	<u> </u>	tm4 ∑ SI	oem5 (Х гт 🛛		Spem2	X	
		DL TDD, 20 MHz			Subframe All			
	27.00 dB MIMO) 1 Tx / 1 Rx	Frame C	ount 2 of 2 (2)				
TRG:EXT1				-				
L Capture Buffer		●1 Clrw 3 E	VM vs Car	rier Ol Avg	2 Min O3 Max	5 Power Spe	ctrum	●1 Clrw
rame Start Offset : 724.127207950 ns 34 dBm		43	6 %			-51 dBm/Hz		
dBm-		3.9				-57 dBm/Hz		and the second second
dBm			3 %			-63 dBm/Hz		
D dBm that is the set		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 %	and shall be the second se	ian siliti	-69 dBm/Hz		
-25.dBm	10 mil 11	2.5		and official strategy of		-75 dBm/Hz		
-4		2.0	3 % 1	L'ANNA AN A AND A	10003-007	-81 dBm/Hz		
-5		1.5	7 %	and the strength of the state		-87 dBm/Hz		
-7 <mark>4 http:</mark>	tory of the second s	1.1	%		dulle sites	-93 dBm/Hz		
-85 dBm		0.6	4 %	and the second spatial second	ud. U. 4. WI	-99 dBm/Hz-		V
0.0 ms 4.01	ms/	40,1 ms -1.	5.36 MHz	3.07 MHz/	15,36 MHz	-15,36 MHz	3.07 MHz/	15,36 MHz
2 Result Summary				· · ·	4 Constellatio	Diagram		
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23		<u>4</u>	
EVM PDSCH OPSK (%)	meun	Hux	18.50			0070	Ĭ	
EVM PDSCH QFSK (%) EVM PDSCH 16QAM (%)			13.50					
EVM PDSCH 10QAM (%) EVM PDSCH 64QAM (%)	1,43	1.43	9.00	1.43	•	• • • •	1 🖉 📍 🦉	-
EVM PDSCH 2560AM (%)	1,40	1140	4.50	1,45				
Results for Selection Subfra	mes All. Selection	n Ant 1. Frame		12		- 💊 👌 📍	1 * * 🦿	
EVM All (%)	1.46	2.27	results 2	1.13		1	1	
EVM Phys Channel (%)	1.45	2.25		1.13			1 💌 🥂 🐣	*
EVM Phys Signal (%)	1.53	2,57		1.07				
Frequency Error (Hz)	-2.12	2,31		-10,27	- ·	* * *		
Sampling Error (ppm)	0.01	0.06		-0.05			<u> </u>	*
I/O Offset (dB)	-42.61	-42.29		-42.95	-	j 🐣 🔹 🚿	🔶 🤌 🎕	, <mark>*</mark>
I/O Gain Imbalance (dB)	0.00	0.00		-0.00				
I/Q Quadrature Error (°)	0.00	0.01		-0.01	*	1 🗢 🔹 😤	🔅 🔶 🔶	
RSTP (dBm)	-9.15	-9.00		-9,22		.		
OSTP (dBm)	21.68	21.93		21.52		- 🕐 🍷 🔸	- · · · · · · · · · · · · · · · · · · ·	- 🔫
RSSI (dBm)	21.62	21.76		21.53			24	
Power (dBm)	21.63	21.79		21.53	•	- 🌮 🕭 💰	🛛 🦻 👂 🦉	- <u>-</u>
Crest Factor (dB)	10.59							
					1		4	
		Sync Fou	nd			Measuring		26.10.2017
		Sync Pou	nu			measaring	REF	10:02:25

10:02:25 26.10.2017

	m3 🕅 Spem4 3.68 GHz Mode DI	. TDD, 20 MH		Шг т (Time 40.1 ms		Spem2	X			
	27.00 dB MIMO	1 Tx / 1 R		ount 2 of 2 (2)						
1 Capture Buffer	(1 Clrw 3	EVM vs Carr	ier 🛛 🌖 Avg	●2 Min ●3 Max	5 Power Sp	ectrum		0	1 Clrw
Frame Joseph 1 729 Joseph 2 ns dBm <			36 % 9 % 43 % 5 % 03 % 57 % 1 %			51 dBm/Hz 57 dBm/Hz 63 dBm/Hz 69 dBm/Hz 75 dBm/Hz 81 dBm/Hz 87 dBm/Hz 93 dBm/Hz 99 dBm/Hz				
0.0 ms 4.01 m			15.36 MHz	3.07 MHz/	15,36 MHz		2 0 3	/ MHz/	15.3	36 MH;
2 Result Summary	5/	+0.1118	13.30 MILZ	3.07 MHZ/	4 Constellatio		2 3.07	MHZ/	13.0	
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 2		*			
EVM PDSCH QPSK (%) EVM PDSCH 16QAM (%)			18.50 13.50							
EVM PDSCH 64QAM (%) EVM PDSCH 256QAM (%)	1.48	1.48	9.00 4.50	1.48						
Results for Selection Subfram			e Results 2/			<u> </u>		· ·		
EVM All (%)	1.52	2.37		1.15		s. s. s. s	s. 🖕 🔒	🔶 🤞		
EVM Phys Channel (%)	1.51	2.35		1.15						
EVM Phys Signal (%)	1.61	2.66		1.09		· • • •	• •		1 -	
Frequency Error (Hz)	-5.50	0.49		-15.12					<u>.</u>	
Sampling Error (ppm)	0.01	0.07		-0.04			<u> </u>			
I/Q Offset (dB)	-42.66	-42.40		-43.00	- II			• •	- -	
I/Q Gain Imbalance (dB)	0.00	0.00		-0.00		. د سره ب				
I/Q Quadrature Error (°)	0.00	0.02		-0.01			*	· 🕺	1	
RSTP (dBm)	-9.14	-8.98		-9.22		. 1 .		. de 1		
OSTP (dBm)	21.65	21.89		21.55	1 ·	8. - • ** - •	• •	÷ 🔨	93	
RSSI (dBm)	21.66	21.79		21.57			ν.			
Power (dBm)	21.64	21.76		21.56	1	P 🔌 🤌 🤅	K 🔅 -	🍨 🌻	- 🔶	
Crest Factor (dB)	10.91				-1					
		Sync Fa			Л	Measuring	*		1 26.	10.201

10:00:47 26.10.2017

MultiView 🔠 Spectrum	Spem3 Spe	n4 🕅	Spem5	Х сте 🛛	С 1. ПЕ2	Spem2	X			
Ref Level 37.00 dBm Freq	3.695 GHz Mode	DL TDD, 10 M	Hz Captur	eTime 40.1 ms	Subframe All					
Att 10 dB Offse	t 27.00 dB MIMO	1 Tx / 1 P	Rx Frame	Count 2 of 2 (2))					
TRG:EXT1										
1 Capture Buffer		●1 Clrw 3	EVM vs Car	rier 🛛 🌖 Avg 🕻	2 Min O3 Max	5 Power Sp	ectrum			●1 Clrw
Frame Start Offset : -41.38324704B ns dBm dBm JBm JBm JBm Hurp dBm Hurp dBm Hu	alsal as do . the attraction		645 %			-51 dBm/Hz -58 dBm/Hz -64 dBm/Hz -71 dBm/Hz			1. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19.	
-29, dBm -4 -5		2. 1.	135 %			-77 dBm/Hz -84 dBm/Hz -90 dBm/Hz -97 dBm/Hz				
-/3,047	וון ריייזויי		625 %	were all the second states and	Marin Ales	-103 dBm/Hz-				
0.0 ms 4.01	ms/	40.1 ms -	7.68 MHz	1.54 MHz/	7.68 MHz	-7.68 MHz	1.5	4 MHz/		7.68 MHz
2 Result Summary					4 Constellatio	n Diagram				
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 11	17796	4			
EVM PDSCH QPSK (%)			18.50							
EVM PDSCH 16QAM (%)			13.50		II 🔥		• •			
EVM PDSCH 64QAM (%)	1.39	1.39	9.00	1.39						
EVM PDSCH 256QAM (%)			4.50		🔥		s s	÷	-	
Results for Selection Subfra	ames All, Selection	Ant 1, Fram	e Results 2	/2		19 1 C		· · · · · ·		
EVM All (%)	1.45	2.35		1.11		• •	•		-	
EVM Phys Channel (%)	1.44	2.33		1.11						
EVM Phys Signal (%)	1.53	2.58		1.09					1.0	
Frequency Error (Hz)	-2.76	1.75		-14.09		· · · · · · · · · · · · · · · · · · ·				
Sampling Error (ppm)	-0.02	0.08		-0.12			۰Ť.		- <u>-</u>	
I/Q Offset (dB)	-41.55	-41.37		-41.73						
I/Q Gain Imbalance (dB)	0.00	0.00		-0.00					-	
I/Q Quadrature Error (°)	-0.00	0.02		-0.03		- 7 T - 1			- -	
RSTP (dBm)	-9.01	-8.87		-9.08		· .		. K	~	
OSTP (dBm)	18.78	18.97		18.50		- T - Z - 1	* *	. *		
RSSI (dBm)	18.72	18.87		18.60				·	_	
Power (dBm)	18.74	18.90		18.64			• * ·	- F		
Crest Factor (dB)	10.22									
(- * 2			
		Sync Fo	und		*	Measuring			0.00	26.10.2017
							_	REP		09:57:10

09:57:11 26.10.2017

	em3 🕅 Spe	\odot	Spem5	X LTE X		Spem2	Z)	
				Time 40.1 ms	Subframe All			
	27.00 dB MIMO	1 Tx / 1 R:	× Frame (Count 2 of 2 (2)				
TRG:EXT1			EVM vs Car		0.000.000.000	E D		
1 Capture Buffer		•1 Clrw 3	EVM VS Car		2 Min • 3 Max	5 Power Spect	rum	●1 Clrw
Frame Start Offset : 724.268033951 ns 34 dBm		4.	.36 %			-51 dBm/Hz		
dBm-			.9 %			-57 dBm/Hz		
JBm—		3	.43 %			-63 dBm/Hz		
	d	2.	.96 %			-69 dBm/Hz		
-25 dBm	n na mh daonadh		5 %-	is an fill in addison is contract a suffi		-75 dBm/Hz		
			.03 % 4	Landalitia (Bfi (Bala) adams 1	a kana a sa	-81 dBm/Hz		
-4 -5			57 %	and the star of the	1.1.2.2	-87 dBm/Hz		
			1 % Bitait	dine of the least		-93 dBm/Hz		
-7 <mark>1 abrila</mark> -85 dBm	Silvinga di		.64 %	a tradition of the particular sector	a fairt ar	-99 dBm/Hz		V
-85 UBIT		0.	.04 %			-99 UBII//12		
0.0 ms 4.01 m	ns/	40.1 ms -	15.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary					4 Constellatio	n Diagram		j
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23	15396		
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)			13.50			A & 4		-
EVM PDSCH 64QAM (%)	1.48	1.48	9.00	1.48		A		
EVM PDSCH 256QAM (%)			4.50		6	. 🔥 🎍 🔺	🍬 🤌 🥪	
Results for Selection Subfran			e Results 2		1	200 C		
EVM All (%)	1.51	2.35		1.17			🔹 🔹 🧉	
EVM Phys Channel (%)	1.51	2.33		1.17				
EVM Phys Signal (%)	1.59	2.65		1.18	9	👻 🍝 🔶	• • •	
Frequency Error (Hz)	-3.58	0.95		-13.66		<u> </u>	×	+
Sampling Error (ppm)	0.01	0.08		-0.05		* * *	🔹 💰 🍕	
I/Q Offset (dB)	-42.62	-42.36		-42.93		* · · · · · · · · · · · · · · · · · · ·		<u>6</u>
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00		1 🐐 🔺 👘	1	•
I/Q Quadrature Error (°) RSTP (dBm)	-9,24	0.02		-0.02				
OSTP (dBm)	-9.24 21.59	-9.09 21.83		-9.32 21.42		- 🧳 🙀 🔹	🍺 🖕 💊	·
RSSI (dBm)	21.59	21.83 21.66		21.42		* s		-
Power (dBm)	21.53	21.66		21.43		* * *	🍅 😦 👻	•
Crest Factor (dB)	10.59	21.09		21,44				-
	10.07							
					n			4 26.10.2017
		Sync Fo	und			Measuring		10:02:36

10:02:37 26.10.2017

Ref Level 37.00 dBm Freq	. <u> </u>	pem4	z Capture	Time 40.1 ms ount 2 of 2 (2)	Subframe All	Spem2		
L Capture Buffer		•1 Clrw 3	EVM vs Car	rier 🗛1 Avou	■2 Min ●3 Max	5 Power Spe	ctrum	●1 Clrv
rame Start Offset : 729.421458345 ns							cuam	
34 dBm			.36 %			-51 dBm/Hz	anon an	menoning pro
dBm-		3	.9 %			-57 dBm/Hz		
dBm		3	43 %			-63 dBm/Hz		
D dBm <mark>arffant albi</mark>	ika <mark>prinsiakana</mark> prinsiakana katakana kataka Katakana katakana katak	aittian in 2	.96 %	er mit melde stad, den	tul, M	-69 dBm/Hz		
25. dBm	and the call baland	2	.5 %	tender and the factor of the second		-75 dBm/Hz		
-4		2	.03 % 444	اربسياني ألبيا فالاربيانيسيلين	(d (n ¹)) ¹	-81 dBm/Hz-		
-5			57 %	a shini sa hi		-87 dBm/Hz		
	the factor of		1 %		di la di	-93 dBm/Hz		
-85 dBm			.64 %	and a state of the second s	1.1.1.1.1	-99 dBm/Hz-		V
			.04 %			-99 UBII/H2		
).0 ms 4.01	ms/	40.1 ms	15.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MH
Result Summary					4 Constellatio	n Diagram		
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23	15396	9	
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)			13.50					
EVM PDSCH 64QAM (%)	1.49	1.49	9.00	1.49			4	
EVM PDSCH 256QAM (%)			4.50		5			
Results for Selection Subfra	ames All, Selectio	on Ant 1, Fram	e Results 2,	/2		- 😕 T T	1 T T 🥙	
EVM All (%)	1.53	2.38		1.20		. 5		-
EVM Phys Channel (%)	1.52	2.37		1.20				
EVM Phys Signal (%)	1.63	2.72		1.13		<u>`</u>		· 🖕
Frequency Error (Hz)	-3.66	1.01		-13.53				
Sampling Error (ppm)	0.01	0.05		-0.05			Ti i i i	
I/Q Offset (dB)	-42.68	-42.50		-42.95	II	- T - T - M		
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00		1 a a a		-
I/Q Quadrature Error (°)	-0.00	0.02		-0.02				•
RSTP (dBm)	-9.12	-8.96		-9.20		2 A A	1 🖌 🖌 🔨	
OSTP (dBm)	21.67	21.91		21.56		- T 🔮 T		· · · · · · · · · · · · · · · · · · ·
RSSI (dBm)	21.68	21.81		21.60		¹ -		
Power (dBm)	21.66	21.78		21.58		· · · ·		
Crest Factor (dB)	10.91						1	

10:00:58 26.10.2017

Ref Level 37.00 dBm Freq	3.695 GHz Mod	e DL TDD, 10 M		e Time 40.1 m			X	
	27.00 dB MIN	1 Tx / 1	Rx Frame	Count 2 of 2 (2)			
TRG:EXT1			E104			ľ = p 0		
Capture Buffer		●1 Clrw 3	EVM vs Car	rier OIAVg	2 Min 0 3 Max	5 Power Spec	arum	●1 Clrw
Pame Start Offset : -41.308428678 ns		3.	645 %			-51 dBm/Hz		n de Alexandre de la companya de la
dBm-		3.	267 %			-58 dBm/Hz		
dBm -			89 %			-64 dBm/Hz		
25 dBm and a late data and the second sec	and the state of t		512 %			-71 dBm/Hz		
22.dBm	ality in a		135 %-		a Waada	-77 dBm/Hz		
4	lasterites I		757 %	when will be date	1.000	-84 dBm/Hz		
5			38 %	and shared as in the	an and a lat	-90 dBm/Hz		
	at as				and training and	-90 dBn//Hz		
		1 1 1 T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a water a second second	all and an all a			
88 dBm			625 %			-103 dBm/Hz		
.0 ms 4.01 n	ns/	40.1 ms -	7.68 MHz	1.54 MHz/	7.68 MHz	-7.68 MHz	1.54 MHz/	7.68 MH
Result Summary					4 Constellatio	n Diagram		
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 1	17796	*	
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)			13.50		🔥	6 6 8	1 🔹 👳 🗳	
EVM PDSCH 64QAM (%)	1.38	1.38	9.00	1.38				
EVM PDSCH 256QAM (%)			4.50				A 6 4.0	
Results for Selection Subfrar	nes All, Selectio	n Ant 1, Fram	e Results 2	/2		9		
EVM All (%)	1.43	2.26		1.12				
EVM Phys Channel (%)	1.43	2.25		1.12				
EVM Phys Signal (%)	1.48	2.46		1.05				1 m
Frequency Error (Hz)	-6.16	-2.90		-13.53				
Sampling Error (ppm)	-0.05	0.05		-0.20		່ 🖕 🖕 🎍]	•
/Q Offset (dB)	-41.55	-41.45		-41.84			1 ° °	
/Q Gain Imbalance (dB)	0.00	0.00		-0.00				
/Q Quadrature Error (°)	-0.00	0.02		-0.03				-
RSTP (dBm)	-8.96	-8.82		-9.03		🧈 🖕 🔒	1 🔨	-
OSTP (dBm)	18.82	19.02		18.55				*
RSSI (dBm)	18.76	18.92		18.65		- -		•
Power (dBm)	18.79 10.24	18.95		18.69	II		1	*
Crest Factor (dB)	10.24						<u> </u>	
					11		74	

09:57:35 26.10.2017

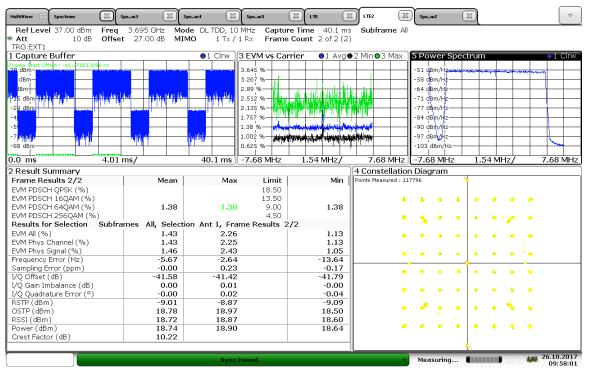
Ref Level 37.00 dBm Freq Att 10 dB Offse	. <u> </u>	DL TDD, 20 MHz	Capture	Σ ιπ Σ Time 40.1 ms ount 2 of 2 (2)	لتتع التع Subframe All	Spem2 (X	
TRG:EXT1 1 Capture Buffer Frame Start Offspt: 724. \$50286438 ns 34 dBm dBm dBm -25 dBm -75 -76 trift -85 dBm		4.3 3.9 3.4 2.9 2.0 1.5 1.1 0.6	3 % 5 % 3 % 7 % % % % %		2 Min ●3 Max	5 Power Spec		
0.0 ms 4.01	ms/	40.1 ms -1	5.36 MHz	3.07 MHz/		-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary					4 Constellatio		1	
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23	5396	•	
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)			13.50			- 🍐 🛞 😹	. 🛎 👋 🔶	-
EVM PDSCH 64QAM (%)	1.46	1.46	9.00	1.46			2	
EVM PDSCH 256QAM (%)			4.50		💧 🔌	- <u>e</u> è e	🤹 😺 🥪	-
Results for Selection Subfr			Results 2/				1 - C - 🐉 -	
EVM All (%)	1.49	2.29		1.20			🔺 🤞 🍻	
EVM Phys Channel (%)	1.49	2.27		1.20				
EVM Phys Signal (%)	1.57	2.57		1.10		1 in 1 in 1 in 1		
Frequency Error (Hz)	-2.21	1.09		-9.21		. · · ·	<u> </u>	<u></u>
Sampling Error (ppm)	0.01	0.07		-0.02				•
I/Q Offset (dB)	-42.60	-42.35		-42.86		* 1997 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 1988 - 198		
I/Q Gain Imbalance (dB)	0.00	0.00		-0.00			4 4 4	í 🖕
I/Q Quadrature Error (°)	0.00	0.02		-0.02				
RSTP (dBm)	-9.21	-9.06		-9.29		- 🥔 🖕 🖕	🔒 🔒 🔦	
OSTP (dBm)	21.62	21.87		21.46	II	- T 🕴 🕇		-
RSSI (dBm)	21.56	21.70		21.48				
Power (dBm)	21.57	21.73		21.48		17 T T	* * * ·	
Crest Factor (dB)	10.55							
							7	
		Sync Fou	nd			Measuring		26.10.2017
						-		10:02:47

10:02:48 26.10.2017

	em3 🕅 Spe.		Spem5 (Х ите 🛛		Spem2	X		
	3.68 GHz Mode 27.00 dB MIMO			Time 40.1 ms count 2 of 2 (2)	Subframe All				
TRG:EXT1	27.00 00 10100	11/71/0							
. Capture Buffer		●1 Clrw 3	EVM vs Car	rier 🛛 🍳 🛛 Ava	2 Min • 3 Max	5 Power Spe	ctrum		●1 Clrw
rame Start Offset : 729.473867978 ns									
34 dBm			36,%			-51 dBm/Hz	and the second sec		5
dBm-			9 %			-57 dBm/Hz			
1Bm			43 %			-63 dBm/Hz			
D dBm million of a low of the second	n <mark>all'heritaki (ka</mark>	101100113940	96 %	and the later of the later	ida la Milia	-69 dBm/Hz			
-25 dBm	and designed to the second sec	2.	5 %	tifera di aktiv 🖞 andalari		-75 dBm/Hz			
-4		2.	03 %	ALL AND ALL AND A DESCRIPTION		-81 dBm/Hz			
-5		1.	57 %	A STORE STORES	UATE Charteland	-87 dBm/Hz-			
7 Mahan Tulata	- Milika In	1.	1 %	the hits second department of		-93 dBm/Hz			
-85 dBm			64 % TYT	an a the state of th		-99 dBm/Hz			- <u> </u>
0.0 ms 4.01 m		40,1 ms -		3.07 MHz/	15.36 MHz	-15,36 MHz	3.07 MHz		5.36 MHz
	is/	40.1 ms [-	15.36 MHz	3.07 MHZ/	,		3.07 MHZ	./ 1	5.30 MHZ
Result Summary					4 Constellation				
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23	5396	%		
EVM PDSCH QPSK (%)			18.50						
EVM PDSCH 16QAM (%)			13.50		🔶	🌢 🔶 😫	[🤌 🔗 -	🧶 🥐 🗧	
EVM PDSCH 64QAM (%)	1.45	1.45	9.00	1.45			3		
EVM PDSCH 256QAM (%)			4.50		5	્યું છે. 🔶	🕐 🧳 🔒	🥐 🛛 💘	
Results for Selection Subfran			e Results 2			· · · · · · · · · · · · · · · · · · ·	-		
EVM All (%)	1.48	2.35		1.13		l 🔬 🔶 🔹 🌸	🔹 🔶	🗩 🛛 🔶 👘	
EVM Phys Channel (%)	1.48	2.34		1.13					
EVM Phys Signal (%)	1.57	2.61		1.12	. 5	ົ 🔹 👻 🌶	🧶 🔷	e 🙁	
Frequency Error (Hz)	-2.37	0.32		-11.04	I <u>⊢</u>		÷		
Sampling Error (ppm)	0.01	0.09		-0.07	9	🔹 💰 🦽	🐣 🔶	s s	
I/Q Offset (dB) I/O Gain Imbalance (dB)	-42.70	-42.46 0.00		-42.97					
I/Q Gain Imbalance (dB) I/O Ouadrature Error (°)	0.00 -0.00	0.00		-0.00 -0.02	. 🔸	1 🐠 💊 🖝		s 😽	
RSTP (dBm)	-0.00	-8,94		-0.02					
OSTP (dBm)	21.69	-8.94 21.93		-9.18 21.58		- 🤌 🖕 🖕	🤞 🔥 🤔	V	
RSSI (dBm)	21.69	21.93		21.58					
Power (dBm)	21.69	21.83		21.51		i 🏚 🦧 🦕	🏹 🔶 🗉	•	
Crest Factor (dB)	10.92	21.00		21.09					
	10.52				1		4		
							-T		26.10.2017
		Sync Fo				Measuring		1 30	

10:01:13 26.10.2017

	Spem3 🕅 Spe.		Spem5 (🖾 і пег 🛛 🕅		X	
Ref Level 37.00 dBm Freq				e Time 40.1 m				
Att 10 dB Offse TRG:EXT1	et 27.00 dB MIMO	D 1 Tx / 1 F	X Frame	Count 2 of 2 (2)			
1 Capture Buffer		●1 Clrw 3	EVM vs Car		●2 Min ●3 Max	5 Power Sp	ote no	●1 Cln
Frame Start Offset : -41.200223677 ns						5 POwer Spi	curum	
20 dBm		 3.	645 %			-51 dBm/Hz	a may the second se	
dBm-		3.	267 %			-58 dBm/Hz		
JBm -		2.	89 % 1			-64 dBm/Hz-		
125 dBm train and the training the sector	abud a still a bhatt ddaaa	2. 11 A	512 %	ula Arrill Mathematical I		-71 dBm/Hz-		
-22 dBm	a al	1991 C 1991 C 1991	135 %	naria, transf		-77 dBm/Hz-		
4			757 %	alite and an interaction of	Mala.	-84 dBm/Hz-		
-5			38 %	به است المدينا من	La luna de	-90 dBm/Hz-		
	at and		111 100	and the state of the second	and a state			
	In the second se		002 % WYW			-97 dBm/Hz-		
-89 dBm			625 % 1 1			-103 dBm/Hz-		
0.0 ms 4.01	ms/	40.1 ms -	7.68 MHz	1.54 MHz/	7.68 MHz	-7.68 MHz	1.54 MHz,	/ 7.68 MH
Result Summary					4 Constellatio	n Diagram		
Frame Results 2/2	Mean	Мах	Limit	Min	Points Measured : 1:	17796	4	
EVM PDSCH QPSK (%)			18.50		1			
EVM PDSCH 16QAM (%)			13.50					× 😐
EVM PDSCH 640AM (%)	1.36	1.36	9.00	1.36				
EVM PDSCH 256QAM (%)			4.50				(a à c.a	
Results for Selection Subfr	ames All, Selection	Ant 1, Fram	e Results 2	/2		🤏 👘		
EVM All (%)	1.41	2.25		1.09				
EVM Phys Channel (%)	1.40	2.24		1.09				
EVM Phys Signal (%)	1.47	2.51		1.00				
Frequency Error (Hz)	-5.26	-1.52		-12.09				
Sampling Error (ppm)	-0.04	0.09		-0.23			1	
I/Q Offset (dB)	-41.56	-41.34		-41.84				
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00				
I/Q Quadrature Error (°)	-0.00	0.02		-0.02				•
RSTP(dBm)	-8.94	-8.80		-9.02		2		
OSTP (dBm)	18.85	19.04		18.57	II *	- T - T - T		
RSSI (dBm)	18.79	18.94		18.67		· · · · · ·		
Power (dBm)	18.81	18.97		18.71	II *		· • • • •	£ 👎
Crest Factor (dB)	10.22						1	
					Л		<u> 7</u> 2	26.10.201
		Sync Fo	und			Measuring		09:57:4


09:57:47 26.10.2017

MultiView 🗄 Spectrum 🖾 S	pem3 🕅 Spe	m4 🕅	Spem5	LTE D	К (LTE2 🛛	Spem2	X)	
Ref Level 37.00 dBm Freq	3.66 GHz Mode	DL TDD, 20 MH	z Capture	Time 40.1 ms	Subframe All			
Att 10 dB Offset	27.00 dB MIMO	1 Tx / 1 R>	< Frame 0	Count 2 of 2 (2)				
TRG:EXT1								
1 Capture Buffer		●1 Clrw 3 I	EVM vs Car	rier 🛛 🏼 🕬 🕬	🛢 2 Min 🛛 3 Max 🗋	5 Power Spect	rum	●1 Clrw
Frame Start Offset : 724.318624634 ns			36 %			-51 dBm/Hz		
34 dBm			1				and the second	manner ha
dBm-			9 %			-57 dBm/Hz		
JBm <mark>↓</mark>			43 %			-63 dBm/Hz		
իչ D dBm <mark>ընդրին ներհետի հնդություններ</mark>	NA PARAMANA PARAMA	10 3 1 9 4 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	96 %	ridita dinati dilecta da	المراج بالألي	-69 dBm/Hz		
-2 <mark>5 dBm</mark>	and the second s	2.	5 %	 a state of the state 		-75 dBm/Hz		
-4		2.	03 % - 11	it "Attilte icht delte tere ti-		-81 dBm/Hz		
-5		1.5	57 %	and the second sec		-87 dBm/Hz		
-7 <mark>wigger</mark>	- <mark>Andina</mark> - Mi	uuu 1.1	1 % tenstru	theodological filling both	the states	-93 dBm/Hz		
-85 dBm	. Librard	0.1	64 %	and a state of the second state	and the state of the	-99 dBm/Hz		
0.0 ms 4.01 r	ms/	40.1 ms	15.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary					4 Constellatio	n Diagram		
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23	15396 🎽		
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)			13.50		🔥	· · · · · · · · · · · · · · · · · · ·		
EVM PDSCH 64QAM (%)	1.47	1.47	9.00	1.47				
EVM PDSCH 256QAM (%)			4.50		ll 🔺	A 4 4	🍾 💡 🧀	
Results for Selection Subfra	mes All, Selection	Ant 1, Frame	e Results 2	/2	1 · · · · · · · · · · · · · · · · · · ·		a da anti-	
EVM All (%)	1.51	2.38		1.12				•
EVM Phys Channel (%)	1.50	2.36		1.12				
EVM Phys Signal (%)	1.60	2.65		1.10		· · · ·		*
Frequency Error (Hz)	-2.93	-0.23		-11.73				<u> </u>
Sampling Error (ppm)	0.00	0.08		-0.05		· • • •]		·
I/Q Offset (dB)	-42.66	-42.38		-43.01		 T T T 		<u>د الم</u>
I/Q Gain Imbalance (dB)	0.00	0.00		-0.00		1 1 1 1 1		1 .
I/Q Quadrature Error (°)	0.01	0.03		-0.01		· · · ·	17 N 1	-
RSTP (dBm)	-9.17	-9.02		-9.25		1 2 2	🔔 🔔 🎕	
OSTP (dBm)	21.66	21.91		21.50	II		· · ·	•
RSSI (dBm)	21.60	21.74		21.51			Sec. 2012	_
Power (dBm)	21.61	21.77		21.51	II [°]		- • •	*
Crest Factor (dB)	10.56							
						<u> </u>		
		Sync Fo	und			Measuring	and the second second	26.10.2017
							REP C	10:02:59

10:03:00 26.10.2017

Ref Level 37.00 dBm Freq	spem3		lz Capture	Σιπ Σ Time 40.1 ms ount 2 of 2 (2)	Subframe All	Spem2	X	
Capture Buffer		o1 Cirw 3	EVM vs Car	rier O l Avol	■2 Min ●3 Max	5 Power Spe	ctrum	●1 Clrw
rame Start Offset : 729.535031496 ns								
i4 dBm			.36 %			-51 dBm/Hz		manine pro
dBm-			.9 %			-57 dBm/Hz		
dBm—			.43 %			-63 dBm/Hz		
D dBm and the provide the provident the provide the provident the provide the providet the provide the provide the provide the provide the	ika <mark>airin haadaal</mark>		.96 %	and marine the stand		-69 dBm/Hz		
2 <mark>5 dBm</mark>		2	.5 %	A LA MURINE E DE LA MURINE.		-75 dBm/Hz		
4	_	2	.03 %	a de la constante de la constan		-81 dBm/Hz		
5.	_	1	.57 %	distant manufactories	and the local data	-87 dBm/Hz		
7 <mark>918-01 Indian</mark>	<mark>i Alogo</mark>	0.010 1	.1 % [100]	il ale a solar state al late	and surface	-93 dBm/Hz		
85 dBm	la de de		.64 %	المؤرغة بغديان يتمعجا والتستركيل	u sandah	-99 dBm/Hz		v
anandanananalantananana								
.0 ms 4.01	ms/	40.1 ms	15.36 MHz	3.07 MHz/	-	-15.36 MHz	3.07 MHz/	15.36 MH
Result Summary					4 Constellatio			
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23	15396	*	
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)			13.50		👋	- 🐥 🐇 🤻	. 🔶 🧳 🤌	e 🐣
EVM PDSCH 64QAM (%)	1.49	1.49	9.00	1.49			1 C	
EVM PDSCH 256QAM (%)			4.50		N 🔸	- <u>A</u> À A	1 🐐 🐐 🌛	e 🥔
Results for Selection Subfra			e Results 2,			· · · ·		
EVM All (%)	1.52	2.44		1.16		. 🐞 🛛 🔸 🚸		é 🔥
EVM Phys Channel (%)	1.52	2.42		1.16				
EVM Phys Signal (%)	1.60	2.75		1.14	. 🏻 🔹	` o	🗼 🤞 💊	•
Frequency Error (Hz)	-4.02	0.13		-14.48		÷	<u> </u>	
Sampling Error (ppm)	0.01	0.11		-0.06	. 🖌 🐱	a 🔹 🧑	🖌 🔶 💊	
I/Q Offset (dB)	-42.73	-42.42		-43.05		1980 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00		14 🙀 🖕 🐠	9 8 6	<u>e</u> :
I/Q Quadrature Error (°)	-0.01	0.02		-0.03				
RSTP (dBm)	-9.08	-8.93		-9.16		- 🥔 🔶 💊	i 🧋 🔥 🚿	
OSTP (dBm) RSSI (dBm)	21.71 21.71	21.95 21.84		21.60 21.63			1 .	-
Power (dBm)	21.71	21.84		21.63		·	🏹 🦻 🖕	- · · · · · · · · · · · · · · · · · · ·
Crest Factor (dB)	10.91	21.02		21.01			1	
	10.91						1	
					л		T.	26.10.201

10:01:24 26.10.2017

09:58:01 26.10.2017

Report No.:WT178006641Page	131 of 347
----------------------------	------------

MultiView 🕄 Spectrum 🔣 S	ipem3 🕅 Spe	m4 🕅 Spem5	X	LTE 🔀	Ц ПЕ2	Spem2	: (X			
Att 10 dB Offset TRG:EXT1	3.68 GHz Mode t 27.00 dB MIMO	1 Tx / 1 Rx Fr	apture Time ame Count	2 of 2 (2)	Subframe All						
1 Capture Buffer		O 1 Cirw 3 EVM v	vs Carrier	O1 Avg●	2 Min • 3 Max	5 Pow	er Spe	ctrum			O1 Clr
Frame Start Offsit : 729, 22227149 ns 4 dBm 1Bm 1Bm 1D dBm -25 dBm -4		4.36 %- 3.43 %- 2.96 %- 2.5 %- 2.5 %- 2.03 %-	l filosofie normalista filosofie normalista filosof	Takati Angelangi angelangi Takati Angelangi angelangi		51 dBn 57 dBn 63 dBn 69 dBn 75 dBr 81 dBn	√Hz √Hz √Hz √Hz			98************************************	4
-5 -7 -85 dBm -85 dBm 0.0 ms 4.01		())), ())), 40.1 ms -15.36		.07 MHz/	15.36 MHz	87 dBn 93 dBn - 99 dBn	vHz	20	7 MHz/	1	5,36 MH
	шэу	-10.1 ms j -10.30	WII 12 31	07 11127				5.0	/ 1911/2/	1.	0.00 101
2 Result Summary Frame Results 2/2	Mean	Max L	imit	Min	4 Constellati		am	~			
EVM PDSCH QPSK (%)	Mean		B.50	Min	Points Measured : .	232390		1 I			
EVM PDSCH QPSK (%) EVM PDSCH 160AM (%)			3.50		,						
EVM PDSCH 16QAM (%) EVM PDSCH 64QAM (%)	1.47		9.00	1.47	'	÷ •	÷ 4	2	* *	6 .	
EVM PDSCH 2560AM (%)	1.47		4.50	1.47	.		0.1				
Results for Selection Subfra	mes All Selection				'	 % 	<u>م</u>		* 🌮	· · · ·	
EVM AII (%)	1.51	2.30		1.16	Ι						
EVM Phys Channel (%)	1.51	2.28		1.17	'	• • •	* *		* *	•	
EVM Phys Signal (%)	1.59	2.65		1.05							
Frequency Error (Hz)	-5.83	-1.44		-15,10	'	» %	• •		• •	_ <mark></mark>	
Sampling Error (ppm)	0.02	0.07		-0.06		· ·		1		-	
I/O Offset (dB)	-42.71	-42.46		-43.06	· ·	• •	• 🥳		• •	*	
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00							
I/Q Quadrature Error (°)	-0.00	0.02		-0.01	'	8 1 2 1	• •	*	·* *		
RSTP (dBm)	-9.18	-9.02		-9.26					- 💰		
OSTP (dBm)	21.61	21.85		21.50	•	e 🦉 👘	🔊 🐣		• *		
RSSI (dBm)	21.62	21.75		21.53				5.0			
Power (dBm)	21.60	21.72		21.52	•	• 🤌 -	÷ 🐥		* *	9	
Crest Factor (dB)	10.91										
					L			<u> </u>			
		Sync Found				Meas	uring) 1/0 2	6.10.20 10:01:3

10:03:12 26.10.2017

1 Capture Buffer		●1 Clrw 3	EVM vs Carr	ier 🛛 🖸 Ava	■2 Min ●3 Max	5 Power Spe	ectrum	O1 Cln
rame deat Offset : 724. 3314144d3 ns 44 dbm 18m 18m 18m 18m 18m 18m 18m 18		3. 3. 2. 2. 2. 1. 1.	64 %	3.07 MHz/		- 51 dBm/Hz -57 dBm/Hz -63 dBm/Hz -69 dBm/Hz -75 dBm/Hz -87 dBm/Hz -87 dBm/Hz -93 dBm/Hz -99 dBm/Hz -15.36 MHz		15.36 MH
	шау	40.1 1115	15,50 Minz	3.07 141127	4 Constellatio		5.07 141127	10.00 MI
2 Result Summary Frame Results 2/2	Mean	Мах	Limit	Min	Points Measured : 2		a	
	Mean	Max		MIN	Points Measured : 2	32340	1	
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)	1.45	1.45	13.50	1.45	 	6 6 6 7	i 💌 🧶 🥐	//
EVM PDSCH 64QAM (%)	1.45	1.45	9.00	1.45				
EVM PDSCH 256QAM (%)			4.50	0	🕴	6 🐴 🔶 🤹	- 💌 👻 🔗	
Results for Selection Subfr			e Results 2/			 * 		
EVM All (%)	1.49	2.35		1.13) a 🍋 🙎 🔹	i 💌 🤌 🧶	
EVM Phys Channel (%)	1.48	2.33		1.12				
EVM Phys Signal (%)	1.54	2.66		1.16	. 🛛 🔹	e 10e 💩 🗸	- 😽 🐠 🤴	
Frequency Error (Hz)	-0.55	4.75		-10.16	I	÷	- .	
Sampling Error (ppm)	-0.01	0.07		-0.08	. 🦷 😕	s + 3	< 🔺 🔺 🐐	•
I/Q Offset (dB)	-42.60	-42.38		-42.89		· · · · · · · · · · · · · · · · · · ·		
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00		· · a . a . a	. 🦼 🔹 🖕	i 🖕
I/Q Quadrature Error (°)	0.00	0.01		-0.01				-
RSTP (dBm)	-9.15	-9.00		-9.23		. 🥒 is 🔒		
OSTP (dBm)	21.68	21.93		21.52				
RSSI (dBm)	21.62	21.75		21.53			1 Mar 1	
Power (dBm)	21.62	21.78		21.53	II *	• 🛷 🔻 🎙	· • • •	1
Crest Factor (dB)	10.56							

LTE2 X Spe..m2 MultiYiew 🕀 Spectrum 🖾 Spe...m3 🖾 Spe...m4 🖾 Spe...m5 🖾 LTE

10:01:35 26.10.2017

Ref Level 37.00 dBm Freq		B DL TDD, 10 M	Hz Captur	e Time 40.1 m	s Subframe A		(
	t 27.00 dB MIM	0 1 Tx / 1 P	🛛 🛛 🗠 🗠	Count 2 of 2 (2	?)				
TRG:EXT1									
L Capture Buffer		●1 Clrw 3 E	EVM vs Car	rier Ol Avg	●2 Min ●3 Max	5 Power Sp	ectrum		●1 C
rame Start Offset : -41.272965490 ns		3.6	545 %			-51 dBm/Hz			
dBm-			267 %			-58 dBm/Hz-			
dBm			39 %			64 dBm/Hz-			
an he de ale de la le	akar an ako takati dakan	a set of a set of the	512 %	all to the block of the	all shall be	-71 dBm/Hz-			
		101110			STAN.	-71 dBm/Hz-			
29.dBm	ter		135 %		. I di Mandala di Manda				
4			757 %			84 dBm/Hz			
-5'			38 % \\ 	an and the first states of the	The second s	90 dBm/Hz-			
7 <mark>3 ppp. tripp.</mark>	- PIPIPIPI			And the second	suisial value (-97 dBm//Hz			
88 dBm			525 % / / /			-103 dBm/Hz-			
1.0 ms 4.01	ms/	40.1 ms -7	7.68 MHz	1.54 MHz/	7.68 MHz	-7.68 MHz	1.5	4 MHz/	7.68 N
Result Summary					4 Constellatio	on Diagram			
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 1	17796			
EVM PDSCH OPSK (%)			18.50		1				
EVM PDSCH 16QAM (%)			13.50				۰ I 🖌		
EVM PDSCH 64QAM (%)	1.38	1.38	9.00	1.38					
EVM PDSCH 256QAM (%)			4.50					÷ 1.00	÷
Results for Selection Subfra	imes All, Selection	n Ant 1, Frame	Results 2	/2				1 Martin (* 1976)	
EVM All (%)	1.44	2.27		1.11					
EVM Phys Channel (%)	1.43	2.25		1.11					
EVM Phys Signal (%)	1.51	2.57		1.05					14 <u>1</u>
Frequency Error (Hz)	-2.06	1.82		-9.59					
Sampling Error (ppm)	-0.03	0.06		-0.16			۰Ĩ.		
I/Q Offset (dB)	-41.59	-41.45		-41.85					
I/Q Gain Imbalance (dB)	0.00	0.00		-0.00				a 🔺	
I/Q Quadrature Error (°)	-0.00	0.02		-0.03	-11			1 . 1	
RSTP (dBm)	-9.00	-8.84		-9.07		. <u>.</u> .			
	18.79	18.99		18.52				. •	
	18.73	18.89		18.62	-11 /			·	
OSTP (dBm) RSSI (dBm)	18.76	18.92		18.66	II				*
RSSI (dBm) Power (dBm)					11		1		
RSSI (dBm)	10.25				-11				

09:58:13 26.10.2017

	3.66 GHz Mode I 27.00 dB MIMO	1 T× / 1 R		Time 40.1 ms punt 2 of 2 (2)				
1 Capture Buffer		●1 Clrw 3	EVM vs Carr	ier 💁 Ava	●2 Min ●3 Max	5 Power Spe	ctrum	●1 Clrv
rame glant (Mskt. 724, 10515274 ns dBm dBm dBm - 25 dBm - - - - - - - - - - - - -			.36 % .9 % .43 % .5 % .03 % .5 % .03 % .57 % .64 %			-51 dBm/Hz -57 dBm/Hz -63 dBm/Hz -69 dBm/Hz -75 dBm/Hz -81 dBm/Hz -81 dBm/Hz -93 dBm/Hz -93 dBm/Hz		
0.0 ms 4.01 n	ns/	40.1 ms -	15,36 MHz	3.07 MHz/	15.36 MH;	2 -15,36 MHz	3.07 MHz/	15.36 MH
2 Result Summary			10100 11112	0101 11112/	4 Constellati		0101 111127	10100
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured :		<u>k</u>	
EVM PDSCH QPSK (%) EVM PDSCH 16QAM (%) EVM PDSCH 64QAM (%) EVM PDSCH 2560AM (%)	1.47	1.47	18.50 13.50 9.00 4.50	1.47			* * *	•
Results for Selection Subfrar	mes All Selection	Ant 1 Fram		2		s 💊 s 🔹	1 * * 🥐 -	*
EVM All (%)	1.50	2.35		1.19			1	
EVM Phys Channel (%)	1.50	2.34		1.19		* 22 * * *	1 * .* * .	
EVM Phys Signal (%)	1.56	2.56		1.14				_
Frequency Error (Hz)	-3,94	-0,27		-12.07	-	x • • •	1 * * * .	*
Sampling Error (ppm)	0.01	0.05		-0.03				
I/Q Offset (dB)	-42.61	-42.32		-42.98		🍾 🐔 👘 🧖		
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00				
I/Q Quadrature Error (°)	0.00	0.02		-0.02	1 '	e a e e	1 🤊 📍 🏃 🛛	-
RSTP (dBm)	-9.25	-9.10		-9.32				
OSTP (dBm)	21.59	21.83		21.42	II		• • • • •	*
RSSI (dBm)	21.52	21.66		21.44			5	
Power (dBm) Crest Factor (dB)	21.53 10.55	21.69		21.44		* * * *		9
		Sync Fo	ound		<u></u>	Measuring	<u>*</u>	26.10.201

10:03:23 26.10.2017

	spem3 Spe 3.68 GHz Mode	m4 🕱	. (Σ Γime 40.1 ms		Spem2	X	
Att 10 dB Offse	t 27.00 dB MIMO	1 Tx / 1 Rx		ount 2 of 2 (2)				
TRG:EXT1 1 Capture Buffer		• 1 Cirw 3	EVM vs Cari			E Dowor Coo	ater una	
1 Capture Builter 26 dBm 36 dBm 36 dBm 37 dBm 38 dBm 39 dBm 30 dBm		4.3 3.3 2.2 2.1 1.1 1.1	36 % 9 % +3 % 5 % 13 %		2 Min ● 3 Max	5 Power Spec		
0.0 ms 4.01	ms/	40.1 ms -1	5.36 MHz	3.07 MHz/	15.36 MHz	-15.36 MHz	3.07 MHz/	15.36 MHz
2 Result Summary					4 Constellatio	n Diagram		
Frame Results 2/2	Mean	Max	Limit	Min	Points Measured : 23	5396	%	
EVM PDSCH QPSK (%)			18.50					
EVM PDSCH 16QAM (%)			13.50		II 💊	🔹 🔞 🐲	8 8 9	* *
EVM PDSCH 64QAM (%)	1.49	1.49	9.00	1.49			1	
EVM PDSCH 256QAM (%)			4.50		S 5	- 👧 👌 🦂		<u> </u>
Results for Selection Subfra			e Results 2/			10		
EVM All (%)	1.53	2.39		1.17	🔥	. 🔞 🔺 🎍	🖌 🔹 🥳	
EVM Phys Channel (%)	1.52	2.38		1.18				
EVM Phys Signal (%)	1.59	2.76		0.99	. 🖌 🔸	ົ 🔹 🔹 🚿		-
Frequency Error (Hz)	-4.16	0.37		-12.42		-	<u>.</u>	
Sampling Error (ppm)	0.02	0.07		-0.08			1 🛎 🍐 🖕	
I/Q Offset (dB)	-42.73	-42.47		-43.06		1 A A A A A A A A A A A A A A A A A A A		
I/Q Gain Imbalance (dB)	-0.00	0.00		-0.00		1.0		*
I/Q Quadrature Error (°)	-0.00	0.01		-0.02			1.7 . 7 . 5	•
RSTP (dBm)	-9.16	-9.00		-9.24		- A & -	🗋 🔬 🔬 🔌 .	
OSTP (dBm)	21.63	21.87		21.53		- T - T		•
RSSI (dBm)	21.64	21.77		21.56		1 L L M	No. 1	
Power (dBm)	21.62	21.74		21.54		State 19		
Crest Factor (dB)	10.91							
		Sync Fo	ind		<u></u>	Measuring		26.10.2017 10:01:46

10:01:46 26.10.2017

lulti¥iew 🔠 Spectrum 🛛 🖾 S	pem3 🛛 🕅 Spe.	.m4 🛛	Spem5 (Ж (LTE (LTE2	(\mathbb{X})	Spem2	X			
	3.695 GHz Mode 27.00 dB MIMC	DL TDD, 10 M		eTime 40.1 r Count 2 of 2 (ne All					
TRG:EXT1	. 27.00 05 141140	J 11X/16	RX Frame		2)						
Conturo Puffor		●1 Clrw 3	EVM vs Car	rier 💁 Avr	a●2 Min●3 I	Aax I	5 Power Sp	ectrum			o1 Clr
Capture Burler rame Start Offset : -41.255066918 ns		(i									
8 dBm			645 %				-51 dBm/Hz		and a second second		
dBm-			267 %				-58 dBm/Hz			\vdash	
dBm—		2.	89 %				-64 dBm/Hz			\vdash	_
15 dBm to the state of the stat	al a chan ball them	2.	512 %	which cide district			-71 dBm/Hz			\vdash	_
29 dBm		2.	135 %				-77 dBm/Hz-	+		\vdash	
4		1.	757 %	A MARINE AND A MARINE	- 11 1.1.0.		-84 dBm/Hz-			\vdash	
5		1.	38 %-	and the second	Manufi Index Ma		-90 dBm/Hz-	+		\vdash	
7 <mark>842 av</mark>	- la testil	1.	002 % -	and the state of the	التقاتير فالديسان		-97 dBm/Hz-				
88 dBm		17 DI	625 % 11	ahilan shahani da	गम् । भूम विकास		-103 dBm/Hz-				
.0 ms 4.01 r	ms/	40.1 ms	7.68 MHz	1.54 MHz/			-7.68 MHz	1.5	54 MHz	<u> </u>	7.68 M
Result Summary					4 Conste	lation	Diagram				
Frame Results 2/2	Mean	Max	Limit	Min	Points Measur	ed : 117	796	4			
EVM PDSCH QPSK (%)			18.50								
EVM PDSCH 16QAM (%)			13.50				8 4 4				
EVM PDSCH 64QAM (%)	1.37	1.37	9.00	1.37							
EVM PDSCH 256QAM (%)			4.50			5	A 6 4		÷	× 🔶	
Results for Selection Subfra	mes All, Selection	i Ant 1, Fram	e Results 2	/2			>		<u>, , , , , , , , , , , , , , , , , , , </u>		
EVM All (%)	1.41	2.21		1.10		-					
EVM Phys Channel (%)	1.41	2.20		1.10							
EVM Phys Signal (%)	1.46	2.33		1.03		-				1.1	
Frequency Error (Hz)	-3.66	0.41		-11.75							
Sampling Error (ppm)	-0.05	0.08		-0.26				<u> </u>			
I/Q Offset (dB)	-41.56	-41.40		-41.81							
I/Q Gain Imbalance (dB)	0.00	0.00		-0.00		-					
I/Q Quadrature Error (°)	-0.00	0.02		-0.03							
RSTP (dBm)	-8.98	-8.83		-9.04			A		. Š		
OSTP (dBm)	18.81	19.01		18.54			- 7 - 7 - 1	1 *	_ * _ `		
RSSI (dBm)	18.75	18.91		18.64	-11				·		
Power (dBm)	18.78	18.94		18.68		- -				· · ·	
Crest Factor (dB)	10.23				-1			Į			
								1			

09:58:25 26.10.2017

3.3. Occupied Bandwidth

- 3.3.1.Applicable Standard: FCC §2.1049
- 3.3.2.Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	Signal & Spectrum Analyzer	FSW26	SB12724/01	2017.6.19	2018.6.18

*statement of traceability:SMQ attests that all calibration has been performed per the A2LA requirements, traceable to NIM.

3.3.3.Test Procedure

The RF out of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation. 99%Power bandwidth was recorded.

3.3.4. Environmental Conditions

Temperature:	20 °C
RelativeHumidity:	53 %
ATM Pressure:	1009 mbar

3.3.5.Test Result: Pass

3.3.6.Test Mode: Transmitting LTE

3.3.7.Test Data:

		Channel B	andwidth: 20M	
Port	Carrier Freq.		Occupied Bandwidth(MHz)
Port	(MHz)	QPSK	16QAM	64QAM
0		17.718	17.728	17.841
1		17.718	17.727	17.844
2		17.718	17.728	17.839
3	2000	17.719	17.728	17.84
4	3660	17.717	17.727	17.836
5		17.717	17.726	17.84
6		17.718	17.728	17.836
7		17.718	17.728	17.841
0		17.702	17.712	17.833
1		17.702	17.713	17.833
2		17.703	17.711	17.833
3	0075	17.703	17.713	17.833
4	3675	17.702	17.714	17.833
5		17.704	17.712	17.833
6		17.702	17.712	17.833
7		17.702	17.712	17.833
0	2600	17.69	17.706	17.831
1	3690	17.691	17.706	17.831

Dant	Carrier Freq.	Occupied Bandwidth(MHz)						
Port	(MHz)	QPSK	16QAM	64QAM				
2		17.691	17.706	17.831				
3		17.692	17.707	17.831				
4		17.689	17.707	17.831				
5		17.689	17.707	17.831				
6		17.688	17.706	17.831				
7		17.688	17.705	17.831				

Channel Bandwidth: 20+20+10M

Dort	Carrier Freq.		Occupied Bandwidth(MH	z)
Port	(MHz)	QPSK	16QAM	64QAM
0		48.219	47.852	48.11
1		48.219	47.851	48.109
2		48.219	47.852	48.109
3	2000.2000.2005	48.219	47.851	48.108
4	3660+3680+3695	48.219	47.852	48.108
5		48.219	47.851	48.109
6		48.219	47.852	48.109
7		48.219	47.852	48.109

MultiView 8	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	Spectrus	n 5 🕅 L	те		
Att GAT:EXT1	10 dB 🖷 SW	fset 27.00 √T 3.74 ms (~26 n	dB • RBW 10 ns) • VBW 30		uto FFT				
1 Occupie	ed Bandwidth								●1Rm Clrw
30 dBm								M1[1]	0.54 dBm
								3	6600000 GHz
20 dBm									
20 UBIII									
10 dBm									
				N O UN	1				
0 dBm			MAA AAI	$h \wedge c \vee$		$\Lambda \rightarrow \Lambda \rightarrow \Lambda$	$\Lambda \Lambda $		
			J * V 🖵 * V		· · · · · · · · · · · · · · · · · · ·				
-10 dBm									
-20 dBm									
-30 dBm		/						\backslash	
-30 ubiii-									
-40 dBm									
-50 dBm									0000
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm									
CF 3.66 G	Hz		1001 pts	 F	د ا	.0 MHz/		c	pan 30.0 MHz
2 Marker			1001 pt	3	3			3	pun solo MHZ
Type		X-Value		Y-Value		Function		Function Re	sult
M1	1	3.66 GH	z	0.54 dBm	Occ Bw	1 anodon	1	7.71783429	
T1	1	3.651044 GH		1.13 dBm	Occ Bw Cer			3.659902	
T2	1	3.6687618 GH	Z	-4.28 dBm	Occ Bw Fre	q Offset		-97.11144	7256 kHz
	Л						Measuring		25.10.2017 14:24:03

#### 14:24:04 25.10.2017

MultiView 8	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	Spectru	im 5 🔣 L	т 🖾		$\bigtriangledown$
Ref Leve Att GAT:EXT1	el 35.00 dBm Offe 10 dB • SW	set 27.00 T 3.74 ms (~26 m	dB • RBW 10 ns) • VBW 30		uto FFT				
	ed Bandwidth								●1Rm Clrw
								M1[1]	0.57 dBm
30 dBm								3	6600000 GHz
20 dBm									
10 dBm									
0 dBm				$\sim \sim \sim$					
			ງັນທີ່ມີທີ່	$\square \cup \lor$					
-10 dBm								1	
-20 dBm									
-30 dBm	/	/						<u> </u>	
-40 dBm									
-50 dBm								hum	
-60 dBm									
CF 3.66 G	GHz	1	1001 pts	3	3	B.0 MHz/	1	S	pan 30.0 MHz
2 Marker									
<b>Type</b> M1 T1 T2	Ref   Trc   1 1 1	X-Value 3.66 GH 3.6510439 GH 3.6687616 GH	łz	Y-Value 0.57 dBm 1.15 dBm -4.24 dBm	Occ Bw Occ Bw Ce Occ Bw Fre		1	Function Re 7.71763860 3.659902 -97.23122	D4 MHz 2769 GHz
		3.000/010 0	12	-1.2-1 GDIT	Star Dim He	in and the second se	Measuring		25.10.2017 14:24:09

14:24:10 25.10.2017

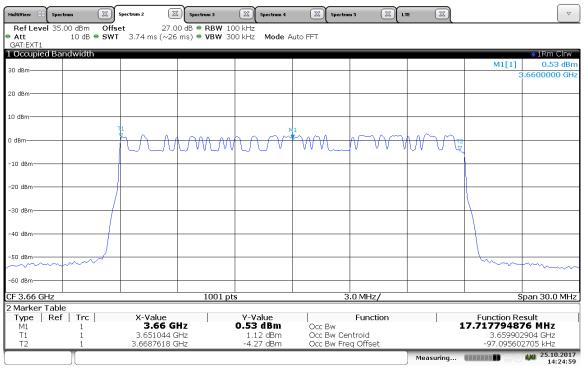
MultiView 88		Spectrum 2	Spectrum 3	Spectrum 4	Spectrus	n 5 🕅 L	те		
Att GAT:EXT1		et 27.00 3.74 ms (~26 r	dB • RBW 10 ms) • VBW 30		uto FFT				
1 Occupied	Bandwidth								●1Rm Clrw
30 dBm								M1[1]	0.58 dBm
								3	.6600000 GHz
20 dBm									
20 0011									
10 dBm									
10 dBm-									
		the contract			$\sim$	lanon	amm		
0 dBm			7 VV /VV	$\Lambda / \Lambda / V$					
			~ • ~ •	~~~	_ · · ··~				
-10 dBm									
-20 dBm									
-30 dBm								<u>\</u>	
-40 dBm									
-50 dBm									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~								m
-60 dBm									
CF 3.66 GH			1001 pt	s	3	.0 MHz/		S	pan 30.0 MHz
2 Marker T									
M1	Ref Trc	X-Value 3.66 GH	7	Y-Value 0.58 dBm	Occ Bw	Function	1	Function Re 7.71767784	
T1	1	3.6510439 GH		1.15 dBm	Occ Bw Cer	ntroid	-		2772 GHz
T2	ī	3.6687616 GH		-4.24 dBm	Occ Bw Fre			-97.22796	
							Measuring		25.10.2017 14:24:16

14:24:17 25.10.2017

MultiView 88	Spectrum X	Spectrum 2	Spectrum 3	Spectrum 4	Spectr	um 5 🕅 L	т 🖾		
Ref Leve Att GAT:EXT1	10 dB • SW	set 27.0 T 3.74 ms (~26	0 dB ● RBW 10 ms) ● VBW 30		luto FFT				
	d Bandwidth								●1Rm Clrw
30 dBm								M1[1]	0.58 dBm
So abiii								:	3.6600000 GHz
20 dBm									
10 dBm									
			<u> </u>				amm		
0 dBm							UV V E		
-10 dBm									
-20 dBm									
-30 dBm		/							
00 00.00									
-40 dBm									
-50 dBm									
~~~~	~~~~~~~~~~								hanne
-60 dBm									
CF 3.66 Gł	Hz	1	1001 pt	S	:	3.0 MHz/	L		span 30.0 MHz
2 Marker									
M1	Ref Trc	X-Value 3.66 GI		Y-Value 0.58 dBm	Occ Bw	Function	1	Function Re 7.7178319	
T1 T2	1 1	3.6510438 G 3.6687617 G		1.19 dBm -4.22 dBm	Occ Bw Ce Occ Bw Fr			3.65990 -97.26453	2735 GHz 1694 kHz
							Measuring	A REAL PROPERTY OF	25.10.2017 14:24:25

14:24:25 25.10.2017

Multi¥iew 88	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	Spectru	m 5 🔣 L	н 🖾		
Att GAT:EXT1		set 27.00 T 3.74 ms (~26 r	dB • RBW 10 ms) • VBW 30		uto FFT				
1 Occupied	Bandwidth								1Rm Clrw
30 dBm								M1[1]	0.61 dBm
								8	3.6600000 GHz
20 dBm									
10 dBm									
		T1			1				
0 dBm		The Ad		$h \wedge n m$	mana	hmam	hamme		
			ມັນທີ່ກັນ			ιν νν ι			
-10 dBm									
-20 dBm									
-30 dBm		1						1	
00 4511									
-40 dBm									
40 0.011									
-50 dBm									
	~~~~~							mm	
-60 dBm									
CF 3.66 GH			1001 pt	s	3	.0 MHz/		5	pan 30.0 MHz
2 Marker T		X-Value		Y-Value		Function		Eurotion D	oult
M1	Ref Trc	3.66 GH	z	0.61 dBm	Occ Bw	Function	1	Function Re 7.7165616	59 MHz
T1	î	3.6510441 GH	Ηz	1.19 dBm	Occ Bw Cer		-	3.659902	2421 GHz
T2	1	3.6687607 GH	łz	-4.22 dBm	Occ Bw Fre	eq Offset		-97.57934	9732 kHz
	Л						Measuring		25.10.2017 14:24:37


14:24:37 25.10.2017

MultiView 8	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	Spectra	um 5 🕅 I	.т. 🕅		\bigtriangledown
Ref Lev Att GAT:EXT1		f fset 27.0 ≬T 3.74 ms (~26	0 dB • RBW 10 ms) • VBW 30		uto FFT				
	ed Bandwidth								●1Rm Clrw
								M1[1]	0.51 dBm
30 dBm								3	.6600000 GHz
20 dBm									
10 dBm									
0 dBm		$\frac{1}{\Lambda}$		$h \wedge m$	1	h	h		
-10 dBm			~~~·~						
-20 dBm									
-30 dBm		A						\land	
-40 dBm									
-50 dBm								L	
-60 dBm—									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CF 3.66 G			1001 pt	s		3.0 MHz/		5	pan 30.0 MHz
2 Marker		V U-1		M. Malua	1	E	1	Europhic D	
Type M1 T1 T2	Ref Trc 1 1 1	X-Value 3.66 G 3.6510441 G 3.668761 G	iHz	Y-Value 0.51 dBm 1.09 dBm -4.32 dBm	Occ Bw Occ Bw Ce Occ Bw Fre		t	Function Re 1.7.71689877 3.659902 -97.43902	5 MHz 561 GHz
)(Measuring		25.10.2017 14:24:46

14:24:46 25.10.2017

MultiView 88	Spectrum 🔀	Spectrum 2		Spectrum 4	Spectru	im 5 🔣 L	те		
Att GAT:EXT1		set 27.0 T 3.74 ms (~26	0 dB • RBW 1 ms) • VBW 3		Auto FFT				
1 Occupiec	d Bandwidth								1Rm Clrw
30 dBm								M1[1]	0.53 dBm
								:	3.6600000 GHz
20 dBm									
20 000									
10 dBm									
TO OPIN									
		K A A	000000	$h \circ \sigma m$		Lonom	hann		
0 dBm		$\Lambda \Lambda M$		\mathbf{W}					
			~ .~				[- · · ·		
-10 dBm									
-20 dBm		1							
		/							
-30 dBm								1	
-40 dBm									
-50 dBm									
$\sim\sim\sim\sim$	~~~~~~								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm									
	_								
CF 3.66 GF			1001 p	ts	3	3.0 MHz/		S	Span 30.0 MHz
2 Marker T Type		X-Value		Y-Value		Function		Function Re	eult.
M1		3.66 G	Hz	0.53 dBm	Occ Bw	runcuon	1	7.7178061	
Τ1	î	3.651044 G	iHz	1.12 dBm	Occ Bw Ce		_	3.65990	2943 GHz
T2	1	3.6687618 G	iHz	-4.27 dBm	Occ Bw Fre	eq Offset		-97.05653	2625 kHz
							Measuring		25.10.2017 14:24:52

14:24:53 25.10.2017

14:24:59 25.10.2017

MultiView 88	·	Spectrum 2	Spectrum 3	Spectrum 4	Spectrus	n 5 🕅 L1	F 🔋 🕱		
Att GAT:EXT1		et 27.00 (3.74 ms (~26 m	dB • RBW 10 s) • VBW 30		uto FFT				
1 Occupied	Bandwidth								●1Rm Clrw
30 dBm								M1[1]	0.70 dBm
								3	.6600000 GHz
20 dBm									
20 0011									
10 dBm									
TO UBIN									
			~ ~ ~						
0 dBm									
-10 dBm									
-20 dBm									
								1	
-30 dBm								$\left\{ \cdots \right\}$	
-40 dBm									
-50 dBm									
\sim	~~~~·							• ~~	
-60 dBm									
CF 3.66 GH			1001 pts	5	3	.0 MHz/		5	pan 30.0 MHz
2 Marker T						:			
Type M1	Ref Trc	X-Value 3.66 GHz	,	Y-Value 0.70 dBm	Occ Bw	Function	1	Function Re 7.72831243	
T1	1	3.6511253 GH		-1.61 dBm	Occ Bw Cer	ntroid	-	3.659989	
T2	1	3.6688536 GH		-2.77 dBm	Occ Bw Fre				l 273 kHz
							Measuring		25.10.2017 12:10:18

12:10:18 25.10.2017

MultiView 8	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	Spectru	m 5 🕅 L	т 🔋 🕱		
			0 dB • RBW 1						
Att GAT:EXT1		GWT 3.74 ms (~26	oms) 🛡 VBW 3	UU KHZ Mode #	Nuto FFT				
1 Occupie	ed Bandwidth								1Rm Clrw
30 dBm								M1[1]	0.64 dBm
								1	3.6600000 GHz
20 dBm									
10 dBm									
					1				
0 dBm		-h	Mark	h	hm	www	M		
-10 dBm									
-20 dBm									
-30 dBm		_/							
-40 dBm									
-50 dBm									
	~~~~~								h
-60 dBm									
CF 3.66 G	GHz		1001 p	ts	<u> </u>	3.0 MHz/		<u>_</u>	Span 30.0 MHz
2 Marker									
Type	Ref   Trc	X-Value 3.66 G		Y-Value 0.64 dBm	Oce Pur	Function	-	Function Re 7.72779364	
M1 T1 T2	1 1 1	3.6511255 ( 3.6688533 (	GHz	-1.68 dBm -2.85 dBm	Occ Bw Occ Bw Ce Occ Bw Fre		-		9386 GHz
	][]						Measuring		25.10.2017 12:10:35

12:10:36 25.10.2017

MultiView 88		Spectrum 2	Spectrum 3	Spectrum 4	Spectru	m 5 🕅 L'	п 🔋 🖾		
Att GAT:EXT1		et 27.00 3.74 ms (~26	)dB • RBW 10 ms) • VBW 30		luto FFT				
1 Occupied	Bandwidth								●1Rm Clrw
30 dBm								M1[1]	0.65 dBm
								3	.6600000 GHz
20 dBm									
20 0011									
10 40.0									
10 dBm									
		T1 ~~ (	<u> </u>		1				
0 dBm		$\mathcal{M}$							
-10 dBm									
-20 dBm									
-30 dBm								\	
-40 dBm									
-50 dBm									
	m								mm
-60 dBm									
-60 uBm									
CF 3.66 GH	lz	1	1001 pt	s	3	3.0 MHz/		- S	pan 30.0 MHz
2 Marker T									
Туре	Ref   Trc	X-Value		Y-Value		Function		Function Re	
M1 T1	1	3.66 GH 3.6511253 GH		0.65 dBm -1.68 dBm	Occ Bw Occ Bw Ce	ntroid	1	7.72790242	24 MHZ 3927 GHz
T2	1	3.6688532 G		-2.85 dBm	Occ Bw Ce Occ Bw Fre			-10.73009	
· · -	T -								25.10.2017
L							Measuring	REF	12:10:42

#### 12:10:43 25.10.2017

MultiView 88	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	Spectru	m 5 🕅 L	т 🚶 🖾		
Ref Level Att GAT:EXT1		set 27.00 T 3.74 ms (~26	0 dB ● RBW 10 ms) ● VBW 30		uto FFT	<b>`</b>			
1 Occupied	Bandwidth								1Rm Clrw
30 dBm								M1[1]	0.67 dBm
30 uBm								:	.6600000 GHz
20 dBm									
10 dBm									
0 dBm		how	Marina			mm	h		
-10 dBm									
-20 dBm									
-30 dBm	/								
-40 dBm									
-50 dBm									
~~~~~								· ····	
-60 dBm									
CF 3.66 GHz	2		1001 pt	8	3	.0 MHz/			pan 30.0 MHz
2 Marker Ta									
Type F M1 T1 T2 T2	Ref Trc 1 1 1	X-Value 3.66 GH 3.6511256 G 3.6688534 G	Hz	Y-Value 0.67 dBm -1.65 dBm -2.81 dBm	Occ Bw Occ Bw Cel Occ Bw Fre		1	Function Re 7.7277891 3.65998 -10.54162	92 MHz 9458 GHz
)[Measuring		25.10.2017 12:10:47

12:10:48 25.10.2017

MultiView 88		Spectrum 2	Spectrum 3	Spectrum 4	Spectru	m 5 🕅 L	FE 🔋 🕱		
Att GAT:EXT1		et 27.00 3.74 ms (~26 i)dB • RBW 10 ms) • VBW 30		Auto FFT				
1 Occupied	Bandwidth								●1Rm Clrw
30 dBm								M1[1]	0.68 dBm
								1	.6600000 GHz
20 dBm									
20 ubiii									
10 dBm									
		r 1		N	11				
0 dBm		A A	Λ	h = h	h.m.	MAA	M		
-10 dBm									
-20 dBm									
20 dbm	1								
-30 dBm								1	
-40 dBm									
-50 dBm								<u> </u>	
\cdots									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm									
CF 3.66 GH			1001 pt	s	3	3.0 MHz/			pan 30.0 MHz
2 Marker T									
Type	Ref Trc	X-Value 3.66 GH	17	Y-Value 0.68 dBm		Function		Function Re 7.7274880	
M1 T1	1	3.6511255 GF		-1.65 dBm	Occ Bw Occ Bw Ce	ntroid			9199 GHz
T2	1	3.6688529 G		-2.82 dBm	Occ Bw Fre			-10.80149	
	Υ						Measuring		25.10.2017
l							measuring	REF	12:10:56

12:10:56 25.10.2017

MultiView 🔠 Spectrum	Spectrum 2 🛛 Spectrum	3 Spectrum 4	Spectrum 5	л 🛛 🕅 эт.
Ref Level 35.00 dBm Off Att 10 dB • SW	set 27.00 dB ● R T 3.74 ms (~26 ms) ● V		uto FFT	
GAT:EXT1				
Occupied Bandwidth				●1Rm Clrv
30 dBm				M1[1] 0.72 dB
so dBm				3.6600000 G
20 dBm				
LO dBm				
	T1	<u>^</u>	1	
) dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		_		
10 dBm				
20 dBm				
-30 dBm	[
40 dBm				
-50 dBm				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
60 dBm				
do dam				
F 3.66 GHz	10	001 pts	3.0 MHz/	Span 30.0 Mł
Marker Table				
Type   Ref   Trc	X-Value	Y-Value	Function	Function Result
M1 1	3.66 GHz 3.6511262 GHz	0.72 dBm	Occ Bw Occ Bw Controld	17.726080536 MHz
T1 1 T2 1	3.6511262 GHZ 3.6688523 GHz	-1.64 dBm -2.81 dBm	Occ Bw Centroid Occ Bw Freg Offset	3.659989216 GHz -10.78388798 kHz
	5.0000525 GHZ	2.01 0011	out binning onset	05.40.00
				Measuring 12:11:1

12:11:06 25.10.2017

MultiView 88	Spectrum	Spectrum 2	Spectrum 3	Spectrum 4	Spectru	m 5 🕅 L1	те 🔋 🗵		
Att GAT:EXT1		et 27.00 3.74 ms (~26	0 dB • RBW 10 ms) • VBW 30		luto FFT				
1 Occupied	Bandwidth								●1Rm Clrw
30 dBm								M1[1]	0.72 dBm
So abiii								3	.6600000 GHz
20 dBm									
10 dBm									
				N	1				
0 dBm			- <u>A</u>						
-10 dBm									
-10 0811									
-20 dBm									
-30 dBm								1	
-40 dBm									
-50 dBm									
-50 uBm								han	
-60 dBm									
CF 3.66 GH	7		1001 pt	S	3	.0 MHz/			pan 30.0 MHz
2 Marker T			1001 pt	-		/			
	Ref   Trc	X-Value		Y-Value		Function		Function Re	esult
M1	1	3.66 Gł		0.72 dBm	Occ Bw		1	7.7277097	
Τ1	1	3.6511254 G		-1.59 dBm	Occ Bw Ce				9252 GHz
T2	1	3.6688531 G	Hz	-2.76 dBm	Occ Bw Fre	eq Offset		-10.74849	5988 kHz
							Measuring		25.10.2017 12:11:16

#### 12:11:17 25.10.2017

MultiView 88	Spectrum 🔀	Spectrum 2	Spectrum 3	Spectrum 4	Spectra	ım 5 🕅 L	π 🔋 🖾		
Att	I 35.00 dBm Off 10 dB ● SW	set 27.00 T 3.74 ms (~26	) dB • RBW 1 ms) • VBW 3		uto FFT				
GAT:EXT1									
1 Occupied	l Bandwidth								1Rm Clrw
30 dBm								M1[1]	0.75 dBm
50 ubiii								:	3.6600000 GHz
20 dBm									
10 dBm									
				N	1				
0 dBm				$h \wedge c^{-i}$		hann			
-10 dBm									
-10 aBm									
-20 dBm									
								1	
-30 dBm		1						1	
-40 dBm									
40 abiii									
-50 dBm	in the second							5	
	~~~~~								
-60 dBm									
			1001		ļ,		1	l	
CF 3.66 GH			1001 p	LS		3.0 MHz/			Span 30.0 MHz
2 Marker 1		V U-1		V Valua		E		E	
Type M1	Ref Trc	X-Value 3.66 GH	17	Y-Value 0.75 dBm	Occ Bw	Function	1	Function R 1.7.7278166	
™1 T1	1	3.6511254 G		-1.56 dBm	Occ Bw Ce	entroid			9315 GHz
T2	i	3.6688532 G		-2.74 dBm	Occ Bw Fre			-10.68500	
	Υ						Measuring	former and the second	25.10.2017
							Measuring	REP	12:11:26

12:11:26 25.10.2017

MultiView	Spectrum	🕱 Spe	ectrum 2	X					
Ref Level 3 Att GAT:EXT1		et 27.00 3.74 ms (~26	0 dB ● RBW ms) ● VBW		Auto FFT				
1 Occupied I	Bandwidth								1Rm Clrw
								M1[1]	-1.95 dBm
30 dBm						-			3.6600000 GHz
20 dBm									
20 00.00									
10 dBm									
								_	
0 dBm		1			M1				
o ubili		~~~~~~	~~~~~	~~~~~~			~~~~~		
-10 dBm									
00.40									
-20 dBm									
-30 dBm	/								
-40 dBm									
-50 dBm									
	mm							- min	m
-60 dBm									
CF 3.66 GHz			1001	pts		3.0 MHz/			Span 30.0 MHz
2 Marker Ta	able								
Type R	Ref Trc	X-Value		Y-Value		Function		Function F	
M1	1	3.66 Gł	IZ	-1.95 dBm	Occ Bw			17.8409240	074 MHz
T1	1	3.6510826 G		-0.59 dBm	Occ Bw Ce				03087 GHz
T2	1	3.6689235 G	Hz	-0.60 dBm	Occ Bw Fr	eq Offset		3.0873	58257 kHz
							Measuring		13.10.2017 17:02:17

17:02:18 13.10.2017

Ref Level 35.00 d Att 10 GAT:EXT1 Occupied Bandy 30 dBm	0 dB 🖷 SWT		0 dB ● RBW 1 ms) ● VBW 3	00 kHz 00 kHz Mode A	Auto FFT				
	width								
10 dBm									1Rm Clrw
so ubm								M1[1]	-2.03 dBm
									3.6600000 GHz
no dour									
20 dBm									
.0 dBm									
	t <u>i</u>	1		N	1			T2	
) dBm	r	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						^d	
10 dBm									
20 dBm									
	/I								
-30 dBm	/								
	/								
40 dBm								+	
m	~~~~							him	
-50 dBm									
60 dBm									
F 3.66 GHz			1001 p	ts		3.0 MHz/			J Span 30.0 MHz
Marker Table			•			•			-
	Trc	X-Value	_	Y-Value		Function		Function R	
M1	1	3.66 GI		-2.03 dBm -0.37 dBm	Occ Bw	antroid		17.8435998	
T1 T2	1	3.6510769 G 3.6689205 G		-0.37 dBm -0.79 dBm	Occ Bw Ce Occ Bw Fr				8692 GHz 5743 kHz
	<u> </u>	0.000020000		and dom	0.00 D W 11		Measuring		a 13.10.2017

17:05:20 13.10.2017

MultiVi	ew 🕄 Spectrum	n 🖾 Spectrum	12 🖾				
Ref Lev Att GAT:EXT1	el 35.00 dBm Offe 10 dB • SW	et 27.00 dB ● I T 3.74 ms (~26 ms) ● 1	RBW 100 kHz VBW 300 kHz Mode A	uto FFT			
1 Occupie	ed Bandwidth						1Rm Clrw
						M1[1]	-1.74 dBm
30 dBm							3.6600000 GHz
20 dBm							
20 UBIII							
10 dBm							
		11	M	1		13	
0 dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		<u> </u>		
-10 dBm-							
10 0.011							
-20 dBm-							
		//					
-30 dBm							
-40 dBm							
io dom							
-50 dBm-							
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~					- Chan	france of the second se
60 J.D							
-60 dBm							
CF 3.66 0	SH7		.001 pts	3.0 MHz/			Span 30.0 MHz
			.001 pts	5.0 10127			span 50.0 Minz
2 Marker							
Туре	Ref Trc	X-Value	Y-Value	Function		Function Re	
M1	1	3.66 GHz	-1.74 dBm	Occ Bw		17.8391024	
T1	1	3.6510786 GHz	-0.20 dBm	Occ Bw Centroid			8185 GHz
T2	1	3.6689177 GHz	-0.66 dBm	Occ Bw Freq Offset		-1.81511	
	T T				Measuring		13.10.2017
L							17:06:59

#### 17:07:01 13.10.2017

MultiView 8	Spectrum	🖾 Spe	ectrum 2	X					
Ref Level 35.0 Att GAT:EXT1		at 27.0 3.74 ms (~26	0 dB ● <b>RBW</b> 10 ms) ● <b>VBW</b> 30		uto FFT				
1 Occupied Ban	dwidth								●1Rm Clrw
								M1[1]	-1.67 dBm
30 dBm									3.6600000 GHz
20 dBm									
10 dBm									
0 dBm	-	1 Z_~			1 		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-⊤2 5	
-10 dBm									
-20 dBm									
-30 dBm	/								
-40 dBm									
-50 dBm									
	~~~~								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-60 dBm									
CF 3.66 GHz			1001 pt	s	3	.0 MHz/	1	9	pan 30.0 MHz
2 Marker Table						ŕ			
Type Ref M1	Trc 1	X-Value 3.66 GI		Y-Value •1.67 dBm	Occ Bw	Function		Function Re 17.8403666	9 MHz
T1 T2	1	3.6510772 G 3.6689175 G		-0.04 dBm -0.59 dBm	Occ Bw Cer Occ Bw Fre			3.659997 -2.652409	
							Measuring		13.10.2017 17:07:25

17:07:26 13.10.2017

MultiView 8	Spectrum	🖾 Sp	ectrum 2	X					
Ref Level 35.1 Att GAT:EXT1			0 dB • RBW ms) • VBW	/ 100 kHz / 300 kHz Mode /	Auto FFT				
1 Occupied Bar	ndwidth								●1Rm Clrw
								M	1[1] -2.01 dBm
30 dBm									3.6600000 GHz
20 dBm									
20 0011									
10 dBm									
		1						-	
0 dBm		2			1			~~	
								1	
-10 dBm									
								L.	
-20 dBm									
-30 dBm	/								
-40 dBm									
50 JD-1	لسر								
-50 dBm	~~~~~								······································
-60 dBm						-			
CF 3.66 GHz			100	l pts		3.0 MHz/			Span 30.0 MHz
2 Marker Table									
Type Ref	Trc	X-Value		Y-Value		Function			ion Result
M1	1	3.66 G		-2.01 dBm	Occ Bw				42044 MHz
T1	1	3.651082 G		-0.67 dBm	Occ Bw C				66000026 GHz
T2	1	3.6689185 G	iHz	-0.94 dBm	Occ Bw Fr	eq urrset		259	.718414783 Hz
							Measuring		13.10.2017 17:07:42

17:07:43 13.10.2017

MultiView 8	Spectrum	🖾 Spe	ectrum 2	X					
Ref Level 35.0 Att GAT:EXT1			0 dB • RBW 10 ms) • VBW 30	DO kHz DO kHz Mode A	uto FFT				
1 Occupied Ban	idwidth								●1Rm Clrw
								M1[1]	-1.74 dBm
30 dBm									3.6600000 GHz
20 dBm									
10 dBm									
0 dBm		11 7			1		~~ ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	т2 	
-10 dBm									
-10 dbm									
-20 dBm									
-30 dBm	/								
-40 dBm									
-50 dBm									
								- m	·····
-60 dBm									
CF 3.66 GHz			1001 pt	IS IS	3	.0 MHz/	1		Span 30.0 MHz
2 Marker Table									
Type Ref		X-Value 3.66 GI		Y-Value -1.74 dBm	Occ Bw	Function		Function Re 17.8402772:	L2 MHz
T1 T2	1	3.6510813 G 3.6689215 G		-0.30 dBm -0.52 dBm	Occ Bw Cer Occ Bw Fre				1404 GHz 9587 kHz
	J						Measuring		13.10.2017 17:07:55

17:07:56 13.10.2017

MultiView	B Spectrum	Sp.	ectrum 2	X					
Ref Level 35. Att GAT:EXT1			0 dB • RBW ms) • VBW	100 kHz 300 kHz Mode /	Auto FFT				
1 Occupied Ba	ndwidth								●1Rm Clrw
								MI	.[1] -2.03 dBm
30 dBm									3.6600000 GHz
20 dBm									
20 0011									
10 dBm									
								_	
0 dBm		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			M1			~~~	
			<u> </u>			1		17	
-10 dBm									
-20 dBm	(
	1								
-30 dBm									
-40 dBm									
-50 dBm	~~~~							- Com	×
~~~-									mar and a second
-60 dBm									
CF 3.66 GHz			1001	pts		3.0 MHz/			Span 30.0 MHz
2 Marker Table	e								
Type Ref	Trc	X-Value		Y-Value		Function			on Result
M1	1	3.66 G		-2.03 dBm	Occ Bw				52196 MHz
Τ1	1	3.6510803 G		-0.61 dBm	Occ Bw Ce				59998369 GHz
T2	1	3.6689164 G	GHz	-1.05 dBm	Occ Bw Fr	eq Offset		-1.	63053035 kHz
	The second secon						Measuring		<b>##</b> 13.10.2017 17:09:09

#### 17:08:09 13.10.2017

MultiView 88	Spectrum	🖾 Spe	ectrum 2	X					
Ref Level 35.0 Att GAT:EXT1		et 27.00 3.74 ms (~26	0 dB ● <b>RBW</b> 10 ms) ● <b>VBW</b> 30		uto FFT				
1 Occupied Ban	dwidth								1Rm Clrw
								M1[1]	-1.95 dBm
30 dBm									3.6600000 GHz
20 dBm									
10 dBm									
		1						т2	
0 dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	h	1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~5	
					1				
-10 dBm									
-10 ubm									
-20 dBm									
-30 dBm	/								
30 dbiii	/								
-40 dBm									
-50 dBm	man							<u> </u>	
	<u> </u>							· ·····	·
-60 dBm									
CF 3.66 GHz			1001 pt	's		3.0 MHz/			Span 30.0 MHz
2 Marker Table			1001 pt			515			opan colonniz
Type Ref	Trc	X-Value		Y-Value		Function		Function R	esult
M1	1	3.66 GH	iz .	-1.95 dBm	Occ Bw	rancion		17.8409246	
T1	î	3.6510827 G		-0.59 dBm	Occ Bw Ce	entroid			3135 GHz
T2	1	3.6689236 G		-0.59 dBm	Occ Bw Fr				.6133 kHz
	T						Measuring		13.10.2017
	٦						measuring		17:08:29

17:08:29 13.10.2017

MultiView	LTE (	Spectrun	1 🖾 S	pectrum 2	X				
Ref Level 35. Att GAT:EXT1		et 27.0 3.74 ms (~26	10 dB • RBW 10 ms) • VBW 30		uto FFT				
1 Occupied Ba	ndwidth								●1Rm Clrw
								M1[1]	0.50 dBm
30 dBm									.6750000 GHz
20 dBm									
20 00.00									
10 dBm									
		11		N	1				
0 dBm		R A A		$h \cap \cap$	MANA	hmam	hammen min		
		$1 \cup \cup 0$	$\cup$ $\vee \cup \vee \cup$			י עע ענ	UV V 🤤		
-10 dBm									
		(							
-20 dBm		H							
	/								
	/							1	
-30 dBm									
-40 dBm									
-50 dBm									
-50 dBm-									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
-60 dBm									
CF 3.675 GHz			1001 pt	S		3.0 MHz/		5	pan 30.0 MHz
2 Marker Table									
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	
M1	1	3.675 G		0.50 dBm	Occ Bw			17.7019570	
T1	1	3.6660449		0.90 dBm	Occ Bw Ce				5841 GHz
T2	1	3.6837468 0	υHZ	-4.73 dBm	Occ Bw Fre	eq Uffset		-104.15884	
							Measuring		23.10.2017 10:51:04

10:51:04 23.10.2017

MultiView	LTE (🗵 Spectrun	1 🖾 S	pectrum 2	X				
Ref Level 35.1 Att GAT:EXT1		et 27.0 3.74 ms (~26	0 dB • RBW 10 ms) • VBW 30		uto FFT				
1 Occupied Bar	ndwidth								• 1Rm Clrw
								M1[1]	0.51 dBm
30 dBm									3.6750000 GHz
20 dBm									
10 dBm									
0.40.00		En n	000 00	hom		home	hamm		
0 dBm		$\Lambda \Lambda M$		$\Lambda \Lambda I V$		W VV V			
			ω·••ω·•		· · · · · · · · · · · · · · · · · · ·	1			
-10 dBm									
		1							
-20 dBm									
	/								
	/								
-30 dBm									
-40 dBm									
-50 dBm-									
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							mm	mmm
-60 dBm									- ×
-00 UBM									
CF 3.675 GHz			1001 pt	s	1	3.0 MHz/	1	5	pan 30.0 MHz
2 Marker Table	2								
Type Ref		X-Value		Y-Value		Function		Function Re	
M1	1	3.675 G		0.51 dBm	Occ Bw			17.7024203	
T1	1	3.6660448		0.92 dBm	Occ Bw C				96046 GHz
T2	1	3.6837473 0	iHz	-4.69 dBm	Occ Bw Fr	req Offset		-103.9538	
							Measuring		23.10.2017 10:51:20
·							)		10.31.20

10:51:20 23.10.2017

MultiView	LTE (	Spectrum	n 🖾 S	pectrum 2	X				
Ref Level 35 Att GAT:EXT1		et 27.0 3.74 ms (~26	00 dB • RBW 10 ms) • VBW 30		uto FFT				
1 Occupied Ba	ndwidth								●1Rm Clrw
								M1[1]	0.54 dBm
30 dBm									.6750000 GHz
20 dBm									
20 000									
10 dBm									
		1		N	1				
0 dBm		R A A		$h \cap \cap$	MAAA	hman	$h \wedge m$		
		$ \cup \cup v $	$\bigcup$ $\bigvee$ $\bigcup$ $\bigvee$			ע אי אן	UV V 🖟		
-10 dBm									
-20 dBm									
	/								
	/								
-30 dBm									
-40 dBm									
-50 dBm									
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								min	m
-60 dBm									
CF 3.675 GHz			1001 pt	S	3	3.0 MHz/		5	pan 30.0 MHz
2 Marker Tabl	e								
Type Ref		X-Value		Y-Value		Function		Function Re	
M1	1	3.675 G	Hz	0.54 dBm	Occ Bw			17.7032522	77 MHz
T1	1	3.6660449 0		0.95 dBm	Occ Bw Ce				9653 GHz
T2	1	3.6837482 0	GHz	-4.65 dBm	Occ Bw Fre	eq Offset		-103.4701	
							Measuring		23.10.2017 10:51:27

10:51:38 23.10.2017

30 dBm M1[1] 0.58 dB 20 dBm 0 3.675000 G 20 dBm 0 0 10 dBm 1 -10 dBm 1 -20 dBm 0 -30 dBm 0 -30 dBm 0 -10 dBm 0 -10 dBm 0 -20 dBm 0 -30 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 -50 dBm 0 -10 train 0 -10 train 0 -10 train 0 -20 dBm 0 -30 dBm 0 -30 dBm 0 -40 dBm 0 -50 dBm 0 <th>MultiView 8</th> <th>LTE (</th> <th>🗵 Spectrum</th> <th>1 🖾 SI</th> <th>pectrum 2</th> <th>X</th> <th></th> <th></th> <th></th> <th></th>	MultiView 8	LTE (🗵 Spectrum	1 🖾 SI	pectrum 2	X				
1 Occupied Bandwidth IEm Chy IEm Chy M1[1] O.58 dB G750000 G G750 G	Att					uto FFT				
30 dBm M1[1] 0.58 dB 20 dBm A A 10 dBm A A -10 dBm A A -20 dBm A A -30 dBm A A -30 dBm A A -10 dBm A A -20 dBm A A -30 dBm A A -30 dBm A A -40 dBm A A -50 dBm A A -40 dBm A A -50 dBm A A -50 dBm A A -10 1pts 3.0 MHz/ Span 30.0 MHz Span 30.0 MHz 20 dBm A A -50 dBm A -50 dBm<		ndwidth								●1Rm Clrw
30 dBm 3.6750000 G 20 dBm 3.6750000 G 10 dBm 1 -10 dBm 1 -20 dBm 1 -30 dBm 1 -40 dBm 1 -50 dBm 1001 pts -50 dBm 3.0 MHz/ Span 30.0 MHz Span 30.0 MHz Z Marker Table 1 Type Ref Trc X-Value M1 1 1 3.6660449 GHz 0.98 dBm 0.758 dBm 0.02 Bw 0.25 BW 2.674896298 GHz 12 1 3.674896298 GHz 12 1 3.6837477 GHz -4.62 dBm 0.25 W Centroid 3.674896298 GHz -103.70214741 kHz -103.70214741 kH									M1[1]	0.58 dBm
20 dBm	30 dBm									
10 dBm 10 dBm 11 dBm <td></td>										
10 dBm 10 dBm 11 dBm <td>20 dBm</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	20 dBm									
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -10 d	20 0011									
0 dBm -10 dBm -20 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -10 Trc X-Value V-Value O.58 dBm Type Ref Trc X-Value V-Value O.58 dBm Type Ref Trc X-Value O.58 dBm -10 Occ Bw Centroid Occ Bw Occ Bw Centroid Occ Bw Occ										
-10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm -101 pts -50 dBm -50 dBm -5	10 dBm-									
-10 dBm -20 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -10 1 1 2 Marker Table Type Ref Trc X-Value Y-Value O.58 dBm T1 1 1 3.6660449 GHz 0.98 dBm T1 3.6650449 GHz 0.98 dBm -4.62 dBm Occ Bw Centroid Occ Bw Freq Offset -103.702214741 kHz -103.702214741 kHz			1		N	1				
-20 dBm -30 dBm -40 dBm -50	0 dBm		$h \wedge A $		$h \wedge \cap \cap$	naa	hmam			
-20 dBm -30 dBm -40 dBm -50				\bigcup $\vee \lor \bigcup \vee \lor$	$ \cup \cup \vee $		י אי אן	UV V Q		
-20 dBm -30 dBm -40 dBm -50	10 d0m		1							
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -70	-10 ubm									
-30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -101 pts 1001 pts 3.0 MHz/ Span 30.0 MHz/ Span 30.										
-40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dZ 73 43 44 MHz -70 27 33 43 4 MHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.702214741 kHz -71 3.674896298 GHz -70 3.702214741 kHz -71 3.674896298 GHz -70 3.702214741 kHz -71 3.702214741 kHz	-20 dBm									
-40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dZ 73 43 44 MHz -70 27 33 43 4 MHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.702214741 kHz -71 3.674896298 GHz -70 3.702214741 kHz -71 3.674896298 GHz -70 3.702214741 kHz -71 3.702214741 kHz		/								
-40 dBm -50 dBm -50 dBm -60 dBm -70 dBm -70 dBm -70 dZ 73 43 44 MHz -70 27 33 43 4 MHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.674896298 GHz -70 3.702214741 kHz -71 3.674896298 GHz -70 3.702214741 kHz -71 3.674896298 GHz -70 3.702214741 kHz -71 3.702214741 kHz	-30 dBm	/								
-50 dBm -50 dBm <t< td=""><td>30 abiii</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	30 abiii									
-50 dBm -50 dBm <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
-60 dBm -60 dBm <t< td=""><td>-40 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-40 dBm									
-60 dBm -60 dBm <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
-60 dBm -60 dBm <t< td=""><td>-50 dBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-50 dBm									
CF 3.675 GHz 1001 pts 3.0 MHz/ Span 30.0 MH 2 Marker Table 2 2 Marker Table Function Function Result M1 1 3.675 GHz 0.58 dBm Occ Bw 17.702733434 MHz T1 1 3.6660449 GHz 0.98 dBm Occ Bw Centroid 3.674896298 GHz T2 1 3.66837477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~							how	
CF 3.675 GHz 1001 pts 3.0 MHz/ Span 30.0 MH 2 Marker Table 2 2 Marker Table Function Function Result M1 1 3.675 GHz 0.58 dBm Occ Bw 17.702733434 MHz T1 1 3.6660449 GHz 0.98 dBm Occ Bw Centroid 3.674896298 GHz T2 1 3.66837477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz										
2 Marker Table Function Function Result Type Ref Trc X-Value Y-Value Function Function Result M1 1 3.6775 GHz 0.58 dBm Occ Bw 17.702733434 MHz T1 1 3.6660449 GHz 0.98 dBm Occ Bw Centroid 3.674896298 GHz T2 1 3.6837477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz	-60 dBm									
2 Marker Table Function Function Result Type Ref Trc X-Value Y-Value Function Function Result M1 1 3.6775 GHz 0.58 dBm Occ Bw 17.702733434 MHz T1 1 3.6660449 GHz 0.98 dBm Occ Bw Centroid 3.674896298 GHz T2 1 3.6837477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz	CE 3.675 GHz		1	1001 nt	5		1 3.0 MHz7		<u>ر</u>	nan 30.0 MHz
Type Ref Trc X-Value Y-Value Function Function Result M1 1 3.6775 GHz 0.58 dBm Occ Bw 17.702733434 MHz T1 1 3.6660449 GHz 0.98 dBm Occ Bw Centroid 3.674896298 GHz T2 1 3.6837477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz		<u>, </u>		1001 pt	<u>.</u>					2011001011112
M1 1 3.675 GHz 0.58 dBm Occ Bw 17.702733434 MHz T1 1 3.6660449 GHz 0.98 dBm Occ Bw Centroid 3.674896298 GHz T2 1 3.6637477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz			X-Value		V-Value		Eunction		Eupction D/	eult
T1 1 3.6660449 GHz 0.98 dBm Occ Bw Centroid 3.674896298 GHz T2 1 3.6837477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz		1		Hz		Occ Bw	runcaun			
T2 1 3.6837477 GHz -4.62 dBm Occ Bw Freq Offset -103.702214741 kHz		1					ntroid			
Mascuring 23.10.201		ĩ								
		Υ								23.10.2017
								measuring	REF	10:51:57

10:51:58 23.10.2017

MultiView 8	LTE (Spectrum	n 🖾 S	pectrum 2	X				
Ref Level 35. Att GAT:EXT1		et 27.0 3.74 ms (~26	00 dB • RBW 10 ms) • VBW 30		uto FFT				
1 Occupied Bar	ndwidth								●1Rm Clrw
								M1[1]	0.50 dBm
30 dBm									3.6750000 GHz
20 dBm									
10 dBm									
		1		N	1				
0 dBm		$h \wedge A$		$h \cap \cap \cap$		hmam			
			\square $\vee \cup \cup \vee$			י עע ען			
		1							
-10 dBm									
-20 dBm									
	/							1	
an daw	/							1	
-30 dBm								1	
-40 dBm									
-50 dBm									
-50 uBm	~~~~~							5 million 1997	
~~~~									
-60 dBm									
05.0 (75.0)									
CF 3.675 GHz			1001 pt	S		3.0 MHz/			pan 30.0 MHz
2 Marker Table									
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	
M1	1	3.675 G		0.50 dBm	Occ Bw	an barrant al		17.7024079	
T1 T2	1	3.6660449 0 3.6837473 0		0.88 dBm -4.73 dBm	Occ Bw Ce			3.6748 -103.92958	39607 GHz
12	1	3.003/4/30	אחנ	-4.73 abm	Occ Bw Fre	eq onset		-103.9295	
							Measuring		10:52:00

#### 10:52:10 23.10.2017

Ref Level 35.00		- ( '	ı ⊠] S∣	pectrum 2	X				
Att GAT:EXT1			0 dB • RBW 10 ms) • VBW 30	0 kHz 0 kHz <b>Mode</b> A	uto FFT				
1 Occupied Band	dwidth								1Rm Clrw
								M1[1]	0.52 dBm
30 dBm								3	.6750000 GHz
20 dBm									
10 dBm									
		1		M	1				
0 dBm		4 1 1 1			$\gamma_{\Lambda} \gamma_{\Lambda}$	hmnm			
		$\cup \cup \cup$	$\bigcirc$ vv $\bigcirc$ vv			v	UV V &		
-10 dBm	(								
10 dbiii									
-20 dBm	1								
	/								
-30 dBm	/								
-40 dBm									
-50 dBm									
mm	~~~~							- min	m
-60 dBm									
-00 0811									
CF 3.675 GHz			1001 pt	S	:	3.0 MHz/			pan 30.0 MHz
2 Marker Table									
Type   Ref	Trc	X-Value	_	Y-Value		Function		Function Re	
M1	1	3.675 GI		0.52 dBm	Occ Bw		:	17.7039284	
T1 T2	1	3.6660449 G 3.6837489 G		0.91 dBm -4.66 dBm	Occ Bw Ce Occ Bw Fr			3.67489 -103.09629	96904 GHz
12	1 1	5.0057409 G	1 12	4.00 UDIT		eq onser			23.10.2017
	Л						Measuring	Real Property in the second	10:58:19

10:58:19 23.10.2017