

Test report No. Page Issued date FCC ID : 14091895H-A-R1 : 1 of 38 : February 3, 2022 : Q6ZMHEM7145T2

RADIO TEST REPORT

Test Report No.: 14091895H-A-R1

Applicant : OMRON HEALTHCARE Co., Ltd.

Type of EUT : Blood Pressure Monitor

Model Number of EUT : BP9300T

FCC ID : Q6ZMHEM7145T2

Test regulation : FCC Part 15 Subpart C: 2021

Test result : Complied (Refer to SECTION 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements.
 It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 14091895H-A. 14091895H-A is replaced with this report.

Representative test engineer:

Kiyoshiro Okazaki
Engineer

Approved by:

Takayuki Shimada
Leader

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan, Inc.

There is no testing item of "Non-accreditation".

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 2 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

REVISION HISTORY

Original Test Report No.: 14091895H-A

Revision	Test report No.	Date	Page	Contents
			revised	
-	14091895H-A	January 24, 2022	-	-
(Original)				
1	14091895H-A-R1	February 3, 2022	P.9	Addition of note sentence *1) in clause 4.1
1	14091895H-A-R1	February 3, 2022	P.10	Correction of the model number of the AC
				Adapter used in Conducted emission and
				Radiated emission tests of Configuration and
				peripherals in Clause 4.2
1	14091895H-A-R1	February 3, 2022	P.25	Addition of "* 1)" to 2484 MHz Remarks in
		*		Radiated Spurious Emission test data.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 3 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

Reference: Abbreviations (Including words undescribed in this report)

A2LA	The American Association for Laboratory Accreditation	LIMS	Laboratory Information Management System
AC	Alternating Current	MCS	Modulation and Coding Scheme
AFH	Adaptive Frequency Hopping	MRA	Mutual Recognition Arrangement
AM	Amplitude Modulation	N/A	Not Applicable
Amp, AMP	Amplifier	NIST	National Institute of Standards and Technology
ANSI	American National Standards Institute	NS	No signal detect.
Ant, ANT	Antenna	NSA	Normalized Site Attenuation
AP	Access Point	OBW	Occupied BandWidth
ASK	Amplitude Shift Keying	OFDM	Orthogonal Frequency Division Multiplexing
Atten., ATT	Attenuator	P/M	Power meter
AV	Average	PCB	Printed Circuit Board
BPSK	Binary Phase-Shift Keying	PER	Packet Error Rate
BR	Bluetooth Basic Rate	PHY	Physical Layer
BT	Bluetooth	PK	Peak
BT LE		PN	Pseudo random Noise
	Bluetooth Low Energy		
BW	BandWidth	PRBS	Pseudo-Random Bit Sequence
Cal Int	Calibration Interval	PSD	Power Spectral Density
CCK	Complementary Code Keying	QAM	Quadrature Amplitude Modulation
Ch., CH	Channel	QP	Quasi-Peak
CISPR	Comite International Special des Perturbations Radioelectriques	QPSK	Quadrature Phase Shift Keying
CW	Continuous Wave	RBW	Resolution BandWidth
DBPSK	Differential BPSK	RDS	Radio Data System
DC	Direct Current	RE	Radio Equipment
D-factor	Distance factor	RF	Radio Frequency
DFS	Dynamic Frequency Selection	RMS	Root Mean Square
DQPSK	Differential QPSK	RNSS	Radio Navigation Satellite Service
DSSS	Direct Sequence Spread Spectrum	RSS	Radio Standards Specifications
DUT	Device Under Test	Rx	Receiving
EDR	Enhanced Data Rate	SA, S/A	Spectrum Analyzer
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	SG	Signal Generator
EMC	ElectroMagnetic Compatibility	SVSWR	Site-Voltage Standing Wave Ratio
EMI	ElectroMagnetic Interference	TR, T/R	Test Receiver
EN	European Norm	Tx	Transmitting
ERP, e.r.p.	Effective Radiated Power	VBW	Video BandWidth
ETSI	European Telecommunications Standards Institute	Vert.	Vertical
EU	European Union	WLAN	Wireless LAN
EUT	Equipment Under Test		
Fac.	Factor		
FCC	Federal Communications Commission		
FHSS	Frequency Hopping Spread Spectrum		
FM	Frequency Modulation		
Freq.	Frequency		
FSK	Frequency Shift Keying		
GFSK	Gaussian Frequency-Shift Keying		
GNSS	Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
IEC	International Electrotechnical Commission		
IEEE	Institute of Electrical and Electronics Engineers		
IF	Intermediate Frequency		
ILAC	International Laboratory Accreditation Conference		
ISED	Innovation, Science and Economic Development Canada		
ISO	International Organization for Standardization		
JAB	-		
JAD	Japan Accreditation Board		

UL Japan, Inc. Ise EMC Lab.

LAN

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Local Area Network

Test report No. Page Issued date FCC ID : 14091895H-A-R1 : 4 of 38 : February 3, 2022 : Q6ZMHEM7145T2

CONTENTS	PAGE
SECTION 1: Customer information	
SECTION 2: Equipment under test (EUT)	
SECTION 3: Test specification, procedures & results	
SECTION 4: Operation of EUT during testing	9
SECTION 5: Conducted Emission	12
SECTION 6: Radiated Spurious Emission	13
SECTION 7: Antenna Terminal Conducted Tests	15
APPENDIX 1: Test data	16
Conducted Emission	16
99 % Occupied Bandwidth and 6 dB Bandwidth	17
Maximum Peak Output Power	19
Average Output Power	20
Radiated Spurious Emission	
Conducted Spurious Emission	28
Power Density	
APPENDIX 2: Test instruments	
APPENDIX 3: Photographs of test setup	35
Conducted Emission	
Radiated Spurious Emission	
Worst Case Position	
Antenna Terminal Conducted Tests	38

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 5 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

SECTION 1: Customer information

Company Name : OMRON HEALTHCARE Co., Ltd.

Address : 53, Kunotsubo, Terado-cho, Muko, KYOTO, 617-0002 Japan

Telephone Number : +81-75-925-2045 Contact Person : Toshiaki Yuasa

The information provided from the customer is as follows;

- Applicant, Type of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- SECTION 1: Customer information
- SECTION 2: Equipment under test (EUT) other than the Receipt Date
- SECTION 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

Type : Blood Pressure Monitor

Model Number : BP9300T

Serial Number : Refer to SECTION 4.2
Receipt Date : November 18, 2021
Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Modification : No Modification by the test lab.

2.2 Product Description

Model: BP9300T (referred to as the EUT in this report) is a Blood Pressure Monitor.

General Specification

Rating : DC 6.0 V (Battery)

AC 100 V - 240 V, 50 Hz - 60 Hz (AC Adapter)

Radio Specification

Radio Type : Transceiver

Frequency of Operation : 2402 MHz - 2480 MHz

Modulation : GFSK

Antenna type : Pattern antenna Antenna Gain : -3.07 dBi Clock frequency (Maximum) : 32 MHz

Variant model

The tested model: BP9300T has a variant model: BP9310T.

Model BP9310T is identical to Model BP9300T except for optional accessory.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 6 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification : FCC Part 15 Subpart C

FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

Title : FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators

Section 15.207 Conducted limits

Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,

and 5725-5850 MHz

3.2 Procedures and results

Item	Test Procedure	Specification	Worst margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-2013	FCC: Section 15.207	37.79 dB, 0.47989 MHz,	Complied	-
	6. Standard test methods		AV, Phase L	a)	
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)		b)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Output Power	15.247	15.247(b)(3)		c)	
	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247			d)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission	FCC: KDB 558074 D01	FCC: Section15.247(d)	2.6 dB	Complied#	Conducted
Restricted Band	15.247		7206.0 MHz, AV,	e), f)	
Edges	Meas Guidance v05r02		Horizontal		(below 30 MHz)/
	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5			Radiated
		RSS-Gen 8.9			(above 30 MHz)
		RSS-Gen 8.10			*1)

Note: UL Japan, Inc.'s EMI Work Procedures No. 13-EM-W0420 and 13-EM-W0422.

- a) Refer to APPENDIX 1 (data of Conducted Emission)
- b) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)
- c) Refer to APPENDIX 1 (data of Maximum Peak Output Power)
- d) Refer to APPENDIX 1 (data of Power Density)
- e) Refer to APPENDIX 1 (data of Conducted Spurious Emission)
- f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied#The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

FCC Part 15.31 (e)

This EUT provides stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}The customer has declared that the EUT has complies with FCC Part 15 Subpart B as SDoC.

^{*1)} Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

^{*} In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

 Test report No.
 : 14091895H-A-R1

 Page
 : 7 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

3.3 Addition to standard

Item	Test Procedure	Specification	Worst margin	Results	Remarks
99% Occupied	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted
Bandwidth					

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k=2. Ise EMC Lab.

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.4 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.6 dB

Conducted emission

using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.4 dB
	0.15 MHz to 30 MHz	2.9 dB

Radiated emission

Measurement distance	Frequency range	Uncertainty (+/-)
3 m	9 kHz to 30 MHz	3.3 dB
10 m		3.2 dB
3 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	5.0 dB
	200 MHz to 1000 MHz (Horizontal)	5.2 dB
	(Vertical)	6.3 dB
10 m	30 MHz to 200 MHz (Horizontal)	4.8 dB
	(Vertical)	4.8 dB
	200 MHz to 1000 MHz (Horizontal)	5.0 dB
	(Vertical)	5.0 dB
		•
3 m	1 GHz to 6 GHz	4.9 dB
	6 GHz to 18 GHz	5.2 dB
1 m	10 GHz to 26.5 GHz	5.5 dB
	26.5 GHz to 40 GHz	5.5 dB
10 m	1 GHz to 18 GHz	5.2 dB

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 8 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

3.5 Test Location

UL Japan, Inc. Ise EMC Lab.

*A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919

ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone: +81 596 24 8999, Facsimile: +81 596 24 8124

Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	M aximum measurement distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-

^{*} Size of vertical conducting plane (for Conducted Emission test): 2.0 x 2.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Test data, Test instruments, and Test set up

Refer to APPENDIX.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 9 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

SECTION 4: Operation of EUT during testing

4.1 Operating Mode(s)

ModeRemarks*Bluetooth Low Energy (BLE) 1M-PHY Uncoded PHY (1M-PHY)Maximum Packet Size, PRBS9

*Power of the EUT was set by the software as follows;

- Power settings: 0dBm

- Software*1): <Other tests except for Antenna Terminal Conducted test >

prod_test (Radiated TxMode 2402) for Low CH test prod_test (Radiated TxMode 2440) for Mid CH test prod_test (Radiated TxMode 2480) for High CH test

<Antenna Terminal Conducted test>

OPM_Communication_Tool.exe Version 1.0.0.0

(Date: 2019/09/25, Storage location: Driven by connected PC)

*This setting of software is the worst case.

Any conditions under the normal use do not exceed the condition of setting.

In addition, end users cannot change the settings of the output power of the product.

*The details of Operating mode(s)

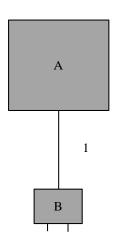
Test Item	Operating Mode	Tested frequency
Conducted Emission,	BLE, 1M-PHY *1)	2402 MHz
Radiated Spurious Emission (Below 1 GHz)		
Radiated Spurious Emission (Above 1 GHz),	BLE, 1M-PHY	2402 MHz
Maximum Peak Output Power,		2440 MHz
Power Density,		2480 MHz
6dB Bandwidth,		
99% Occupied Bandwidth,		
Conducted Spurious Emission		

^{*1)} Conducted emissions and Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*1)} There is no difference in RF characteristics for each software.

 Test report No.
 : 14091895H-A-R1


 Page
 : 10 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

4.2 Configuration and peripherals

[Conducted emission and Radiated emission tests]

AC 240 V / 60 Hz for Conducted emission AC 120 V / 60 Hz for Radiated emission

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks		
A	Blood Pressure Monitor	BP9300T	001 *1)	OMRON HEALTHCARE	EUT		
			002 *2)	Co., Ltd.			
			003 *3)				
В	AC Adapter	HEM-ADPTW5	001	OMRON HEALTHCARE	EUT		
	_			Co., Ltd.			

^{*1)} Used for Low CH test

List of cables used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.5	Unshielded	Unshielded	-

UL Japan, Inc. Ise EMC Lab.

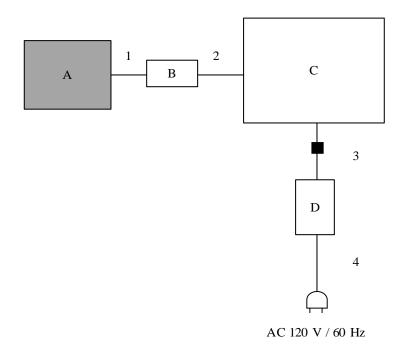
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

^{*}As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 240 V of the worst voltage as representative.

^{*2)} Used for Mid CH test

^{*3)} Used for High CH test


 Test report No.
 : 14091895H-A-R1

 Page
 : 11 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

[Antenna Terminal Conducted test]

: Standard Ferrite Core

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
A	Blood Pressure Monitor	BP9300T	004	OMRON	EUT
				HEALTHCARE Co., Ltd.	
В	Jig	-	-	-	-
C	Laptop PC	P24T	10412714342	DELL	_
D	AC Adapter	LA45NM140	CN-0KXTTW-	DELL	-
			LOC00-967-6B28-		
			A09		

List of cables used

No.	Name	Length (m)	Shield	Remarks	
			Cable	Connector	
1	Signal Cable	0.1	Unshielded	Unshielded	-
2	USB Cable	1.5	Shielded	Shielded	-
3	DC Cable	1.7	Unshielded	Unshielded	-
4	AC Cable	0.3	Unshielded	Unshielded	=

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*} Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

 Test report No.
 : 14091895H-A-R1

 Page
 : 12 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

SECTION 5: Conducted Emission

Test Procedure and conditions

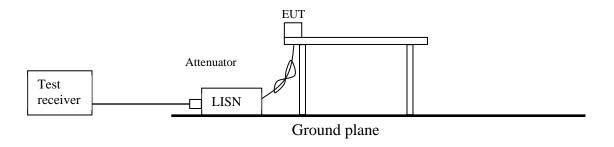
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 50ohm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber. The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.


The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector : QP and CISPR AV Measurement range : 0.15 MHz - 30 MHz

Test data : APPENDIX

Test result : Pass

Figure 1: Test Setup

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 13 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 1.0 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.

20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

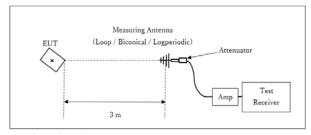
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument used	Test Receiver	Spectrum Analy	zer	Spectrum Analyzer
Detector	QP	PK	AV *1)	PK
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

^{*1)} Average Power Measurement was performed based on ANSI C63.10-2013.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

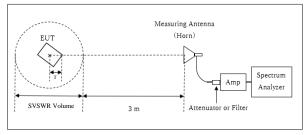
 Test report No.
 : 14091895H-A-R1


 Page
 : 14 of 38

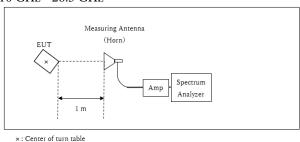
 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

Figure 2: Test Setup


Below 1 GHz

Test Distance: 3 m


× : Center of turn table

1 GHz - 10 GHz

- r : Radius of an outer periphery of EUT
- ×: Center of turn table

10 GHz - 26.5 GHz

Distance Factor: $20 \text{ x} \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$ * Test Distance: (3 + SVSWR Volume / 2) - r = 3.95 m

SVSWR Volume: 2.0 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.)

r = 0.05 m

Distance Factor: $20 \times \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

*Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement range : 30 MHz - 26.5 GHz

Test data : APPENDIX Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 15 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

SECTION 7: Antenna Terminal Conducted Tests

Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
				time			
6dB Bandwidth	3 MHz	100 kHz	300 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
99% Occupied	Enough width to display	1 to 5 %	Three times	Auto	Peak	Max Hold	Spectrum Analyzer
Bandwidth *1)	emission skirts	of OBW	of RBW				
Maximum Peak	-	-	-	Auto	Peak/	-	Power Meter
Output Power					Average *2)		(Sensor: 50 MHz BW)
Peak Power Density	1.5 times the	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer
	6dB Bandwidth						*3)
Conducted Spurious	9kHz to 150kHz	200 Hz	620 Hz	Auto	Peak	Max Hold	Spectrum Analyzer
Emission *4) *5)	150kHz to 30MHz	9.1 kHz	27 kHz				

^{*1)} Peak hold was applied as Worst-case measurement.

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test data : APPENDIX

Test result : Pass

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*2)} Reference data

^{*3)} Section 11.10.2 Method PKPSD (peak PSD) of "ANSI C63.10-2013".

^{*4)} In the frequency range below 30MHz, RBW was narrowed to separate the noise contents.

Then, wide-band noise near the limit was checked separately, however the noise was low enough as shown in the chart.

(9 kHz - 150 kHz: RBW = 200 Hz, 150 kHz - 30 MHz: RBW = 9.1 kHz).

^{*5)} The limits in CFR 47, Part 15, Subpart C, paragraph 15.209(a), are identical to those in RSS-Gen section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377 Ohmes. For example, the measurement at frequency 9 kHz resulted in a level of 45.5 dBuV/m, which is equivalent to 45.5 - 51.5 = -6.0 dBuA/m, which has the same margin, 3 dB, to the corresponding RSS-Gen Table 6 limit as it has to 15.209(a) limit.

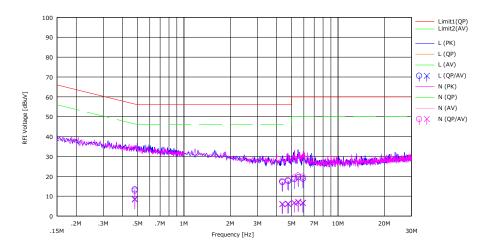
 Test report No.
 : 14091895H-A-R1

 Page
 : 16 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

APPENDIX 1: Test data


Conducted Emission

Report No. 14091895H

Test place Ise EMC Lab. No.3 Semi Anechoic Chamber

Date December 14, 2021
Temperature / Humidity 18 deg. C / 28 % RH
Engineer Yuichiro Yamazaki
Mode Tx BT LE 2402 MHz

Limit: FCC_Part 15 Subpart C(15.207)

	F	Rea	ding	LISN	LOSS	Res	ults	Lir	nit	Mai	rgin		
No.	Freq.	(QP)	(AV)	FISIA	LU55	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.47989	-0.10	-4.90	0.18	13.27	13.35	8.55	56.34	46.34	42.99	37.79	L	
2	4.36688	3.20	-7.90	0.42	13.49	17.11	6.01	56.00	46.00	38.89	39.99	L	
3	4.75892	3.70	-7.80	0.46	13.51	17.67	6.17	56.00	46.00	38.33	39.83	L	
4	5.20772	4.50	-7.40	0.50	13.53	18.53	6.63	60.00	50.00	41.47	43.37	L	
5	5.53140	5.40	-7.10	0.53	13.54	19.47	6.97	60.00	50.00	40.53	43.03	L	
6	5.92580	4.70	-7.60	0.57	13.55	18.82	6.52	60.00	50.00	41.18	43.48	L	
7	0.48000	-0.70	-520	0.16	13.27	12.73	8.23	56.34	46.34	43.61	38.11	N	
8	4.33468	3.60	-7.90	0.39	13.49	17.48	5.98	56.00	46.00	38.52	40.02	N	
9	4.71880	4.10	-7.80	0.42	13.51	18.03	6.13	56.00	46.00	37.97	39.87	N	
10	5.19928	5.30	-720	0.47	13.53	19.30	6.80	60.00	50.00	40.70	43.20	N	
11	5.50340	6.30	-6.80	0.50	13.54	20.34	7.24	60.00	50.00	39.66	42.76	N	
12	5.90072	5.70	-7.30	0.53	13.55	19.78	6.78	60.00	50.00	40.22	43.22	N	

 $CHART: WITH \ FACTOR \ Peak \ hold \ data. \ CALCULATION: RESULT = READING + LISN + LOSS \ (CABLE + ATT) \\ Except \ for \ the \ above \ table: \ adequate \ margin \ data \ below \ the \ limits.$

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 17 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

99 % Occupied Bandwidth and 6 dB Bandwidth

Report No. 14091895H

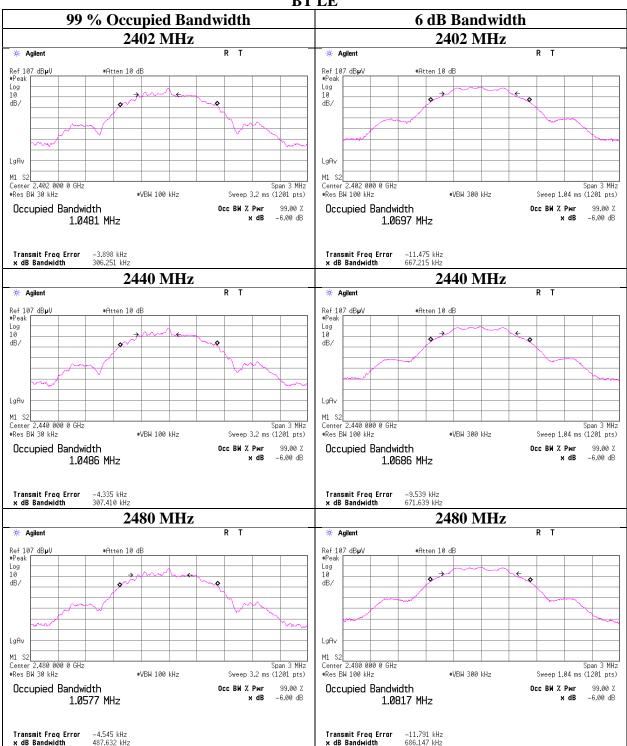
Test place Ise EMC Lab. No.4 Measurement Room

Date November 25, 2021
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Hiroyuki Furutaka
Mode Tx BT LE

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for
		Bandwidth		6 dB Bandwidth
	[MHz]	[kHz]	[MHz]	[MHz]
BT LE	2402	1048.1	0.667	> 0.5000
	2440	1048.6	0.672	> 0.5000
	2480	1057.7	0.686	> 0.5000

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1


 Page
 : 18 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

99 % Occupied Bandwidth and 6 dB Bandwidth

BT LE

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14091895H-A-R1 Page : 19 of 38 **Issued date** : February 3, 2022 FCC ID : Q6ZMHEM7145T2

Maximum Peak Output Power

Report No. 14091895H

Test place Ise EMC Lab. No.4 Measurement Room

November 25, 2021 Date 22 deg. C / 42~% RH Temperature / Humidity Engineer Hiroyuki Furutaka Mode Tx BT LE

					Con	ducted Po	ower		e.i.r.p. for RSS-247								
Freq.	Reading	Cable	Atten.	Re	Result		sult Limit		Limit		Antenna	Result		Liı	mit	Margin	
		Loss	Loss					Gain		Gain							
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]			
2402	-10.86	0.48	10.04	-0.34	0.92	30.00	1000	30.34	-3.07	-3.41	0.46	36.02	4000	39.43			
2440	-11.02	0.49	10.04	-0.49	0.89	30.00	1000	30.49	-3.07	-3.56	0.44	36.02	4000	39.58			
2480	-11.10	0.49	10.04	-0.57	0.88	30.00	1000	30.57	-3.07	-3.64	0.43	36.02	4000	39.66			

Sample Calculation:

Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

Test report No. : 14091895H-A-R1 Page : 20 of 38 **Issued date** : February 3, 2022 FCC ID : Q6ZMHEM7145T2

Average Output Power (Reference data for RF Exposure)

14091895H Report No.

Test place Ise EMC Lab. No.4 Measurement Room

Date November 25, 2021 Temperature / Humidity 22 deg. C / 42 % RH Engineer Hiroyuki Furutaka

Tx BT LE Mode

Fr	eq.	Reading	Cable	Atten.	Result		Duty	Result	
			Loss	Loss	(Time average)		factor	(Burst power average	
[M	[Hz]	[dBm]	[dB]	[dB]	[dBm] [mW]		[dB]	[dBm] [mW]	
24	02	-13.01	0.48	10.04	-2.49	0.56	1.48	-1.01	0.79
24	40	-13.16	0.49	10.04	-2.63	0.55	1.48	-1.15	0.77
24	-80	-13.27	0.49	10.04	-2.74	0.53	1.48	-1.26	0.75

Sample Calculation:

 $Result\ (Time\ average) = Reading + Cable\ Loss\ (including\ the\ cable(s)\ customer\ supplied) + Attenuator\ Loss$ Result (Burst power average) = Time average + Duty factor

UL Japan, Inc. Ise EMC Lab.

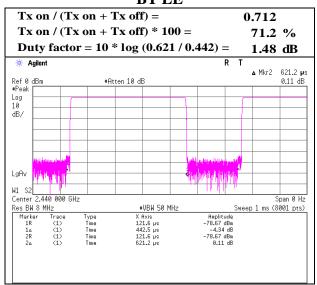
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 21 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2


Burst rate confirmation

Report No. 14091895H

Test place Ise EMC Lab. No.4 Measurement Room

Date November 25, 2021
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Hiroyuki Furutaka
Mode Tx BT LE

BT LE

^{*} Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 22 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

Radiated Spurious Emission

Report No. 14091895H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date December 13, 2021 December 14, 2021
Temperature / Humidity 23 deg. C / 23 % RH 18 deg. C / 28 % RH
Engineer Kiyoshiro Okazaki (1 GHz - 26.5 GHz) (Below 1 GHz)

Mode Tx BT LE 2402 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	Margin	Margin	
Polarity	Frequency	(QP/PK)	(AV)	Factor	Loss	Gain	Factor	(QP/PK)	(AV)	(QP / PK)	(AV)	(QP/PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	58.9	23.1	-	8.2	7.6	32.3	-	6.5	-	40.0	-	33.5	-	
Hori.	63.2	24.1	-	7.2	7.6	32.3	-	6.6	-	40.0	-	33.4	-	
Hori.	72.9	23.9	-	6.4	7.8	32.3	-	5.9	-	40.0	-	34.2	-	
Hori.	623.7	21.2	-	19.5	12.1	32.1	-	20.8	-	46.0	-	25.3	-	
Hori.	769.6	21.4	-	20.5	12.9	31.7	-	23.1	-	46.0	-	22.9	-	
Hori.	987.8	20.9	-	22.3	14.0	30.5	-	26.7	-	53.9	-	27.2	-	
Hori.	2390.0	48.9	36.1	27.6	5.5	32.6	1.5	49.4	38.1	73.9	53.9	24.5	15.8	*1)
Hori.	4804.0	45.7	38.7	31.5	7.8	31.7	1.5	53.3	47.8	73.9	53.9	20.6	6.1	
Hori.	7206.0	44.8	37.3	35.7	9.4	32.6	1.5	57.3	51.3	73.9	53.9	16.6	2.6	
Hori.	9608.0	42.3	31.4	38.7	9.8	33.0	-	57.8	46.9	73.9	53.9	16.1	7.0	Floor noise
Hori.	12010.0	48.8	41.4	39.3	-1.4	33.0	1.5	53.8	47.9	73.9	53.9	20.1	6.0	
Vert.	58.9	34.3	1	8.2	7.6	32.3	-	17.7	-	40.0	-	22.3	-	
Vert.	63.2	34.6	-	7.2	7.6	32.3	-	17.1	-	40.0	-	22.9	-	
Vert.	72.9	35.7	-	6.4	7.8	32.3	-	17.7	-	40.0	-	22.4	-	
Vert.	623.7	21.2	-	19.5	12.1	32.1	-	20.8	-	46.0	-	25.3	-	
Vert.	769.6	21.4	-	20.5	12.9	31.7	-	23.1	-	46.0	-	22.9	-	
Vert.	987.8	20.8	-	22.3	14.0	30.5	-	26.6	-	53.9	-	27.3	-	
Vert.	2390.0	48.1	35.1	27.6	5.5	32.6	1.5	48.6	37.0	73.9	53.9	25.3	16.9	*1)
Vert.	4804.0	43.0	35.2	31.5	7.8	31.7	1.5	50.6	44.3	73.9	53.9	23.3	9.6	
Vert.	7206.0	43.3	35.3	35.7	9.4	32.6	1.5	55.7	49.3	73.9	53.9	18.2	4.6	
Vert.	9608.0	42.3	31.6	38.7	9.8	33.0	-	57.8	47.1	73.9	53.9	16.1	6.8	Floor noise
Vert.	12010.0	46.3	38.6	39.3	-1.4	33.0	1.5	51.3	45.1	73.9	53.9	22.6	8.8	

Result (QP / PK) = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier)

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz$

20dBc Data Sheet

Zoube Data Street												
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark			
		(PK)	Factor									
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]				
Hori.	2402.0	93.3	27.5	5.5	32.6	93.8	-	-	Carrier			
Hori.	2400.0	49.9	27.5	5.5	32.6	50.3	73.8	23.5				
Vert.	2402.0	93.5	27.5	5.5	32.6	94.0	-	-	Carrier			
Vert.	2400.0	50.0	27.5	5.5	32.6	50.5	74.0	23.5				

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor: $\begin{array}{ccc} 1~GHz & & 20log~(3.95~m~/~3.0~m) = 2.39~dB \\ \\ 10~GHz~-~26.5~GHz & & 20log~(1.0~m~/~3.0~m) = ~-9.5~dB \end{array}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

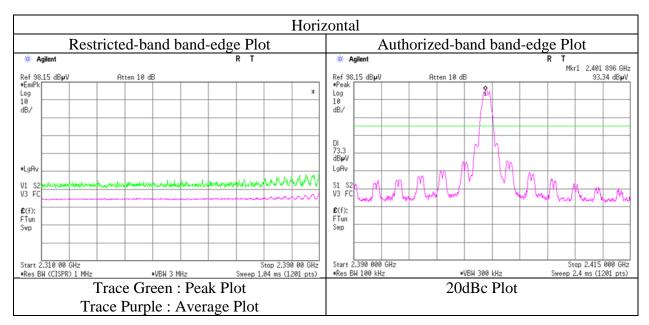
^{*1)} Not Out of Band emission(Leakage Power)

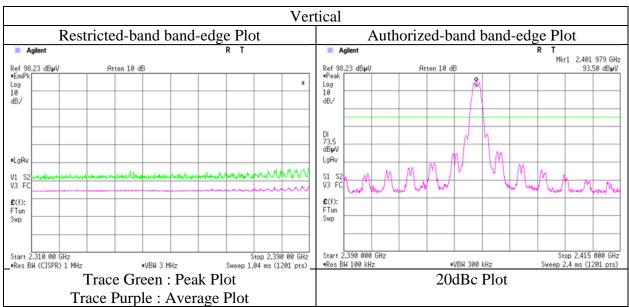
 Test report No.
 : 14091895H-A-R1

 Page
 : 23 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Report No. 14091895H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date December 13, 2021
Temperature / Humidity 23 deg. C / 23 % RH
Engineer Kiyoshiro Okazaki
(1 GHz - 10 GHz)

Mode Tx BT LE 2402 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 24 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

Radiated Spurious Emission

Report No. 14091895H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date December 13, 2021
Temperature / Humidity 23 deg. C / 23 % RH
Engineer Kiyoshiro Okazaki
(1 GHz - 26.5 GHz)

Mode Tx BT LE 2440 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP/PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	45.5	39.0	31.6	7.8	31.6	1.5	53.2	48.3	73.9	53.9	20.7	5.6	
Hori.	7320.0	43.9	36.1	35.9	9.4	32.7	1.5	56.5	50.2	73.9	53.9	17.5	3.7	
Hori.	9760.0	42.3	31.5	39.2	9.9	33.1	-	58.3	47.5	73.9	53.9	15.7	6.4	Floor noise
Hori.	12200.0	46.6	38.9	39.1	-1.2	32.9	1.5	51.6	45.4	73.9	53.9	22.3	8.5	
Vert.	4880.0	42.2	35.1	31.6	7.8	31.6	1.5	50.0	44.4	73.9	53.9	23.9	9.5	
Vert.	7320.0	43.1	34.6	35.9	9.4	32.7	1.5	55.7	48.7	73.9	53.9	18.2	5.2	
Vert.	9760.0	42.6	31.5	39.2	9.9	33.1	-	58.6	47.4	73.9	53.9	15.3	6.5	Floor noise
Vert.	12200.0	44.8	37.5	39.1	-1.2	32.9	1.5	49.7	43.9	73.9	53.9	24.2	10.0	

 $Result \; (QP \, / \, PK) = Reading + \; Ant \; Factor + \; Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) \; - \; Gain (Amplifier) \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) \; - \; Gain (Amplifier) \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) \; - \; Gain (Amplifier) \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) \; - \; Gain (Amplifier) \; -$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (above\ 1\ GHz) - Gain (Amplifier) + Gain (Am$

Distance factor: $1~GHz - 10~GHz \qquad \qquad 20log~(3.95~m~/~3.0~m) = 2.39~dB$

10 GHz - 26.5 GHz $20\log(1.0 \text{ m}/3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

 Test report No.
 : 14091895H-A-R1

 Page
 : 25 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

Radiated Spurious Emission

Report No. 14091895H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date December 13, 2021
Temperature / Humidity 23 deg. C / 23 % RH
Engineer Kiyoshiro Okazaki

(1 GHz - 26.5 GHz) Mode Tx BT LE 2480 MHz

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	49.7	37.0	27.4	5.6	32.5	1.5	50.1	38.9	73.9	53.9	23.8	15.0	*1)
Hori.	2484.0	51.7	39.4	27.4	5.6	32.5	1.5	52.2	41.3	73.9	53.9	21.7	12.6	*1)
Hori.	4960.0	43.8	37.1	31.7	7.8	31.6	1.5	51.7	46.5	73.9	53.9	22.2	7.4	
Hori.	7440.0	42.4	34.8	36.1	9.3	32.7	1.5	55.1	49.0	73.9	53.9	18.8	4.9	
Hori.	9920.0	41.8	31.5	39.1	9.9	33.2	-	57.7	47.4	73.9	53.9	16.2	6.5	Floor noise
Hori.	12400.0	44.9	36.2	38.9	-1.1	32.8	1.5	49.8	42.7	73.9	53.9	24.1	11.2	
Vert.	2483.5	49.5	37.6	27.4	5.6	32.5	1.5	50.0	39.5	73.9	53.9	23.9	14.4	*1)
Vert.	2484.0	51.7	38.9	27.4	5.6	32.5	1.5	52.1	40.8	73.9	53.9	21.8	13.1	*1)
Vert.	4960.0	42.9	35.6	31.7	7.8	31.6	1.5	50.8	45.0	73.9	53.9	23.1	8.9	
Vert.	7440.0	42.4	34.1	36.1	9.3	32.7	-	55.1	46.9	73.9	53.9	18.8	7.0	Floor noise
Vert.	9920.0	41.7	31.2	39.1	9.9	33.2	-	57.6	47.1	73.9	53.9	16.3	6.8	Floor noise
Vert.	12400.0	45.8	37.8	38.9	-1.1	32.8	1.5	50.8	44.2	73.9	53.9	23.1	9.7	

 $Result \; (QP \, / \, PK) = Reading + \\ Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier)$

 $Result\ (AV) = Reading + Ant\ Factor + Loss\ (Cable + Attenuator + Filter + Distance\ factor (above\ 1\ GHz)) - Gain (Amplifier) + Duty\ factor (Amplifier$

Distance factor: 1 GHz - 10 GHz $20 \log (3.95 \text{ m} / 3.0 \text{ m}) = 2.39 \text{ dB}$

10 GHz - 26.5 GHz $20 \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

^{*}Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

^{*}QP detector was used up to 1GHz.

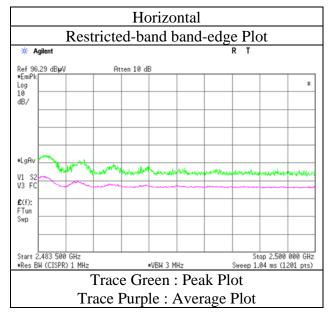
^{*1)} Not Out of Band emission(Leakage Power)

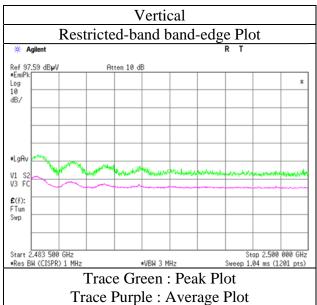
 Test report No.
 : 14091895H-A-R1

 Page
 : 26 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2


<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)


Report No. 14091895H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3

Date December 13, 2021
Temperature / Humidity 23 deg. C / 23 % RH
Engineer Kiyoshiro Okazaki
(1 GHz - 10 GHz)

Mode Tx BT LE 2480 MHz

^{*} The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

UL Japan, Inc. Ise EMC Lab.

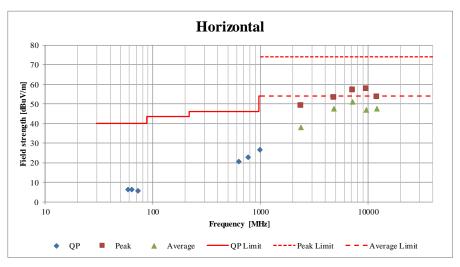
4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

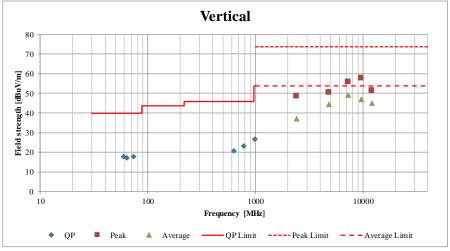
 Test report No.
 : 14091895H-A-R1

 Page
 : 27 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2


<u>Radiated Spurious Emission</u> (Plot data, Worst case mode for Maximum Peak Output Power)


Report No. 14091895H Test place Ise EMC Lab.

Semi Anechoic Chamber No.3 No.3

Date December 13, 2021 December 14, 2021
Temperature / Humidity 23 deg. C / 23 % RH 18 deg. C / 28 % RH
Engineer Kiyoshiro Okazaki (1 GHz - 26.5 GHz) (Below 1 GHz)

Mode Tx BT LE 2402 MHz

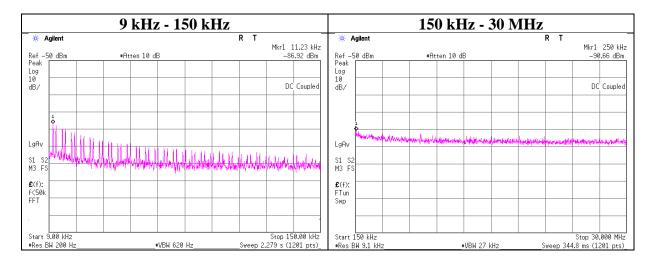
^{*}These plots data contains sufficient number to show the trend of characteristic features for EUT.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 28 of 38

 Issued date
 : February 3, 2022


 FCC ID
 : Q6ZMHEM7145T2

Conducted Spurious Emission

Report No. 14091895H

Test place Ise EMC Lab. No.4 Measurement Room

Date November 25, 2021
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Hiroyuki Furutaka
Mode Tx BT LE 2402 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.23	-86.9	0.17	9.8	2.0	1	-74.9	300	6.0	-13.7	46.5	60.2	
250.00	-90.7	0.50	9.9	2.0	1	-78.3	300	6.0	-17.0	19.6	36.6	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

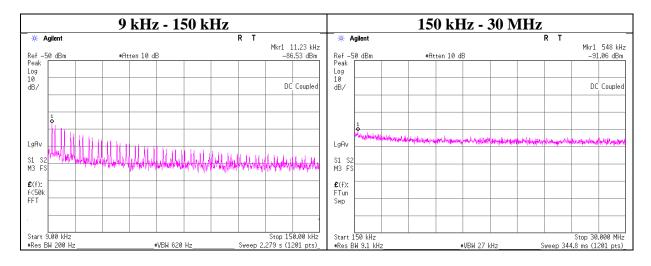
N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 14091895H-A-R1

 Page
 : 29 of 38

 Issued date
 : February 3, 2022


 FCC ID
 : Q6ZMHEM7145T2

Conducted Spurious Emission

Report No. 14091895H

Test place Ise EMC Lab. No.4 Measurement Room

Date November 25, 2021
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Hiroyuki Furutaka
Mode Tx BT LE 2440 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.23	-86.5	0.17	9.8	2.0	1	-74.5	300	6.0	-13.3	46.5	59.8	
548.00	-91.1	0.83	9.9	2.0	1	-78.4	30	6.0	2.9	32.8	29.9	

 $E \left[dBuV/m \right] = EIRP \left[dBm \right] - 20 \ log \ (Distance \ [m]) + Ground \ bounce \ [dB] + 104.8 \ [dBuV/m]$

EIRP[dBm] = Reading [dBm] + Cable loss [dB] + Attenuator Loss [dB] + Antenna gain [dBi] + 10 * log (N)

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

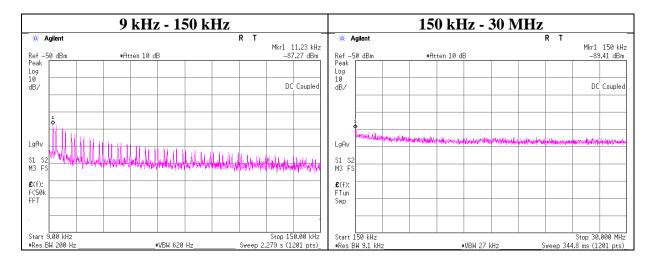
N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 14091895H-A-R1

 Page
 : 30 of 38

 Issued date
 : February 3, 2022


 FCC ID
 : Q6ZMHEM7145T2

Conducted Spurious Emission

Report No. 14091895H

Test place Ise EMC Lab. No.4 Measurement Room

Date November 25, 2021
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Hiroyuki Furutaka
Mode Tx BT LE 2480 MHz

Frequency	Reading	Cable	Attenuator	Antenna	N	EIRP	Distance	Ground	Е	Limit	Margin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
11.23	-87.3	0.17	9.8	2.0	1	-75.3	300	6.0	-14.0	46.5	60.5	
150.00	-89.4	0.39	9.9	2.0	1	-77.2	300	6.0	-15.9	24.0	39.9	

E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

 $EIRP[dBm] = Reading \ [dBm] + Cable \ loss \ [dB] + Attenuator \ Loss \ [dB] + Antenna \ gain \ [dBi] + 10*log \ (N)$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

N: Number of output

^{*2.0} dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

 Test report No.
 : 14091895H-A-R1

 Page
 : 31 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

Power Density

Report No. 14091895H

Test place Ise EMC Lab. No.4 Measurement Room

Date November 25, 2021
Temperature / Humidity 22 deg. C / 42 % RH
Engineer Hiroyuki Furutaka
Mode Tx BT LE

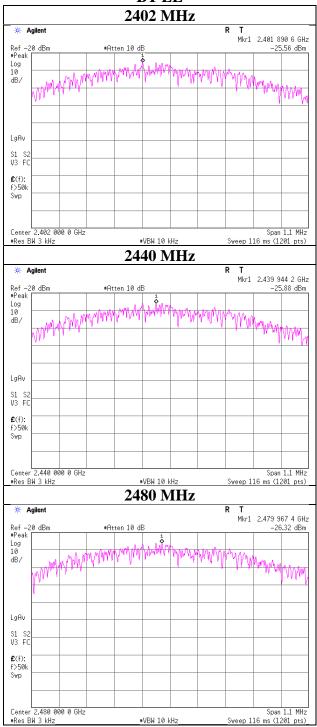
Freq.	Reading	Cable	Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	dBm/3 kHz	[dB]	[dB]	[dBm / 3 kHz]	[dBm / 3 kHz]	[dB]
2402	-25.56	0.48	10.04	-15.04	8.00	23.04
2440	-25.88	0.49	10.04	-15.35	8.00	23.35
2480	-26.32	0.49	10.04	-15.79	8.00	23.79

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Attenuator \ Loss$

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1


 Page
 : 32 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

Power Density

BT LE

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

: 14091895H-A-R1 Test report No. Page : 33 of 38 : February 3, 2022 : Q6ZMHEM7145T2 **Issued date** FCC ID

APPENDIX 2: Test instruments

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE	MLS-23	141357	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-729	07/18/2021	12
CE	MAT-67	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/07/2020	12
CE	MCC-112	141216	Coaxial cable	Fujikura/Suhner/TSJ	5D-2W/SFM14/ sucoform141-PE/ 421-010/ RFM-E321(SW)	-/00640	07/19/2021	12
CE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/05/2021	12
CE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
CE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/15/2021	12
CE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/07/2021	12
CE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
CE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-03	142008	AC3_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-10005	05/22/2020	24
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/15/2021	12
RE	MMM-08	141532	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/07/2021	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	-	-
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC-03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/09/2021	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/03/2021	12
RE	MCC-231	177964	Microwave Cable	Junkosha INC.	MMX221	1901S329(1m)/ 1902S579(5m)	03/04/2021	12
RE	MHA-16	141513	Horn Antenna 15-40GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9170	BBHA9170306	06/07/2021	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/30/2021	12
RE	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/10/2021	12
RE	MAT-95	142314	Attenuator	Pasternack Enterprises	PE7390-6	D/C 1504	06/09/2021	12
RE	MBA-03	141424	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103+BBA9106	1915	08/21/2021	12
RE	MCC-51	141323	Coaxial cable	UL Japan	-	-	07/19/2021	12
RE	MLA-22	141266	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-191	08/21/2021	12
RE	MPA-13	141582	Pre Amplifier	SONOMA INSTRUMENT	310	260834	02/18/2021	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	08/05/2021	12
AT	MMM-10	141545	DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201148	01/07/2021	12
AT	MJM-29	142230	Measure	KOMELON	KMC-36	-	-	-
AT	MOS-42	192303	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0014	12/06/2020	12
AT	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	12/18/2020	12
AT	MPM-13	141810	Power Meter	Anritsu Corporation	ML2495A	824014	12/14/2020	12
AT	MPSE-18	141832	Power sensor	Anritsu Corporation	MA2411B	738174	12/14/2020	12
AT	MCC-98	141377	Microwave Cable 1G-40GHz	Suhner	SUCOFLEX102	30819/2	06/04/2021	12
AT	MCC-64	141327	Coaxial Cable	UL Japan	-	-	02/03/2021	12
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/09/2021	12
AT	MAT-58	141334	Attenuator(10dB)	Suhner	6810.19.A	-	12/08/2021	12

UL Japan, Inc. Ise EMC Lab.

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN

 Test report No.
 : 14091895H-A-R1

 Page
 : 34 of 38

 Issued date
 : February 3, 2022

 FCC ID
 : Q6ZMHEM7145T2

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: CE: Conducted Emission

RE: Radiated Emission

AT: Antenna Terminal Conducted

4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN