

: 14694851H-A-R1 : 1 of 36

RADIO TEST REPORT

Test Report No.: 14694851H-A-R1

Customer	OMRON HEALTHCARE Co., Ltd.
Description of EUT	Blood Pressure Monitor
Model Number of EUT	BP5350
FCC ID	Q6ZHEM7340TS
Test Regulation	FCC Part 15 Subpart C
Test Result	Complied (Refer to SECTION 3)
Issue Date	August 23, 2023
Remarks	-

Representative Test Engineer	Approved By
J.O. Rung	T. Shimada
Junya Okuno Engineer	Takumi Shimada Engineer
	ACCREDITED
The testing in which "Non-accreditation" is display	CERTIFICATE 5107.02 ed is outside the accreditation scopes in UL Japan, Inc.
The testing in which is the accreditation is display \square There is no testing item of "Non-accreditation".	a is suble and addreamation scopes in CD supan, me.

Report Cover Page - Form-ULID-003532 (DCS:13-EM-F0429) Issue# 21.0

ANNOUNCEMENT

- This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- The results in this report apply only to the sample tested. (Laboratory was not involved in sampling.)
- This sample tested is in compliance with the limits of the above regulation.
- The test results in this test report are traceable to the national or international standards.
- This test report must not be used by the customer to claim product certification, approval, or endorsement by the A2LA accreditation body.
- This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)
- The all test items in this test report are conducted by UL Japan, Inc. Ise EMC Lab.
- The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- The information provided from the customer for this report is identified in Section 1.
- For test report(s) referred in this report, the latest version (including any revisions) is always referred.

REVISION HISTORY

Original Test Report No.: 14694851H-A

This report is a revised version of 14694851H-A. 14694851H-A is replaced with this report.

Revision	Test Report No.	Date	Page Revised Contents
-	14694851H-A	May 31, 2023	-
(Original)			
1	14694851H-A-R1	August 23, 2023	P.5
			Correction of Operating Temperature
			(Lower temperature limit 5 deg. $C \Rightarrow 10$ deg. C)
1	14694851H-A-R1	August 23, 2023	P.22, 24, 25
		-	Correction of Distance factor: 1 GHz -10 GHz for
			No.3 Semi Anechoic Chamber (2.82 dB => 2.28 dB)

Test Report No.	: 14694851H-A-R1
Page	: 3 of 36

A2LA	The American Association for Laboratory Accreditation	ICES	Interference-Causing Equipment Standard
AC	Alternating Current	IEC	International Electrotechnical Commission
AFH	Adaptive Frequency Hopping	IEEE	Institute of Electrical and Electronics
	1 1 7 11 0		Engineers
AM	Amplitude Modulation	IF	Intermediate Frequency International Laboratory Accreditation
Amp, AMP	Amplifier	ILAC	Conference
ANSI	American National Standards Institute	ISED	Innovation, Science and Economic Development Canada
Ant, ANT	Antenna	ISO	International Organization for Standardization
AP	Access Point	JAB	Japan Accreditation Board
ASK	Amplitude Shift Keying	LAN	Local Area Network
Atten., ATT	Attenuator	LIMS	Laboratory Information Management System
AV	Average	MCS	Modulation and Coding Scheme
BPSK	Binary Phase-Shift Keying	MRA	Mutual Recognition Arrangement
BR	Bluetooth Basic Rate	N/A	Not Applicable
BT	Bluetooth	NIST	National Institute of Standards and Technology
BT LE	Bluetooth Low Energy	NS	No signal detect.
BW	BandWidth	NSA	Normalized Site Attenuation
Cal Int	Calibration Interval	NVLAP	National Voluntary Laboratory Accreditation Program
CCK	Complementary Code Keying	OBW	Occupied Band Width
Ch., CH	Channel	OFDM	Orthogonal Frequency Division Multiplexing
CISPR	Comite International Special des Perturbations Radioelectriques	P/M	Power meter
CW	Continuous Wave	PCB	Printed Circuit Board
DBPSK	Differential BPSK	PER	Packet Error Rate
DC	Direct Current	PHY	Physical Layer
D-factor	Distance factor	РК	Peak
DFS	Dynamic Frequency Selection	PN	Pseudo random Noise
DQPSK	Differential QPSK	PRBS	Pseudo-Random Bit Sequence
DSSS	Direct Sequence Spread Spectrum	PSD	Power Spectral Density
EDR	Enhanced Data Rate	QAM	Quadrature Amplitude Modulation
EIRP, e.i.r.p.	Equivalent Isotropically Radiated Power	QP	Quasi-Peak
EMC	ElectroMagnetic Compatibility	QPSK	Quadri-Phase Shift Keying
EMI	ElectroMagnetic Interference	RBW	Resolution Band Width
EN	European Norm	RDS	Radio Data System
ERP, e.r.p.	Effective Radiated Power	RE	Radio Equipment
EU	European Union	RF	Radio Frequency
EUT	Equipment Under Test	RMS	Root Mean Square
Fac.	Factor	RSS	Radio Standards Specifications
FCC	Federal Communications Commission	Rx	Receiving
FHSS	Frequency Hopping Spread Spectrum	SA, S/A	Spectrum Analyzer
FM	Frequency Modulation	SG	Signal Generator
Freq.	Frequency	SVSWR	Site-Voltage Standing Wave Ratio
FSK	Frequency Shift Keying	TR	Test Receiver
GFSK	Gaussian Frequency-Shift Keying	Tx	Transmitting
GNSS	Global Navigation Satellite System	VBW	Video BandWidth
GPS	Global Positioning System	Vert.	Vertical
Hori.	Horizontal	WLAN	Wireless LAN

Reference: Abbreviations (Including words undescribed in this report)

CONTENTS

PAGE

5
J
5
6
9
12
13
15
16
16
17
19
20
22
29
35

Test Report No.	: 14694851H-A-R1
Page	: 5 of 36

SECTION 1: Customer Information

Company Name	OMRON HEALTHCARE Co., Ltd.
Address	53, Kunotsubo, Terado-cho, Muko, KYOTO, 617-0002 Japan
Telephone Number	+81-75-925-2045
Contact Person	Mitsunori Hara

The information provided from the customer is as follows;

- Customer, Description of EUT, Model Number of EUT, FCC ID on the cover and other relevant pages

- Operating/Test Mode(s) (Mode(s)) on all the relevant pages

- SECTION 1: Customer Information

- SECTION 2: Equipment Under Test (EUT) other than the Receipt Date and Test Date

- SECTION 4: Operation of EUT during testing

* The laboratory is exempted from liability of any test results affected from the above information in SECTION 2 and 4.

SECTION 2: Equipment Under Test (EUT)

2.1 Identification of EUT

Description	Blood Pressure Monitor
Model Number	BP5350
Serial Number	Refer to SECTION 4.2
Condition	Production prototype
	(Not for Sale: This sample is equivalent to mass-produced items.)
Modification	No Modification by the test lab
Receipt Date	April 11 and 20, 2023
Test Date	April 17 to 30, 2023

2.2 Product Description

General Specification

Rating	DC 6.0 V (Battery) AC 100 V to 240 V, 50 Hz / 60 Hz (AC Adapter)
Operating temperature	10 deg. C to 40 deg. C

Radio Specification

Bluetooth (Low Energy)

Didetootii (Low Energy)	
Equipment Type	Transceiver
Frequency of Operation	2402 MHz to 2480 MHz
Type of Modulation	GFSK
Antenna Gain	1.73 dBi (Max)

SECTION 3: Test Specification, Procedures & Results

3.1 Test Specification

FCC Part 15 Subpart C
The latest version on the first day of the testing period
FCC 47 CFR Part 15 Radio Frequency Device Subpart C Intentional Radiators
Section 15.207 Conducted limits
Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz,
and 5725-5850 MHz

*The customer has declared that the EUT has complies with FCC Part 15 Subpart B as SDoC.

3.2 Procedures and Results

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
Conducted Emission	FCC: ANSI C63.10-	FCC: Section 15.207	19.28 dB, 0.17812 MHz, L	Complied	-
	2013			a)	
	6. Standard test methods				
	ISED: RSS-Gen 8.8	ISED: RSS-Gen 8.8			
6dB Bandwidth	FCC: KDB 558074 D01	FCC: Section	See data.	Complied	Conducted
	15.247	15.247(a)(2)		b)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(a)			
Maximum Peak	FCC: KDB 558074 D01	FCC: Section		Complied	Conducted
Output Power	15.247	15.247(b)(3)		c)	
	Meas Guidance v05r02				
	ISED: RSS-Gen 6.12	ISED: RSS-247 5.4(d)			
Power Density	FCC: KDB 558074 D01	FCC: Section 15.247(e)		Complied	Conducted
	15.247			d)	
	Meas Guidance v05r02				
	ISED: -	ISED: RSS-247 5.2(b)			
Spurious Emission	FCC: KDB 558074 D01	FCC: Section15.247(d)	5.5 dB	Complied	Conducted
Restricted Band	15.247		7320.0 MHz / 7440.0 MHz,	e), f)	(below 30 MHz)/
Edges	Meas Guidance v05r02		AV, Vertical		Radiated
	ISED: RSS-Gen 6.13	ISED: RSS-247 5.5]		(above 30 MHz)
		RSS-Gen 8.9			*1)
		RSS-Gen 8.10			

Note: UL Japan, Inc.'s EMI Work Procedures: Work Instructions-ULID-003591 and Work Instructions-ULID-003593.

* In case any questions arise about test procedure, ANSI C63.10: 2013 is also referred.

*1) Radiated test was selected over 30 MHz based on section 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 8.5 and 8.6.

a) Refer to APPENDIX 1 (data of Conducted Emission)

b) Refer to APPENDIX 1 (data of 6 dB Bandwidth and 99 % Occupied Bandwidth)

c) Refer to APPENDIX 1 (data of Maximum Peak Output Power)

d) Refer to APPENDIX 1 (data of Power Density)

e) Refer to APPENDIX 1 (data of Conducted Spurious Emission)

f) Refer to APPENDIX 1 (data of Radiated Spurious Emission)

FCC Part 15.31 (e)

This EUT provides the stable voltage constantly to RF Module regardless of input voltage. Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the EUT. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.3 Addition to Standard

Item	Test Procedure	Specification	Worst Margin	Results	Remarks
99% Occupied Bandwidth	ISED: RSS-Gen 6.7	ISED: -	N/A	-	Conducted

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

Measurement uncertainty is not taken into account when stating conformity with a specified requirement. Note: When margins obtained from test results are less than the measurement uncertainty, the test results may exceed the limit.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

Conducted emission

Using Item	Frequency range	Uncertainty (+/-)
AMN (LISN)	0.009 MHz to 0.15 MHz	3.7 dB
	0.15 MHz to 30 MHz	3.3 dB

Radiated emission

Measurement distance	Frequency range	Frequency range		
3 m	9 kHz to 30 MHz		3.2 dB	
10 m			3.0 dB	
3 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	5.0 dB	
	200 MHz to 1000 MHz	Horizontal	5.1 dB	
		Vertical	6.2 dB	
10 m	30 MHz to 200 MHz	Horizontal	4.8 dB	
		Vertical	4.8 dB	
	200 MHz to 1000 MHz	Horizontal	5.0 dB	
		Vertical	5.0 dB	
3 m	1 GHz to 6 GHz		4.9 dB	
	6 GHz to 18 GHz	6 GHz to 18 GHz		
1 m	10 GHz to 26.5 GHz	10 GHz to 26.5 GHz		
	26.5 GHz to 40 GHz	26.5 GHz to 40 GHz		
10 m	1 GHz to 18 GHz		5.4 dB	

Antenna Terminal test

Test Item	Uncertainty (+/-)
20 dB Bandwidth / 99 % Occupied Bandwidth	0.96 %
Maximum Peak Output Power / Average Output Power	1.5 dB
Carrier Frequency Separation	0.42 %
Dwell time / Burst rate	0.10 %
Conducted Spurious Emission	2.7 dB

3.5 Test Location

UL Japan, Inc. Ise EMC Lab. *A2LA Certificate Number: 5107.02 / FCC Test Firm Registration Number: 884919 ISED Lab Company Number: 2973C / CAB identifier: JP0002 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan Telephone: +81-596-24-8999

Telephone: +81-396-				
Test site	Width x Depth x Height (m)	Size of reference ground plane (m) / horizontal conducting plane	Other rooms	Maximum measuremen t distance
No.1 semi-anechoic chamber	19.2 x 11.2 x 7.7	7.0 x 6.0	No.1 Power source room	10 m
No.2 semi-anechoic chamber	7.5 x 5.8 x 5.2	4.0 x 4.0	-	3 m
No.3 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.3 Preparation room	3 m
No.3 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.4 semi-anechoic chamber	12.0 x 8.5 x 5.9	6.8 x 5.75	No.4 Preparation room	3 m
No.4 shielded room	4.0 x 6.0 x 2.7	N/A	-	-
No.5 semi-anechoic chamber	6.0 x 6.0 x 3.9	6.0 x 6.0	-	-
No.5 measurement room	6.4 x 6.4 x 3.0	6.4 x 6.4	-	-
No.6 shielded room	4.0 x 4.5 x 2.7	4.0 x 4.5	-	-
No.6 measurement room	4.75 x 5.4 x 3.0	4.75 x 4.15	-	-
No.7 shielded room	4.7 x 7.5 x 2.7	4.7 x 7.5	-	-
No.8 measurement room	3.1 x 5.0 x 2.7	3.1 x 5.0	-	-
No.9 measurement room	8.8 x 4.6 x 2.8	2.4 x 2.4	-	-
No.10 shielded room	3.8 x 2.8 x 2.8	3.8 x 2.8	-	-
No.11 measurement room	4.0 x 3.4 x 2.5	N/A	-	-
No.12 measurement room	2.6 x 3.4 x 2.5	N/A	-	-
Large Chamber	16.9 x 22.1 x 10.17	16.9 x 22.1	-	10 m
Small Chamber	5.3 x 6.69 x 3.59	5.3 x 6.69	-	-

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 3.0 m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

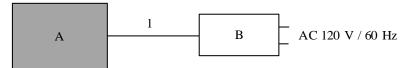
3.6 Test Data, Test Instruments, and Test Set Up

Refer to APPENDIX.

SECTION 4: Operation of EUT during testing

4.1 **Operating Mode(s)**

Mode		Remarks*			
Bluetooth Low E	nergy (BT LE)	Maximum Packet Size, PRBS9			
*Power of the EU	JT was set by the software as follows	5,			
Power Setting:	0 dBm				
Software:	<other antenna="" except="" for="" td="" te<="" tests=""><td>erminal Conducted test></td></other>	erminal Conducted test>			
	TX2402 Version 1.0				
	TX2440 Version 1.0				
	TX2480 Version 1.0				
	(Date: 2022.07 07, Storage locatio	n: EUT memory)			
	<antenna conducted="" td="" terminal="" tes<=""><td>t></td></antenna>	t>			
	OPM_Communication_Tool.exe V	Version: 1.0.0.0			
	(Date: 2014.04 07, Storage location: Driven by connected PC)				
*This setting of s	*This setting of software is the worst case.				
Any conditions u	nder the normal use do not exceed th	e condition of setting.			
In addition, end u	users cannot change the settings of the	e output power of the product.			


*The Details Of Operating Mode(s)

Test Item	Operating Mode	Tested frequency
Conducted Emission,	Tx BT LE *1)	2402 MHz
Radiated Spurious Emission (Below 1 GHz)		
Radiated Spurious Emission (Above 1 GHz),	Tx BT LE	2402 MHz
Maximum Peak Output Power,		2440 MHz
Power Density,		2480 MHz
6dB Bandwidth,		
99% Occupied Bandwidth,		
Conducted Spurious Emission		

*1) Spurious emissions for frequencies below 1 GHz were limited to the channel that had the highest power during the antenna terminal test, as preliminary testing indicated that changing the operating frequency had no significant impact on the emissions in those frequency bands.

4.2 Configuration and Peripherals

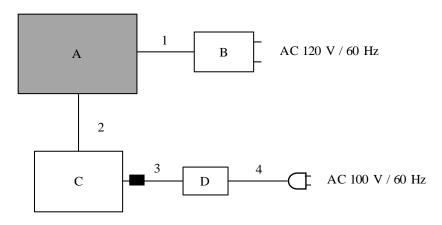
Conducted emission and Radiated emission tests

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions *As a result of comparing AC 120 V and AC 240 V at pre-check, conducted emission test was performed with AC 120 V of the worst voltage as representative.

Description of EUT

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Blood Pressure Monitor	BP5350	202302099829V *1)	OMRON	EUT
			202302099823V *2)	HEALTHCARE Co., Ltd.	
			202302099828V *3)		
В	AC Adapter	HEM-ADPTW5	2022-07-28	OMRON	-
	-			HEALTHCARE Co., Ltd.	

*1) Used for Low CH test


*2) Used for Mid CH test

*3) Used for High CH test

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.5	Unshielded	Unshielded	-

Antenna Terminal Conducted test

: Standard Ferrite Core

* Cabling and setup(s) were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial Number	Manufacturer	Remarks
А	Blood Pressure Monitor	BP5350	202302099830V	OMRON HEALTHCARE	EUT
				Co., Ltd.	
В	AC Adapter	HEM-ADPTW5	2022-07-28	OMRON HEALTHCARE	-
	-			Co., Ltd.	
С	Laptop PC	inspiron	29473017625	DELL	-
D	AC Adapter	DA130PE1-00	WRHKW	DELL	-

List of Cables Used

No.	Name	Length (m)	Shield		Remarks
			Cable	Connector	
1	DC Cable	1.5	Unshielded	Unshielded	-
2	USB Cable	1.8	Shielded	Shielded	-
3	DC Cable	1.8	Unshielded	Unshielded	-
4	AC Cable	0.9	Unshielded	Unshielded	-

SECTION 5: Conducted Emission

Test Procedure and Conditions

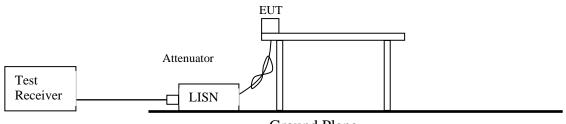
EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of tabletop was located 40 cm to the vertical conducting plane. The rear of EUT, including peripherals aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 80cm from any other grounded conducting surface. EUT was located 80 cm from a Line Impedance Stabilization Network (LISN) / Artificial mains Network (AMN) and excess AC cable was bundled in center.

For the tests on EUT with other peripherals (as a whole system)

I/O cables that were connected to the peripherals were bundled in center. They were folded back and forth forming a bundle 30 cm to 40 cm long and were hanged at a 40 cm height to the ground plane. All unused 500hm connectors of the LISN (AMN) were resistivity terminated in 50 ohm when not connected to the measuring equipment.

The AC Mains Terminal Continuous disturbance Voltage has been measured with the EUT in a Semi Anechoic Chamber.


The EUT was connected to a LISN (AMN).

An overview sweep with peak detection has been performed.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Detector	: QP and CISPR AV
Measurement Range	: 0.15 MHz to 30 MHz
Test Data	: APPENDIX
Test Result	: Pass

Figure 1: Test Setup

Ground Plane

SECTION 6: Radiated Spurious Emission

Test Procedure

It was measured based on "8.5 and 8.6 of KDB 558074 D01 15.247 Meas Guidance v05r02".

[For below 1 GHz]

EUT was placed on a urethane platform of nominal size, 1.0 m by 1.5 m, raised 0.8 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with a ground plane.

[For above 1 GHz]

EUT was placed on a urethane platform of nominal size, 0.5 m by 0.5 m, raised 1.5 m above the conducting ground plane. The Radiated Electric Field Strength has been measured in a Semi Anechoic Chamber with absorbent materials lined on a ground plane. Test antenna was aimed at the EUT for receiving the maximum signal and always kept within the illumination area of the 3 dB beamwidth of the antenna.

The height of the measuring antenna varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field strength.

The measurements were performed for both vertical and horizontal antenna polarization with the Test Receiver, or the Spectrum Analyzer.

The measurements were made with the following detector function of the test receiver and the Spectrum analyzer (in linear mode).

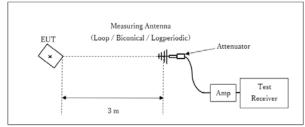
The test was made with the detector (RBW/VBW) in the following table.

When using Spectrum analyzer, the test was made with adjusting span to zero by using peak hold.

Test Antennas are used as below;

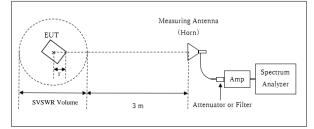
Frequency	30 MHz to 200 MHz	200 MHz to 1 GHz	Above 1 GHz
Antenna Type	Biconical	Logperiodic	Horn

In any 100 kHz bandwidth outside the restricted band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator confirmed 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on a radiated measurement.


20 dBc was applied to the frequency over the limit of FCC 15.209 / Table 4 of RSS-Gen 8.9(ISED) and outside
the restricted band of FCC15.205 / Table 6 of RSS-Gen 8.10 (ISED).

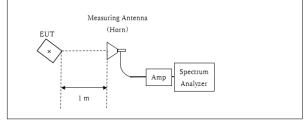
Frequency	Below 1 GHz	Above 1 GHz		20 dBc
Instrument Used	Test Receiver	Spectrum Analy	yzer	Spectrum Analyzer
Detector	QP	РК	AV	РК
IF Bandwidth	BW 120 kHz	RBW: 1 MHz	11.12.2.5.1	RBW: 100 kHz
		VBW: 3 MHz	RBW: 1 MHz	VBW: 300 kHz
			VBW: 3 MHz	
			Detector:	
			Power Averaging (RMS)	
			Trace: 100 traces	
			<u>11.12.2.5.2</u>	
			The duty cycle was less	
			than 98% for detected	
			noise, a duty factor was	
			added to the 11.12.2.5.1	
			results.	

Test Distance: 3 m


Figure 2: Test Setup

Below 1 GHz

× : Center of turn table


1 GHz to 10 GHz

r : Radius of an outer periphery of EUT

 \times : Center of turn table

10 GHz to 26.5 GHz

× : Center of turn table

No.2 Semi Anechoic Chamber

Distance Factor: 20 x log (3.65 m / 3.0 m) = 1.71 dB* Test Distance: (3 + SVSWR Volume / 2) - r = 3.65 m

SVSWR Volume : 1.5 m (SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.1 m

No.3 Semi Anechoic Chamber

Distance Factor: 20 x log (3.9 m / 3.0 m) = 2.28 dB * Test Distance: (3 + SVSWR Volume /2) - r = 3.9 m

SVSWR Volume : 2.0 m

(SVSWR Volume has been calibrated based on CISPR 16-1-4.) r = 0.1 m

Distance Factor: $20 \text{ x} \log (1.0 \text{ m} / 3.0 \text{ m}) = -9.5 \text{ dB}$ *Test Distance: 1 m

- The carrier level and noise levels were confirmed at each position of X, Y and Z axes of EUT to see the position of maximum noise, and the test was made at the position that has the maximum noise.

The test results and limit are rounded off to one decimal place, so some differences might be observed.

Measurement Range	: 30 MHz to 26.5 GHz
Test Data	: APPENDIX
Test Result	: Pass

SECTION 7: Antenna Terminal Conducted Tests

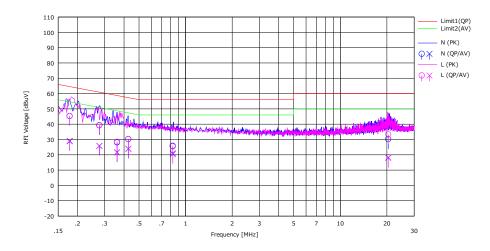
Test Procedure

The tests were made with below setting connected to the antenna port.

Test	Span	RBW	VBW	Sweep time	Detector	Trace	Instrument Used				
6dB Bandwidth	3 MHz	30 kHz	100 kHz	Auto	Peak	Max Hold	Spectrum Analyzer				
99% Occupied Bandwidth *1)	Enough width to display emission skirts	1 to 5 % of OBW	Three times of RBW	Auto	Peak	Max Hold	Spectrum Analyzer				
Maximum Peak Output Power	-	-	-	Auto	Peak/ Average *2)	-	Power Meter (Sensor: 50 MHz BW)				
Peak Power Density	1.5 times the 6dB Bandwidth	3 kHz	10 kHz	Auto	Peak	Max Hold	Spectrum Analyzer *3) *4)				
Conducted Spurious Emission *5) *6)	9 kHz to 150 kHz 150 kHz to 30 MHz	200 Hz 9.1 kHz	620 Hz 27 kHz	Auto	Peak	Max Hold	Spectrum Analyzer				
 *2) Reference data *3) Section 11.10.2 M *4) The test was not p measurement value *5) In the frequency r Then, wide-band not (9 kHz - 150 kHz: R *6) The limits in CFR measurements are p using the free space 	*1) Peak hold was applied as Worst-case measurement.										

The test results and limit are rounded off to two decimals place, so some differences might be observed. The equipment and cables were not used for factor 0 dB of the data sheets.

Test Data	: APPENDIX
Test Result	: Pass


APPENDIX 1: Test Data

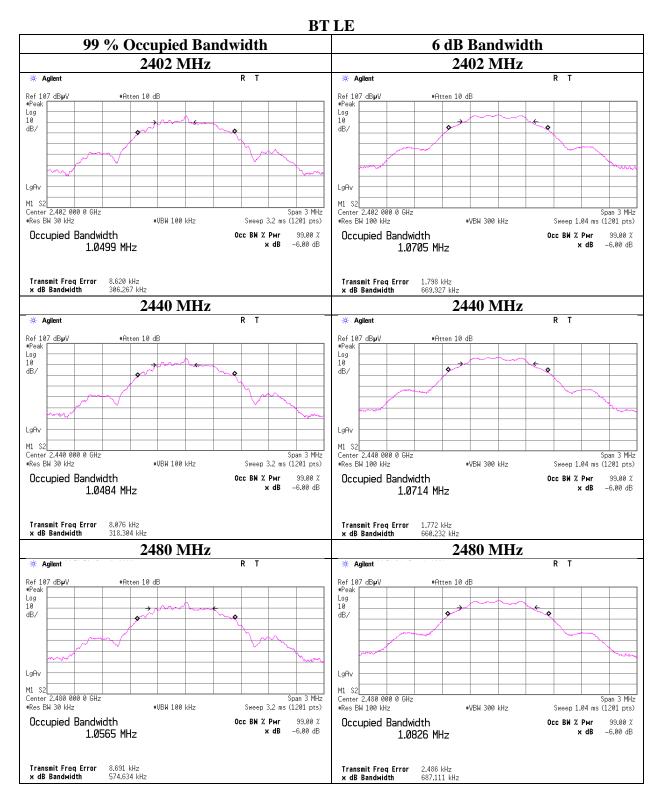
Conducted Emission

Test place Date Temperature / Humidity Engineer Mode

Ise EMC Lab. No.3 Semi Anechoic Chamber April 30, 2023 21 deg. C / 64 % RH Nachi Konegawa Tx BT LE

Limit : FCC_Part 15 Subpart C(15.207)

	From	Rea	ding	LISN	LOSS	Res	ults	Lir	nit	Ma	rgin		
No.	Freq.	(QP)	(AV)	LISIN	LU55	(QP)	(AV)	(QP)	(AV)	(QP)	(AV)	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.17812	32.00	15.80	0.12	13.16	45.28	29.08	64.57	54.57	19.29	25.49	Ν	
2	0.27715	25.90	12.50	0.12	13.18	39.20	25.80	60.90	50.90	21.70	25.10	Ν	
3	0.36080	14.70	8.30	0.12	13.20	28.02	21.62	58.71	48.71	30.69	27.09	N	
4	0.42668	16.90	10.60	0.13	13.21	30.24	23.94	57.32	47.32	27.08	23.38	Ν	
5	0.82590	12.40	7.50	0.15	13.27	25.82	20.92	56.00	46.00	30.18	25.08	N	
6	20.40080	13.60	1.50	2.25	14.35	30.20	18.10	60.00	50.00	29.80	31.90	Ν	
7	0.17812	32.00	15.50	0.13	13.16	45.29	28.79	64.57	54.57	19.28	25.78	L	
8	0.27715	26.00	12.50	0.13			25.81			21.59		L	
9	0.36080	15.10	8.30	0.13	13.20	28.43				30.28	27.08	L	
10	0.42668	16.80	10.60	0.14		30.15					23.37	L	
11	0.82590	12.00	7.00	0.15	13.27	25.42	20.42	56.00	46.00	30.58	25.58	L	
12	20.40080	16.70	1.70	2.21	14.35	33.26	18.26	60.00	50.00	26.74	31.74	L	


CHART: WITH FACTOR Peak hold data. CALCULATION : RESULT = READING + LISN + LOSS (CABLE + ATT) Except for the above table: adequate margin data below the limits.

: 14694851H-A-R1 : 17 of 36

99 % Occupied Bandwidth and 6 dB Bandwidth

Ise EMC Lab. No.8 Measurement Room
April 21, 2023
25 deg. C / 53 % RH
Nachi Konegawa
Tx BT LE

Mode	Frequency	99 % Occupied	6 dB Bandwidth	Limit for	
		Bandwidth		6 dB Bandwidth	
	[MHz]	[kHz]	[MHz]	[MHz]	
BT LE	2402	1049.9	0.670	> 0.5000	
	2440	1048.4	0.660	> 0.5000	
	2480	1056.5	0.687	> 0.5000	

99 % Occupied Bandwidth and 6 dB Bandwidth

: 14694851H-A-R1 : 19 of 36

Maximum Peak Output Power

Test placeIse EMC Lab. No.8 Measurement RoomDateApril 21, 2023Temperature / Humidity25 deg. C / 53 % RHEngineerNachi KonegawaModeTx BT LE

					Con	ducted Po	ower		e.i.r.p. for RSS-247					
Freq.	Reading	Cable	Atten.	Result		Limit		Margin	Antenna	Result		Limit		Margin
		Loss	Loss						Gain					
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dBm]	[mW]	[dB]	[dBi]	[dBm]	[mW]	[dBm]	[mW]	[dB]
2402	-12.81	0.98	9.75	-2.08	0.62	30.00	1000	32.08	1.73	-0.35	0.92	36.02	4000	36.37
2440	-12.83	0.99	9.75	-2.09	0.62	30.00	1000	32.09	1.73	-0.36	0.92	36.02	4000	36.38
2480	-12.87	1.00	9.75	-2.12	0.61	30.00	1000	32.12	1.73	-0.39	0.91	36.02	4000	36.41

Sample Calculation:

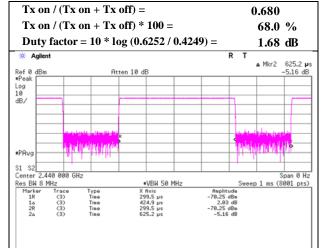
Result = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss e.i.r.p. Result = Conducted Power Result + Antenna Gain

: 14694851H-A-R1 : 20 of 36

<u>Average Output Power</u> (Reference data for RF Exposure)

Test placeIse EMC Lab. No.8 Measurement RoomDateApril 21, 2023Temperature / Humidity25 deg. C / 53 % RHEngineerNachi KonegawaModeTx BT LE

Freq.	Reading	Cable	Atten.	Result		Duty	Re	esult
		Loss	Loss	(Time average)		factor	(Burst power average	
[MHz]	[dBm]	[dB]	[dB]	[dBm]	[mW]	[dB]	[dBm]	[mW]
2402	-14.89	0.98	9.75	-4.16	0.38	1.68	-2.48	0.56
2440	-14.93	0.99	9.75	-4.19	0.38	1.68	-2.51	0.56
2480	-14.95	1.00	9.75	-4.20	0.38	1.68	-2.52	0.56


Sample Calculation:

Result (Time average) = Reading + Cable Loss (including the cable(s) customer supplied) + Attenuator Loss Result (Burst power average) = Time average + Duty factor

Burst rate confirmation

Ise EMC Lab. No.3 Semi Anechoic Chamber
April 17, 2023
19 deg. C / 45 % RH
Keiya Ido
Tx BT LE

BT LE

* Since the burst rate is not different between the channels, the data has been obtained on the representative channel.

: 14694851H-A-R1 : 22 of 36

Radiated Spurious Emission

Ise EMC Lab.			
No.3	No.2	No.2	No.2
April 17, 2023	April 27, 2023	April 28, 2023	April 30, 2023
19 deg. C / 45 % RH	21 deg. C / 50 % RH	20 deg. C / 41 % RH	21 deg. C / 64 % RH
Keiya Ido	Junya Okuno	Keiya Ido	Nachi Konegawa
(4 GHz - 8 GHz)	(1 GHz - 4 GHz)	(Above 10 GHz)	(Below 1 GHz)
	(8 GHz - 10 GHz)		
	No.3 April 17, 2023 19 deg. C / 45 % RH Keiya Ido	No.3 No.2 April 17, 2023 April 27, 2023 19 deg. C / 45 % RH 21 deg. C / 50 % RH Keiya Ido Junya Okuno (4 GHz - 8 GHz) (1 GHz - 4 GHz)	No.3 No.2 No.2 April 17, 2023 April 27, 2023 April 28, 2023 19 deg. C / 45 % RH 21 deg. C / 50 % RH 20 deg. C / 41 % RH Keiya Ido Junya Okuno Keiya Ido (4 GHz - 8 GHz) (1 GHz - 4 GHz) (Above 10 GHz)

Mode

Tx BT LE 2402 MHz

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	M argin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	58.9	21.7	-	8.3	7.0	28.5	-	8.4	-	40.0	-	31.6	-	
Hori.	100.3	21.6	-	10.4	7.4	28.4	-	10.9	-	43.5	-	32.6	-	
Hori.	160.2	21.6	-	15.4	7.8	28.2	-	16.6	-	43.5	-	26.9	-	
Hori.	204.0	21.5	-	11.8	8.1	28.0	-	13.5	-	43.5	-	30.0	-	
Hori.	360.7	21.7	-	15.3	9.0	28.1	-	17.9	-	46.0	-	28.1	-	
Hori.	498.2	21.8	-	18.0	9.8	29.1	-	20.5	-	46.0	-	25.5	-	
Hori.	2390.0	49.2	37.5	27.6	4.9	34.9	1.7	46.8	36.7	73.9	53.9	27.2	17.2	*1)
Hori.	4804.0	42.5	32.9	31.5	7.7	31.4	1.7	50.3	42.3	73.9	53.9	23.6	11.6	
Hori.	7206.0	42.8	32.7	35.8	9.0	32.3	1.7	55.3	46.9	73.9	53.9	18.6	7.0	
Hori.	12010.0	45.1	34.8	39.4	-1.4	33.8	1.7	49.2	40.6	73.9	53.9	24.7	13.3	
Vert.	58.9	31.4	-	8.3	7.0	28.5	-	18.1	-	40.0	-	21.9	-	
Vert.	100.3	24.1	-	10.4	7.4	28.4	-	13.4	-	43.5	-	30.1	-	
Vert.	160.2	21.6	-	15.4	7.8	28.2	-	16.6	-	43.5	-	26.9	-	
Vert.	204.0	21.5	-	11.8	8.1	28.0	-	13.5	-	43.5	-	30.0	-	
Vert.	360.7	21.7	-	15.3	9.0	28.1	-	17.9	-	46.0	-	28.1	-	
Vert.	498.2	21.8	-	18.0	9.8	29.1	-	20.5	-	46.0	-	25.5	-	
Vert.	2390.0	48.7	37.2	27.6	4.9	34.9	1.7	46.2	36.4	73.9	53.9	27.7	17.5	*1)
Vert.	4804.0	43.0	33.4	31.5	7.7	31.4	1.7	50.8	42.8	73.9	53.9	23.1	11.1	
Vert.	7206.0	43.5	33.1	35.8	9.0	32.3	1.7	56.0	47.2	73.9	53.9	17.9	6.7	
Vert.	12010.0	44.8	34.6	39.4	-1.4	33.8	1.7	49.0	40.5	73.9	53.9	24.9	13.4	

 $Result \; (QP \ / \ PK) = Reading + \\ Ant \; Factor + \\ Loss \; (Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor (above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor (above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor (above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor (above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor (above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor (above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Cable + \\ Attenuator + \\ Filter + \\ Distance \; factor (above \; 1 \; GHz)) - \\ Gain(Amplifier) = \\ Cable + \\ Cab$

Result (AV)= Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amplifier) + Duty factor

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

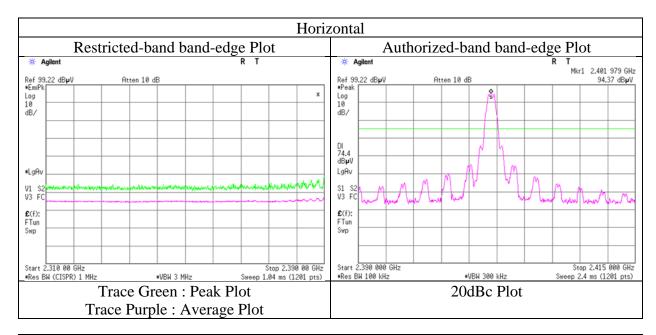
20dBc Data Sheet

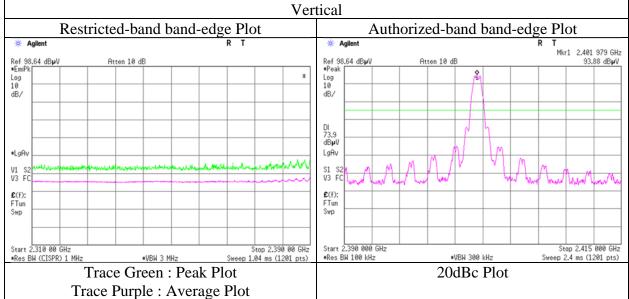
Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2402.0	94.4	27.6	4.9	34.9	91.9	-	-	Carrier
Hori.	2399.9	53.9	27.6	4.9	34.9	51.4	71.9	20.5	
Hori.	2400.0	52.3	27.6	4.9	34.9	49.8	71.9	22.1	
Hori.	9608.0	34.6	38.8	9.0	34.7	47.7	71.9	24.2	
Vert.	2402.0	93.9	27.6	4.9	34.9	91.4	-	-	Carrier
Vert.	2399.9	53.7	27.6	4.9	34.9	51.2	71.4	20.2	
Vert.	2400.0	51.5	27.6	4.9	34.9	49.0	71.4	22.4	
Vert.	9608.0	34.0	38.8	9.0	34.7	47.1	71.4	24.3	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor:	

1 GHz - 10 GHz 1 GHz - 10 GHz


20log (3.65 m / 3.0 m) = 1.71 dB 20log (3.9 m / 3.0 m) = 2.28 dB 10 GHz - 26.5 GHz 20log (1.0 m / 3.0 m) = -9.5 dB


for No.2 Semi Anechoic Chamber for No.3 Semi Anechoic Chamber

: 14694851H-A-R1 : 23 of 36

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.2DateApril 27, 2023Temperature / Humidity21 deg. C / 50 % RHEngineerJunya Okuno
(1 GHz - 4 GHz)ModeTx BT LE 2402 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.

: 14694851H-A-R1 : 24 of 36

Radiated Spurious Emission

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.3	No.2	No.2
Date	April 17, 2023	April 27, 2023	April 28, 2023
Temperature / Humidity	19 deg. C / 45 % RH	21 deg. C / 50 % RH	20 deg. C / 41 % RH
Engineer	Keiya Ido	Junya Okuno	Keiya Ido
	(4 GHz - 8 GHz)	(1 GHz - 4 GHz)	(Above 10 GHz)
		(8 GHz - 10 GHz)	
Mode	Tx BT LE 2440 MHz		

		Reading	Reading	Ant.			Duty	Result	Result	Limit	Limit	M argin	Margin	
Polarity	Frequency	(QP / PK)	(AV)	Factor	Loss	Gain	Factor	(QP / PK)	(AV)	(QP / PK)	(AV)	(QP / PK)	(AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	4880.0	42.9	33.5	31.5	7.7	31.4	1.7	50.8	43.0	73.9	53.9	23.2	10.9	
Hori.	7320.0	44.3	33.9	36.0	9.0	32.3	1.7	56.9	48.2	73.9	53.9	17.0	5.7	
Hori.	12200.0	44.0	33.4	39.3	-1.3	33.7	1.7	48.3	39.3	73.9	53.9	25.6	14.6	
Vert.	4880.0	43.6	34.2	31.5	7.7	31.4	1.7	51.4	43.7	73.9	53.9	22.5	10.2	
Vert.	7320.0	44.4	34.1	36.0	9.0	32.3	1.7	57.0	48.4	73.9	53.9	16.9	5.5	
Vert.	12200.0	45.4	34.6	39.3	-1.3	33.7	1.7	49.7	40.6	73.9	53.9	24.2	13.3	

 $Result \; (QP \,/\, PK) = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Cable + Cable + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable +$

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ factor + Distance \ factor + Loss \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ factor + Distance \ factor + Loss \ factor + L$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2440.0	94.0	27.5	4.9	34.9	91.5	-	-	Carrier
Hori.	9760.0	34.8	39.2	9.0	34.7	48.4	71.5	23.1	
Vert.	2440.0	93.9	27.5	4.9	34.9	91.3	-	-	Carrier
Vert.	9760.0	35.3	39.2	9.0	34.7	48.8	71.3	22.5	

 $Result = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above \ 1 \ GHz)) - Gain (Amprifier)$

Distance factor:

1 GHz - 10 GHz 1 GHz - 10 GHz 10 GHz - 26.5 GHz

20log (3.65 m / 3.0 m) = 1.71 dB 20log (3.9 m / 3.0 m) = 2.28 dB 20log (1.0 m / 3.0 m) = -9.5 dB for No.2 Semi Anechoic Chamber for No.3 Semi Anechoic Chamber

: 14694851H-A-R1 : 25 of 36

Radiated Spurious Emission

Test place	Ise EMC Lab.		
Semi Anechoic Chamber	No.3	No.2	No.2
Date	April 17, 2023	April 27, 2023	April 28, 2023
Temperature / Humidity	19 deg. C / 45 % RH	21 deg. C / 50 % RH	20 deg. C / 41 % RH
Engineer	Keiya Ido	Junya Okuno	Keiya Ido
	(4 GHz - 8 GHz)	(1 GHz - 4 GHz)	(Above 10 GHz)
		(8 GHz - 10 GHz)	
Mode	Tx BT LE 2480 MHz		

Reading Reading Ant. Т

Polarity	Frequency	Reading (QP / PK)	Reading (AV)	Ant. Factor	Loss	Gain	Duty Factor	Result (QP / PK)	Result (AV)	Limit (QP / PK)	Limit (AV)	Margin (QP / PK)	Margin (AV)	Remark
[Hori/Vert]	[MHz]	[dBuV]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dBuV/m]	[dB]	[dB]	
Hori.	2483.5	52.1	40.4	27.5	4.9	34.9	1.7	49.6	39.5	73.9	53.9	24.3	14.4	*1)
Hori.	2484.0	54.6	42.4	27.5	4.9	34.9	1.7	52.1	41.5	73.9	53.9	21.8	12.4	*1)
Hori.	4960.0	42.8	33.4	31.6	7.7	31.4	1.7	50.8	43.1	73.9	53.9	23.1	10.8	
Hori.	7440.0	43.6	33.2	36.2	9.0	32.4	1.7	56.4	47.6	73.9	53.9	17.5	6.3	
Hori.	12400.0	44.1	34.0	39.0	-1.2	33.5	1.7	48.4	40.0	73.9	53.9	25.5	13.9	
Vert.	2483.5	51.0	40.1	27.5	4.9	34.9	1.7	48.5	39.3	73.9	53.9	25.4	14.6	*1)
Vert.	2484.0	53.5	41.4	27.5	4.9	34.9	1.7	50.9	40.6	73.9	53.9	23.0	13.3	*1)
Vert.	4960.0	44.0	35.8	31.6	7.7	31.4	1.7	52.0	45.5	73.9	53.9	21.9	8.5	
Vert.	7440.0	43.2	34.0	36.2	9.0	32.4	1.7	56.0	48.4	73.9	53.9	17.9	5.5	
Vert.	12400.0	43.7	33.9	39.0	-1.2	33.5	1.7	48.0	39.8	73.9	53.9	25.9	14.1	

 $Result \; (QP \,/\, PK) = Reading + Ant \; Factor + Loss \; (Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) - Gain (Amplifier) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Cable + Attenuator + Filter + Distance \; factor (above \; 1 \; GHz)) + Cable + Cable + Attenuator + Filter + Distance \; factor \;$

 $Result \ (AV) = Reading + Ant \ Factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor (above 1 \ GHz)) - Gain (Amplifier) + Duty \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Filter + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Attenuator + Distance \ factor + Loss \ (Cable + Distance \ factor + Distance \ factor + Loss \ (Cable + Distance \ factor + Distance \ factor + Distance \ factor + Distance \ factor +$

*Other frequency noises omitted in this report were not seen or had enough margin (more than 20 dB).

*QP detector was used up to 1GHz.

*1) Not Out of Band emission(Leakage Power)

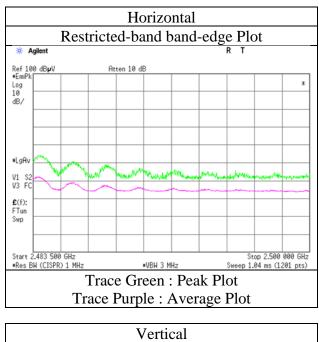
20dBc Data Sheet

Polarity	Frequency	Reading	Ant	Loss	Gain	Result	Limit	M argin	Remark
		(PK)	Factor						
[Hori/Vert]	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Hori.	2480.0	95.3	27.5	4.9	34.9	92.8	-	-	Carrier
Hori.	9920.0	38.2	39.2	9.0	34.7	51.6	72.8	21.1	
Vert.	2480.0	93.7	27.5	4.9	34.9	91.1	-	-	Carrier
Vert.	9920.0	36.8	39.2	9.0	34.7	50.3	71.1	20.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter+Distance factor(above 1 GHz)) - Gain(Amprifier)

Distance factor:

- 1 GHz 10 GHz 1 GHz - 10 GHz 10 GHz - 26.5 GHz
- 20log (3.65 m / 3.0 m) = 1.71 dB 20log (3.9 m / 3.0 m) = 2.28 dB $20 log (1.0 \ m \, / \, 3.0 \ m) = \ -9.5 \ dB$


for No.2 Semi Anechoic Chamber for No.3 Semi Anechoic Chamber

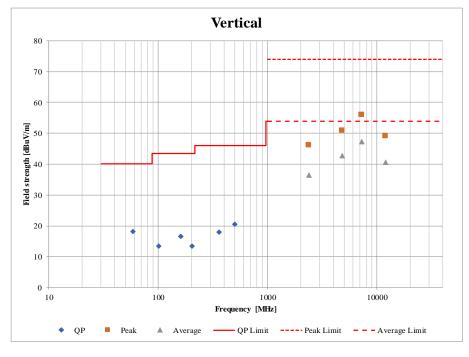

UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan / +81-596-24-8999

: 14694851H-A-R1 : 26 of 36

<u>Radiated Spurious Emission</u> (Reference Plot for band-edge)

Test placeIse EMC Lab.Semi Anechoic ChamberNo.2DateApril 27, 2023Temperature / Humidity21 deg. C / 50 % RHEngineerJunya Okuno(1 GHz - 4 GHz)ModeTx BT LE 2480 MHz

* The measurement was conducted for a sufficiently long enough time to detect any possible spurious emissions. Final result of restricted band edge was shown in tabular data.


(Plot data, Worst case mode for Maximum Peak Output Power)

Test place	Ise EMC Lab.			
Semi Anechoic Chamber	No.3	No.2	No.2	No.2
Date	April 17, 2023	April 27, 2023	April 28, 2023	April 30, 2023
Temperature / Humidity	19 deg. C / 45 % RH	21 deg. C / 50 % RH	20 deg. C / 41 % RH	21 deg. C / 64 % RH
Engineer	Keiya Ido	Junya Okuno	Keiya Ido	Nachi Konegawa
	(4 GHz - 8 GHz)	(1 GHz - 4 GHz)	(Above 10 GHz)	(Below 1 GHz)
		(8 GHz - 10 GHz)		

Tx BT LE 2402 MHz

Mode

Horizontal 80 70 60 4 20 ٠ ٠ 10 0 10 100 1000 10000 Frequency [MHz] QP Peak - QP Limit ---- Peak Limit - - - Average Limit ٠ Average

*These plots data contains sufficient number to show the trend of characteristic features for EUT.

: 14694851H-A-R1 : 28 of 36

Conducted Spurious Emission

Test place	Ise EMC Lab. No.8 Measurement Room
Date	April 21, 2023
Temperature / Humidity	25 deg. C / 53 % RH
Engineer	Nachi Konegawa
Mode	Tx BT LE 2402 MHz

	9 kHz - 150 kHz	150 kHz - 30 MHz
🔆 Agilent	RT	🔆 Agilent 🛛 🛛 R T
Ref -50 dBm Peak	Mkr1 9.00 kHz •Atten 10 dB	Mkr1 175 kHz Ref -50 dBm +Atten 10 dB -87.19 dBm Peak
Log 10 dB/		Prodk
LgAv \$1 \$2 M3 FS	han marine and a second and a second s	LgAv S1 S2 M3 F5
£(f): f<50k FFT		£(f);
Start 9.00 kHz #Res BW 200 Hz	Stop 150.00 kHz •VBW 620 Hz	Start 150 kHz Stop 30.000 MHz *Res BW 9.1 kHz *VBW 27 kHz Sweep 344.8 ms (1201 pts)

Frequency	Reading	Cable	Attenuator	Antenna	Ν	EIRP	Distance	Ground	Е	Limit	M argin	Remark
		Loss	Loss	Gain*	(Number			bounce	(field strength)			
[kHz]	[dBm]	[dB]	[dB]	[dBi]	of Output)	[dBm]	[m]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
9.00	-96.4	0.12	9.84	2.0	1	-84.5	300	6.0	-23.2	48.5	71.7	
175.00	-87.2	0.20	9.89	2.0	1	-75.1	300	6.0	-13.8	22.7	36.5	

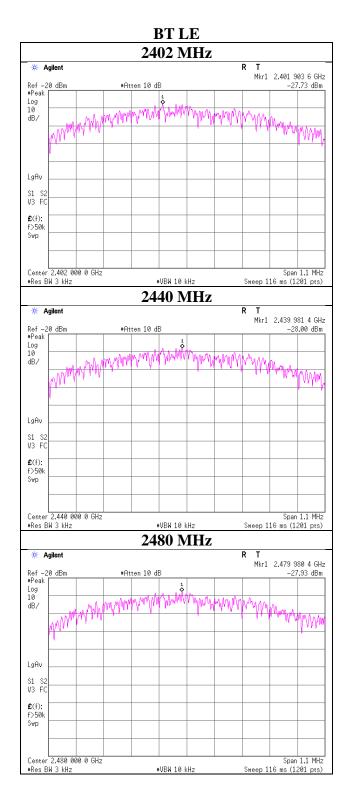
E [dBuV/m] = EIRP [dBm] - 20 log (Distance [m]) + Ground bounce [dB] + 104.8 [dBuV/m]

$$\begin{split} EIRP[dBm] = Reading \, [dBm] + Cable \, loss \, [dB] + Attenuator \, Loss \, [dB] + Antenna \, gain \, [dBi] + 10 \, * \, log \, (N) \\ N: \, Number \, of \, output \end{split}$$

*2.0 dBi was applied to the test result based on ANSI C63.10 since antenna gain was less than 2.0 dBi.

: 14694851H-A-R1 : 29 of 36

Power Density


Test place	Ise EMC Lab. No.8 Measurement Room
Date	April 21, 2023
Temperature / Humidity	25 deg. C / 53 % RH
Engineer	Nachi Konegawa
Mode	Tx BT LE

Freq.	Freq. Reading		Atten.	Result	Limit	Margin
		Loss	Loss			
[MHz]	[dBm / 3 kHz]	[dB]	[dB]	[dBm/3 kHz]	[dBm / 3 kHz]	[dB]
2402	-27.73	0.98	9.75	-17.00	8.00	25.00
2440	-28.00	0.99	9.75	-17.26	8.00	25.26
2480	-27.93	1.00	9.75	-17.18	8.00	25.18

Sample Calculation:

 $Result = Reading + Cable \ Loss \ (including \ the \ cable(s) \ customer \ supplied) + Attenuator \ Loss$

Power Density

APPENDIX 2: Test Instruments

Test Equipment (1/2)

	Equipme Local ID			Monufacturen	Madal	Samial	Last Calibratian	Cal
Item		LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Int
CE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
CE	MAEC- 02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
CE	MAT-67	141248	Attenuator	JFW Industries, Inc.	50FP-013H2 N	-	12/22/2022	12
CE	MCC-13	141222	Coaxial Cable	Fujikura,HP,Mini- Circits,Fujikura	3D-2W(12m)/5D- 2W(5m)/5D- 2W(0.8m)/5D-2W(1m)	-	02/01/2023	12
CE	MJM-27	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
CE	MLS-24	141358	LISN(AMN)	Schwarzbeck Mess- Elektronik OHG	NSLK8127	8127-730	07/28/2022	12
CE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/12/2022	12
CE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/17/2022	12
CE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	07/29/2022	12
RE	COTS- MEMI-02	178648	EMI measurement program	TSJ (Techno Science Japan)	TEPTO-DV	-	-	-
RE	MAEC- 02	142004	AC2_Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	05/30/2022	24
RE	MAEC- 02- SVSWR	142006	AC2_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-06902	04/09/2021	24
RE	MAEC- 03- SVSWR	142013	AC3_Semi Anechoic Chamber(SVSWR)	TDK	Semi Anechoic Chamber 3m	DA-10005	04/01/2021	24
RE	MAT-112	220646	Attenuator	Huber+Suhner	6806_N-50-1	-	03/17/2023	12
RE	MBA-08	141427	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHA9103B+BBA9106	08031	07/30/2022	12
RE	MCC-12	141317	Coaxial Cable	UL Japan	-	-	09/27/2022	12
RE	MCC-217	141393	Microwave Cable	Junkosha	MWX221	1604S254(1 m) / 1608S088(5 m)	08/02/2022	12
RE	MCC-218	141394	Microwave Cable	Junkosha	MWX221	1607S141(1 m) / 1608S264(5 m)	09/12/2022	12
RE	MHA-02	141503	Horn Antenna 18-26.5GHz	EMCO	3160-09	1265	06/22/2022	12
RE	MHA-06	141512	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	254	10/20/2022	12
RE	MHA-20	141507	Horn Antenna 1-18GHz	Schwarzbeck Mess- Elektronik OHG	BBHA9120D	258	11/14/2022	12
RE	MHF-25	141232	High Pass Filter 3.5-18.0GHz	UL Japan	HPF SELECTOR	001	09/07/2022	12
RE	MJM-16	142183	Measure	KOMELON	KMC-36	-	10/03/2022	12
RE	MJM-27	142228	Measure, Tape, Steel	KOMELON	KMC-36	-	-	-
RE	MLA-21	141265	Logperiodic Antenna (200-1000MHz)	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	9111B-190	07/30/2022	12
RE	MMM-01	141542	Digital Tester	Fluke Corporation	FLUKE 26-3	78030611	08/12/2022	12
RE			DIGITAL HITESTER	HIOKI E.E. CORPORATION	3805	51201197	01/17/2023	12
RE	MOS-13	141554	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	1301	01/13/2023	12
RE	MOS-41	192300	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0013	12/17/2022	12
RE	MPA-10	141579	Pre Amplifier	Keysight Technologies Inc	8449B	3008A02142	02/14/2023	12
RE	MPA-11	141580	MicroWave System Amplifier	Keysight Technologies Inc	83017A	MY39500779	03/08/2023	12
RE	MPA-24	141594	Pre Amplifier	Keysight Technologies Inc	8447D	2944A10150	02/02/2023	12

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
RE	MRENT- 130	141855	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY46187750	12/01/2022	12
RE	MSA-14	141901	Spectrum Analyzer	Keysight Technologies Inc	E4440A	MY48250080	01/16/2023	12
RE	MTR-03	141942	Test Receiver	Rohde & Schwarz	ESCI	100300	07/29/2022	12
AT	MAT-10	141156	Attenuator(10dB)	Weinschel Corp	2	BL1173	11/10/2022	12
AT	MAT-89	141419	Attenuator	Weinschel Associates	WA56-10	56100305	05/12/2022	12
AT	MCC-245	197220	Microwave cable	Huber+Suhner	SF126E/11PC35/ 11PC35/2000MM	537003/126E	03/08/2023	12
AT	MCC-38	141395	Coaxial Cable	UL Japan	-	-	11/18/2022	12
AT	MMM-17	141557	DIGIITAL HiTESTER	HIOKI E.E. CORPORATION	3805	70900530	01/18/2023	12
AT	MOS-28	141567	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	0008	01/13/2023	12
AT	MPM-08	141805	Power Meter	Anritsu Corporation	ML2495A	6K00003338	07/04/2022	12
AT	MPSE-11	141840	Power sensor	Anritsu Corporation	MA2411B	11737	07/04/2022	12
AT	MSA-04	141885	Spectrum Analyzer	Keysight Technologies Inc	E4448A	US44300523	11/21/2022	12

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item: CE: Conducted Emission RE: Radiated Emission AT: Antenna Terminal Conducted

> UL Japan, Inc. Ise EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 Japan / +81-596-24-8999