9 SPURIOUS EMISSION - RF CONDUCTED MEASUREMENT

9.1 Standard Applicable

According to 12.247 (c), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.209(a) (see Section 15.205(c)).

9.2 Measurement Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in figure 2. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- 3. Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.3 Measurement Equipment

Equipment	Manufacturer	Model No.	Next Cal. Due		
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005		

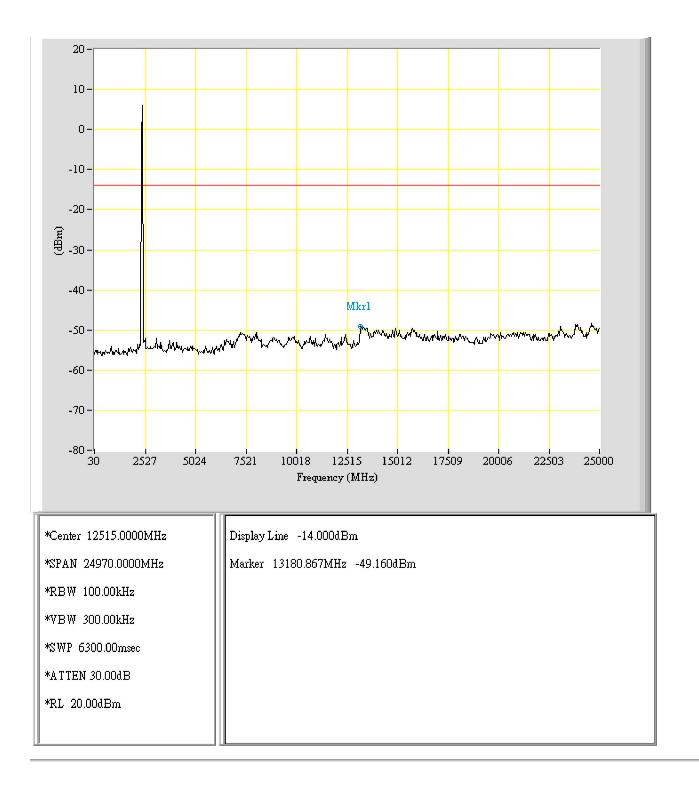
ETC Report No. : ET93S-08-211-01

9.4 Measurement Data

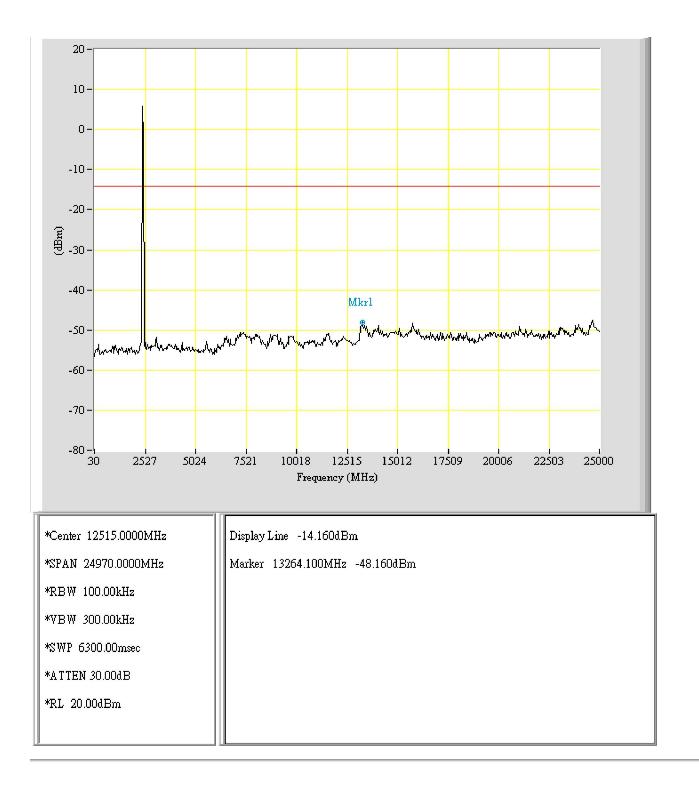
(1) IEEE 802.11b

Channel	Frequency(MHz)	Chart
1	2412	Page 45, Page 46
6	2437	Page 47
11	2462	Page 48, Page 49

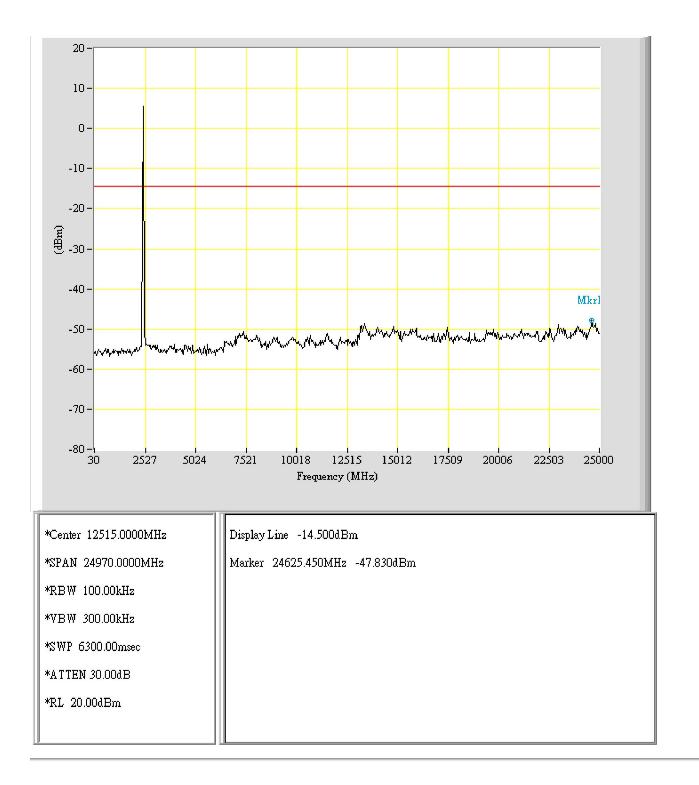
(2) IEEE 802.11g

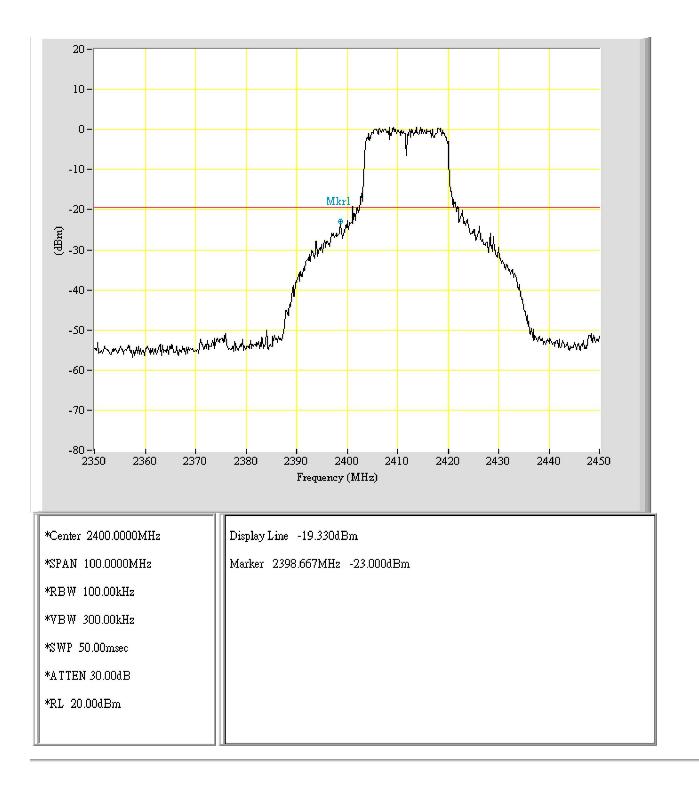

Channel	Frequency(MHz)	Chart
1	2412	Page 50, Page 51
6	2437	Page 52
11	2462	Page 53, Page 54

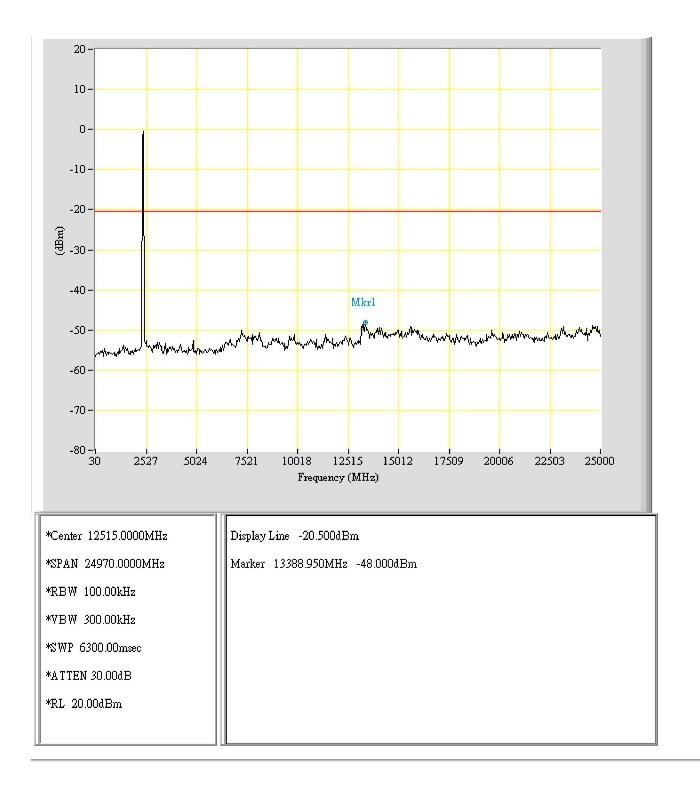
All out-of –band conducted emissions were more than 20dB below the carrier.

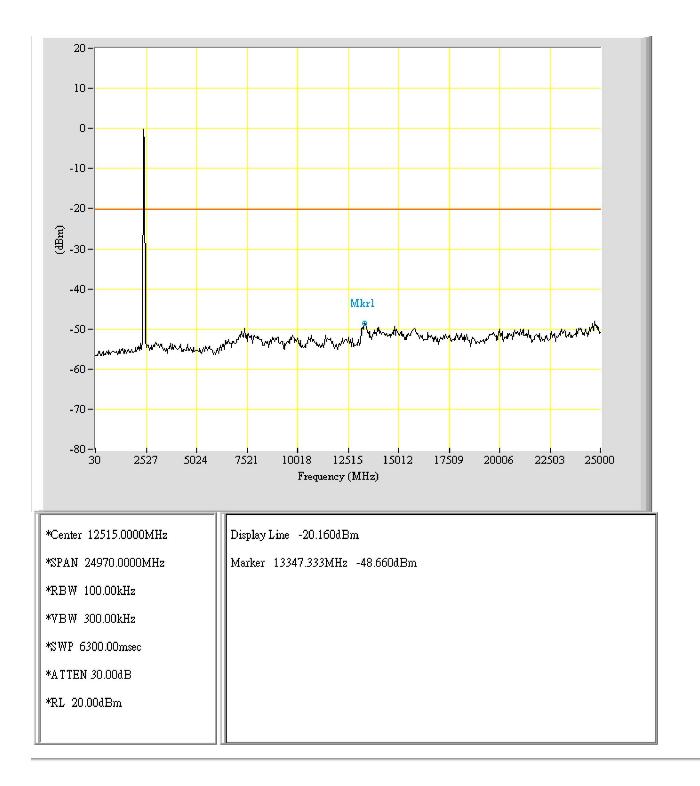

Note: Please refer to page 45 to page 54 for chart

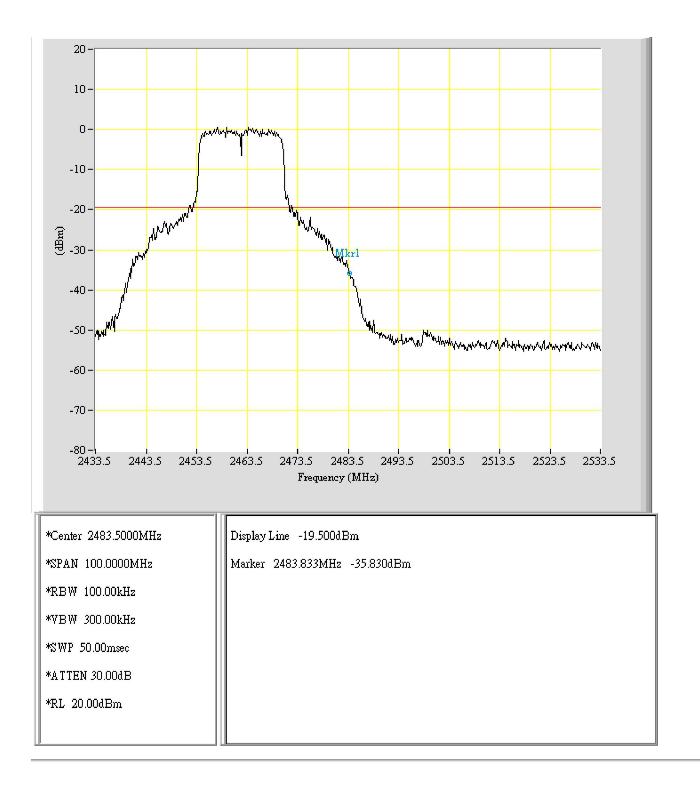
EUT: DMA-10W Purpose: Band_Edge Condition: 802,11b_CH01 Note:

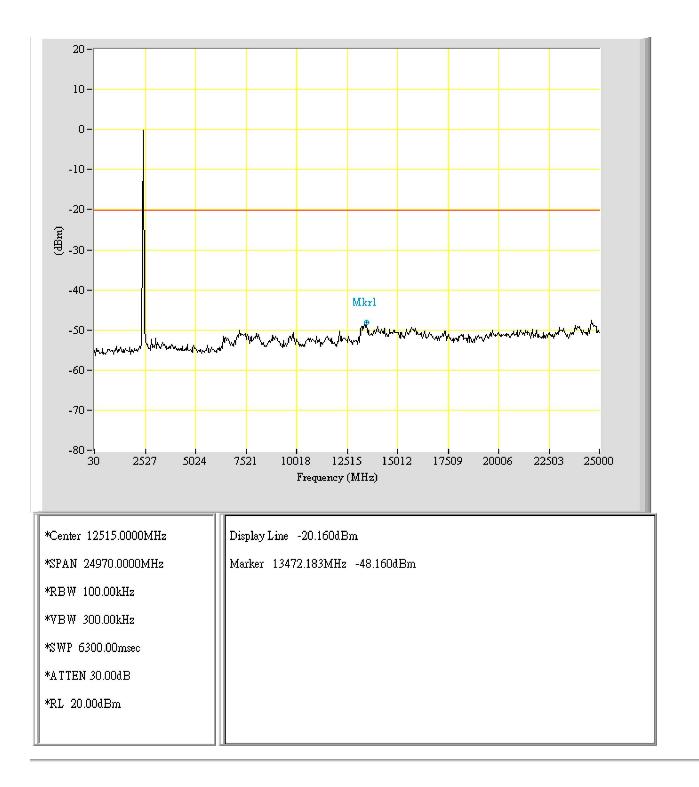

EUT: DMA-10W Purpose: Band_Edge_All Condition: 802,11b_CH01 Note:


EUT: DMA-10W Purpose: Band_Edge_All Condition: 802,11b_CH06 Note:


EUT: DMA-10W Purpose: Band_Edge Condition: 802,11b_CH11 Note:


EUT: DMA-10W Purpose: Band_Edge_All Condition: 802,11b_CH11 Note:


EUT: DMA-10W Purpose: Band_Edge Condition: 802,11g_CH01 Note:


EUT: DMA-10W Purpose: Band_Edge_All Condition: 802,11g_CH01 Note:

EUT: DMA-10W Purpose: Band_Edge_All Condition: 802,11g_CH06 Note:

EUT: DMA-10W Purpose: Band_Edge Condition: 802,11g_CH11 Note:

EUT: DMA-10W Purpose: Band_Edge_All Condition: 802,11g_CH11 Note:

10 RADIATED EMISSION MEASUREMENT

10.1 Standard Applicable

For unintentional radiator, the radiated emission shall comply with §15.109(a).

For intentional radiators, according to §15.247 (a), operation under this provision is limited to frequency hopping and direct sequence spread spectrum, and the out band emission shall be comply with §15.247 (c)

10.2 Measurement Procedure

- 1. Setup the configuration per figure 4 and 5 for frequencies measured below and above 1 GHz respectively.
- 2. For emission frequencies measured below 1 GHz, it is performed in a semi-anechoic chamber to determine the accurate frequencies of higher emissions. For emission frequencies measured above 1 GHz, a pre-scan be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 120 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from 0° to 360° with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading. A RF test receiver is also used to confirm emissions measured.

Note : A filter was used to avoid pre-amplifier saturated when measure TX operation mode.

- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.
- 7. Check the three frequencies of highest emission with varying the datarate, placement of ANT. cables associated with EUT to obtain the worse case and record the result.

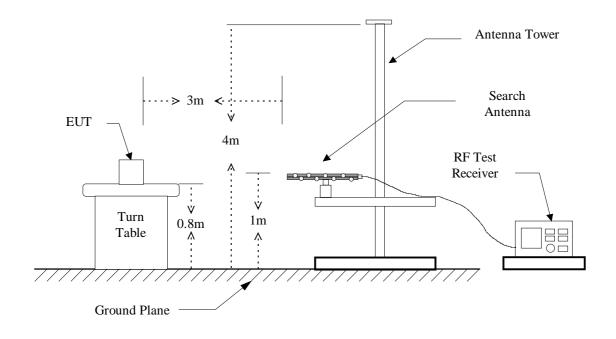
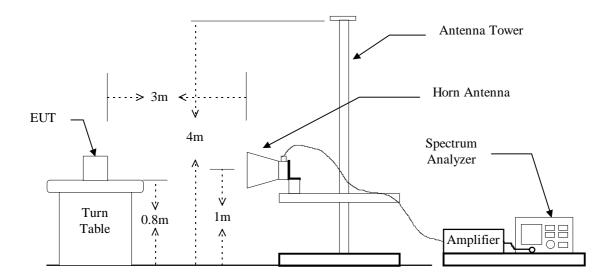



Figure 4 : Frequencies measured below 1 GHz configuration

Figure 5 : Frequencies measured above 1 GHz configuration

10.3 Measuring Instrument

Equipment	Manufacturer	Model No.	Next Cal. Due		
EMI Test Receiver	Hewlett-Packard	8546A	01/31/2005		
BiconiLog Antenna	Schwarzbeck	9160	10/18/2004		
Horn Antenna	ЕМСО	3115	05/09/2005		
Horn Antenna	ЕМСО	3116	06/28/2005		
Preamplifier	Hewlett-Packard	8449B	09/17/2005		
Spectrum Analyzer	Hewlett-Packard	8564EC	09/16/2005		

The following instrument are used for radiated emissions measurement :

Measuring instrument setup in measured frequency band when specified detector function is used :

Frequency Band	Instrument	Function	Resolution	Video	
(MHz)	motramont	i unetion	bandwidth	Bandwidth	
	RF Test Receiver	Quasi-Peak	120 kHz	300 kHz	
30 to 1000	Spectrum Analyzer	Peak	120 kHz	300 kHz	
1000	Spectrum Analyzer	Peak	1 MHz	1 MHz	
Above 1000	Spectrum Analyzer	Average	1 MHz	10 Hz	

Measuring instrument setup in measured frequency band when specified detector function is used:

Frequency Band	Instrument	Function	Resolution	Video
(MHz)		1 011001011	bandwidth	Bandwidth
	Spectrum Analyzer	Peak	1 MHz	1 MHz
2390 & 2483.5	Spectrum Analyzer	Average	1 MHz	10 Hz

10.4 Radiated Emission Data

10.4.1 Harmonic

10.4.1.1 IEEE 802.11bOperation Mode: Receiving /TransmittingTest Date: Sep. 01, 2004Temperature: 25

Humidity: 63 %

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency		Reading	(dBuV)		Factor	Result @3m		Limit @3m		Margin	Table	Ant.
	Н		V		(dB)	(dBuV/m)		(dBuV/m)		(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4824.000	49.5	38.1	49.5	39.7	-4.4	45.1	35.3	74.0	54.0	18.7	98	1.0
7236.000								74.0	54.0			
12060.000								74.0	54.0			
14472.000								74.0	54.0			
19296.000								74.0	54.0			

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency		Reading	(dBuV)		Factor	Result @3m		Limit @3m		Margin	Table	Ant.
	Н		V		(dB)	(dBuV/m)		(dBuV/m)		(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4874.000	48.1	37.9	50.5	40.4	-4.4	46.1	36.0	74.0	54.0	18.0	98	1.0
7311.000								74.0	54.0			
12185.000								74.0	54.0			
19496.000								74.0	54.0			

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin (dB)	Table	Ant.
	Н		V		(dB)	(dBu	(dBuV/m)		(dBuV/m)		Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4924.000	48.2	37.8	50.5	40.5	-4.4	46.1	36.1	74.0	54.0	17.9	98	1.0
7386.000								74.0	54.0			
19696.000								74.0	54.0			
22158.000								74.0	54.0			
19296.000								74.0	54.0			

Note :

1. Item of margin shown in above table refer to average limit.

2. Remark "---" means that the emissions level is too low to be measured.

3. Item "Margin" referred to Average limit while there is only peak result.

10.4.1.2 IEEE 802.11gOperation Mode: Receiving /TransmittingTest Date: Sep. 01, 2004Temperature: 25

Humidity: 63 %

a) Channel 1

Fundamental Frequency: 2412 MHz

Frequency		Reading	(dBuV)		Factor	Result	t @3m	Limit	@3m	Margin (dB)	Table	Ant.
	Н		V		(dB)	(dBu	(dBuV/m)		(dBuV/m)		Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4824.000	48.9	38.2	48.6	38.2	-4.4	44.5	33.8	74.0	54.0	20.2	100	1.0
7236.000								74.0	54.0			
12060.000								74.0	54.0			
14472.000								74.0	54.0			
19296.000								74.0	54.0			

b) Channel 6

Fundamental Frequency: 2437 MHz

Frequency		Reading	(dBuV)		Factor	Result @3m		Limit @3m		Margin	Table	Ant.
	Н		V		(dB)	(dBuV/m)		(dBuV/m)		(dB)	Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4874.000	49.2	38.2	49.7	38.6	-4.4	45.3	34.2	74.0	54.0	19.8	100	1.0
7311.000								74.0	54.0			
12185.000								74.0	54.0			
19496.000								74.0	54.0			

c) Channel 11

Fundamental Frequency: 2462 MHz

Frequency	Reading (dBuV)				Factor	Result	t @3m	Limit	@3m	Margin (dB)	Table	Ant.
	Н		V		(dB)	(dBu	(dBuV/m)		(dBuV/m)		Deg.	High
(MHz)	Peak	Ave	Peak	Ave	Corr.	Peak	Ave	Peak	Ave.		(Deg.)	(m)
4924.000	48.8	38.1	49.8	39.8	-4.4	45.4	35.4	74.0	54.0	18.6	100	1.0
7386.000								74.0	54.0			
19696.000								74.0	54.0			
22158.000								74.0	54.0			
19296.000								74.0	54.0			

Note :

1. Item of margin shown in above table refer to average limit.

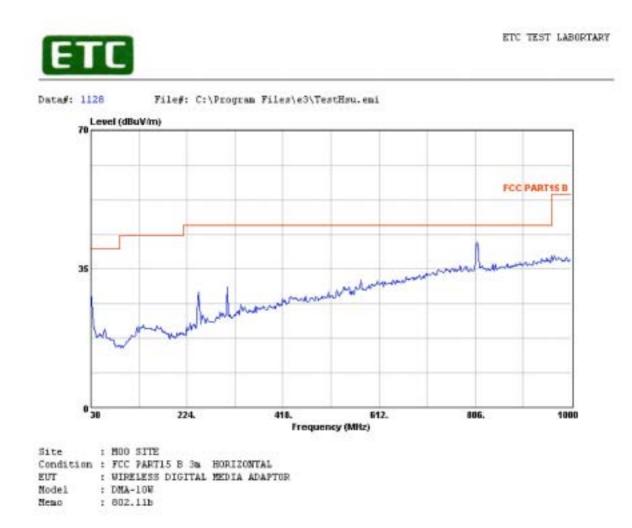
2. Remark "---" means that the emissions level is too low to be measured.

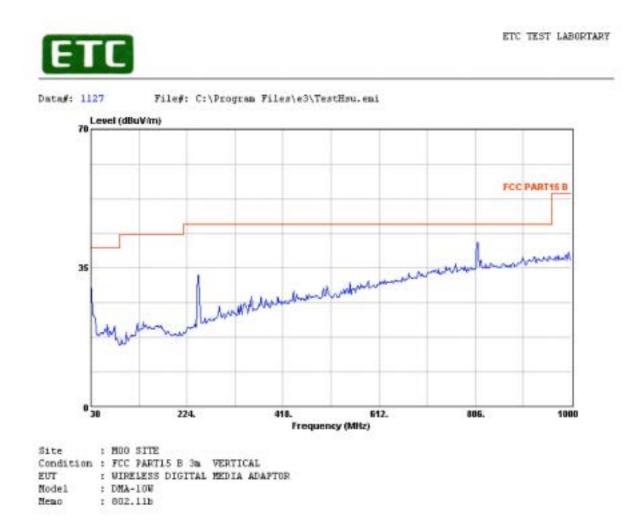
3. Item "Margin" referred to Average limit while there is only peak result.

10.4.2 Spurious Emission

10.4.2.1 IEEE 802.11b

Test Date:Sep. 01, 2004Temperature:25Humidity:63 %


a) Emission frequencies below 1 GHz


Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
30.000	Н	15.6	13.1	28.7	40.0	-11.3
30.000	V	17.7	13.1	30.8	40.0	-9.2
77.530	V	10.5	9.9	20.4	40.0	-19.6
247.280	Н	14.5	14.6	29.1	46.0	-16.9
247.280	V	18.5	14.6	33.1	46.0	-12.9
305.480	Н	13.5	16.8	30.3	46.0	-15.7
373.380	V	9.0	18.8	27.8	46.0	-18.2
552.830	V	8.3	22.9	31.2	46.0	-14.8
574.140	Н	8.4	23.6	32.0	46.0	-14.0
775.930	Н	8.5	27.2	35.7	46.0	-10.3
809.880	Н	14.1	27.6	41.7	46.0	-4.3
809.880	V	13.8	27.6	41.4	46.0	-4.6

b) Emission frequencies above 1 GHz

Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
Rad	diated em	iission frequ were too lo			25 GHz	

Note : Please refer to page 61 to page 62 for chart

10.4.2.2 IEEE 802.11g

Test Date: <u>Sep. 01, 2004</u>

Temperature: 25

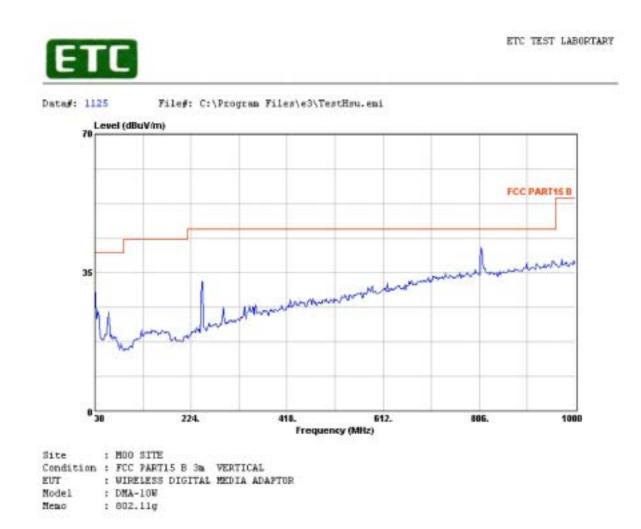
Humidity: <u>63 %</u>

a) Emission frequencies below 1 GHz

Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
30.000	Н	21.0	13.1	34.1	40.0	-5.9
30.000	V	18.2	13.1	31.3	40.0	-8.7
58.130	V	11.7	13.2	24.9	40.0	-15.1
245.340	Н	15.5	14.6	30.1	46.0	-15.9
245.340	V	18.1	14.6	32.7	46.0	-13.3
288.990	V	9.5	16.8	26.3	46.0	-19.7
332.640	Н	10.2	17.5	27.7	46.0	-18.3
407.330	Н	8.8	19.4	28.2	46.0	-17.8
543.130	Н	8.4	22.9	31.3	46.0	-14.7
589.690	V	7.9	23.8	31.7	46.0	-14.3
809.880	Н	14.7	27.6	42.3	46.0	-3.7
809.880	V	13.7	27.6	41.3	46.0	-4.7

b) Emission frequencies above 1 GHz

Frequency (MHz)	Ant-Pol H/V	Meter Reading (dBuV)	Corrected Factor (dB)	Result @3m (dBuV/m)	Limit @3m (dBuV/m)	Margin (dB)
Rad	diated em	iission frequ were too lo			25 GHz	


Note : Please refer to page 64 to page 65 for chart

ETC TEST LABORTARY

File#: C:\Program Files\e3\TestHsu.emi Data#: 1126 70 Level (dBuV/m) FCC PART15 B nul 35 how how mander and ald - 4 0 30 224. 418. \$12. 006. 1000 Frequency (MHz) : MOO SITE Site Condition : FCC PARTIS B 3m HORIZONTAL EUT : WIRELESS DIGITAL MEDIA ADAPTOR Node1 : DMA-10W

Memo : 802.11g

10.4.3 Radiated Measurement at Bandedge with Fundamental Frequencies

(1) IEEE 802.11b

 Test Date:
 Sep. 01, 2004
 Temperature:
 25
 Humidity:
 63 %

Operation Mode: Receiving /Transmitting

Frequency (MHz)	H Peak	Reading H Ave	g (dBuV) ∖ Peak	/ Ave	Factor (dB) Corr.	Result @3m (dBuV/m) Peak Ave		Limit @3m (dBuV/m) Peak Ave.		Margin (dB)	Table Deg. (Deg.)	Ant. High (m)
2390.000	29.8	18.0	32.7	21.7	28.3	61.0	50.0	74.0	54.0	4.0	98	1.0
2483.500	30.7	18.0	33.3	22.0	28.3	61.6	50.3	74.0	54.0	3.7	98	1.0

Note :

1. Item of margin shown in above table refer to average limit.

2. Remark "---" means that the emissions level is too low to be measured.

3. Item "Margin" referred to Average limit while there is only peak result.

(2) IEEE 802.11g

Test Date: Sep. 01, 2004

Temperature: 25

Humidity: 63 %

Operation Mode: Receiving /Transmitting

Frequency		Reading	(dBuV)		Factor	Result @3m (dBuV/m) Peak Ave		Limit @3m (dBuV/m) Peak Ave.		Margin	Table	Ant.
	ŀ	4	١	/	(dB)					(dB)	(dB) Deg. (Deg.)	High
(MHz)	Peak	Ave	Peak	Ave	Corr.						(3)	(m)
2390.00	30.1	20.2	30.5	19.7	28.3	58.5	48.5	74.0	54.0	5.5	100	1.0
2483.500	30.2	20.3	32.1	21.4	28.3	60.4	49.7	74.0	54.0	4.3	100	1.0

Note :

1. Item of margin shown in above table refer to average limit.

2. Remark "----" means that the emissions level is too low to be measured.

3. Item "Margin" referred to Average limit while there is only peak result.

10.5 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor, High Pass Filter Loss(if used) and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

where

Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain