 523.00 kHz
10 0011									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
k.									
-30 dBm									
-40 dB n									
-40 dBm									
-50 dBm	u watata kana kana	hallow the the the	and the approximately the	Jungallana	numunt	mannahun	and the second	when when when the	w.h.,
9.0 kHz			1001 pt			99.1 kHz/			10.0 MHz
							Aborted 📕		10.11.2017 21:50:08//
21:50:08 10	11.2017								
MultiView	Spectrum	*							
Ref Level 46. Att		t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					 SGL
Ref Level 46.	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep	1				•1Rm Clrw
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	•1Rm Clrw
Ref Level 46. Att DC	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep	,			M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				MI[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 0 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB • SWT	t 42.00 dB = R 500 ms VI	BW 1 MHz M						●1Rm Clrw -40.93 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI				99.1 kHz/			• 1Rm Clrw -40.93 dBm 513.00 kHz

21:51:21 10.11.2017

Spectrum	¥							\bigtriangledown
ÖdBm Offset 14 dB ● SWT	t 42.00 dB • RI 500 ms VE		lode Auto Sweer)				SGL
								●1Rm Clrw
							M1[1]	
								010100 1112
and and how when whe	a fa fa an an an an an falad		S	99	9.1 kHz/		alma Alan annada a na	10.0 MHz
					()	Aborted		10.11.2017
1.2017								
Spectrum	*							
								∇
) DdBm Offset	t 42.00 dB ⊜ RI	BW 100 kHz						SGL
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep)				
) DdBm Offset	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -42.28 dBm
OdBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M			9.1 kHz/			●1Rm Clrw -42.28 dBm
	eep	eep	eep	eep	eep	eep	eep	Cep M1[1] Image: Second sec

21:53:46 10.11.2017

MultiView									
Ref Level 46.0 Att	DO dBm Offse 14 dB SWT	t 42.00 dB ● R 500 ms V		ode Auto Sweep					SG
Frequency S								M101	●1Rm Clrv
) dBm								MILI.	-43.89 dE 927.310 M
0 dBm									
0 dBm									
D dBm									
dBm									
0.40									
.0 dBm									
20 dBm									
30 dBm									
10 dBm									M1
						youndersharson	www.upmarth	mounder	and the second
0 dBm	and and a second s	Kalikonanospanjagha	k-pol-upmahantapana	704 W W				•	
0.0 MHz			1001 pt	5	90	9.0 MHz/			1.0 Gł
:50:26 10.: IultiView B	Spectrum						Aborted 🧧	 4 <i>3</i> 0	10.11.2017
.:50:26 10.: 1ultiView = Ref Level 46.0	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz	ode Auto Sweep			Aborted	aya	500000 , , 50
.:50:26 10.: AultiView 8 Ref Level 46.0 Att	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted	M1[1	• 1Rm Cirv -43.84 df
L:50:26 10.: AultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted		• 1 Rm Cirv -43.84 dB
L:50:26 10.: AultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted		• 1 Rm Cirv -43.84 dB
L:50:26 10.: MultiView B RefLevel 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted		• 1 Rm Cirv -43.84 dB
L:50:26 10.: AultiView P Ref Level 46.0 Att Frequency S D dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted		• 1 Rm Cirv -43.84 dB
1:50:26 10.: MultiView P RefLevel 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted		• 1Rm Cirv -43.84 dB
L:50:26 10.3 AultiView E Ref Level 46.0 Frequency S D dBm D dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted		• 1 Rm Cirv -43.84 dB
1:50:26 10.: MultiView B	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz				Aborted		• 1Rm Cirv -43.84 dB
L:50:26 10,3 AultiView E Ref Level 46.0 Att Frequency S 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						• 1Rm Cirv -43.84 dB
1:50:26 10,3 MultiView E Ref Level 46.0 Att Frequency S 0 dBm 0 0 dBm 0 0 dBm 0	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						• 1Rm Cirv -43.84 dB
1:50:26 10,3 MultiView E Ref Level 46.0 Att Frequency S 0 dBm 0	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						• 1 Rm Cirv -43.84 dB
L:50:26 10,3 AultiView E Ref Level 46.0 Att Frequency S 0 dBm 0 dBm 0 dBm 0 dBm 4Bm 4Bm 10 dBm 10 dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						• 1Rm Cirv -43.84 dB
1:50:26 10,3 AultiView E Ref Level 46.0 Att Frequency S 0 dBm 0	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						• 1 Rm Cirv -43.84 dB
1:50:26 10,3 AultiView E Ref Level 46.0 Att Frequency S 0 dBm 0	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						• 1Rm Cirv -43.84 dB
1:50:26 10,3 4ultiView E Ref Level 46.0 Att Frequency S 0 dBm 0	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						• 1Rm Cirv -43.84 dB
1:50:26 10.3 MultiView E Ref Level 46.0 Att Frequency S 0 dBm 0 dBm 0 dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						•180-99 •180-017 •43.84 dE 943,130 M
1:50:26 10,3 MultiView E Ref Level 46.0 Att Frequency S 0 dBm 0 10 dBm 0 40 dBm 40	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz	ode Auto Sweep				M1[1	
1:50:26 10,3 4ultiView E Ref Level 46.0 Att Frequency S 0 dBm 0	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz						⊽ ⊽ ©1Rm Clrw
1:50:26 10,3 AultiView E Ref Level 46.0 Att Frequency S 0 dBm 0 dBm	Spectrum D0 dBm Offse 14 dB SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M					M1[1	

MultiView	🗊 Spectrum 🚽	₩				
Ref Level 46. Att	14 dB 🖷 SWT 5	2.00 dB = RBW 100 kHz 500 ms VBW 1 MHz	Mode Auto Sweep			SGL
1 Frequency S	weep					●1Rm Clrw M1[1] -43.80 dBm
40 dBm			+		+	992.580 MHz
30 dBm			1			
20 dBm						
10 dBm			+			
0 dBm			+			
-10 dBm					ļ	
-20 dBm						
-30 dBm						
-40 dBm						
-to upin				well have been when the states of the states		M1
1-50 dBm	unter all and the second strate	open on the produced and	an of the stand and the second	and the second of the second o	and have and the more inclusion .	Droff-town
10.0 MHz		1001 g	pts	99.0 MHz/		1.0 GHz
][Aborted	10.11.2017 21.52:51
21:52:51 10.	11.2017					
21:52:51 10.		×				∇
MultiView Ref Level 46.	OO dBm Offset 42	2.00 dB = RBW 100 kHz	Mode Auto Sween			SGL
MultiView	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL •1Rm Clrw
Ref Level 46.	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL
MultiView Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL • 1Rm Clrw M1[1] -44.08 dBm
MultiView Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL •1Rm Clrw M1[1] -44.08 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL • 1Rm Clrw M1[1] -44.08 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL • 1Rm Clrw M1[1] -44.08 dBm
MultiView B Ref Level 46. Att I Frequency S 40 dBm	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL • 1Rm Clrw M1[1] -44.08 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL • 1Rm Clrw M1[1] -44.08 dBm
MultiView B Ref Level 46. Att I Frequency S 40 dBm	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL • 1Rm Clrw M1[1] -44.08 dBm
MultiView : Ref Level 46. Att I Frequency S 40 dBm	Spectrum 00 dBm Offset 42 14 dB SWT 5	2.00 dB = RBW 100 kHz	Mode Auto Sweep			SGL • 1Rm Clrw M1[1] -44.08 dBm

1001 pts

99.0 MHz/

21:54:04 10.11.2017

-20 dBm

-30 dBm-

-40 dBm-

-50 dBm 10.0 MHz MI

1.0 GHz

Dofloyol 46	Spectrum	*								\bigtriangledown
Att	5.00 dBm Offse 20 dB • SWT			Mode Auto Swee	р					SGL
1 Frequency S	Sweep								M1[1]	●1Rm Clrw 27.30 dBm
40 dBm									_	2.68730 GHz
30 dBm										
30 UBII										
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
Lo ubin										
-30 dBm								<u>—</u> Д		
								11-10		
104 Pud Brander Jon	munnpanifivr	Herrich Herrich Arton	managent	randown war which	- munumulad	an have an and the second	ويتربع والمربع والمراجع والمراجع والمراجع والمراجع	4	بەملەكەر	Wand Control of the
-50 dBm										
1.0 GHz			1001 pt	s	20	0.0 MHz/				3.0 GHz
][Aborted		4,43	10.11.2017 21:50:42
21:50:43 10	.11.2017									
MultiView	Spectrum	¥								
RefLevel 46 Att	5.00 dBm Offse 20 dB = SWT	et 42.00 dB 🖷 🖪	RBW 100 kHz							
1 Frequency S		500 ms V	/BW 1 MHz M	Mode Auto Swee	р					SGL
		500 ms V	/BW 1MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 27.58 dBm
40 dBm		500 ms V	/BW 1 MHz M	Mode Auto Swee	p				M1[1]	•1Rm Clrw
		500 ms V	BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 27.58 dBm
40 dBm		500 ms V	BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 27.58 dBm
		500 ms V	/BW 1 MHz M	Mode Auto Swee	p				M1[1]	●1Rm Clrw 27.58 dBm
30 dBm		500 ms V	/BW 1 MHz M	Mode Auto Swee	P				M1[1]	●1Rm Clrw 27.58 dBm
30 dBm		500 ms V		Mode Auto Swee	P				M1[1]	●1Rm Clrw 27.58 dBm
30 dBm		500 ms V		Vode Auto Swee					M1[1]	●1Rm Clrw 27.58 dBm
30 dBm 20 dBm 10 dBm		500 ms V		Mode Auto Swee					M1[1]	●1Rm Clrw 27.58 dBm
30 dBm 20 dBm 10 dBm 0 dBm		500 ms V		Mode Auto Swee					M1[1]	●1Rm Clrw 27.58 dBm
30 dBm 20 dBm 10 dBm 0 dBm		500 ms V		Vode Auto Swee					M1[1]	●1Rm Clrw 27.58 dBm
30 dBm 20 dBm 10 dBm		500 ms V		Mode Auto Swee				••••	M1[1]	●1Rm Clrw 27.58 dBm
30 dBm 20 dBm 10 dBm 0 dBm		500 ms V		Mode Auto Swee					M1[1]	●1Rm Clrw 27.58 dBm
30 dBm		500 ms V		Vode Auto Swee					M1[1]	●1Rm Clrw 27.58 dBm
30 dBm	Sweep	500 ms V							M1[1]	●1Rm Clrw 27.58 dBm
30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Sweep	500 ms V							M1[1]	●1Rm Clrw 27.58 dBm
30 dBm	Sweep	500 ms V							M1[1]	●1Rm Clrw 27.58 dBm

21:51:56 10.11.2017

MultiView	🖽 Spectrum	¥								∇
Ref Level 46 Att	20 dB 😑 SWT	et 42.00 dB ● F 500 ms V	NBW 100 kHz /BW 1 MHz M	Node Auto Swee	p					SGL
1 Frequency S	Sweep								M1[1]	 1Rm Clrw 28.09 dBm
40 dBm										2.68730 GHz
30 dBm								M	}	
20 dBm										
10 dBm										
0 dBm										
10 40										
-10 dBm										
-20 dBm										
-30 dBm										
								, sel		
-40 dBm	formour aller has	John Andra wara	demonstration and the first	when the second s	montheburgh	March Carlow Contraction of the owner		w ^{rrr}		prophetic the state of the stat
			n n - e clan - estavali	alle alle alle alle alle alle alle alle						
-50 dBm										
1.0 GHz			1001 pt	s	20	0.0 MHz/				3.0 GHz
							Aborted		4,40	10.11.2017
21:53:09 10	.11.2017									
	Spectrum	*								∇
MultiView Ref Level 46	5.00 dBm Offse	et 42.00 dB = F	BW 100 kHz							SGL
MultiView	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					SGL
MultiView Ref Level 46 Att 1 Frequency 9	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Node Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	SGL
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 Att 1 Frequency 9	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz M	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	P				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz rBW 1 MHz N	Mode Auto Swee	P				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	P				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz N	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency 1 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB • SWT	et 42.00 dB = F	RBW 100 kHz M	Mode Auto Swee	p				M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm Offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms = V							M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms = V	REW 100 kHz N						M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 40 • Att 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm Offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms = V							M1[1]	SGL ●1Rm Clrw 27,33 dBm
MultiView Ref Level 46 • Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	5.00 dBm Offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms = V							M1[1]	SGL • 1 Rm Clrw 27,33 dBm 2.68730 GHz
MultiView Ref Level 46 Att I Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm Offse 20 dB SWT Sweep	et 42.00 dB = F 500 ms = V				0.0 MHz/				SGL ●1Rm Clrw 27,33 dBm

21:54:21 10.11.2017

	00 dBm Offse								SG
Att Frequency S	14 dB SWT	500 ms VI	BW 1 MHz M	lode Auto Sweep					●1Rm Clrv
								M1[1]	-39.15 dE
) dBm									26.2070 G
) dBm									
) dBm									
) dBm									
dBm									
0 dBm									
0 dBm									
0 dBm									
0 dBm									كسمينغل
	M.M. Marken	L.M.		and sally	Mahamman		Munhummer marger	andonometros	andhamat
0 dBm	Jun -		- and the state of	howwant	he and the formand	and the second sec			
o ubin		N 1							
.0 GHz :51:01 10.	11.2017 Spectrum		1001 pt:	S	2.	35 GHz/	Aborted 🧧	111111 ANA	10.11.2017
0 GHz .:51:01 10. AultiView Ref Level 46.	Spectrum 00 dBm Offse	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted 🚺	aya	10.11.2017 21:51:00
.0 GHz .:51:01 10. 1ultiView	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R				35 GHz/	Aborted		10.11.2017 20131100
.0 GHz .:51:01 10. AultiView Ref Level 46. Att Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted 📲	 49 м1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz :51:01 10. Ref Level 46. Att Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz .:51:01 10. fultiView & Ref Level 46. Att Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 36 • 1Rm Cirv -38.75 df
.0 GHz .:51:01 10. fultiView & Ref Level 46. Att Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz .:51:01 10. MultiView 2 Ref Level 46. Att Frequency S 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz :51:01 10. IultiView 2 Ref Level 46. Att Frequency S odBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz .:51:01 10. AultiView 3 Ref Level 46. Att Frequency S 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 36 • 1Rm Cirv -38.75 df
.0 GHz .:51:01 10. AultiView 3 Ref Level 46. Att Frequency S 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	26.5 G 10.11.2017
.0 GHz .:51:01 10. MultiView : Ref Level 46. Att Frequency S 0 dBm 0 dBm 0 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 36 • 1Rm Cirv -38.75 df
.0 GHz .:51:01 10. MultiView : Ref Level 46. Att Frequency S 0 dBm 0 dBm 0 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz :51:01 10. lultiView Ref Level 46. Att Frequency S dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/		M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz :51:01 10. IultiView Ref Level 46. Att Frequency S 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/		M1[1]	10.11.2017 21:51:00 50 • 1Rm Circ -38.75 di
.0 GHz :51:01 10. IultiView : Ref Level 46. Att Frequency S dBm dBm dBm dBm dBm dBm dBm dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz .:51:01 10	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz :51:01 10. lultiView : Act Level 46. Att Frequency S dBm dBm dBm dBm dBm 0 dBm 0 dBm 0 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 50 • 1Rm Circ -38.75 di
.0 GHz :51:01 10. lultiView : Act Level 46. Att Frequency S dBm dBm dBm dBm dBm 0 dBm 0 dBm 0 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 21:51:00 50 • 1Rm Circ -38.75 di
.0 GHz .:51:01 10. IultiView E Ref Level 46. Att Frequency S 0 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB ∈ R	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 SC •1Rm Clr -38.75 di 26.1830 C
.0 GHz :51:01 10. IultiView E Ref Level 46. Att Frequency S 0 dBm 0 dBm	Spectrum O dBm Offse 14 dB SWT weep	et 42.00 dB • R 500 ms VI	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 SC •1Rm Clr -38.75 di 26.1830 C
.0 GHz :51:01 10. IultiView E Ref Level 46. Att Frequency S 0 dBm 0 dBm	OO dBm Offse 14 dB SWT	et 42.00 dB • R 500 ms VI	BW 100 kHz			35 GHz/	Aborted	M1[1]	10.11.2017 SC •1Rm Clr -38.75 di 26.1830 C
.0 GHz .:51:01 10. IultiView E Ref Level 46. Att Frequency S 0 dBm	Spectrum O dBm Offse 14 dB SWT weep	et 42.00 dB • R 500 ms VI	BW 100 kHz	lode Auto Sweep		35 GHz/	Aborted	M1[1]	10.11.2017 21:31:40 36 • 1Rm Cirv -38.75 df

21:52:13 10.11.2017

I dBm	4 dB 😐 SWT		3W 100 kHz						so
	00	500 ms VE	3W 1 MHz M	lode Auto Sweep)				•1Rm Cln
dBm	ep							M1[1] -38.94 dl
									26.2770 6
dBm									
dBm									
dBm									
abiii									
IBm									
) dBm									
) dBm									
) dBm									
) dBm									a stad
many bo	n Jureman		- Amolo	werne	Munundam	mun and marken	an and the second	and we wanter we are	and future
) dBm		- Land Carles Martin - Alle	and we are the second s						
0 GHz			1001 pt	s	2.	35 GHz/			26.5 G
		. 42.00 dB = BE	SW 100 kHz						
ef Level 46.00	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep	9				S
ef Level 46.00 .tt 14	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	
ef Level 46.00 tt 14	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
ef Level 46.00 (tt 1: requency Swe dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1,	
dBm-	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	ode Auto Sweep				M1[1	
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	•1Rm Clr •38.87 dl 26.1830 c
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
tef Level 46.00 (ttt 1) requency Swe dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	iode Auto Sweep				M1[1]	
dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	iode Auto Sweep				M1[1	
kef Level 46.00 ktt 11 Frequency Sweet dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
lef Level 46.00 of the second secon	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	• 18m Cr -38.87 d 26.1830 C
lef Level 46.00 ttt 1 rrequency Sweet dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	• 18m Cr -38.87 d 26.1830 C
lef Level 46.00 ttt 1 rrequency Sweet dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1	
lef Level 46.00 ttt 1 rrequency Sweet dBm	dBm Offset 4 dB ● SWT	: 42.00 dB = RE	3W 100 kHz M					M1[1	• 18m Cr -38.87 d 26.1830 C

21:54:39 10.11.2017

10M -2625MHz-Port 1~4:

MultiView	Spectrum	¥							\bigtriangledown
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = R 500 ms V	NBW 100 kHz NBW 1 MHz M	lode Auto Sweer					SGL
DC 1 Frequency S									●1Rm Clrw
								M1[
40 dBm									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-20 ubiii-									
- <mark>3</mark> 0 dBm									
M1									
-40 ¢Bm									
-50 dBm									
9.0 kHz	and along the second	hara an	1001 pt	s	99	9.1 kHz/	an manana an I wa	all he and here the sector	10.0 MHz
)[Aborted		10.11.2017
16:11:22 10.	11.2017								
		¥							
MultiView Ref Level 46.	Spectrum 00 dBm Offse	t 42.00 dB = R	BW 100 kHz	Inde Auto Susser					SGL
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	NBW 100 kHz NBW 1 MHz M	Iode Auto Sweep					SGL
MultiView Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	RBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	NBW 100 kHz NBW 1 MHz M	lode Auto Sweep				M1[1]	SGL
MultiView Ref Level 46. Att DC I Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	ABW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC T Frequency S	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	XBW 100 kHz YBW 1 MHz M	lode Auto Sweep	,			M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	ABW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency 8 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency 8 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				MI[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz M	lode Auto Sweep					SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BW 1 MHz M	lode Auto Sweep				MI[1]	SGL •1Rm Cirw -38.18 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB = SWT	t 42.00 dB = R	BBW 100 kHz M			9.1 kHz/		M1[1]	SGL •1Rm Cirw -38.18 dBm

16:12:34 10.11.2017

MultiView	Spectrum	*							
Att	.00 dBm Offse 14 dB • SWT	t 42.00 dB = RI 500 ms VI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency S	Sweep								01Rm Clrw
40 dBm								M1[1]	-38.33 dBm 513.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
M									
-30 dBm									
-40 gBm									
U Y									
-50 dBm	Manager Mar Dir gill a ger	are and the second s	1001 pt	www.jutryluj s	and a stand of the	9.1 kHz/	hherman	senderal harrafter	10.0 MHz
][1001 pt				Aborted		10.11.2017
16:13:47 10	.11.2017								
	Spectrum	×							▼
MultiView Ref Level 46 Att		t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
MultiView Ref Level 46	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)		1		SGL
MultiView Ref Level 46 Att DC	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL
MultiView Ref Level 46 Att DC 1 Frequency 9	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency 9	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency \$ 40 dBm-	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC TFrequency S 40 dBm 30 dBm 20 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency 9 40 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC TFrequency S 40 dBm 30 dBm 20 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC Frequency S 40 dBm 30 dBm 10 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency 8 40 dbm 30 dbm 20 dbm 10 dbm -10 dbm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Cirw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -37.84 dBm
MultiView Ref Level 46 Att DC 1 Frequency 8 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -37.84 dBm
MultiView Ref Level 46 Att DC TFrequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -37.84 dBm
MultiView Ref Level 46 Att DC I Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI						M1[1]	SGL • 1Rm Cirw -37.84 dBm 523.00 kHz
MultiView Ref Level 46 Att DC TFrequency 9 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Spectrum .00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 1 MHz M			9.1 kHz/		M1[1]	SGL • 1Rm Cirw -37.84 dBm

16:15:00 10.11.2017

MultiView	Spectrum	¥							
Ref Level 46. Att	00 dBm Offset 14 dB = SWT		RBW 100 kHz VBW 1 MHz M	lode Auto Sweer)				SGL
1 Frequency S	Sweep	0001110							O1Rm Clrw
40 dBm								M1[1]	-43.53 dBm 945.110 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
00 dB									
-20 dBm									
-30 dBm									
-50 0.511									
-40 dBm									
					Warder Halamand	with all a		and the second states of the	MI
-50 dBm	Harring May Korner Wel	harmythand	gellen han holden wo	www.www.whiteh	Andrew and and and	all more that the	maphoneters	Arman and Aman	
10.0 MHz				s	9	9.0 MHz/			1.0 GHz
16:11:39 10. MultiView		*							
MultiView Ref Level 46.	Spectrum 00 dBm Offset	t 42.00 dB 🖷		Inde Auto Sween					SGL
MultiView	OO dBm Offset	t 42.00 dB 🖷	RBW 100 kHz VBW 1 MHz M	lode Auto Sweep	0	1	1		•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep	>			м1[1]	• 1Rm Clrw -44,10 dBm
Ref Level 46. Att	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				м1[1]	• 1Rm Clrw -44,10 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44,10 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweer				M1[1]	•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S 40 dBm-	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44,10 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44,10 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView Ref Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44,10 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView Ref Level 46.t Ref Level 46.t Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -0 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	• 1Rm Clrw -44.10 dBm
MultiView Ref Level 46.t Ref Level 46.t Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -0 dBm -10 dBm -20 dBm	OO dBm Offset	t 42.00 dB 🖷		lode Auto Sweep				M1[1]	●1Rm Clrw -44.10 dBm 960.930 MHz
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -0 dBm -10 dBm	OO dBm Offset	t 42.00 dB 🖷							• 1Rm Clrw -44.10 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -0 dBm -10 dBm	OO dBm Offset	t 42.00 dB 🖷		Iode Auto Sweep				M1[1]	●1Rm Clw -44.10 dBm 960.930 MHz

16:12:52 10.11.2017

MultiView	🕑 Spectrum								∇
Ref Level 46.0 Att	14 dB 🖷 SWT	t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	• 1Rm Clrw -43.88 dBm
40 dBm									916,430 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-50 UBIII									
-40 dBm									
				the fit strantation where	manametronomban	APAR HUN	to put the approximation	- almer sharmon	MI when we may only the set
50 dBm	encellan analyotheter	mumundre Mitall	ward all and a second	Prest and a series of the seri	a and a second	ու արդանակեր	ender and Andrea and	Conduction on an and	
10.0 MHz			1001 pt	S	9	9.0 MHz/			1.0 GHz
]						Aborted		10.11.2017 16:14:04
16:14:05 10.	11.2017								
16:14:05 10.: MultiView	~	¥							∇
MultiView Ref Level 46.0	Spectrum	¥ t 42.00 dB ● R	BW 100 kHz						SGL
MultiView	Spectrum O dBm Offset 14 dB SWT	¥ t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep					O1Rm Clrw
MultiView F Ref Level 46.0 Att 1 Frequency S	Spectrum O dBm Offset 14 dB SWT	¥ t 42.00 dB ● R 500 ms VI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,			M1[1]	●1Rm Clrw -43.63 dBm
MultiView Ref Level 46.0 Att	Spectrum O dBm Offset 14 dB SWT	¥ t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView F Ref Level 46.0 Att 1 Frequency S	Spectrum O dBm Offset 14 dB SWT	¥ t 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView B Ref Level 46.0 Att T Frequency S 40 dBm-	Spectrum O dBm Offset 14 dB SWT	¥ 42.00 dB ● R 500 ms VI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView B Ref Level 46.0 Att T Frequency S 40 dBm-	Spectrum O dBm Offset 14 dB SWT	42.00 dB • R 500 ms VI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum O dBm Offset 14 dB SWT	¥ 42.00 dB ■ R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB • R 500 ms VI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum O dBm Offset 14 dB SWT	¥ 42.00 dB ● R 500 ms VI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum O dBm Offset 14 dB SWT	¥ 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				<u>M1[1]</u>	●1Rm Clrw -43.63 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum O dBm Offset 14 dB SWT	42.00 dB • R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB • R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum O dBm Offset 14 dB SWT	42.00 dB R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView B Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Spectrum O dBm Offset 14 dB SWT	¥ 42.00 dB ● R 500 ms V	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
MultiView 8 Act Level 46.0 Att 1 Frequency S 40 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB • R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				MI[1]	●1Rm Clrw -43.63 dBm
MultiView Perfection Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum O dBm Offset 14 dB SWT	42.00 dB • R 500 ms V	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm 969.840 MHz
MultiView B Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB P R 500 ms V	BW 100 kHz BW 1 MHz M						• 1Rm Clrw -43.63 dBm 969.840 MHz
MultiView Perfection Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB P R 500 ms V		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm 969.840 MHz
MultiView Perfection Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -10 dBm -30 dBm -30 dBm	Spectrum O dBm Offset 14 dB SWT	t 42.00 dB P R 500 ms V	BW 100 kHz BW 1 MHz M						●1Rm Clrw -43.63 dBm 969.840 MHz

16:15:17 10.11.2017

MultiView									
RefLevel 46 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms V		Mode Auto Swee	р				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw 25.29 dBm
40 dBm									2.62740 GHz
30 dBm								M1	
20 dBm									
10 dBm									
0 dBm									
o dom									
-10 dBm									
-20 dBm									
-30 dBm									
40 dBm	under market and and	all normal have	all marked and the	questionport	www.	walking water for		- When a second	- Hand Contraction of the second second
-50 dBm			1001 pt	2					2.0.045
1.0 GHz	Y		1001 pt	s	20	0.0 MHz/	Aborted		3.0 GHz
16:11:57 10	.11.2017								
16:11:57 10									
MultiView Ref Level 46	Spectrum	et 42.00 dB = F							SGL
MultiView	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p		1		•1Rm Clrw
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			M1[1]	•1Rm Clrw
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	р			M1[1]	●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			M1[1]	●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 0 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum Od Bm Offse 20 dB SWT SWeep	et 42.00 dB = F		Mode Auto Swee	p				●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum Od Bm Offse 20 dB SWT SWeep	et 42.00 dB = F 500 ms = V							●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 20 dB SWT Weep	et 42.00 dB = F 500 ms = V							●1Rm Clrw 24.99 dBm
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 20 dB SWT Weep	et 42.00 dB = F 500 ms = V							●1Rm Clrw 24.99 dBm

16:13:09 10.11.2017

MultiView	🖽 Spectrum 🛛 🛞							\bigtriangledown
RefLevel 46 Att	20 dB 🖷 SWT 500 ms	RBW 100 kHz VBW 1 MHz M	1ode Auto Swee	p				SGL
1 Frequency S	Sweep						M1[1]	 1Rm Clrw 25.19 dBm
40 dBm								2.62740 GHz
30 dBm							M1	
							1	
20 dBm								
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
							h	
-40 dBm	and how the many and a way	and the second and the second s	mannahann	mound	how how he was	htter and the state of the second states and	y hite prosperies	why and the stand to a stand to
-50 dBm								
1.0 GHz	Y	1001 pts	6	20	0.0 MHz/		4.5/2	3.0 GHz
						Aborted		
16:14:22 10	.11.2017							
MultiView								
RefLevel 46 ● Att	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	 RBW 100 kHz VBW 1 MHz 	1ode Auto Swee	p				SGL
Ref Level 46	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	 RBW 100 kHz VBW 1 MHz M 	1ode Auto Swee	p			м1[1]	SGL ●1Rm Clrw 25,30 dBm
RefLevel 46 ● Att	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz N	1ode Auto Swee	p			M1[1]	SGL
Ref Level 46 Att 1 Frequency \$ 40 dBm-	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz M	1ode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 Frequency 9	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz M	1ode Auto Swee	p			M1[1]	SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 Frequency \$ 40 dBm 30 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz	lode Auto Swee	p				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 Frequency \$ 40 dBm-	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	BBW 100 kHz VBW 1 MHz N	1ode Auto Swee	p				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 Frequency \$ 40 dBm 30 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz M	lode Auto Swee	p				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency 5 40 dBm 30 dBm 30 dBm 20 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz N	Node Auto Swee	P				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency 5 40 dBm 30 dBm 30 dBm 20 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz N	lode Auto Swee	p				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz N	1ode Auto Swee	p				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz M	1ode Auto Swee	P				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -10 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz M	Node Auto Swee	p				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz N	Node Auto Swee	P				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -10 dBm	5.00 dBm Offset 42.00 dB 20 dB • SWT 500 ms	RBW 100 kHz VBW 1 MHz N	lode Auto Swee	p				SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm -0 dBm -10 dBm -20 dBm -20 dBm -30 dBm	.00 dBm Offset 42.00 dB 20 dB = SWT 500 ms weep	RBW 100 kHz M WBW 1 MHz M	Node Auto Swee	p				●1Rm Clrw 25.30 dBm 2.62740 GHz
Ref Level 46 Att 1 1 Frequency S 40 dBm 30 dBm 30 dBm 30 dBm 10 dBm -0 dBm -10 dBm -20 dBm	.00 dBm Offset 42.00 dB 20 dB = SWT 500 ms weep	RBW 100 kHz N NHz N						SGL ●1Rm Clrw 25,30 dBm
Ref Level 46 Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offset 42.00 dB 20 dB = SWT 500 ms weep	VBW 1 MHz N						●1Rm Clrw 25.30 dBm 2.62740 GHz
Ref Level 46 Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	.00 dBm Offset 42.00 dB 20 dB = SWT 500 ms weep							●1Rm Clrw 25.30 dBm 2.62740 GHz
Ref Level 46 Att 1 Frequency \$ 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offset 42.00 dB 20 dB = SWT 500 ms weep	VBW 1 MHz N			0.0 MHz/			●1Rm Clrw 25.30 dBm 2.62740 GHz

16:15:35 10.11.2017

	Spectrum	*							
Att	00 dBm Offset 14 dB ● SWT		BWF 100 kHz BWF 1 MHz MI	lode Auto Sweep					SGL
l Frequency S									●1Rm Clrw
								M1[1]	-38.94 dBn 26.1600 GH
40 dBm									2011000 011
30 dBm									
20 dBm									
LO dBm									
dBm									
10 dBm									
20 dBm									
30 dBm									
40 dBm									M
									and when a start
	What you are what the the		in the	which is a share	munum	Mederlander on the on the	mangunan	whomewhen	mar the
50 dBm	v. v	لتيح وسوري والماليا كشرير	and the state of the			0.104			
3.0 GHz			1001 pt	S	2	35 GHz/			26.5 GH
	~						Aborted 🚺	111111 (J)(J)	10.11.2017
	Spectrum	¥ t 42.00 dB ● Rt	BW 100 kHz				Aborted 🚺		10.11.2017
MultiView Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted 🚺		SGL
MultiView Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted	M1[1]	SGL ●1Rm Clrw -38,84 dBi
AultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Abortod		SGL • 1 Rm Clrw -38,84 dBl
AultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep	, 		Abortod		SGI • 1 Rm Clrw -38,84 dB
AultiView 3 Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Abortod		SGI • 1 Rm Clrw -38,84 dB
AultiView A Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod		SGI • 1 Rm Clrw -38,84 dB
AultiView A Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod		SGL • 1 Rm Clrw -38,84 dBl
AultiView R Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGI • 1 Rm Clrw -38,84 dB
AultiView A Ref Level 46.0 Att Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod		SGL • 1 Rm Clrw -38,84 dBl
ultiView 8 Ref Level 46.0 Ht Frequency S dBm dBm dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod		SGL • 1 Rm Clrw -38,84 dBl
ultiView 8 Ref Level 46.0 Ht Frequency S dBm dBm dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGI • 1 Rm Clrw -38,84 dB
dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	iode Auto Sweep					SGI • 1 Rm Clrw -38,84 dB
IultiView 8 Ref Level 46.(Trequency S dem	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGI • 1 Rm Clrw -38,84 dB
IultiView 8 Acf Level 46.0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGI • 1 Rm Clrw -38,84 dB
Autiview 8 Ref Level 46.0 Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL • 1 Rm Clrw -38,84 dBl
AultiView Automatical Ref Level 46.0 Att Frequency S 0 dBm 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep					SGL • 1 Rm Clrw -38,84 dBl
MultiView Ref Level 46,0 Ref Level 46,0 <	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,84 dBi
MultiView Ref Level 46.0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,84 dBr
AultiView Automatical Ref Level 46.0 IFrequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,84 dBr
MultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 10 d8m 0 d8m 10 d8m 0 d8m	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,84 dBr
MultiView Ref Level 46.0 Ref Level 46.0 46.0 Frequency S 0 00 dBm 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz 3W 1 MHz M	lode Auto Sweep					• 1Rm Cirw -38.84 dBr 26.2530 GH
MultiView R Ref Level 46.0 Att Frequency S 0 d8m 0 d8m 0 d8m 0 d8m 10 d8m 20 d8m 20 d8m 30 d8m	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz M	iode Auto Sweep					• 1Rm Cirw -38.84 dBr 26.2530 GH
MultiView Ref Level 46.0 Ref Level 46.0 Att Frequency S 00 d8m 10 d8m 00 d8m	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz M	iode Auto Sweep					SGL ●1Rm Clrw -38.84 dBr
MultiView R Ref Level 46.0 Att Frequency S 0 d8m 0 d8m 0 d8m 0 d8m 10 d8m 20 d8m 20 d8m 30 d8m	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 100 kHz M I MHz M	iode Auto Sweep				M1[1]	• 1Rm Cirw -38.84 dBr 26.2530 GH
MultiView Ref Level 46.0 Ref Level 46.0 46.0 Att Frequency S 0 d8m 0 10 d8m 0 40 d8m 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RE	BW 100 kHz BW 100 kHz M 1 MHz M					M1[1]	• 1Rm Cirw -38.84 dBr 26.2530 GH

16:13:27 10.11.2017

MultiView	Spectrum	*							
Ref Level 46.0 Att	00 dBm Offset 14 dB ● SWT	t 42.00 dB ● F 500 ms V	NBW 100 kHz /BW 1 MHz N	1ode Auto Sweer)				SGL
1 Frequency S								MILI	•1Rm Clrw
40 dBm								M1[1]	-39.18 dBm 26.0420 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
									M1
-40 dBm									A an always
monthal	why manufaller		and the second second	any we would	Mumm	upon hor we	we way and war	when the wards	
-50'dBm		- Marine Carlos	and and the state of the state	Street 2.1 %					
3.0 GHz	T		1001 pt	S	2.	.35 GHz/			26.5 GHz
	٫۱						Aburteu		
16:14:40 10.1	11.2017								
		*							
MultiView	Spectrum	t 42.00 dB ⊜ F		Inda Auto Sween					SGL
MultiView	Spectrum	t 42.00 dB ⊜ F	RBW 100 kHz /BW 1 MHz N	1ode Auto Sweep		1			SGL
MultiView 8 Ref Level 46.0 Att 1 Frequency St	Spectrum	t 42.00 dB ⊜ F		1ode Auto Sweep	,			M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView 8 Ref Level 46.0	Spectrum	t 42.00 dB ⊜ F		1ode Auto Sweep				м1[1]	SGL
MultiView 8 Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ⊜ F		1ode Auto Swee;				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency St	Spectrum	t 42.00 dB ⊜ F		1ode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ⊜ F		Node Auto Sweep	,			M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ⊜ F		Node Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 Frequency St 40 dBm	Spectrum	t 42.00 dB ⊜ F		10de Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum	t 42.00 dB ⊜ F		1ode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum	t 42.00 dB ⊜ F		1ode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum	t 42.00 dB ⊜ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	Spectrum	t 42.00 dB ⊜ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency S 40 d8m 30 d8m 20 d8m 10 d8m 0 d8m	Spectrum	t 42.00 dB ⊜ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency S 40 d8m 30 d8m 20 d8m 10 d8m 0 d8m	Spectrum	t 42.00 dB ⊜ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency State 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -10 dBm	Spectrum	t 42.00 dB ⊜ F		lode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency State 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -10 dBm	Spectrum	t 42.00 dB ⊜ F		1ode Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency 30 40 dBm 30 20 dBm 30 10 dBm 30 -10 dBm -20 dBm	Spectrum	t 42.00 dB ⊜ F		lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency 30 40 dBm 30 20 dBm 30 10 dBm 30 -10 dBm -20 dBm	Spectrum	t 42.00 dB ⊜ F						M1[1]	SGL ●1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 Frequency St 40 d8m 30 d8m 20 d8m 10 d8m 0 d8m -10 d8m -0 d8m -30 d8m -30 d8m	Spectrum	t 42.00 dB ⊜ F						M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 1 Frequency 30 40 dBm 30 20 dBm 30 10 dBm 30 -10 dBm 30 -20 dBm 30 -30 dBm 30	Spectrum	t 42.00 dB ⊜ F		Inde Auto Sweep Inde Auto Sweep				M1[1]	SGL • 1Rm Clrw -38.88 dBm
MultiView E Ref Level 46.0 Att 1 Frequency St 40 d8m 30 d8m 20 d8m 10 d8m 0 d8m -10 d8m -0 d8m -30 d8m -30 d8m	Spectrum	t 42.00 dB ⊜ F						M1[1]	SGL • 1Rm Clrw -38.88 dBm

16:15:52 10.11.2017

10M -2655MHz-Port 1~4:

	.00 dBm Offse	I ★ at 42.00 dB = RI	BW 100 kHz						SGL
Att IC	14 dB 🖷 SWT	500 ms VE	BW 1 MHz M	1ode Auto Sweep)				
Frequency S	Sweep							M1[●1Rm Clrw 1] -43.01 dBi
dBm									513.00 kł
dBm									
UBIII									
dBm									
dBm									
iBm									
) dBm									
) dBm									
) dBm									
) dBm ei 1									
Ming									
) dBm	al good all a contraction of the	anger and the second with	manapappa		Jan Mangalan		animbase and	an warman warder	antimated timest
0 kHz			1001 pt	S	<u>y</u> ç	99.1 kHz/			10.0 MH
	.11.2017	ı ¥					Aborted 🧧	499	10.11.2017
ultiView af Level 46.	Spectrum	et 42.00 dB = RI		Inde Auto Sweer			Aborted	4,6	
ultiView af Level 46. att C	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		1ode Auto Sweep)		Aborted	440 	SG
ultiView ef Level 46. tt C irequency S	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		1ode Auto Sweep	2		Aborted	M1[1]	● 1Rm Clrw -44,63 dB
ultiView ef Level 46. tt C requency S	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep	>		Aborted		● 1Rm Clrw -44,63 dB
ultiView ef Level 46. tt requency \$.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		1ode Auto Sweep			Aborted		● 1Rm Clrw -44,63 dB
ultiView ef Level 46. tt c requency \$.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep			Abortod		● 1Rm Clrw -44,63 dB
ultiView ef Level 46. tt c irequency S dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep			Abortod		● 1Rm Clrw -44,63 dB
ultiView ef Level 46. 2 requency S dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		1ode Auto Sweep			Abortod		● 1Rm Clrw -44,63 dB
ultiView ef Level 46. C irequency S dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		1ode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView ef Level 46. c irequency S dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView ef Level 46. C irequency S dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView ef Level 46. c irequency 8 dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView ef Level 46. C Trequency 8 dBm dBm dBm dBm bm dBm bm dBm bm dBm dBm bm dBm bm dBm dBm bm dBm dBm bm dBm bm dBm dBm bm dBm bm dBm bm bm dBm bm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		1ode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView ef Level 46. C requency 8 dBm dBm dBm Bm dBm dBm dBm dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		1ode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView ef Level 46. C requency 8 dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView sef Level 46. C Trequency S dBm dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		lode Auto Sweep					● 1Rm Clrw -44,63 dB
ultiView sef Level 46. C Trequency S dBm dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		fode Auto Sweep					●1Rm Clrw -44.63 dB
ultiView tef Level 46. C Trequency S dBm	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI		fode Auto Sweep					●1Rm Clrw -44,63 dB
	.00 dBm Offse 14 dB • SWT	et 42.00 dB = RI					Abortod		SGI

13:42:01 10.11.2017

MultiView	Spectrum	¥							
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RE 500 ms VE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency S	weep		1	1	1		1		•1Rm Clrw
40 dBm								M1[1]	-42.98 dBm 513.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-50 0.511									
-40 dBm m									
(Mary									
-50 dBm	and and the second of the secon	rallymer yr mer	1001 pt	We was in the way of the	· ·	אייוף-נעשיל-נעשי 9.1 kHz/	-12-mpan-man	trans or put	10.0 MHz
910 KHZ	Y		1001 pt	5	23		Aborted		10.11.2017
13:43:13 10.	11.2017								
		*							
MultiView Ref Level 46.	Spectrum 00 dBm Offse	t 42.00 dB = RE	3W 100 kHz						SGL
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB SWT		3W 100 kHz 3W 1 MHz M	lode Auto Sweep)				SGL
MultiView Ref Level 46. Att DC 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL
MultiView Ref Level 46. Att DC 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView 3 Ref Level 46. Att DC 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView 3 Ref Level 46. Att DC 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. DC I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. DC I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. DC I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB ● RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 10 dBm -10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	3W 1 MHz M	lode Auto Sweep					SGL •1Rm Clrw -42,20 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -10 dBm -20 dBm -40 dBm	Spectrum O dBm Offse 14 dB SWT weep	It 42:00 dB = RE 500 ms VE	3W 1 MHz M			9.1 kHz/		M1[1]	SGL •1Rm Clrw -42,20 dBm

13:44:26 10.11.2017

MultiView	Spectrum	*							
Ref Level 46. Att	14 dB 😑 SWT	t 42.00 dB = RI 500 ms VI		lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -43.79 dBm
40 dBm									922.360 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o dom									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
hymenologia	L	uh million alat milan)	han war washing the	Maraelloutralposaling	pupulinum	4 manunum	unmunu	nonimport	and the states and
-50 dBm				V					1001
10.0 MHz	Y		1001 pt	s	9	9.0 MHz/	Aborted		1.0 GHz 10.11.2017
13:41:05 10.	11.2017								
13:41:05 10.									
MultiView Ref Level 46.1	Spectrum 00 dBm Offse	t 42.00 dB 🖷 RI							SGL
MultiView	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView Ref Level 46. Att	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				м1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	•1Rm Clrw
MultiView Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	● 1Rm Cirw -43.68 dBm 923.350 MHz
MultiView Bef Level 46.t Ref Level 46.t Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 9 10 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI							● 1Rm Clrw -43.68 dBm 923.350 MHz
MultiView B Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB 🖷 RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.68 dBm
MultiView Ref Level 46.1 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	Spectrum O dbm Offse 14 dB SWT weep	t 42.00 dB 🖷 RI			www.andorhamay				● 1Rm Clrw -43.68 dBm 923.350 MHz

13:42:18 10.11.2017

MultiView	Spectrum	¥							∇
Ref Level 46. Att	14 dB 😑 SWT	t 42.00 dB = RE 500 ms VB		lode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -43.81 dBm
40 dBm									918.410 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
U dBm-									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
home makers no		والاستعمارية والمحاد المتعالي	Lundmarghanghally	pypersupphersen	and which have a second	and applications	montruction	Munderproposition	philipping
50 dBm	malinality	Myandymanadurhana	phaydron may and	v *			mennipuation	Mumber proposal	
10.0 MHz	unalitation and the second s	hydrodyka-saeden hydrod	y	v *		.0 MHz/	moundmanyment		1.0 GHz
10.0 MHz	underrendet hij Morren]	hlyinlipninedenlandi	<u>վեսպետութերեկ։</u> 1001 pt։	v *			Aborted	www.trengroup.www.	
ulles.		alguttificantestendersch	1001 pts	v *			Aborted		
10.0 MHz	~	in the second	بالمالية 1001 pts	v *			Abortod		
10.0 MHz 13:43:31 10.	Spectrum 00 dBm Offse	t 42.00 dB = RE	BW 100 kHz	S	99		Abort od		
10.0 MHz 13:43:31 10. MultiView Ref Level 46.	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE		S	99		Aborted		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw
10.0 MHz 13:43:31 10. MultiView B Ref Level 45.1 Att I Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Aborted		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw
10.0 MHz 13:43:31 10. MultiView Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Abortod		1.0 GHz 10.11.2017 SGL • 1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView B Ref Level 45.1 Att I Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Abortod		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView 3 Ref Level 46.1 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Abortod		1.0 GHz 10.11.2017 SGL • 1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView 3 Ref Level 46.1 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Abortod		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView 8 Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Aborted		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView 1 Ref Level 46.1 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Aborted		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Abortod		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView 8 Ref Level 46.1 Att I Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Abortod		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView E Ref Level 46. Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99		Abortod		1.0 GHz 10.11.2017 ▼ SGL ●1Rm Clrw -44.00 dBm
10.0 MHz 13:43:31 10. MultiView 8 Ref Level 46.1 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RE	BW 100 kHz	S	99				1.0 GHz 10.11.2017 SGL • 1Rm Clrw -44.00 dBm

99.0 MHz/

13:44:44 10.11.2017

-30 dBm

M1 พาษีนูณะระบ

1.0 GHz

M1[1] 2	SGL Rm Clrw 4.94 dBm 5330 GHz
40 dBm 1 1 1 1 2 2.6 30 dBm 20 dBm 20 dBm 1<	4.94 dBm
40 dBm 2.6 30 dBm <	5330 GHz
20 dBm	
20 dBm	
10 dBm	
10 dBm	
0 dBm	
0 dBm	
-10 dBm	
-10 dbm	
-20 dBm-	
-30 dBm-	
	warded.sumate
-19, 1910 - harry ward to be when we sharp you we want war a war and war war a so and the	
-50 dBm-	
1.0 GHz 1001 pts 200.0 MHz/	3.0 GHz
Aborted ((((((((((((((((((((((((((((((((((((1.2017 41.22 //
13:41:23 10.11.2017	
MultiView 🕀 Spectrum 🖌	∇
Ref Level 46.00 dBm Offset 42.00 dB RBW 100 kHz ● Att 20 dB ● SWT 500 ms VBW 1 MHz Mode Auto Sweep	SGL
1 Frequency Sweep •1	Rm Clrw
40 dBm M1[1] 2 2.6	4.68 dBm 5530 GHz
30 dBm	
20 dBm-	
10 dBm	
0 dBm	
-10 dBm	
-10 dBm	
-20 dBm	
-20 dBm	ik (^a bb ^a bkandar
-20 dBm	<u>ik (^abb^{ris}t)erstre</u>
-20 dBm	<u></u>

13:42:36 10.11.2017

MultiView		¥[∇
Ref Level 46 Att	20 dB 🖷 SWT 🛛 🗄	2.00 dB ● RBW 100 kH 500 ms VBW 1 MH	z z Mode Auto Sw	eep				SGL
1 Frequency	Sweep						M1[1]	●1Rm Clrw 24.38 dBm
40 dBm								2.65130 GHz
30 dBm							M1	
							Ň	
20 dBm								
10 dBm								
0 dBm								
-10 dBm								
-20 dBm								
-30 dBm								
)	\wedge	
-40.dBm	novelles and an approximation of the second	man pretty marty and	americanter and the second	4 million and many marine	a marting and a second and a second and a second	allynamerer frankrige	- Colongerson	- myserry the horas
			food on an error -					
-50 dBm								
1.0 GHz	Y	100	1 pts	20	0.0 MHz/			3.0 GHz
						Aborted		
13:43:48 10	.11.2017							
		_						
MultiView		¥						\bigtriangledown
MultiView Ref Level 40 Att	5.00 dBm Offset 42 20 dB • SWT	★ 2.00 dB ● RBW 100 kH 500 ms VBW 1 MH	z z Mode Auto Sw	еер				SGL
MultiView Ref Level 48	5.00 dBm Offset 42 20 dB • SWT	.2.00 dB ● RBW 100 kH 500 ms VBW 1 MH	z z Mode Auto Sw	eep	1		M1[1]	●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att	5.00 dBm Offset 42 20 dB • SWT		z z Mode Auto Sw	eep			M1[1]	●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att I Frequency	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms • VBW 11 MH	z Mode Auto Sw	eep			M1[1]	●1Rm Clrw
MultiView Ref Level 40 Att I Frequency	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms VBW 1 MH	z Mode Auto Sw	eep			M1[1]	●1Rm Clrw 25.05 dBm
MultiView Ref Level 44 • Att 1 Frequency: 40 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB RBW 100 kH 500 ms VBW 1 MH	z Mode Auto Sw	eep				●1Rm Clrw 25.05 dBm
MultiView Ref Level 4 Att T Frequency 40 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms VBW 1 MH	z z Mode Auto Sw	eep				●1Rm Clrw 25.05 dBm
MultiView Ref Level 44 • Att 1 Frequency: 40 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms • VBW 11 MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att Frequency 40 dBm 30 dBm 20 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms • VBW 1 MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att Frequency 40 dBm 30 dBm 20 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms VBW 1 MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms VBW 1 MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms • VBW 1 1 MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 • Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms • VBW 1 1 MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms • VBW 1 1 MH	Z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 • Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms VBW 1 MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 * Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offset 42 20 dB • SWT	2.00 dB • RBW 100 kH 500 ms • VBW 1 1 MH	z Mode Auto Sw					• 1Rm Clrw 25.05 dBm 2.65130 GHz
MultiView Ref Level 40 * Att 1 Frequency: 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offset 42 20 dB SWT S Sweep	500 ms VBW 1.MH	z Mode Auto Sw					●1Rm Clrw 25.05 dBm
MultiView Ref Level 40 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm Offset 42 20 dB SWT S Sweep	2.00 dB P RBW 100 kH 500 ms VBW 1 MH	z Mode Auto Sw					• 1Rm Clrw 25.05 dBm 2.65130 GHz
MultiView Ref Level 40 Att 1 Frequency 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m -20 d8m -30 d8m -30 d8m -50 d8m	5.00 dBm Offset 42 20 dB SWT S Sweep	500 ms VBW 1.MH						• 1Rm Claw 25.05 dBm 2.65130 GHz
MultiView Ref Level 40 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	5.00 dBm Offset 42 20 dB SWT S Sweep	500 ms VBW 1.MH	z Mode Auto Sw		0.0 MHz/			• 1Rm Clrw 25.05 dBm 2.65130 GHz

13:45:01 10.11.2017

Reflevel 26	Spectrum		RW 100 kH+						sg
Att	14 dB 🖷 SWT		BWF 100 KHZ BWF 1 MHz M	ode Auto Sweep)				
Frequency S	weep							M1[1]	1Rm Clrv -39.01 dE
D dBm									26.2070 G
D dBm									
D dBm									
5 dbiii									
) dBm									
UBIII									
dBm									
.0 dBm									
0 dBm									
0 dBm									
0 dBm									كرمنط
	malmuth	1		na Moutra	A	- Aller Margaret	Mummun and and	Martin Martin Martin	no your
0 dBm	when when when when when when when when	we's state and a second	الملكين بالمحمد والمحمود المحمل عند المصل الم	and the work	Muninghang	Martin and the state	4.00000 V -		
.0 GHz			1001 pt	5	2	.35 GHz/			26.5 GI
	11.2017 Spectrum	¥							13:41:40
1ultiView	Spectrum		BW 100 kHz						
AultiView Ref Level 46. Att	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	ode Auto Sweep	,				se
IultiView Ref Level 46. Att	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
IultiView Ref Level 46. Att Frequency S	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep	,			M1[1]	●1Rm Clrv -38.82 dl
IultiView Ref Level 46. Att Frequency S	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
IultiView 3 Ref Level 46. Att Frequency S	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Cin ●18m Cin
IultiView 3 Ref Level 46. Att Frequency S	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Cin ●18m Cin
AultiView A Ref Level 46. Att Frequency S dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				MI[1]	●1Rm Clrv -38.82 dl
AultiView A Ref Level 46. Att Frequency S dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
def Level 46. tt Frequency S dBm dBm dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				MI[1]	●1Rm Clrv -38.82 dl
IultiView Ref Level 46. Att Frequency S dBm dBm dBm dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				MI[1]	●1Rm Clrv -38.82 dl
Autiview Ref Level 46. Att Frequency S 0 dBm 0 dBm 0 dBm 0 dBm dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
IultiView Ref Level 46. Att Frequency S dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
IultiView IultiView Ref Level 46. 46. If requency S 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrv -38.82 dl
IultiView IultiView Ref Level 46. 46. If requency S 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m 0 d8m	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	•1Rm Clrv -38.82 dE
IultiView IultiView Ref Level 46. 46. Frequency S 0 d8m 0 d8m 0 d8m	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	•1Rm Clrv -38.82 dE
IultiView IultiView Ref Level 46. 46. Frequency S 0 d8m 0 d8m 0 d8m	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				MI[1]	●1Rm Clru -38.82 dt 26.1360 G
IultiView IultiView Ref Level 46. 46. Frequency S 9 0 dBm 9	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				MI[1]	●1Rm Clru -38.82 dt 26.1360 G
IultiView IultiView Ref Level 46. Att Frequency S Image: Second Se	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep				MI[1]	• 1Rm Clrv -38,82 db 26,1360 G
Ref Level 46. Att Frequency S 0 dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		ode Auto Sweep					• 1Rm Clrvv -38,82 db 26.1360 G
AultiView Automatical Ref Level 46. 46. Frequency S 30 dBm 0 dBm 30 dBm 30 dBm 30 dBm	Spectrum OO dBm Offse 14 dB • SWT	t 42.00 dB = RI							• 1911-19 • 18m Cirv • -38.82 dB 26.1360 G

13:42:53 10.11.2017

IultiView		et 42.00 dB = R	BW 100 kHz						so
\tt	14 dB 🖷 SWT	500 ms V	BW 100 KH2 BW 1 MHz M	ode Auto Sweep)				
Frequency S	Sweep							M1[1]	•1Rm Cln -38.62 dl
dBm									26.0890 G
dBm									
dBm									
dBm									
dBm									
0 dBm									
0 dBm									
0 dBm									
									N
0 dBm									
	a month					A. In .		an an Marian Au	and a walk
o dBm	when the		and the second s	way you want	and the second	Munpole and the	1 400 les read but have a		
									26.5 G
:44:06 10.	11.2017	1 🐳	1001 pt:	5	2	35 GHz/	Aborted 🚺		10.11.2017
:44:06 10. ultiView Ref Level 46.	O dBm Offse	et 42.00 dB = R	BW 100 kHz				Aborted 🧧	aya 	10.11.2017
	O dBm Offso 14 dB SWT	et 42.00 dB = R					Aborted 🚺		10.11.2017
:44:06 10. IultiView Ref Level 46. Att Frequency S	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. IultiView Ref Level 46. Att Frequency S	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 1997-1997 50 • 1 Rm Clr -38,76 d
:44:06 10. IultiView Ref Level 46. Att Frequency S	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. IultiView Ref Level 46.	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. lultiView tef Level 46. tt frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. lultiView tef Level 46. tt frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 1997-1997 50 • 1 Rm Clr -38,76 d
:44:06 10. IultiView tef Level 46. ttt Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. IultiView Ref Level 46. Att Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. IultiView Ref Level 46. Att Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017
:44:06 10. IultiView Ref Level 46. Att Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10.	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted	M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. IultiView Ref Level 46. Att Frequency S	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz					M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. ultiView Ref Level 46. tt dBm dBm dBm dBm dBm dBm dBm dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz					M1[1]	10.11.2017 1997-1997 50 • 1 Rm Clr -38,76 d
:44:06 10. ultiView Ref Level 46. tt dBm dBm dBm dBm dBm dBm dBm dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz					M1[1]	10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. UltiView Ref Level 46. Ulti Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz					M1[1]	10.11.2017 1997-1997 50 • 1 Rm Clr -38,76 d
:44:06 10. UltiView Ref Level 46. Ulti Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz					M1[1]	10.11.2017 SG IRm Clri -38,76 d 26,1360 C
:44:06 10. IultiView Ref Level 46. Itt Frequency S dBm dBm dBm dBm dBm dBm 0 dBm 0 dBm 0 dBm 0 dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz					M1[1]	• 10.11.2017 SC • 1Rm Cin 38.76 di 26.1360 C
:44:06 10. IultiView Ref Level 46. Itt Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz					M1[1]	• 10.11.2017 SC • 1Rm Cin 38.76 di 26.1360 C
:44:06 10. IultiView Ref Level 46. Itt Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz				Aborted		10.11.2017 10.11.2017 10.11.2017 SC • 1Rm Circ -38,76 di
:44:06 10. IultiView Ref Level 46. Itt Frequency S dBm	O dBm Offso 14 dB SWT	et 42.00 dB = R	BW 100 kHz	ode Auto Sweep			Aborted		• 10.11.2017 SC • 1Rm Cin 38.76 di 26.1360 C

13:45:19 10.11.2017

10M -2685MHz-Port 1~4:

Ref Level 46.	Spectrum OO dBm Offse	t 42.00 dB = RI	BW 100 kHz						SGL
Att	14 dB ● SWT	500 ms VI	BWV 1 MHz N	lode Auto Sweep	1				
Frequency S	Sweep							M1	• 1Rm Clrw 1] -42.23 dB
) dBm									523.00 kł
) dBm									
Gom									
) dBm									
) dBm									
dBm									
0 dBm									
0 dBm									
0 dBm									
0.40-41									
0 dBm	hay proveder and		an march and the	all and the second	manyarra	www.whi	monor	and the second	want want water
.0 kHz		•	1001 pt	s	· · ·	99.1 kHz/		•	10.0 MH
		×					Aborted		10.11.2017
IultiView Ref Level 46.	Spectrum	t 42.00 dB = RI	BW 100 kHz BW 1MHz M	lode Auto Sweep			Aborted		
IultiView Ref Level 46. Att	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz N	lode Auto Sweep			Abortod	4/6	SG •1Rm Clrv
lultiView Ref Level 46. Att C Frequency S	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz N	lode Auto Sweep			Abortod	M1[1	•1Rm Clrw -42.10 dB
IultiView Ref Level 46. Att IC Frequency S	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Clrw -42.10 dB
IultiView Ref Level 46. C Frequency S	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz N	lode Auto Sweep			Aborted		•1Rm Clrw -42.10 dB
AultiView Ref Level 46. Att C Frequency S dBm dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		•1Rm Clrw -42.10 dB
AultiView Ref Level 46. Att C Frequency S dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. Att C Frequency S dBm dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. CC Frequency S 0 dBm 0 dBm 0 dBm 0 dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. CC Frequency S 0 dBm 0 dBm 0 dBm 0 dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. CC Image: Second Secon	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. Att C Image: Second S	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz N	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. C Frequency 8 dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. CC Image: Second Secon	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
IultiView Ref Level 46. Cc Frequency S 0 dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz N	lode Auto Sweep					•1Rm Clrw -42.10 dB
AultiView Ref Level 46. Att C Frequency S D	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep					•1Rm Clrw -42.10 dB
AultiView Ref Level 46. Att DC Frequency S D dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz M	lode Auto Sweep					●1Rm Clrw] -42.10 dB
Ref Level 46. Att Att OC Frequency S 0 dBm	.00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M						(

14:10:01 10.11.2017

MultiView	Spectrum	¥							∇
Att	00 dBm Offse 14 dB = SWT			1ode Auto Sweep)				SGL
DC 1 Frequency S	weep								●1Rm Clrw
40 dBm								M1[1]	-42.10 dBm 523.00 kHz
30 dBm									
20 dBm									
20 0611									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm	-	and and the second	-	hungerana	and the state at when a strengthe	and maked hora there is	-	and the second states	and a state of the second state
9.0 kHz			1001 pt		99	99.1 kHz/			10.0 MHz
][Aborted	 	10.11.2017
14:11:14 10.	11.2017								
MultiView	Spectrum								
MultiView Ref Level 46. Att		t 42.00 dB = RI		lode Auto Sweep	,				SGL
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		1ode Auto Sweep	,	1			●1Rm Clrw
MultiView Ref Level 46. Att DC	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw
MultiView Ref Level 46. Att DC I Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC T Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep	,			M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	it 42.00 dB = Ri 500 ms VI		lode Auto Sweep				M1[1]	●1Rm Clrw -40.72 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum O dBm Offse 14 dB SWT Sweep	t 42.00 dB = RI	BW 1 MHz N			9.1 kHz/		M1[1]	●1Rm Clrw -40.72 dBm

14:12:26 10.11.2017

MultiView	Spectrum	¥							
Ref Level 46.0 Att	14 dB 😑 SWT	t 42.00 dB ● P 500 ms V	NBW 100 kHz NBW 1 MHz N	lode Auto Sweep					SGL
1 Frequency S	weep							M1[1]	 1Rm Clrw -43.84 dBm
40 dBm									958.960 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-10 UBIII									
-20 dBm									
-30 dBm									
-40 dBm									M1
-50 dBm	all Marca harmon	und produced and a second	manyudupment	How My war war	undurtrenumer	phroppingpendiplied	an Martinen	mand have been been and the	Anandhi na sindhfritha
10.0 MHz			1001 pt	5		9.0 MHz/			1.0 GHz
)(Aborted		10.11.2017
14:09:06 10.	11.2017								
	~	*							
MultiView Ref Level 46.0	Spectrum	t 42.00 dB = P	RBW 100 kHz						SGL
MultiView Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P		1ode Auto Sweep					
MultiView 8 Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz IBW 1 MHz M	lode Auto Sweep	,			M1[1]	SGL ●1Rm Clrw -43.15 dBm
MultiView Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	XBW 100 kHz /BW 1 MHz N	lode Auto Sweep				м1[1]	SGL ●1Rm Clrw -43.15 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	NBW 100 kHz NBW 1 MHz N	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	NBW 100 kHz NBW 1 MHz N	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz N	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz M BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz M BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz RBW 1 MHz N	lode Auto Sweep				M1[1]	SGL
MultiView Ref Level 46.0 Att 1 Frequency 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	NBW 100 kHz NBW 1 MHz N	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView Ref Level 46.0 Att 1 Frequency 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz M BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView 8 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz N	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,15 dBm
MultiView Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P	RBW 100 kHz V	lode Auto Sweep				M1[1]	● 1Rm Clrw -43,15 dBm 941,150 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P							SGL ●1Rm Clrw -43,15 dBm
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -30 dBm 30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	● 1Rm Clrw -43,15 dBm 941,150 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = P							● 1Rm Clrw -43,15 dBm 941,150 MHz

14:10:18 10.11.2017

MultiView					\bigtriangledown
Ref Level 46.0 Att	14 dB 🖷 SWT 500 ms	3 ● RBW 100 kHz s VBW 1 MHz Mode Auto S [.]	weep		SGL
1 Frequency S	weep			M1[1]	 1Rm Clrw -43.89 dBm
40 dBm					976.760 MHz
30 dBm					
20 dBm					
10 dBm					
10 UBIII					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					MI
-50 dBm	an marchen march and the	warmen and and a second and a	how you wanted and the second	Maria Maria Maria Maria Maria	Phone and a subscree
10.0 MHz		1001 pts	99.0 MHz/		1.0 GHz
	T	1001 ptd		Aborted	10.11.2017
14:11:31 10.					
1011101 100	11 2017				
	_				
MultiView	Spectrum 🛞				
Ref Level 46.0	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 BBW 100 kHz s VBW 1 MHz Mode Auto S ⁻	weep		SGL
Ref Level 46.0	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3	weep	M1[1]	SGL • 1Rm Clrw -44,02 dBm
Ref Level 46.0	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 • RBW 100 kHz s VBW 1 MHz Mode Auto S	weep	M1[1]	SGL
Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 RBW 100 kHz VBW 1 MHz Mode Auto S	weep	M1[1]	SGL • 1Rm Clrw -44.02 dBm
Ref Level 46.0 Att 1 Frequency S	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 RBW 100 kHz VBW 1 MHz Mode Auto S	weep	M1[1]	SGL • 1Rm Clrw -44.02 dBm
Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3	weep	M1[1]	SGL • 1Rm Clrw -44.02 dBm
Ref Level 46.0 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3	weep	M1[1]	SGL • 1Rm Clrw -44.02 dBm
Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 RBW 100 kHz s VBW 1 MHz Mode Auto S	weep	M1[1]	SGL • 1Rm Clrw -44,02 dBm
Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 RBW 100 kHz s VBW 1 MHz Mode Auto S	weep	M1[1]	SGL • 1Rm Clrw -44,02 dBm
Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 RBW 100 kHz VBW 1 MHz Mode Auto S	weep	M1[1]	SGL • 1Rm Clrw -44.02 dBm
Ref Level 46.0 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offset 42.00 dE 14 dB SWI 500 ms	3 RBW 100 KHz S VBW 1 MHz Mode Auto S	weep	M1[1]	SGL • 1Rm Clrw -44,02 dBm

99.0 MHz/

1001 pts

14:12:44 10.11.2017

-20 dBm

-30 dBm-

-40 dBm-

-50 dBm-

10.0 MHz

M1 Norm

1.0 GHz

MultiView	Spectrum	₩								
RefLevel 46 Att	20 dB 😑 SWT	et 42.00 dB ● I 500 ms		Node Auto Swee	р					SGL
1 Frequency S	Sweep								M1[1]	●1Rm Clrw 24.89 dBm
40 dBm									-	2.68730 GHz
00 d0-										
30 dBm								M1		
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm										
								- AND - AND		
atterden and the	and a stand when the	millingung	when the man	nannontality	outoriphiliteries	www.www.ap-www	and the second states and the second s	,	alah kapaja	g on a week of the shall
-50 dBm										
1.0 GHz			1001 pt	<u> </u>	20	0.0 MHz/				3.0 GHz
				-			Aborted		490	10.11.2017
14:09:23 10.	11 2017									
14:09:25 10.	11.2017									
		¥								∇
MultiView Ref Level 46	Spectrum	et 42.00 dB ∈ I		Ande Auto Swee						SGL
MultiView	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I	RBW 100 kHz VBW 1 MHz M	Mode Auto Swee	p	1			M1[1]	●1Rm Clrw
MultiView Ref Level 46 Att	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Node Auto Swee	p				M1[1]	●1Rm Clrw
MultiView 8 Ref Level 46 Att 1 Frequency S	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	p				M1[1]	●1Rm Clrw 25.51 dBm
MultiView 8 Ref Level 46 Att 1 Frequency S	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	P			M1	M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	p				M1[1] -	●1Rm Clrw 25.51 dBm
MultiView 8 Ref Level 46 Att I Frequency S 40 dBm-	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	p				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Node Auto Swee	p				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	p				M1[1]	●1Rm Clrw 25.51 dBm
MultiView 8 Ref Level 46 Att TFrequency S 40 dBm- 30 dBm- 20 dBm-	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	р 				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46 40 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Node Auto Swee	p				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46 40 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	p				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46 Att 1 Frequency S 40 dBm	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	P				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46 40 Att 30 10 dBm 30 10 dBm 30 -10 dBm -20	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	P				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46	Spectrum 0.00 dBm Offse 20 dB SWT	et 42.00 dB ∈ I		Mode Auto Swee	P				M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46	Spectrum Od Bm Offse 20 dB SWT Weep	et 42.00 dB • 1							M1[1]	●1Rm Clrw 25.51 dBm
MultiView B Ref Level 46	Spectrum Od Bm Offse 20 dB SWT Weep	et 42.00 dB • 1							M1[1]	• 1Rm Clrw 25.51 dBm 2.68530 GHz
MultiView B Ref Level 46 40 Att 1 1 Frequency S 40 dBm 30 dBm 20 20 dBm 20 10 dBm 20 -10 dBm -0 -20 dBm	Spectrum Od Bm Offse 20 dB SWT Weep	et 42.00 dB • 1				·			M1[1]	• 1Rm Claw 25.51 dBm 2.68530 GHz
MultiView B Ref Level 46 40 Att 30 10 dBm 30 20 dBm 30 10 dBm 30 -10 dBm 30 -30 dBm 30 -30 dBm 30	Spectrum Od Bm Offse 20 dB SWT Weep	et 42.00 dB • 1				3			, , , , , , , , , , , , , , , , , , , ,	• 1Rm Clrw 25.51 dBm 2.68530 GHz

14:10:36 10.11.2017

MultiView	🗉 Spectrum	¥								∇
Ref Level 46 Att	20 dB 😑 SWT	et 42.00 dB ● F 500 ms V	NBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					SGL
1 Frequency S	Sweep								M1[1]	O1Rm Clrw
40 dBm									M1[1]	25.37 dBm 2.68530 GHz
30 dBm										
								M1		
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm								<u> </u>		
								- Aller		
THU CAN INTERNATION	hopent water the the	mounderwayer	Myllimeter	Mullerprophention	relocapillymenter	www.pwhenwoodined	appendition of the state of the	, and the second	ally apple of the second se	السمار مغرابه مراجع ويتأوقهمهم
-50 dBm										
1.0 GHz	×	1	1001 pt	s	20	0.0 MHz/				3.0 GHz
	Л						Aborted		4,40	10.11.2017
14:11:49 10	.11.2017									
		*								
MultiView	Spectrum		RBW 100 kHz							SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					SGL
MultiView Ref Level 46	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p	1			M1[1]	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz IBW 1 MHz M	Mode Auto Swee	p				M1[1]	SGL
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz ∕BW 1 MHz M	Mode Auto Swee	p				M1[1]	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att 1 Frequency \$	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	P			M1	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	p			М1	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz M	Mode Auto Swee	p			EW	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p			EM	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p			LTW.	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p			EM Y	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz M	Mode Auto Swee	p			EM	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 • Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	p			EM I	_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	p			EM I	_	SGL IRm Clrw 25,37 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz M	Mode Auto Swee	p			IM	_	SGL IRm Clrw 25,37 dBm
MultiView Ref Level 46 • Att 1 Frequency 5 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p			EM	_	SGL IRm Clrw 25,37 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz N	Mode Auto Swee	p			EN.	_	SGL IRm Clrw 25,37 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = F	RBW 100 kHz RBW 1 MHz M	Mode Auto Swee	p				_	SGL IRm Clrw 25,37 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB = F 500 ms V						M	_	SGL •1Rm Clrw 25.37 dBm 2.68530 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 42.00 dB = F 500 ms V							_	SGL IRm Cirw 25,37 dBm
MultiView Ref Level 46 • Att 1 1 10 0 0 -10 -20 -30 -30 -30 -40 -40 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -40 -40	Spectrum	et 42.00 dB = F 500 ms V							_	SGL •1Rm Clrw 25.37 dBm 2.68530 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	Spectrum	et 42.00 dB = F 500 ms V							_	SGL • 1 Rm Clrw 25,37 dBm 2.68530 GHz
MultiView Ref Level 46 • Att 1 1 10 0 0 -10 -20 -30 -30 -30 -40 -40 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -30 -40 -40	Spectrum	et 42.00 dB = F 500 ms V				0.0 MHz/				SGL •1Rm Clrw 25.37 dBm 2.68530 GHz

14:13:01 10.11.2017

IultiView		1 ∦ et 42.00 dB ⊕ R	BW 100 kHz						sc
\tt	14 dB 😑 SWT	500 ms V	BW 1 MHz M	ode Auto Sweep)				
Frequency S	sweep							M1[1]	●1Rm Cln -39,12 di
dBm									26.1830 6
dBm									
dBm									
dBm									
iBm									
) dBm									
) dBm									
) dBm									
) dBm									
	menthing	w ^m			14	when	Judies me me	hand a hard	
dBm	ww	by and the second of the secon	Longer appropriate	and you allow and	Mulunwww	when a show in		- • • • · · · · · · · · · · · · · · · ·	
0 GHz			1001 pt	S	2	.35 GHz/			26.5 G
:09:41 10	.11.2017 Spectrum	ו יאן					Aborted 🗧	 499	
:09:41 10 ultiView	OO dBm Offs	et 42.00 dB = R		ode Auto Sweer)		Aborted 🧧		
:09:41 10 IultiView	OO dBm Offs	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	ode Auto Sweep)		Aborted	M1[1]	so • 1Rm Clr
09:41 10 ultiView ef Level 46. tt requency 9	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep	>		Aborted	M1[1]	●1Rm Clr -38,95 d
:09:41 10 ultiView def Level 46. att Frequency S	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	0 1Rm Clr -38,95 d
:09:41 10 ultiView tef Level 46 tt requency \$	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Cirr -38.95 d
:09:41 10 ultiView tef Level 46 tt requency \$	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Cirr -38.95 d
:09:41 10. ultiView tef Level 46. tt Trequency S dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Cirr -38.95 d
i09:41 10. ultiView ef Level 46. tt Trequency S dBm dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweer			Aborted	M1[1]	0 1Rm Clr -38,95 d
:09:41 10 ultiView Ref Level 46.	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Cirr -38.95 d
:09:41 10. ultiView tef Level 46. tt requency & dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	• 1Rm Cir -38.95 d 26.1360 C
i09:41 10. ultiView kef Level 46. tt requency S dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweer			Aborted	M1[1]	●1Rm Cirr -38.95 d
i09:41 10. ultiView kef Level 46. tt requency S dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	●1Rm Cirr -38.95 d
i09:41 10. ultiView kef Level 46. tt requency S dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	M1[1]	0 1Rm Clr -38,95 d
i09:41 10. ultiView ief Level 46. tt requency S dBm dBm dBm dBm Bm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	MI[1]	0 1Rm Clr -38,95 d
i09:41 10. ultiView kef Level 46. tt dBm dBm dBm dBm dBm dBm dBm dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	MI[1]	0 1Rm Clr -38,95 d
i09:41 10. ultiView kef Level 46. tt dBm dBm dBm dBm dBm dBm dBm dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	MI[1]	●1Rm Cirr -38.95 d
:09:41 10. ultiView ef Level 46. .tt	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	MI[1]	0 1Rm Clr -38,95 d
i09:41 10. ultiView kef Level 46. tt requency S dBm dBm dBm dBm dBm dBm dBm dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	MI[1]	€ • 18m (26,1360 (26,1360 (
:09:41 10. ultiView	OO dBm Offs	et 42.00 dB = R		ode Auto Sweep			Aborted	MI[1]	€ • 18m (26,1360 (26,1360 (
:09:41 10. ultiView tef Level 46. tt requency & dBm	OO dBm Offs	et 42.00 dB = R		ode Auto Sweer				MI[1]	●1Rm Cirr -38.95 d
:09:41 10. ultiView	OO dBm Offs	et 42.00 dB = R		ode Auto Sweer			Aborted	M1[1]	● 1Rm (-38,95 d 26,1360 (
:09:41 10. ultiView	OO dBm Offs	et 42.00 dB = R						M1[1]	● 1Rm (-38,95 d 26,1360 (

14:10:53 10.11.2017

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Image: Section of the section of t	
JBM Image: Sector of the sec	
Image:	
dBm-	
d8m	
dBm-	
dBm	A Martin
ion when the second	nd W. W
0 GHz 1001 pts 2.35 GHz/	26.5 G
ef Level 46.00 dBm Offset 42.00 dB ● RBW 100 kHz tt 14 dB ● SWT 500 ms VBW 1 MHz Mode Auto Sweep	S
requency Sweep M1[1	
dBm	26.2070 (
dBm	
dBm	
Bm I I I I I I I	
asm	
dBm	
dBm	

14:13:19 10.11.2017

15M -2627.5MHz-Port 1~4:

-urdineterstrauge-tra		1001 pt			9.1 kHz/	Jacombroch Crow		10.0 M
			1					
								513.00
veep							M1[1]	•1Rm Cl -40,72 (
	500 ms V	TIMHZ N	NULLE AUTO SWEEP	,				
			Anda Auto Corr					s
Spectrum	- ₩							
1.2017								
L						AND OT REAL		
		1001 pt	S	99	9.1 KHZ/	Aborted	432	10.0 N
_{վառն} դենպունախերեր։	al allow and and		han an a			mound	an a	10.01
								513.00
veep							M1[1	●1Rm Cli ●1Rm Cli ●1.04 c
								01D Cl
0 dBm Offse 14 dB ● SWT	t 42.00 dB ⊜ P 500 ms V	NBW 100 kHz NBW 1 MHz N	1ode Auto Sweer	, ,				S
		DW 100 LU-						
	0 dBm Offse 14 dB ● SWT '@ep	Spectrum * 0 dBm Offset 42.00 dB • F 14 dB • SWT 500 ms V reep 	0 dBm Offset 42.00 dB = RBW 100 kHz 14 dB = SWT 500 ms VBW 1 MHz CED IMHZ N CED IMHZ N CED IMHZ N CED IMHZ N Image: SWT Image: SWT N Image: SWT Image: SWT Image: SWT Image: SWT Image: SWT Image: SWT	0 dBm Offset 42.00 dB P RBW 100 kHz 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep CEp Image: SWT Im	0 dBm Offset 42.00 dB = RBW 100 kHz 14 dB = SWT 500 ms 20 dB YBW 14 dB = SWT 500 ms 20 dB YBW 20 dB 100 kHz 20 dB YBW 20 dB YBW	0 dBm Offset 42.00 dB RBW 100 kHz 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep CCP Image: Constraint of the system of the	dBm Offset 42.00 dB RBW 100 kHz 14 dB SWT 500 ms Cep Image: SwT Image: SwT Image: SwT Image: SwT Image: SwT	dBm Offset 42.00 dB RBW 100 kHz 14 dB SWT 500 ms VBW 1 MHz Mode Auto Sweep CEP

09:24:31 11.11.2017

MultiView	Spectrum	¥							∇
Ref Level 46.0 Att	00 dBm Offset 14 dB = SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	Inde Auto Sweer)				SGL
DC 1 Frequency Sv		000 110 1	510 11412 10		, 				●1Rm Clrw
								M1[1]	
40 dBm									515.00 KHZ
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 cBm									
P I									
-50 dBm	ahr talinger than the production of	co	with more thank	and a stand and a stand of the	montale	hand have a start of the second	and many and a second second	anter and the second	teres and the second
9.0 kHz	Y		1001 pt	s	99	9.1 kHz/	Aborted		10.0 MHz 11.11.2017
09:25:44 11.1	11 2017								
09.23.44 11.3	TT'TATA								
	Spectrum	¥ t 42 00 dB ■ B l	RW 100 kHz						SG
	00 dBm Offset	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	>				SGL
Ref Level 46.0 Att	00 dBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)	1	1	MILLI	●1Rm Clrw
Ref Level 46.0 Att DC	00 dBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)			M1[1]	●1Rm Clrw
Ref Level 46.0 Att DC 1 Frequency St	00 dBm Offset 14 dB ● SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency S 40 dBm- 30 dBm-	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency S 40 dBm- 30 dBm-	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC 1 Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB = RI 500 ms VI	BW 1 MHz M	lode Auto Sweep				M1[1]	●1Rm Clrw -39.88 dBm
Ref Level 46.0 Att DC I Frequency St 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offset 14 dB • SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M						●1Rm Clrw -39.88 dBm

09:26:57 11.11.2017

MultiView	Spectrum	¥							∇
Ref Level 46.0	00 dBm Offse	t 42.00 dB = R	BW 100 kHz						SGL
Att 1 Frequency S	14 dB SWT	500 ms VI	BW 1 MHz M	1ode Auto Sweep					●1Rm Clrw
								M1[1]	-43.41 dBm
40 dBm			+						973.790 MHz
30 dBm			-						
20 dBm									
10 dBm									
10									
0 dBm			1						
-10 dBm			+						
-20 dBm			+						
-30 dBm									
-40 dBm									
			\Box		Γ.				MI when when when the work
an war war have	anonality April a	htten the trade was the second	wahapana	undergroupp	munerenanterille	the yes you have get	menantrefrenteter	munun	bronden an halfdade dr
-50 dBm	Current and Carling and	an calicana dina a s							
10.0 MHz			1001 pt	s	9	9.0 MHz/			1.0 GHz
)9:23:36 11.	11.2017						Aborted d		09:23:35
09:23:36 11. MultiView	Spectrum						Aborted		09:23:35
MultiView Ref Level 46.0	Spectrum 00 dBm Offse	t 42.00 dB = RI	BW 100 kHz RW 1 MHz M	Inde Auto Sween			Aborted		SGL
MultiView	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep	,		Aborted		SGL
MultiView R Ref Level 46.0 Att 1 Frequency S	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Aborted 📕	M1[1]	SGL ●1Rm Clrw -43.14 dBm
MultiView Ref Level 46.0 Att	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted	M1[1]	SGL ●1Rm Clrw -43.14 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod	M1[1]	SGL ●1Rm Clrw -43.14 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod	M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod	M1[1]	SGL ●1Rm Clrw -43.14 dBm
MultiView 8 Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod	M1[1]	SGL ●1Rm Clrw -43.14 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod	M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod	M1[1]	SGL ●1Rm Clrw -43.14 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Abortod	M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView R Ref Level 46.0 Att 1 Frequency S 40 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Ref Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 10 dBm 0 dBm 10 dBm 10 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Ref Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Ref Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 10 dBm 0 dBm 10 dBm 10 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweer				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Back Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweer				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Back Ref Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweer				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	● 1Rm Clrw -43,14 dBm 955.000 MHz
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					● 1Rm Clrw -43,14 dBm 955.000 MHz
MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	SGL ●1Rm Clrw -43,14 dBm
MultiView Bef Level 46.0 Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm -0 dBm -10 dBm -20 dBm -30 dBm -30 dBm	OO dBm Offse 14 dB • SWT	t 42.00 dB = RI							SGL • 1Rm Clrw -43.14 dBm 955.000 MHz

09:24:49 11.11.2017

11.11.

MultiView	Spectrum	¥							
RefLevel 46. Att	14 dB 🖷 SWT	t 42.00 dB ● RI 500 ms VI		lode Auto Sweep)				SGL
1 Frequency S	Sweep							M1[1]	●1Rm Clrw -43.48 dBm
40 dBm									963.900 MHz
30 dBm									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
o abin									
-10 dBm									
-20 dBm									
-30 dBm									
00 dom									
-40 dBm									M1
Microsoft La .			u. barren allegan	wayyou have made	madereloundered	had an the contraction of the	manyborn	montender and all all all all all all all all all al	and and the second
-50 dBm	an Clinger and and	ารใหญ่สาวหมรรรษง							
10.0 MHz	Y		1001 pt	s	99	9.0 MHz/		434	1.0 GHz
09:26:01 11.							Aborteu		
MultiView	Spectrum	¥ t 42.00 dB ● BI	BW 100 kHz						SGI
MultiView Ref Level 46. Att	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				⊽ SGL ●1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView Ref Level 46. Att	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView 8 Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	• 1Rm Cirw -43.83 dBm 964.890 MHz
MultiView Bef Level 46. Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 30 dBm 10 dBm 30 dBm -10 dBm 30 dBm -20 dBm 30 dBm -30 dBm -30 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.83 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI			Hume Magan M	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			• 1Rm Cirw -43.83 dBm 964.890 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offset 14 dB SWT	t 42.00 dB ∈ RI	BW 1 MHz M		Hume Magan M				• 1Rm Cliw -43.83 dBm 964.890 MHz

09:27:14 11.11.2017

MultiView	Spectrum	₩							∇
Ref Level 46 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms N	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	 1Rm Clrw 23.73 dBm
40 dBm									2.62740 GHz
30 dBm								M1	
20 dBm								1	
10 dBm									
0 dBm									
o dom									
-10 dBm									
-20 dBm									
-30 dBm									
								here	
AQ dBm www.hu	ulawal who have the	Marhandormay	the how when have	an have a property of	will market when	American Magnee	and and a second second second	al Manaparata	estoanternpolitaryhe
				, i i i i i i i i i i i i i i i i i i i					
-50 dBm			1001						2.0.011-
1.0 GHz	Y		1001 pt	5	2	00.0 MHz/	Aborted		3.0 GHz
09:23:53 11.	.11.2017								
MultiView	Spectrum								
MultiView Ref Level 46	.00 dBm Offse	et 42.00 dB ● F	RBW 100 kHz						SGL
	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz /	Mode Auto Swee	p	1			●1Rm Clrw
Ref Level 46 Att 1 Frequency S	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz /	Mode Auto Swee	p			M1[1]	●1Rm Clrw
Ref Level 46 Att	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz 1	Mode Auto Swee	p			M1[1]	●1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /BW 1 MHz !	Mode Auto Swee	p				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm- 30 dBm-	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /	Mode Auto Swee	p			M1[1]	• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm-	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz RBW 1 MHz 1	Mode Auto Swee	p				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm- 30 dBm-	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz / /BW 1 MHz /	Mode Auto Swee	p				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /	Mode Auto Swee	P				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz P BW 1 MHz P	Mode Auto Swee	p				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /	Mode Auto Swee	p				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz / /BW 1 MHz /	Mode Auto Swee	p				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz /	Mode Auto Swee	P				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	RBW 100 kHz P	Mode Auto Swee	P				• 1Rm Clrw 23.50 dBm
Ref Level 46 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	.00 dBm Offse 20 dB • SWT	et 42.00 dB ● F	BW 100 kHz /	Mode Auto Swee	P				●1Rm Clrw 23.50 dBm
Ref Level 46 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offse 20 dB SWT weep	et 42.00 dB ● F	RBW 100 kHz /	Mode Auto Swee					●1Rm Clrw 23.50 dBm
Ref Level 46 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	.00 dBm Offse 20 dB SWT weep	et 42.00 dB = F 500 ms	BW 100 kHz /						●1Rm Clrw 23,50 dBm 2.62740 GHz
Ref Level 46 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offse 20 dB SWT weep	et 42.00 dB = F 500 ms							●1Rm Clrw 23,50 dBm 2.62740 GHz
Ref Level 46 Att I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	.00 dBm Offse 20 dB SWT weep	et 42.00 dB = F 500 ms				0.0 MHz/			●1Rm Clrw 23,50 dBm 2.62740 GHz

09:25:06 11.11.2017

MultiView	B Spectrum	₩							∇
Ref Level 4 Att	20 dB 🖷 SWT	42.00 dB RBW 500 ms VBW		/lode Auto Swee	p				SGL
1 Frequency	Sweep							M1[1]	 1Rm Clrw 23.98 dBm
40 dBm									2.63140 GHz
30 dBm								M1	
20 dBm								1	
20 0011									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
								have a second	
-40, dBm- unit	www.www.wywwy.www.uh	unun hijkeryberry	and the owner where	www.www.	maryanstation	and the case of the	بىلىرىكىدىتە ئا ^ر ىتىمىلەرم _{ىل} ە	har we pandens work	and and the property of the second
-50 dBm									
1.0 GHz			1001 pt	5	20	0.0 MHz/			3.0 GHz
THE GILE	T T		1001 pt		2.		Aborted		11.11.2017
00.26.10 11	44 0047								
08:50:18 11									
09:26:19 11		<u> </u>							
MultiView Ref Level 4	6.00 dBm Offset	¥ 42.00 dB ● RBW							SGL
MultiView	6.00 dBm Offset	42.00 dB = RBW		1ode Auto Swee	p				•1Rm Clrw
MultiView Ref Level 4 Att I Frequency	6.00 dBm Offset	42.00 dB = RBW		Iode Auto Swee	p			M1[1]	●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att	6.00 dBm Offset	42.00 dB = RBW		/lode Auto Swee	p			M1[1]	●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att I Frequency	6.00 dBm Offset	42.00 dB = RBW		Node Auto Swee	p			M1[1]	●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency	6.00 dBm Offset	42.00 dB = RBW		1ode Auto Swee	p			M1[1]	●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency	6.00 dBm Offset	42.00 dB = RBW		Aode Auto Swee	p				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm	6.00 dBm Offset	42.00 dB = RBW		Mode Auto Swee	р				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm	6.00 dBm Offset	42.00 dB = RBW		Mode Auto Swee	p				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm	6.00 dBm Offset	42.00 dB = RBW		Node Auto Swee	p				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm	6.00 dBm Offset	42.00 dB = RBW		Mode Auto Swee	P				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm	6.00 dBm Offset	42.00 dB = RBW		Node Auto Swee	P				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	6.00 dBm Offset	42.00 dB = RBW		Node Auto Swee	P				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	6.00 dBm Offset	42.00 dB = RBW		Node Auto Swee	p				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m -20 d8m	6.00 dBm Offset	42.00 dB = RBW		Node Auto Swee	p				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	6.00 dBm Offset	42.00 dB = RBW		Mode Auto Swee	P				●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 6.00 dBm Offset 20 dB SWT Sweep	42.00 dB = RBW 500 ms VBW	<u>1 MHz N</u>						●1Rm Clrw 24.00 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	6.00 dBm Offset	42.00 dB = RBW 500 ms VBW	<u>1 MHz N</u>						• 1Rm Clw 24.00 dBm 2.62940 GHz
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 6.00 dBm Offset 20 dB SWT Sweep	42.00 dB = RBW 500 ms VBW	<u>1 MHz N</u>						• 1Rm Clw 24.00 dBm 2.62940 GHz
MultiView Ref Level 4 Att 1 Frequency 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m -20 d8m -30 d8m	Spectrum 6.00 dBm Offset 20 dB SWT Sweep	42.00 dB = RBW 500 ms VBW	<u>1 MHz N</u>			0.0 MHz/			●1Rm Clrw 24,00 dBm 2.62940 GHz

09:27:32 11.11.2017

lultiView									
tt	00 dBm Offse 14 dB = SWT	t 42.00 dB ● RI 500 ms VI	BWF 100 kHz BWF 1 MHz M	lode Auto Sweep	1				SC
Frequency S	weep							M1[1]	●1Rm Cln -38.92 d
dBm								wit[1]	26.1830 0
dBm									
dBm									
dBm									
iBm									
) dBm									
) dBm									
) dBm									
) dBm									-
		Л				at we		la that an an an an an	and the second section
dBm	menter and and	Constanting of the second	- Comment of the Andrew Comment	when how were	Munuhanni	man	- and and a star a star a star	and the star of the	•
						.35 GHz/			26.5 G
24:11 11. ultiView	Spectrum		1001 pt	S	2		Aborted	aya	11.11.2017
:24:11 11. ultiView Ref Level 46.	OO dBm Offse	t 42.00 dB = RI					Aborted	490 	11.11.2017
	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M101	11.11.2017 50 • 1Rm Clr
24:11 11. ultiView ef Level 46. tt requency S	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
24:11 11. ultiView ef Level 46. tt requency S	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
:24:11 11. ultiView 4 tef Level 46. tt Frequency S dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
:24:11 11. ultiView 4 tef Level 46. tt Frequency S dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017
24:11 11. ultiView ef Level 46. tt Trequency S dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017
24:11 11. ultiView tef Level 46. tt Trequency S dBm dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Abortod	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
24:11 11. ultiView ef Level 45. tt Tequency S dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Abortod	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
24:11 11. ultiView ef Level 46. tt requency S dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Abortod	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
24:11 11. ultiView Sef Level 46. ttt requency S dBm dBm dBm dBm iBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Abortod	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017 → → → → → → → → → → → → → → → → → → →
24:11 11. ultiView set ef Level 46. tt requency S dBm dBm dBm dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz					M1[1]	11.11.2017
24:11 11. ultiView F ef Level 46. tt frequency S dBm dBm dBm dBm dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz					M1[1]	11.11.2017
24:11 11. ultiView F ef Level 46. tt frequency S dBm dBm dBm dBm dBm dBm dBm dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz					M1[1]	11.11.2017
:24:11 11. ultiView it cef Level 46. ttt	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz					M1[1]	11.11.2017 SC •1Rm Clr] -38,70 d 26,1830 C
24:11 11. ultiView F ef Level 46. tt frequency S dBm	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz					M1[1]	11.11.2017 SC •1Rm Clr] -38,70 d 26,1830 C
:24:11 11. ultiView is ef Level 46. itt	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz				Aborted	M1[1]	11.11.2017 SC •1Rm Clr] -38,70 d 26,1830 C
:24:11 11. ultiView Ref Level 46.	OO dBm Offse	t 42.00 dB = RI	BW 100 kHz	lode Auto Sweep		33 GHZ/	Aborted	M1[1]	•1Rm Clr

09:25:24 11.11.2017

	Spectrum	¥							\bigtriangledown
Ref Level 46.00 Att	14 dB 😑 SWT	t 42.00 dB • R 500 ms V	NBW 100 kHz NBW 1 MHz N	1ode Auto Sweep)				SGL
1 Frequency Sw	veep							M1[1]	●1Rm Clrw -38.98 dBm
40 dBm									26.2770 GHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-10 0.511									
-20 dBm									
-30 dBm									
10.10-									M1
-40 dBm	. Au	4							المسلمية المسلم
-50 dBm	wwwww	land and the second sec	Maryana	un how were	Mohonwoon	Union and Gelling	· workey work work	and younged was the hard	
3.0 GHz			1001 pt	s	2	.35 GHz/			26.5 GHz
							Aborted		11.11.2017 09:26:36
09:26:36 11.1	1.2017								
MultiView 8	Spectrum	*							∇
Ref Level 46.00 Att	JdBm Offset 14dB ● SWT	t 42.00 dB = R 500 ms V	NBW 100 kHz NBW 1 MHz N	Inde Auto Sweer					SGL
1 Frequency Sw	veep	300 m3	DIV INITZ IV		,				
40 dBm								MILII	●1Rm Clrw
								M1[1]	
30 dBm								M1[1]	-38.99 dBm
								M1[1]	-38.99 dBm
								M1[1]	-38.99 dBm
20 dBm								M1[1]	-38.99 dBm
20 dBm								M1[1]	-38.99 dBm
								M1[1]	-38.99 dBm
								M1[1]	-38.99 dBm
10 dBm								M1[1]	-38.99 dBm
10 dBm								M1[1]	-38.99 dBm
10 dBm								M1[1]	-38.99 dBm
10 dBm								M1[1]	-38.99 dBm
10 dBm								M1[1]	-38.99 dBm
10 dBm								M1[1]	-38,99 dBm 26,1830 GHz
10 dBm								M1[1]	-38.99 dBm
10 dBm								M1[1]	-38,99 dBm 26,1830 GHz
10 dBm	ar hy survey and a	af	1001 pt	S		35 GHz/		M1[1]	-38,99 dBm 26,1830 GHz

09:27:49 11.11.2017

15M -2655MHz-Port 1~4:

MultiView	Spectrum								∇
Att	.00 dBm Offse 14 dB = SWT		3W 100 kHz 3W 1 MHz M	lode Auto Sweep	1				SGL
DC 1 Frequency S	Sweep								01Rm Clrw
40 dBm								M1[1] -41.00 dBm 523.00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
l,									
-30 dBm									
-40 dBm									
-50 dBm	alle for the second	provident of the second of the	1001 pt:	e www.hww.hup		9.1 kHz/	hallinghapping	successfully and a second s	10.0 MHz
			1001 pt				Aborted	4,40	11.11.2017 00:34:09
	11 2017								
00:34:09 11	.11.2017								
	Spectrum	¥							
MultiView		t 42.00 dB = RE	3W 100 kHz 3W 1 MHz M	lode Auto Sweep	,				SGL
MultiView Ref Level 46	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep	,				•1Rm Clrw
MultiView Ref Level 46 Att DC	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep	,			M1[1]	•1Rm Clrw
MultiView Ref Level 46 Att DC I Frequency 9	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep	,			M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC I Frequency 9	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC I Frequency 3 40 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency 9 40 dBm- 30 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency 9 40 dBm- 30 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency 5 40 dBm 20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC Frequency S 40 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC TFrequency 40 dBm 30 dBm 10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC Frequency S 40 dBm 20 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency 8 40 dbm 30 dbm 20 dbm 10 dbm -10 dbm -20 dbm -30 dbm -40 dbm	OO dBm Offse 14 dB SWT	t 42.00 dB = RE		lode Auto Sweep				M1[1]	●1Rm Clrw -40.79 dBm
MultiView Ref Level 46 Att DC 1 Frequency 9 40 d8m 30 d8m 20 d8m 10 d8m -10 d8m -20 d8m	OO dBm Offse 14 dB SWT	t 42.00 dB = RE				9.1 kHz/		M1[1]	●1Rm Clrw -40.79 dBm

00:35:22 11.11.2017

MultiView	Spectrum	¥							
Ref Level 46. Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI 500 ms VI	BWI 100 kHz BWI 1 MHz M	lode Auto Sweep)				SGL
DC 1 Frequency S	Sweep			1	1				●1Rm Clrw
40 dBm								M1[1]	-42.02 dBm 513.00 kHz
30 dBm									
20 dBm									
20 0611									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-50 dBm									
4 0									
-40 dam									
-50 dBm	a strate walls			I want die Aren black beserde	have been advected as the second s	of an and a second	Helpender warden ward	Part and a statistic statistic	and a multiple state of the state
9.0 kHz	an Ar Burbarrows	an fine als avoid a said	1001 pt		1400-1417771100-1404 99	9.1 kHz/		J	10.0 MHz
][]						Aborted		11.11.2017 00:36:34
00:36:35 11.	11 2017								
00.30.35 11.	11.2017								
	Spectrum	*							
MultiView Ref Level 46. Att		t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep)				 SGL
MultiView Ref Level 46.	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep)				●1Rm Clrw
MultiView Ref Level 46. Att DC I Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw
MultiView Ref Level 46. Att DC	OO dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC I Frequency S	OO dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC I Frequency S 40 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView E Ref Level 46. DC 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm- 30 dBm- 20 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView E Ref Level 46. DC 1 Frequency S 40 dBm- 30 dBm- 20 dBm- 10 dBm-	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Bef Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Bef Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Bef Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 10 dBm 0 dBm -10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm -10 dBm -10 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = R		lode Auto Sweep				M1[1]	●1Rm Clrw -41.52 dBm
MultiView Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -20 dBm -20 dBm -20 dBm -20 dBm -30 dBm -30 dBm	Spectrum O dBm Offse 14 dB SWT Sweep	42.00 dB = R 500 ms VI	BW 1 MHz M						●1Rm Clrw -41.52 dBm
MultiView Bef Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 30 dBm 20 dBm 10 dBm 10 dBm -10 dBm -20 dBm -20 dBm -20 dBm -40 dBm	OO dBm Offse 14 dB SWT	t 42.00 dB = RI				9.1 kHz/			●1Rm Clrw -41.52 dBm

00:37:47 11.11.2017

MultiView	Spectrum	¥.							
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI 500 ms VE	BW 100 kHz BW 1 MHz M	1ode Auto Sweep					SGL
1 Frequency S		500 ms VI		iode Auto Sweep	,				●1Rm Clrw
40 d0m								M1[1]	-43.52 dBm 950.050 MHz
40 dBm									
30 dBm									
50 dbin									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									MI
NAMERICALINE	Later - Alathan Ballan	Max tradition distri	N. matthe Manufester and	manumultiple	www.www.www.	phingen muchile	hahaddhanyadhaar	embellangunan	an war white has
-50 dBm	250 - 951 - 1-510, -C	a na							
10.0 MHz		er in og produkter bjerere	1001 pt	s	99	9.0 MHz/			1.0 GHz
1.1)[n, in officerities we		S	99	9.0 MHz/	Aborted		1.0 GHz 11.11.2017
10.0 MHz)[S	99	9.0 MHz/	Aborted 🚺		1.0 GHz
10.0 MHz				S	99	9.0 MHz/	Aborted		1.0 GHz 11.11.2017
10.0 MHz 00:34:27 11. MultiView Ref Level 46.0	Spectrum 00 dBm Offse	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 00:31:26
10.0 MHz 00:34:27 11. MultiView 9 Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted 🚺		11.11.2017 0033135 SGL
10.0 MHz 00:34:27 11. MultiView B Ref Level 46.0 Att T Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Abortod	M1[1]	11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 00:34:27 11. MultiView 9 Ref Level 46.0 Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Abortod		11.11.2017 11.11.2017 ▼ SGL ●1Rm Clrw
10.0 MHz 00:34:27 11. MultiView 9 Ref Level 46.0 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 00:34:27 11. MultiView B Ref Level 46.0 Att T Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 00:34:27 11. MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 00:34:27 11. MultiView 9 Ref Level 46.0 Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 10.34:27 11. MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Abortad		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 00:34:27 11. MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Abortod		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 10.034:27 11. MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Abortod		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 10.34:27 11. MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Abortod		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 10.0 MHz 00:34:27 11. MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 10.034:27 11. MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 10.0 MHz 00:34:27 11. MultiView B Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm
10.0 MHz 10.0 MHz 00:34:27 11. MultiView E Ref Level 46.0 Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	1001 pt			9.0 MHz/	Aborted		11.11.2017 ▼ SGL ●1Rm Cirw -44,04 dBm

1001 pts

99.0 MHz/

00:35:39 11.11.2017

-40 dBm

 M1

·····

1.0 GHz

MultiView 8	J -	₩							∇
Ref Level 46.0 Att	0 dBm Offse 14 dB ● SWT	t 42.00 dB ● P 500 ms V	NBWF 100 kHz NBWF 1 MHz M	lode Auto Sweer)				SGL
1 Frequency Sv		0001110	Div Think in						O1Rm Clrw
40 dBm								M1[1]	-43.98 dBm 950.050 MHz
40 0Bm									
30 dBm									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm									M1
6 . I				Alperthealthearthyto	tom who have deal almost	and the second second	war Maly were the	mylunamention	production of the balance
u-50 dBm	when when the	Minthequerent	rynamian	Alfan,				•	
10.0 MHz			1001 pt	s	99	9.0 MHz/			1.0 GHz
							Aborted		11.11.2017
00:36:52 11.1	1 2017								
00.30.32 11.1									
MultiView 8									
Ref Level 46.0	OdBm Offset	t 42.00 dB = P		lode Auto Sweer					SGL
Ref Level 46.0	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P	RBW 100 kHz BW 1 MHz M	lode Auto Sweep)	1	1		O1Rm Clrw
Ref Level 46.0 Att 1 Frequency Sv	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.00 Att 1 Frequency Sv 40 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency Sv	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SV 40 dBm 30 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.00 Att 1 Frequency Sv 40 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SV 40 dBm 30 dBm 20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SV 40 dBm 30 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SV 40 dBm 30 dBm 20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	01Rm Clrw
Ref Level 46.0 Att 1 Frequency SV 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 Att 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 1 Frequency SW 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep				M1[1]	● 1Rm Clrw -43.63 dBm 955.990 MHz
Ref Level 46.0 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P						M1[1]	●1Rm Clrw -43.63 dBm
Ref Level 46.0 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P		lode Auto Sweep					● 1Rm Clrw -43.63 dBm 955.990 MHz
Ref Level 46.00 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P				 			• 1Rm Clrw -43.63 dBm 955.990 MHz
Ref Level 46.00 1 Frequency SX 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	0 dBm Offse 14 dB ● SWT	t 42.00 dB = P				1/2014/100/100/100/100/100/100/100/100/100/			●1Rm Clrw -43.63 dBm 955.990 MHz

00:38:05 11.11.2017

MultiView	Spectrum	¥							
Ref Level 46 Att	20 dB 😑 SWT	et 42.00 dB ● P 500 ms V		Mode Auto Swee	p				SGL
1 Frequency S	Sweep							M1[1]	•1Rm Clrw 23.21 dBm
40 dBm									2.65330 GHz
30 dBm								M1	
20 dBm								Ĭ	
20 000									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
								14	
JAR & BUNNER	halayounderably	permitters	-	mounderstand	alyman hours	all a construction of the	اسكك مردعا ومرجع والمرجع والمرجع	of poranoing	hanger and the Hours of Alphy of the
-50 dBm									
1.0 GHz			1001 pt		20)0.0 MHz/			3.0 GHz
1.0 GHZ	Y		1001 pt	3	20	J0.0 MI127	Aborted		11.11.2017
00:34:44 11.	.11.2017								
00:34:44 11.									
MultiView	Spectrum		RBW 100 kHz						SGL
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P		Mode Auto Swee	p				SGL
MultiView Ref Level 46 Att T Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			м1[1]	SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz N	Node Auto Swee	p			M1[1]	SGL
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	p			M1[1]	SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 Att T Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz BW 1 MHz N	Vode Auto Swee	P			M1[1]	SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	XBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	NBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz BW 1 MHz N	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm 30 dBm 20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	XBW 100 kHz M	Mode Auto Swee	p				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 Att TFrequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz N	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz N	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz N	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 KHz M	Mode Auto Swee	P				SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Offse 20 dB SWT SWeep	et 42.00 dB = R 500 ms V							SGL IRm Clrw 23.09 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum Offse 20 dB SWT SWeep	et 42.00 dB = R 500 ms V	BW 100 kHz N						SGL •1Rm Cirw 23.09 dBm 2.65130 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum Offse 20 dB SWT SWeep	et 42.00 dB = R 500 ms V							SGL •1Rm Cirw 23.09 dBm 2.65130 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum Offse 20 dB SWT SWeep	et 42.00 dB = R 500 ms V							SGL •1Rm Cirw 23.09 dBm 2.65130 GHz

00:35:57 11.11.2017

MultiView 🕀		₩							∇
Ref Level 46.0 Att	20 dB 😑 SWT	: 42.00 dB ● F 500 ms V		Node Auto Swee	p				SGL
1 Frequency Sw	veep							M1[1]	 1Rm Clrw 23.31 dBm
40 dBm									2.65130 GHz
30 dBm								M1	
20 dBm								Ň	
20 0011									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm								<u></u>	
								l h	
49, dBm white	mangeneration	hrundungent	white white the second	Mummunahan	www		an was all a construction of the	fre a apaches	where drive white a public
FO dBa									
-50 dBm 1.0 GHz			1001 pt		20	0.0 MHz/			3.0 GHz
1.0 GHZ			1001 pt	5	20		Aborted		11.11.2017
00:37:10 11.1	1 2017								
	~								
Ref Level 46.0		≇ 42.00 dB ● F	BW 100 kHz						SGL
Att 1 Frequency Sw	20 dB 🖷 SWT		/BW 1 MHz M	Mode Auto Swee	p				●1Rm Clrw
								M1[1]	
40 dBm									2100100 0112
30 dBm									
								м1	
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
			1						
-20 dBm									
-20 dBm									
-20 dBm								<u> </u>	
-30 dBm									
-30 dBm	Luser MM Man Margine W	and and and a state of the stat	and an and the local sectors of the sector o	all from Joy Would ware the	upp-weit also also and	and the state of the	ann ann ann a'		o Brank Charles and Market and Market
-30 dBm	Land AND LOU MAD	an Magdaladoor y Calaono	an manager	ogity	ilyhaan Dal-Ingaagaan an	ana ayaa aa	hooper on the Marson of		o o set a banda da barrange
-30 dBm	Para way in an angle of the	an a	າມ 1001 pt	•		ພາຍພູທູການອີງຈອກ 	langeronan Allanda (an GHz

00:38:22 11.11.2017

MultiView	Spectrum	¥							
Att	14 dB 🖷 SWT	t 42.00 dB 500 ms	 RBW 100 kHz VBW 1 MHz 	1ode Auto Sweep)				SGL
1 Frequency S	weep							M1[1]	●1Rm Clrw -39.20 dBm
40 dBm									26.1360 GHz
00 10-									
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
									M1
-40 dBm									- I all and a for the grant of
-50 dBm	- Murthan war	1		hand have been and	Mondoom	mound	anaraman and more	hundryangahan	we want
3.0 GHz		10	1001 pt	is	2	.35 GHz/			26.5 GHz
][•				Aborted		11.11.2017
00:35:02 11.	11.2017								
	Spectrum	¥							∇
MultiView Ref Level 46.	Spectrum 00 dBm Offse	t 42.00 dB	RBW 100 kHz VRW 1 MHz	Ande Auto Sweer					SGL
MultiView Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB	RBW 100 kHz VBW 1 MHz N	1ode Auto Sweep)	1		M1[1]	•1Rm Clrw
MultiView Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		1ode Auto Sweep				M1[1]	•1Rm Clrw
MultiView 8 Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		fode Auto Swee;				M1[1]	●1Rm Clrw -39.16 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		Node Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		1ode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweer				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm- 20 dBm- 10 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Bef Level 46. Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView B Ref Level 46. Att 1 Frequency S 40 dBm 20 dBm 20 dBm 10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm 26.2070 GHz
MultiView Bef Level 46. Att 1 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB		lode Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum O dBm Offse 14 dB SWT weep	t 42.00 dB		Node Auto Sweep				M1[1]	●1Rm Clrw -39.16 dBm 26.2070 GHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm -50 dBm	Spectrum O dBm Offse 14 dB SWT weep	t 42.00 dB						M1[1]	• 1Rm Clrw -39.16 dBm 26.2070 GHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Spectrum O dBm Offse 14 dB SWT weep	t 42.00 dB						M1[1]	●1Rm Clrw -39.16 dBm 26.2070 GHz

00:36:14 11.11.2017

MultiView		*							
Att	00 dBm Offset 14 dB SWT	t 42.00 dB ● RI 500 ms VE	BW 100 kHz BW 1 MHz M	lode Auto Sweep	1				SGL
Frequency S	weep								O1Rm Clrw
								M1[1]	-39.15 dBn 26.1130 GH
0 dBm									2011100 011
0 dBm									
- 1-									
D dBm									
0 dBm									
dBm									
abiii									
0 dBm									
0 dBm									
o doni									
) dBm									
) dBm									EM
									a more
	men manas		a. Annalian	persona and	runnun	and harring wou	mon pour with	Monoran	and the
i0 dBm	,	- waren - waren - waren di	and the second second	Al Buckstown Co					
.0 GHz			1001 pt	S	2	.35 GHz/			26.5 GH
	~						Aborted d	 499	00:37:27
ultiView	Spectrum	¥ ± 42.00 dB ● RI	BW 100 kHz				Aborted		▼ SGL
AultiView Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Aborted		SGL
fultiView Ref Level 46.0 Att	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Aborted		SGL
IultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Aborted	M1[1]	SGL ●1Rm Clrw -38,90 dBi
IultiView Ref Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep	,		Aborted		SGL ●1Rm Clrw -38,90 dBi
def Level 46.0 Att Frequency S	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		SGL ●1Rm Clrw -38,90 dBi
dBm-	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		SGL ●1Rm Clrw -38,90 dBi
ultiView 3 ef Level 46.0 tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		SGI • 1 Rm Cirw -38,90 dB
ultiView 8 ef Level 46.0 tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		SGL ●1Rm Clrw -38,90 dBi
ultiView 8 ef Level 46.0 tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep			Aborted		SGI • 1 Rm Cirw -38,90 dB
ultiView 8 ef Level 46.1 tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGI • 1 Rm Cirw -38,90 dB
ultiView 8 ef Level 46.0 tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,90 dBi
ultiView e ef Level 46,c tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,90 dBi
ultiView e ef Level 46.c tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,90 dBi
ultiView B ef Level 46.0 tt requency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,90 dBi
dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,90 dBi
dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38,90 dBi
IultiView 8 Sef Level 46.0 Stt Frequency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	iode Auto Sweep					SGL ●1Rm Clrw -38.90 dBr
IultiView 8 Sef Level 46.0 Stt Frequency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL ●1Rm Clrw -38.90 dBr
AultiView Ref Level 46.0 Att Frequency S 0 dBm 0 dBm 0 dBm 0 dBm dBm dBm 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep					SGL ●1Rm Clrw -38.90 dBr
IultiView Reguest 46.0 Ref Level 46.0 46.0 Marrier 1000000000000000000000000000000000000	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep					SGL ●1Rm Clrw -38.90 dBr
IultiView Ref Ref Level 46.0 Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep					• 1Rm Clrw -38,90 dBr 26,1130 GH
IultiView B kef Level 46.0 Frequency S dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep					• 1Rm Clrw -38,90 dBr 26,1130 GH
IultiView Ref Ref Level 46.0 Frequency S 0 dBm	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz M	lode Auto Sweep					• 1Rm Clrw -38,90 dBr 26,1130 GH
AultiView Automatical Ref Level 46.0 Att Frequency S Image: Second	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					SGL IRm Clrw -38.90 dBn
AultiView Automatical Ref Level 46.0 Att Frequency S Image: Second	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep					• 1Rm Cirw -38.90 dBr 26.1130 GH
D:37:27 11. MultiView Ref Level 46.0 Att Trequency S 0 dBm 0	Spectrum D0 dBm Offset 14 dB SWT	t 42.00 dB ⊜ RI	BW 100 kHz BW 1 MHz M			35 GHz/			● 1Rm Clrw -38:90 dBn 26.1130 GH

00:38:40 11.11.2017

15M -2682.5MHz-Port 1~4:

	Spectrum dBm Offset	# 42.00 dB ● RE	3W 100 kHz						SGL
DC	14 dB 🖷 SWT			lode Auto Sweep)				
Frequency Sw	reep							M1[1Rm Clrw 1] -41.64 dB 513.00 kH
0 dBm									
0 dBm									
0 dBm									
0 dBm									
dBm									
LO dBm									
LO GBII									
20 dBm									
30 dBm									
LMI									
40 dām									
•	und marked and the second s	wangambankanada	manin	an and the second		all and a second	and a support	-C-manumation	on many man
9.0 kHz			1001 pt	s	90	9.1 kHz/			10.0 MH
):06:39 11.1:	·		1001 pt	-			Aborted 📕	 492	11.11.2017
D:06:39 11.1: MultiView # Ref Level 46.00	Spectrum	¥ : 42.00 dB ● RE 500 ms VE	3W 100 kHz				Aborted 🧧	(DQ)	00.06.30
D:06:39 11.1 MultiView B Ref Level 46.00 Att DC	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz	lode Auto Sweep			Aborted 📲		▼ SGI ●1Rm Clrw
D:06:39 11.1: AultiView B Ref Level 46.00 Att DC Frequency Sw	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz				Aborted	M1[1	●1Rm Clrw -40,42 dB
D:06:39 11.1: AultiView B Ref Level 46.00 Att Frequency Sw 0 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz				Aborted		●1Rm Clrw -40,42 dB
D:06:39 11.1: AultiView B Ref Level 46.00 Att Frequency Sw 0 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz				Aborted		●1Rm Clrw -40,42 dB
D:06:39 11.1: AultiView Ref Level 46.00 Att D:C Frequency Sw D dBm D dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz				Aborted		●1Rm Clrw -40,42 dB
D:06:39 11.1: AultiView B Ref Level 46.00 Att DC Frequency Sw D dBm D dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz				Aborted		●1Rm Clrw -40,42 dB
D:06:39 11.1: MultiView B Ref Level 46.00 Att D:0C Frequency Sw 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz						● 1Rm Clrw -40,42 dB
D:06:39 11.1: MultiView B Ref Level 46.00 Att D:0 Frequency Sw 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz				Aborted		● 1Rm Clrw -40,42 dB
D:06:39 11.1: AultiView B Ref Level 46.00 Att D:0C Frequency Sw 0 dBm 0 dBm 0 dBm dBm dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz						●1Rm Clrw -40,42 dB
D:06:39 11.1: MultiView B Ref Level 46.00 Att D:0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz				Aborted		●1Rm Clrw -40,42 dB
D:06:39 11.1: MultiView B Ref Level 46.00 Att DC Frequency Sw 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm 20 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz						● 1Rm Clrw -40,42 dB
D:06:39 11.1: MultiView P Ref Level 46.00 Att Frequency Sw 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm 20 dBm 20 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz						
D:06:39 11.1: MultiView # Ref Level 46.00	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz						
D:06:39 11.1: MultiView P Ref Level 46.00 Att Frequency Sw 0 dBm 0 dBm 0 dBm 0 dBm 10 dBm 20 dBm 10 dBm 50 dBm 50 dBm	Spectrum OdBm Offset 14 dB = SWT	: 42.00 dB = RE	3W 100 kHz						⊽ SGL ●1Rm Clrw

00:07:52 11.11.2017

MultiView	Spectrum	⊢							∇
Att	00 dBm Offse 14 dB = SWT	et 42.00 dB ● R 500 ms V	BW 100 kHz BW 1 MHz №	lode Auto Sweep)				SGL
DC 1 Frequency S	weep							M1 [1]	•1Rm Clrw
40 dBm								M1[1]	-41,40 dBm 523,00 kHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
h									
'-30 dBm									
-40 dBm									
W \									
-50 dBm	and and a start of the	er war war war war war war war war war wa	1001 pt		andriphymy. oc	99.1 kHz/	on all and all the second	Marringham	10.0 MHz
910 KHZ)[1001 pt	.5			Aborted		11.11.2017
00:09:04 11.	11.2017								
MultiView	Spectrum	- ₩							∇
Ref Level 46.	00 dBm Offse	et 42.00 dB = R	BW 100 kHz BW 1 MHz №	Iode Auto Sweep)				SGL
	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz N	1ode Auto Sweep)				SGL
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep)			M1[1]	SGL
Ref Level 46. Att DC	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz N	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46.1 Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm-	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46.1 Att DC 1 Frequency S 40 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz N	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz BW 1 MHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46.1 Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R	BW 100 kHz M	lode Auto Sweep				M1[1]	SGL •1Rm Clrw -40.79 dBm
Ref Level 46. Att DC I Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB = R						M1[1]	• 1 Rm Clrw -40.79 dBm 513.00 kHz
Ref Level 46. Att DC 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	00 dBm Offse 14 dB ● SWT	et 42.00 dB • R 500 ms • V	BW 1 MHz N			99.1 kHz/			SGL •1Rm Clrw -40.79 dBm

00:10:17 11.11.2017

MultiView									▽
Ref Level 46. Att	.00 dBm Offse 14 dB ■ SWT	t 42.00 dB • RI 500 ms VE	BWI 100 kHz BWI 1 MHz MI	lode Auto Sweep)				SGL
1 Frequency S								M1[1]	•1Rm Clrw -43.95 dBm
40 dBm									978.740 MHz
30 dBm									
20 dBm									
20 0011									
10 dBm									
0 dBm									
-10 dBm									
-10 0811									
-20 dBm									
-30 dBm									
10-10									
-40 dBm									M1
-50 dBm	when when when when when when when when	when my plane	water	umanymynymiany	and the search of the form	aliman and a second second	portunation	www.ueweyonwo	40.0
10.0 MHz			1001 pt:	S	9	 9.0 MHz/			1.0 GHz
][]						Aborted		11.11.2017 00:06:55
00:06:56 11.	.11.2017								
00:06:56 11.		*							▽
MultiView Ref Level 46.	Spectrum	t 42.00 dB = RI		Inde Auto Sween					SGL
MultiView	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI	BW 100 kHz BW 1 MHz M	lode Auto Sweep		1	1	MILI	●1Rm Clrw
MultiView Ref Level 46. Att	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep	,			M1[1]	●1Rm Clrw
MultiView Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView 3 Ref Level 46. Att 1 Frequency S 40 dBm-	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm d0 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm d0 dBm 20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		ode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att Frequency S d0 dBm dBm dBm dBm dBm dBm dBm dBm dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		lode Auto Sweep				M1[1]	●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		iode Auto Sweep					● 1Rm Clrw -43.76 dBm 954.010 MHz
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		ode Auto Sweep					●1Rm Clrw -43.76 dBm
MultiView Ref Level 46. Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 00 dBm Offse 14 dB SWT	t 42.00 dB = RI		winderallal					● 1Rm Clrw -43.76 dBm 954.010 MHz

00:08:09 11.11.2017

MultiView	Spectrum	*							
Ref Level 46.0 Att	00 dBm Offse 14 dB = SWT	t 42.00 dB = RI 500 ms VI	BW 100 kHz BW 1 MHz №	lode Auto Sweer)				SGL
1 Frequency S								M1[1]	●1Rm Clrw -43.64 dBm
40 dBm		L							553,460 MHz
30 dBm									
20 dBm									
10 dBm									
0 dBm									
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm					M1				
Malunan		well it autor at tracks	manutum	who who who who	www.humpuh	monally	hele the the terminal and the second	muchannes	undraantherarchitery
-50 dBm									
10.0 MHz	Y		1001 pt	s	99	9.0 MHz/			1.0 GHz
							Aborcett		
00:09:22 11.1	11.2017								
MultiView	Spectrum	*							∇
Ref Level 46.0	00 dBm Offset	t 42.00 dB 🖷 RI	BW 100 kHz						SGL
Att 1 Frequency St	14 dB SWT weep	500 ms VI	BW 1 MHz N	lode Auto Sweep)				
									●1Rm Clrw
								M1[1]	-43.33 dBm
40 dBm								M1[1]	
								M1[1]	-43.33 dBm
40 dBm								M1[1]	-43.33 dBm
30 dBm								M1[1]	-43.33 dBm
								M1[1]	-43.33 dBm
30 dBm								M1[1]	-43.33 dBm
30 dBm								M1[1]	-43.33 dBm
30 dBm								M1[1]	-43.33 dBm
30 dBm								M1[1]	-43.33 dBm
30 dBm								M1[1]	-43.33 dBm
30 dBm								M1[1]	-43.33 dBm

1001 pts

99.0 MHz/

00:10:35 11.11.2017

-30 dBm

-40 dBm-

-50 dBm 10.0 MHz . Lu

1.0 GHz

MultiView	Spectrum	₩								
Ref Level 4 Att	20 dB 🖷 SWT	et 42.00 dB ● F 500 ms - N		Node Auto Swee	p					SGL
1 Frequency	Sweep								M1[1]	●1Rm Clrw 23.59 dBm
40 dBm									-	2.67730 GHz
30 dBm										
SO USIN								M1		
20 dBm										
10 dBm										
0 dBm										
-10 dBm										
-20 dBm										
-30 dBm								H		
40 d0m							and the second second	freed	a dan aktur	m unangharter
	-phron-phrometalista	and be applying	nonentrepresentation	Maymodulewound	phenymeterite	www.www.www		-u. ,		
-50 dBm										
1.0 GHz			1001 pt	s	20	0.0 MHz/				3.0 GHz
							Aborted		4,40	00:07:14
00:07:14 1:	1.11.2017									
MultiView	Spectrum									
MultiView Ref Level 4	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Node Auto Swee	p					SGL
MultiView Ref Level 4	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p				M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level 4	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p				M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level 4 Att 1 Frequency	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p				M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			MI	M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level 4 Att I Frequency 40 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			MI	M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			M1	M1[1] 	●1Rm Clrw 23.99 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm 30 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			MI	M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level 4 Att 1 Frequency 40 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			MI	M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level • Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			MI	M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level 2 Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p					●1Rm Clrw 23.99 dBm
MultiView Ref Level • Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	P				M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p			M1	M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	Spectrum 46.00 dBm Offse 20 dB SWT	et 42.00 dB = F		Mode Auto Swee	p					●1Rm Clrw 23.99 dBm
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 16.00 dBm Offs 20 dB SWT Sweep	et 42.00 dB = F 500 ms							M1[1]	●1Rm Clrw 23.99 dBm
MultiView Ref Level Att TFrequency 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm -10 dBm	Spectrum 16.00 dBm Offs 20 dB SWT Sweep	et 42.00 dB = F 500 ms							M1[1]	• 1Rm Clrw 23,99 dBm 2.67930 GHz
MultiView Ref Level Att TFrequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 16.00 dBm Offs 20 dB SWT Sweep	et 42.00 dB = F 500 ms							M1[1]	• 1Rm Clrw 23,99 dBm 2.67930 GHz
MultiView Ref Level Att 1 Frequency 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum 16.00 dBm Offs 20 dB SWT Sweep	et 42.00 dB = F 500 ms		Langeline and a straight of the state of the		0.0 MHz/				• 1Rm Clrw 23,99 dBm 2.67930 GHz

00:08:26 11.11.2017

MultiView	Spectrum	¥								▽
Ref Level 46 Att	20 dB 😑 SWT	et 42.00 dB ● P 500 ms V	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					SGL
1 Frequency S	Sweep								M1[1]	●1Rm Clrw 23.44 dBm
40 dBm									- 1	2.68330 GHz
30 dBm										
								M1		
20 dBm										
10 dBm										
0 dBm										
o ubiii										
-10 dBm										
-20 dBm										
-30 dBm										
								1 ann		
+Q.dBMpruddondd	drage manufa	Hundrichten	Multimeters	angentermenter	han an a	Maring Conservation	^{ւթյո} ւններություններություններ	*** ¥	handre, m	Harris and the second
-50 dBm										
1.0 GHz			1001 pt	<u> </u>	20	0.0 MHz/				3.0 GHz
1.0 012	Y		1001 pt	3	20		Aborted		1/0	11.11.2017
00:09:39 11	.11.2017									
00:09:39 11										
MultiView	Spectrum		RBW 100 kHz							SGI
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p					SGL
MultiView Ref Level 46 Att I Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p				M1[1]	SGL
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	NBW 100 kHz IBW 1 MHz M	Mode Auto Swee	p				M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att I Frequency S	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	NBW 100 kHz IBW 1 MHz M	Mode Auto Swee	P			M1	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm-	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			M1	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /BW 1 MHz M	Mode Auto Swee	p			MI	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz M BW 1 MHz M	Mode Auto Swee	p			MI	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att I Frequency S 40 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz /	Mode Auto Swee	p			MI	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 Att T Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz M	Mode Auto Swee	P			MI	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz M	Mode Auto Swee	P			MI	M1[1]	SGL •1Rm Clrw 23.81 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	ABW 100 kHz M	Mode Auto Swee	p			MI	M1[1]	SGL •1Rm Clrw 23,81 dBm
MultiView Ref Level 46 Att T Frequency 9 40 dBm 30 dBm 20 dBm 10 dBm 0 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz M	Mode Auto Swee	P			M3	M1[1]	SGL •1Rm Clrw 23,81 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz MHz M	Mode Auto Swee	p			MI	M1[1]	SGL •1Rm Clrw 23,81 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	5.00 dBm Offse 20 dB SWT	et 42.00 dB = P	RBW 100 kHz MHZ M	Mode Auto Swee	p				M1[1]	SGL •1Rm Clrw 23,81 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB = P 500 ms V						M3 F.	M1[1]	SGL •1Rm Clrw 23,81 dBm
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm	Spectrum	et 42.00 dB = P 500 ms V	ABW 100 kHz MHZ M						M1[1]	SGL •1Rm Cirw 23.81 dBm 2.67730 GHz
MultiView Ref Level 46 • Att 1 Frequency S 40 dBm 30 dBm 20 dBm 10 dBm -10 dBm -20 dBm -30 dBm	Spectrum	et 42.00 dB = P 500 ms V							M1[1]	SGL •1Rm Cirw 23.81 dBm 2.67730 GHz
MultiView Ref Level 46 • Att 1 10 dBm 20 dBm 10 dBm 0 dBm -20 dBm -30 dBm -30 dBm	Spectrum	et 42.00 dB = P 500 ms V				0.0 MHz/				SGL •1Rm Cirw 23.81 dBm 2.67730 GHz

00:10:52 11.11.2017