

FCC/IC Test Report

FOR:

Manufacturer: 3SI Security Systems

Model Name: GT83000

Product Description: Asset Tracking and Alert Device

FCC ID: Q6KGT83000A IC ID: 5043A-GT83000B

47 CFR Part 95 RSS-210 Issue 8

TEST REPORT #: EMC_3SISE-033-13001_GT83000_FCC95 DATE: 2013-10-23

FCC:
A2LA Accredited

IC recognized # 3462B-1

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecomusa.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

EMC_3SISE-033-13001_GT83000_FCC95 FCC ID: Q6KGT83000A

Test Report #: IC ID: 5043A-GT83000B Date of Report: 2013-10-23

TABLE OF CONTENTS

1	As	sessment	4
2	Ad	lministrative Data	
2.	.1	Identification of the Testing Laboratory Issuing the Test Report	5
2.	.2	Identification of the Client	
2.	.3	Identification of the Manufacturer	
2.	.4	Environmental conditions during Test:	5
2.	.5	Dates of Testing:	5
3	Eq	quipment under Test (EUT)	6
3.	.1	Specification of the Equipment under Test	6
3.	.2	Identification of the Equipment under Test (EUT)	7
3.	.3	Testing notes	
4	Su	bject of Investigation	
5	Su	ummary of Measurement Results	9
6	Ra	udiated Peak Output Power	10
6.		References	
6.	.2	Limits	
6.	.3	Test Conditions	
6.	.4	Radiated Measurement Procedure	11
6.	.5	Measurement Settings	11
6.	.6	Measurement Uncertainty	
6.	.7	Sample Calculations for Radiated Measurements	12
6.	.8	Test Results	13
6.	.9	Measurement Verdict	13
6.	.10	Measurement Plot	13
7	Oc	ccupied Bandwidth	14
7.	.1	References	14
7.	.2	Limits	14
7.	.3	Test Conditions	14
7.	.4	Test Result	
7.	.5	Measurement Verdict	
7.	.6	Measurement Plots	15
8	Ma	odulation Characteristics	

Date of Report: 2013-10-23 IC ID: **5043A-GT83000B**

9 Tr	ransmitter Unwanted Emissions – Radiated	17
9.1	References	17
9.2	Limits	17
9.3	Measurement Settings	17
9.4	Test Conditions	17
9.5	Radiated test procedure for transmitter unwanted emissions:	18
9.6	Measurement Uncertainty	18
9.7	Measurement Plot	19
9.8	Measurement Verdict	19
9.9	Measurement Plots	
9.10	Measurement Verdict	
10 Fr	requency Tolerance	
10.1	References	22
10.2	Limits	
10.3	Test Conditions	
10.4	Test Results	
10.5	Measurement Verdict	
11 Te	est Equipment	
	est Setup Diagrams	
_	evision History	25

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

1 Assessment

The following device was tested against the applicable criteria specified in FCC rules Parts 95 of Title 47 of the Code of Federal Regulations and Industry Canada Standards RSS 210 Issue 8 and no deviations were ascertained during the course of the tests performed.

Company	Description	Model #		
3SI Security Systems	Asset Tracking and Alert Device	GT83000		

This report is reviewed by:

Tunji Yusuf

2013-10-23	Compliance	(Test Lab Manager)	
Date	Section	Name	Signature

Responsible for the Report:

Danh Le

2013-10-23	Compliance	(EMC Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the Test Report

Company Name:	CETECOM Inc.		
Department:	Compliance		
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.		
Telephone:	+1 (408) 586 6200		
Fax:	+1 (408) 586 6299		
Test Lab Manager:	Tunji Yusuf		
Responsible Project Leader:	Danh Le		

2.2 Identification of the Client

Applicant's Name:	3SI Security Systems	
Street Address:	486 Thomas Jones Way	
City/Zip Code	Exton, PA 19341	
Country	USA	
Contact Person:	Waldemar Sierocinski	
Phone No.	954-214-5398	
e-mail:	waldemar_sierocinski@3sisecurity.com	

2.3 Identification of the Manufacturer

Manufacturer's Name:	
Manufacturers Address:	Same as Client
City/Zip Code:	Same as Cheft
Country:	

2.4 Environmental conditions during Test:

The following environmental conditions were maintained during the course of testing:

Ambient Temperature: 24°C Relative humidity: 32%

2.5 Dates of Testing:

Sept 5, 2013 - Sept 16, 2013.

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name:	Cash Tracker
Model No:	Base Model: GT83000 Variant info contain in Section 3.4
Product Type:	Asset Tracking and Alert Device
FCC-ID:	Q6KGT83000A
IC-ID:	5043A-GT83000B
Frequency range of test:	216.475 MHz
Type(s) of Modulation:	None (CW), Pulsed carrier signal with no modulation, 20% duty cycle (200ms/s)
Number of channels:	1
Antenna Info:	Magnetic Loop antenna Gain: -51 dBd ± 3 dB (manufacturer declared value)
Other radios in the device:	GSM/GPRS 850/900/1800/1900 MHz GPS Receiver: 1575.42 MHz
Rated Operating Voltage Range(DC):	Internal Battery Operated 3.3V (Min) / 3.7V (Nominal) / 4.2V (Max)
Rated Operating Temperature Range:	0° C to $+40^{\circ}$ C
Test Sample status:	Production

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

3.2 Identification of the Equipment under Test (EUT)

EUT#	IMEI:	HW Version	SW Version	Model	Notes
1	352964050038778	1.2	9.09.07	GT83000	Radiated Sample

3.3 Testing notes

- 1. There are 5 variants of the EUT. GT83000, GT83000VP, GT83000R2 and GT83100.
- 2. The manufacturer has provided a product equality declaration that model variants **GT83000VP**, **GT83000R2** and **GT83100** incorporate the same VHF portion (Radio, Antenna and associated circuitry) as the base model **GT83000**.
- 3. Full testing was performed on base model GT83000.
- 4. All samples have integral antennas. All test cases were performed using radiated test method.

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

4 **Subject of Investigation**

The objective of the measurements done by CETECOM, Inc. was to measure the performance of the EUT as specified by requirements listed in the following test standards: FCC rules Part 95 of Title 47 of the Code of Federal Regulations and Industry Canada Standards RSS 210 Issue 8.

- 47 CFR 2: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communication Commission: Frequency allocations and radio treaty matters; general rules and regulations.
- 47 CFR 95: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communication Commission: Personal Radio Services.
- RSS 210 Issue 8: Spectrum Management and Telecommunications Radio Standards Specification; License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

This report is to support a request for a Class 2 Permissive Change to add a part 95 frequency to an existing FCC approval under the FCC ID: Q6KGT83000A and to support an application for a new IC approval under IC ID: 5043A-GT83000B including that same frequency; as well as an IC Family approvals of the additional models GT83000VP, GT83000R2 and GT83100.

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

5 <u>Summary of Measurement Results</u>

Test Specification	Test Case	Temperature and Voltage Conditions	Pass	Fail	NA	NP	Models Tested	Result
FCC §95.639 (e) RSS-210 A4.3	RF Output Power	Nominal					GT83000	Complies
FCC §95.629 (c) (2) RSS-210 A4.3	Frequency Tolerance	Nominal & Extreme	•				GT83000	Complies
§95.633(d) (3) RSS Gen Sect. 4.6	Occupied Bandwidth	Nominal	•				GT83000	Complies
§95.635 (c) (2) (i) RSS210 A4.3 Mask D (a)	Transmit Spectrum Mask	Nominal					GT83000	Complies
§95.635 (c) (2) (ii) RSS210 A4.3 Mask D (b)	Radiated Spurious Emissions	Nominal	•				GT83000	Complies
§95.635 (c) (2) RSS210 A4.3 Mask D	Conducted Spurious Emissions	Nominal						NA

Note: NA = Not Applicable; NP = Not Performed

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

6 Radiated Peak Output Power

6.1 References

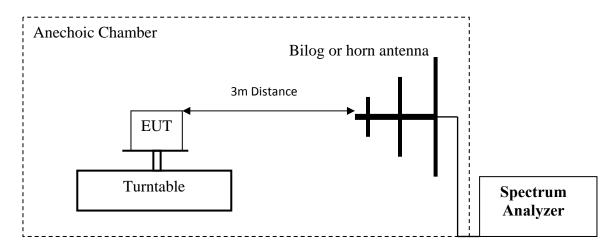
FCC: 2.1046, 95.639(e)

RSS 210: A4.3

6.2 Limits

FCC: The maximum transmitter output power authorized for LPRS stations is 100 mW (20dBm). RSS 210: The peak output power shall not exceed 100 mW (20 dBm) or 160 mW (22 dBm) EIRP.

6.3 Test Conditions


Tnom: 24°C Vnom: 3.7 V dc

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

6.4 Radiated Measurement Procedure

Ref: ANSI/TIA-603-C-2004 & RSS-Gen Section 4.8 Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.
- 2. Set the EUT in continuous transmission mode with its maximum power @ 98% 100% duty cycle.
- 3. Set the spectrum analyzer to the channel frequency of interest.
- 4. Maximize the emission amplitude by rotating the turntable $0 360^{\circ}$, adjusting the measuring antenna height from 1 4 m & changing antenna polarity.
- 5. Repeat steps 4 with all antennas different polarity and determine the maximized polarity for measurement. Measure and record the peak level of field strength (LVL) in dBuV.
- 6. Adjust correction factors to the measured field strength (LVL) and using the field strength approach calculation to convert FS from dBuV to transmitter output power (EIRP) in Watts using the following equations:
- 7. Correction factors (CF) in dB = Antenna factor (dB) + Cable loss (dB).

LVLc (dBuV) = LVL (dBdBuV) + Correction Factors (dB)

EIRP (W) = $(LVLc (V/m) \times D)^2 / (30 \times G)$

- 8. Convert Watt to dBm (logarithmic), using the following formula: EIRP (dBm) = 10 log (W x 1000)
- 9. Manually peak search, record readings and save data.

Note: Steps 7 above are performed prior to testing and **CF** was entered in the test software. Steps 3, 4, 5, 6 and 8 above are performed and controlled by test software.)

6.5 Measurement Settings

RBW=VBW=1.5 kHz

Span=80 kHz; Detector: Peak- Max Hold;

Sweep time: Auto.

6.6 Measurement Uncertainty

+/-3 dB

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

6.7 Sample Calculations for Radiated Measurements

When the EUT power is measured by using radiated test method, the EIRP can be directly determined using the field strength (linear) approach calculation by applying the following equations:

(1) FS
$$(dBuV/m) = Measured FS (dBuV/m) + CF (dB)$$

Where

- CF = Ant. Factor + Cable Loss Ext. Amp Gain (if required)
- FS = electric field strength in dBuV/m

Then convert from dBuV to V/m by using the equation (2):

(2) FS (V/m)
$$= 10^{\left(\frac{dSW}{m} - 120\right)/20}$$

The EIRP (dBm) is calculated by using equation (3):

(3) EIRP (dBm) =
$$10 Log \left(\frac{(FS \times D)^2}{20} \times 1000\right)$$

- FS = electric filed strength in V/m
- D = measurement distance in meters (m)
- 30 = basic free space propagation path loss

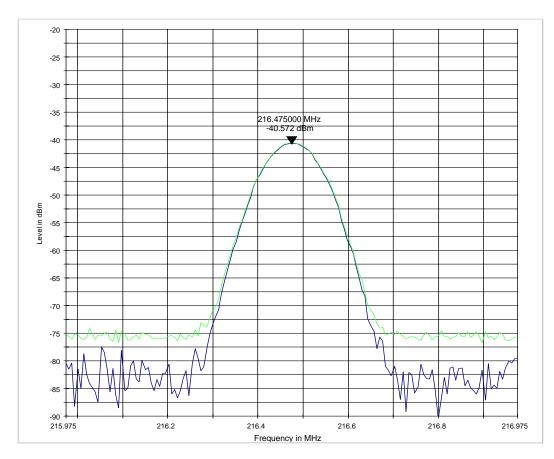
Frequency (MHz)	Measured Field Strength (FS) (dBμV/m)	Correction Factors (CF) (dB)	Calculated FS FS +CF (dBuV/m)	Calculated FS @ 3m (V/M)	Calculated EIRP (dBm)
1000	40	12	52	0.0004	-43.23

EMC_3SISE-033-13001_GT83000_FCC95 FCC ID: Q6KGT83000A

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

6.8 Test Results

Test Report #:


Model: GT83000					
Frequency	Antenna Polarity	Antenna Height	Angle	ERP	Conducted Output Power
(MHz)					ERP - Ant.G (dBd)
(WIIIZ)	(H/V)	(m)	(°)	(dBm)	(dBm)
216.475	Н	1	27	- 40.57	10.43

6.9 Measurement Verdict

Pass.

6.10 Measurement Plot

Radiated Peak Power - GT83000

MaxPeak-ClearWrite-PK+ MaxPeak-MaxHold-PK+

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

7 Occupied Bandwidth

7.1 References

FCC: 2.1049, 95.633 (d) (3) RSS Gen Issue 3 section 4.6

7.2 Limits

According to CFR 47 section 95.633

- (d) For transmitters in the LPRS:
- (3) The channel bandwidth for extra band frequencies is 50 kHz.

According to RSS-Gen Issue 3 section 4.6.1

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be 99% emission bandwidth, as calculated or measured.

7.3 Test Conditions

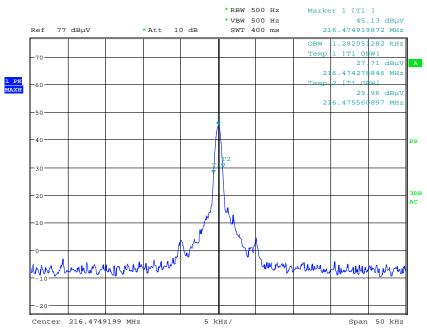
Tnom: 24°C Vnom: 3.7 V dc

7.4 Test Result

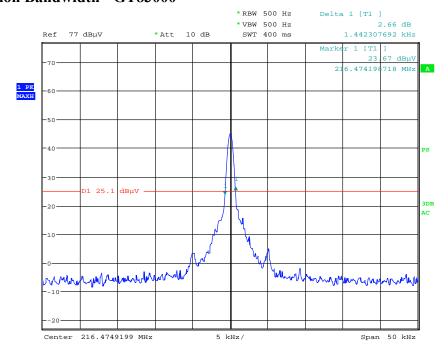
Channel	Frequency (MHz)	99% Occupied Bandwidth	20 dB Emission Bandwidth
50	216.475	1.282 kHz	1.442 kHz

7.5 Measurement Verdict

Pass


EMC_3SISE-033-13001_GT83000_FCC95 FCC ID: Q6KGT83000A

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B


7.6 Measurement Plots99% Occupied Bandwidth - GT83000

Test Report #:

Date: 11.SEP.2013 02:53:10

20dB Emission Bandwidth - GT83000

Date: 11.SEP.2013 02:54:51

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

8 Modulation Characteristics

The transmitter emits a pulsed carrier signal without modulation.

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

9 Transmitter Unwanted Emissions – Radiated

9.1 References

FCC: 95.635 (c) (2) RSS 210 A4.3 Mask D

9.2 Limits

According to FCC CFR 47 section 95.635 (c) (2)

Emissions for LPRS transmitters operating on extra band channels (50 kHz) shall be attenuated below the un-modulated carrier in accordance with the followings:

- i) Emissions more than 25 kHz to 35 kHz from the channel center frequency: at least 30dB; and
- ii) Emissions more than 35 kHz away from the channel center frequency: at least 43 + 10 log (carrier power in watts) dB.

FCC: -13 dBm

According to RSS 210 A4.3

The following unwanted emissions mask shall be measured with the measurement meter in peak mode and a bandwidth of at least 300 Hz. Unwanted emissions shall be attenuated below the peak transmitter output power (P, watts) in accordance with the following mask:

Mask **D**

- i) At least 30dB for emissions 25 kHz to 35 kHz removed from the channel center frequency: and
- ii) At least 55 + 10 log (carrier power in watts) dB or to the general field strength limits list in RSS-Gen, whichever is less stringent, for emissions more than 35 kHz removed from the channel center frequency.

IC: -25 dBm

9.3 Measurement Settings

For emissions measurement 25 kHz to 35 kHz from center frequency:

RBW=500 Hz for measurements

VBW=RBW or 3x RBW

Span= 100 kHz or sufficient to capture the whole frequency range of interest

For emissions measurement more than 35 kHz away from the channel center frequency:

RBW=100 kHz for measurements < 1GHz

RBW=1MHz for measurements > 1GHz

VBW=RBW or 3x RBW

Span= Entire range of measuring antenna or in segment

Detector: Peak- Max Hold; or quasi-peak (if close to limit) for measurement < 1GHz

Peak- Max Hold; or average (if close to limit) for measurement > 1GHz

Sweep time: Auto.

9.4 Test Conditions

Tnom: 22°C Vnom: 3.7 V dc

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

9.5 Radiated test procedure for transmitter unwanted emissions:

Ref: ANSI C63.4:2009 & RSS-Gen Section 4.9

Refer to section 12 for test setup diagrams.

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. The EUT was set to continuous transmission mode with its maximum power @ 100% duty cycle.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Repeat steps 4, 5 and 6 with all antennas vertically polarized and determine the maximized polarity for measurement.
- 6. Select 6 closest readings or more to the limits for measurements.
- 7. Determine the level of spurious emissions using the following equation: LVLc (dBuV) = Measured LVL (dBuV) + CF
- 8. Correction factors in dB (CF) = Antenna factor (dB) + Cable loss (dB).
- 9. Convert the adjusted LVLc from dBuV/m to dBm using the following formula:

LVLc (dBm) =
$$10 Log \left(\frac{(FS \times D)^2}{30} \times 1000\right)$$

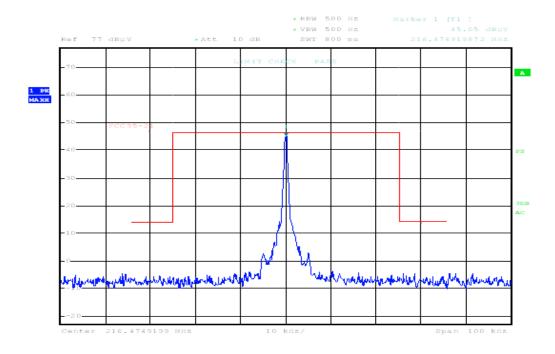
- 10. Manually peak search, record reading in dBm and save data.
- 11. Measurements are to be performed from 30 MHz to the 6 GHz with the EUT set to the main operating frequency.

(Note: Steps 8 above are performed prior to testing and **CF** is entered in test software. Steps 3, 4, 5, 6, 7 and 9 above are performed with test software.)

Measurement Survey:

The site is constructed in accordance with ANSI C63.4 requirements and is recognized by the FCC to be in compliance for a 3m site. The spectrum is scanned from 30MHz to the 10th harmonic of the highest frequency generated by the EUT.

For radiated measurements, all data in this report shows the worst case emissions data between H/V antenna polarizations and for all 3 orthogonal orientations of the EUT.

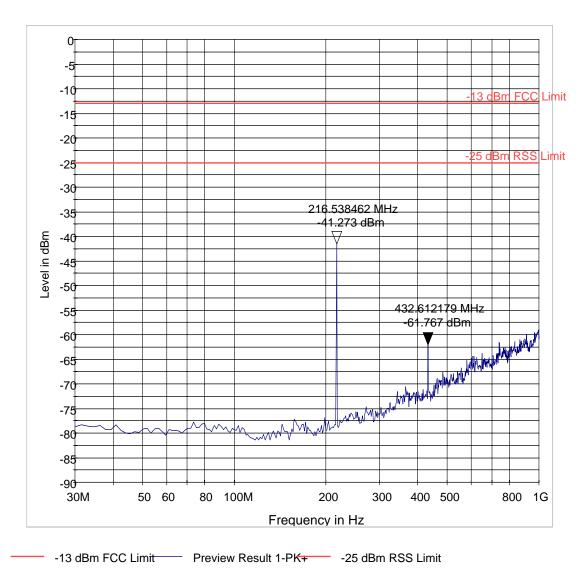

9.6 Measurement Uncertainty

+/-3dB

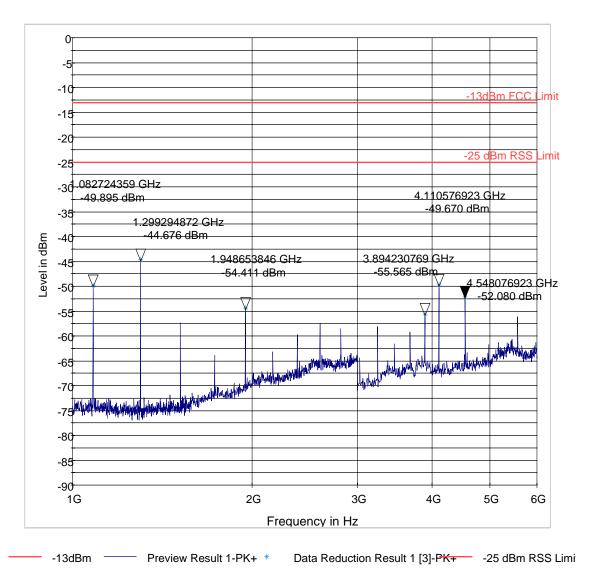
9.7 Measurement Plot

30 dB down Emission Mask - GT83000

Date: 11.SEP.2013 02:55:47


9.8 Measurement Verdict

Pass.


9.9 Measurement Plots

Spurious Emissions: 30MHz – 1000MHz – GT83000

Spurious Emissions 1GHz - 6GHz - GT83000

9.10 Measurement Verdict

Pass.

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

10 Frequency Tolerance

10.1 References

FCC: 2.1055, 95.629 (c) (2)

RSS 210: A6.16

10.2 Limits

FCC: +/- 50.0 ppm RSS: +/- 5.0 ppm

10.3 Test Conditions

Tnom: 24°C; Vnom: 3.7 V dc

10.4 Test Results

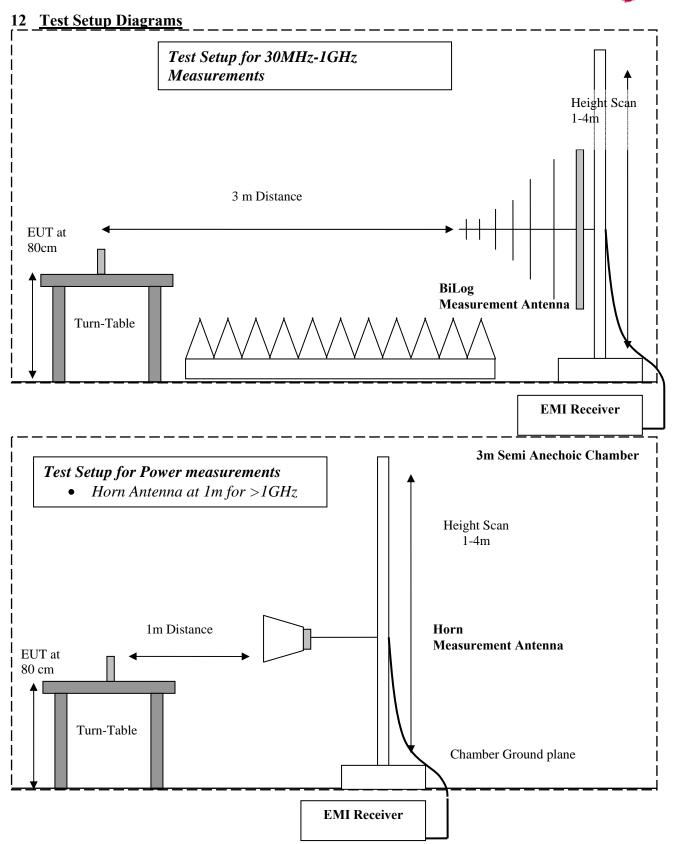
Expected Frequency @ Normal Temp (MHz)	Measured Frequency (MHz)	Frequency Error (Hz)	Frequency Error (ppm)
216.475	216.47491987	-80.0	-0.37
Vnom (+10%) 4.1 VDC	216.47491987	-80.1	-037
Vnom (-10%) 3.3 VDC	216.47492786	-72.14	-0.33

Temperature °C	Frequency (MHz)	Frequency Error (Hz)	Frequency Error (ppm)
50	216.47516026	160	0.74
40	216.47508013	80.0	0.37
30	216.47491987	-80.0	-0.37
20	216.47491987	-80.0	-0.37
10	216.47487981	-120	-0.56
0	216.47481570	-184	-085
-10	216.47479968	-200	-0.92
-20	216.47478365	-216	-1.00
-30	216.47479167	-208	-0.96

10.5 Measurement Verdict

Pass.

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B



11 Test Equipment

Instrument/Ancillary	Model	Manufacturer	Serial No.	Cal Date	Cal Interval
EMI Receiver/Analyzer	ESU 40	Rohde & Schwarz	100251	Aug 2012	2 Years
Loop Antenna	6512	EMCO	00049838	Apr 2012	3 years
Biconilog Antenna	3141	EMCO	0005-1186	Mar 2012	3 years
Horn Antenna (1-18GHz)	3115	ETS	00035111	Mar 2012	3 years
Horn Antenna (1-18GHz)	3115	ETS	00035114	Apr 2012	3 years
Communication Antenna	IBP5-900/1940	Kathrein	n/a	n/a	n/a
High Pass Filter	5HC2700	Trilithic Inc.	9926013	Part of system of	alibration
High Pass Filter	4HC1600	Trilithic Inc.	9922307	Part of system of	calibration
6GHz High Pass Filter	HPM50106	Microtronics	001	Part of system of	alibration
Pre-Amplifier	JS4-00102600	Miteq	00616	Part of system of	calibration
Temp Hum Logger	TM325	Dickson	5285354	Feb 2012	1 Year
Climatic Chamber	Votsch	VT4004	G1115	N/A	N/A

Test Report #: IC ID: 5043A-GT83000B Date of Report: 2013-10-23

Date of Report: 2013-10-23 IC ID: 5043A-GT83000B

13 Revision History

Date	Report Name	Changes to report	Report prepared by
2013-10-23	EMC_3SISE-033-13001_GT83000_FCC95	First Version	Danh Le