

FCC/IC Test Report

FOR:

Manufacturer: 3SI Security Systems

Model Name: GT83000VP; GT83000R2; GT83100

Product Description: Asset Tracking and Alert Device

FCC ID: Q6KGT83000A IC ID: 5043A-GT83000B

> 47 CFR Part 95 RSS-210 Issue 8

TEST REPORT #: EMC_3SISE-00313001_GT8xxxxFCC95 DATE: 2013-10-23

CETECOM Inc. 411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A. Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecomusa.com • <u>http://www.cetecom.com</u> CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

V2.0 2009-10-30

The BLUETOOTH trademarks are owned by Bluetooth SIG, Inc., U.S.A. and licensed to CETECOM Inc.

© Copyright by CETECOM

TABLE OF CONTENTS

1	Assessment					
2	Adr	Administrative Data				
	2.1	Identification of the Testing Laboratory Issuing the Test Report	5			
	2.2	Identification of the Client	5			
	2.3	Identification of the Manufacturer	5			
	2.4	Environmental conditions during Test:	5			
	2.5	Dates of Testing	5			
3	Equ	upment under Test (EUT)	6			
	3.1	Specification of the Equipment under Test				
	3.2	Identification of the Equipment under Test (EUT)	7			
	3.3	Testing notes	7			
4	Sub	ject of Investigation				
5	Sun	nmary of Measurement Results	9			
6	Rad	Radiated Peak Output Power				
	6.1	References	10			
	6.2	Limits	10			
	6.3	Test Conditions	10			
	6.4	Radiated Measurement Procedure	11			
	6.5	Measurement Settings	11			
	6.6	Measurement Uncertainty	11			
	6.7	Sample Calculations for Radiated Measurements	12			
	6.8	Test Results	13			
	6.9	Measurement Verdict	13			
	6.10	Measurement Plots	14			
7	Мо	dulation Characteristics	16			
8	Tra	nsmitter Unwanted Emissions – Radiated	17			
	8.1	References	17			
	8.2	Limits	17			
	8.3	Measurement Settings	17			
	8.4	Test Conditions	17			
	8.5	Radiated test procedure for transmitter unwanted emissions	18			
	8.6	Measurement Uncertainty	18			

 Test Report #:
 EMC_3SISE-033-13001_GT8xxxx_FCC95
 FCC ID: Q6KGT83000A

 Date of Report :
 2013-10-23
 IC ID: 5043A-GT83000B

	8.7	Measurement Verdict	18
	8.8	Measurement Plots	19
	8.9	Measurement Plots	22
	8.10	Measurement Verdict	24
9	Test	t Equipment	25
10	Test	t Setup Diagrams	26
11	Rev	vision History	27

1 Assessment

The following device was tested against the applicable criteria specified in FCC rules Parts 95 of Title 47 of the Code of Federal Regulations and Industry Canada Standards RSS 210 Issue 8 and no deviations were ascertained during the course of the tests performed.

Company	Description	Model #	
3SI Security Systems	Asset Tracking and Alert Device	GT83000VP; GT83000R2; GT83100	

This report is reviewed by:

		Tunji Yusuf	
2013-10-23	Compliance	(Test Lab Manager)	
Date	Section	Name	Signature

Responsible for the Report:

		Danh Le	
2013-10-23	Compliance	(EMC Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM Inc USA.

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Test Lab Manager:	Tunji Yusuf
Responsible Project Leader:	Danh Le

2.2 Identification of the Client

Applicant's Name:	3SI Security Systems, Inc	
Street Address:	486 Thomas Jones Way	
City/Zip Code	Exton, PA 19341	
Country	USA	
Contact Person:	Waldemar Sierocinski	
Phone No.	945-214-5398	
e-mail:	waldemar_sierocinski@3sisecurity.com	

2.3 Identification of the Manufacturer

Manufacturer's Name:	Same as Client
Manufacturers Address:	
City/Zip Code:	Sume as chem
Country:	

2.4 Environmental conditions during Test:

The following environmental conditions were maintained during the course of testing: Ambient Temperature: 22 - 24°C Relative humidity: 32%

2.5 Dates of Testing

Sept 5, 2013 - Sept 10, 2013.

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Marketing Name:	Cash Tracker
Model No:	GT83000VP, GT83000R2, GT83100
Product Type:	Asset Tracking and Alert Device
FCC-ID:	Q6KGT83000A
IC-ID :	5043A-GT83000B
Frequency range of test:	216.475 MHz
Type(s) of Modulation:	None (CW), Pulsed carrier signal with no modulation, 20% duty cycle (200ms/s)
Number of channels:	1
Antenna Info:	Magnetic Loop antenna Gain: -51 dBd ± 3 dB (manufacturer declared value)
Other radios in the device:	GSM/GPRS 850/900/1800/1900 MHz GPS Receiver: 1575.42 MHz
Rated Operating Voltage Range(DC):	Internal Battery Operated 3.3V (Min) / 3.7V (Nominal) / 4.2V (Max)
Rated Operating Temperature Range:	GT83000VP/ GT83000R2/GT83100/: 0°C to + 40°C
Test Sample status:	Production

EUT #	IMEI:	HW Version	SW Version	Model	Notes
1	352599046090788	1.1	9.09.07	GT83000VP	Radiated Sample
2	352599044800071	1.1	11.01.10081	GT83000R2	Radiated Sample
3	352964051425107	1.3	9.13.05	GT83100	Radiated Sample

3.2 Identification of the Equipment under Test (EUT)

3.3 Testing notes

- 1. There are 4 variants of the EUT. GT83000, GT83000VP, GT83000R2 and GT83100.
- 2. The manufacturer's has provided a product equality declaration that model variants **GT83000VP**, **GT83000R2** and **GT83100** incorporate the same VHF portion (Radio, Antenna and associated circuitry) as the base model **GT83000**.
- 3. Full testing was performed on base model **GT83000** and the data deemed sufficient to compliant the variant models to the applicable requirement. Refer to test report # EMC_3SIE-033-13001 GT83000 FCC95 for full compliance test data on the base model.
- 4. Additionally, output power and transmission unwanted emission were performed on model variances **GT83000VP**, **GT83000R2** and **GT83100**.
- 5. All samples have integral antennas. All test cases were performed using radiated test method.

4 <u>Subject of Investigation</u>

The objective of the measurements done by CETECOM Inc. was to measure the performance of the EUT as specified by requirements listed in the following test standards: FCC rules Part 95 of Title 47 of the Code of Federal Regulations and Industry Canada Standards RSS 210 Issue 8.

- 47 CFR 2: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communication Commission: Frequency allocations and radio treaty matters; general rules and regulations.
- 47 CFR 95: Title 47 of the Code of Federal Regulations: Chapter I-Federal Communication Commission: Personal Radio Services.
- RSS 210 Issue 8: Spectrum Management and Telecommunications Radio Standards Specification; License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment.

This report is to support a request for a Class 2 Permissive Change to add a part 95 frequency to an existing FCC approval under the FCC ID: Q6KGT83000A and to support an application for a new IC approval under IC ID: 5043A-GT83000B including that same frequency; as well as an IC Family approvals of the additional models GT83000VP, GT83000R2 and GT83100.

5 <u>Summary of Measurement Results</u>

Test Specification	Test Case	Temperature and Voltage Conditions	Pass	Fail	NA	NP	Models Tested	Result
FCC §95.639 (e) RSS-210 A4.3	RF Output Power	Nominal					GT83000VP, GT83000R2, GT83100	Complies
FCC §95.629 (c) (2) RSS-210 A5.3	Frequency Tolerance	Nominal & Extreme						Note 1
§95.633(d) (3) RSS Gen Sect. 4.6	Occupied Bandwidth	Nominal						Note 1
§95.635 (c) (2) (i) RSS210 A4.3 Mask D (a)	Transmit Spectrum Mask	Nominal					GT83000VP, GT83000R2, GT83100	Complies
§95.635 (c) (2) (ii) RSS210 A4.3 Mask D (b)	Radiated Spurious Emissions	Nominal					GT83000VP, GT83000R2, GT83100	Complies
§95.635 (c) (2) RSS210 A4.3 Mask D	Conducted Spurious Emissions	Nominal						Note 2

Note: NA = Not Applicable; NP = Not Performed

Note 1: See CETECOM Inc test report EMC_3SISE-033-13001_GT83000_FCC95 dated 2013-09-24 for test data.

Note 2: EUT contains an integral antenna.

6 Radiated Peak Output Power

6.1 References

FCC: 2.1046, 95.639(e) RSS 210: A4.3

6.2 Limits

FCC: The maximum transmitter output power authorized for LPRS stations is 100 mW (20dBm). RSS 210: The peak output power shall not exceed 100 mW (20 dBm) or 160 mW (22 dBm) EIRP.

6.3 Test Conditions

Tnom: 24°C Vnom: 3.7 V dc

6.4 Radiated Measurement Procedure

Ref: ANSI/TIA-603-C-2004 & RSS-Gen Section 4.8. Effective Radiated Power (ERP) or Effective Isotropic Radiated Power (EIRP)

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a vertical orientation.
- 2. Set the EUT in continuous transmission mode with its maximum power @ 98% 100% duty cycle.
- 3. Set the spectrum analyzer to the channel frequency of interest.
- 4. Maximize the emission amplitude by rotating the turntable 0 360° , adjusting the measuring antenna height from 1 4 m & changing antenna polarity.
- 5. Repeat steps 4 with all antennas different polarity and determine the maximized polarity for measurement. Measure and record the peak level of field strength (LVL) in dBuV.
- 6. Adjust correction factors to the measured field strength (LVL) and using the field strength approach calculation to convert FS from dBuV to transmitter output power (EIRP) in Watts using the following equations:
- Correction factors (CF) in dB = Antenna factor (dB) + Cable loss (dB).
 LVLc (dBuV) = LVL(dBdBuV) + Correction Factors (dB)
 EIRP (W) = (LVLc (V/m) x D)² / (30 x G)
- 8. Convert Watt to dBm (logarithmic), using the following formula: EIRP (dBm) = $10 \log (W \times 1000)$
- Manually peak search, record readings and save data.
 Note: Steps 7 above are performed prior to testing and CF was entered in the test software. Steps 3, 4, 5, 6 and 8 above are performed and controlled by test software.)

6.5 Measurement Settings

RBW \geq OBW; VBW \geq RBW or 3 x RBW Span= 2 x RBW or wide enough to capture bandwidth of emission being measured Detector = Peak; Trace = Max Hold Sweep time: Auto.

6.6 Measurement Uncertainty

+/- 3 dB

6.7 Sample Calculations for Radiated Measurements

When the EUT power is measured by using radiated test method, the EIRP can be directly determined using the field strength (linear) approach calculation by applying the following equations:

(1) FS (dBuV/m) = Measured FS (dBuV/m) + CF (dB)

Where

- CF = Ant. Factor + Cable Loss Ext. Amp Gain (if required)
- FS = electric field strength in dBuV/m

Then convert from dBuV to V/m by using the equation (2):

(2) FS (V/m) =
$$10^{\left(\frac{dBuV}{m} - 120\right)/20}$$

The EIRP (dBm) is calculated by using equation (3):

(3) EIRP (dBm) = 10 Log (
$$\frac{(FS \times D)^2}{30} \times 1000$$
)

- FS = electric filed strength in V/m
- D = measurement distance in meters (m)
- 30 = basic free space propagation path loss

Frequency	Measured Field	Correction Factors	Calculated FS	Calculated FS	Calculated EIRP	
(MHz)	Strength (FS) (dBµV/m)	(CF) (dB)	FS +CF (dBuV/m)	(a) 3m (V/M)	(dBm)	
1000	40	12	52	0.0004	-43.23	

6.8 Test Results

Model: GT83000VP									
Frequency (MHz)	Antenna Polarity	Antenna Height	Angle	ERP	Conducted Output Power				
	(H/V)	(m)	(°)	(dBm)	ERP - Ant.G (dBd) (dBm)				
216.475	Н	1.25	188	-39.82	11.18				
Model: GT83000R2									
Frequency (MHz)	Antenna Polarity	Antenna Height	Angle	ERP	Conducted Output Power				
	(H/V)	(m)	(°)	(dBm)	ERP - Ant.G (dBd) (dBm)				
216.475	Н	1.3	28.6	- 39.23	11.77				
Model: GT83100									
Frequency (MHz)	Antenna Polarity	Antenna Height	Angle	ERP	Conducted Output Power				
	(H/V)	(m)	(°)	(dBm)	ERP - Ant.G (dBd) (dBm)				
216.475	Н	1.45	28.8	- 37.97	13.03				

Note: The worst case emissions show in the horizontal antenna polarization.

6.9 Measurement Verdict

Pass.

6.10 Measurement Plots Radiated Peak Power – GT83000VP

Radiated Peak Power – GT83000R2

Radiated Peak Power – GT83100

7 <u>Modulation Characteristics</u>

The transmitter emits a pulsed carrier signal without modulation.

8 <u>Transmitter Unwanted Emissions – Radiated</u>

8.1 References

FCC: 95.635 (c) (2) RSS 210 A4.3 Mask D

8.2 Limits

According to FCC CFR 47 section 95.635 (c) (2)

Emissions for LPRS transmitters operating on extra band channels (50 kHz) shall be attenuated below the un-modulated carrier in accordance with the followings:

- 1) Emissions more than 25 kHz to 35 kHz from the channel center frequency: at least 30dB; and
- Emissions more than 35 kHz away from the channel center frequency: at least 43 + 10 log (carrier power in watts) dB.

FCC: -13 dBm

According to RSS 210 A4.3

The following unwanted emissions mask shall be measured with the measurement meter in peak mode and a bandwidth of at least 300 Hz. Unwanted emissions shall be attenuated below the peak transmitter output power (P, watts) in accordance with the following mask:

Mask **D**

- i) At least 30dB for emissions 25 kHz to 35 kHz removed from the channel center frequency: and
- ii) At least 55 + 10 log (carrier power in watts) dB or to the general field strength limits list in RSS-Gen, whichever is less stringent, for emissions more than 35 kHz removed from the channel center frequency.
 IC: -25 dBm

8.3 Measurement Settings

For emissions measurement 25 kHz to 35 kHz from center frequency:

RBW=500 Hz for measurements VBW=RBW or 3x RBW Span= 100 kHz or sufficient to capture the entire frequency range to be investigated

For emissions measurement more than 35 kHz away from the channel center frequency:

RBW=100 kHz for measurements < 1GHz RBW=1MHz for measurements > 1GHz VBW=RBW or 3x RBW Span= Entire range of measuring antenna or in segment Detector: Peak- Max Hold Peak- Max Hold Sweep time: Auto.

8.4 Test Conditions

Tnom: 22°C Vnom: 3.7 V dc

8.5 Radiated test procedure for transmitter unwanted emissions Ref: ANSI C63.4:2009

Refer to section 10 for test setup diagrams.

- 1. Connect the equipment as shown in the above diagram with the EUT's antenna in a horizontal orientation.
- 2. The EUT was set to continuous transmission mode with its maximum power @ 100% duty cycle.
- 3. Set the spectrum analyzer to measure peak hold with the required settings.
- 4. Rotate the EUT 360°. Raise the measurement antenna up to 4 meters in 0.5 meters increments and rotate the EUT 360° at each height to maximize all emissions. Measure and record all spurious emissions (LVL) up to the tenth harmonic of the carrier frequency.
- 5. Repeat steps 4, 5 and 6 with all antennas vertically polarized and determine the maximized polarity for measurement.
- 6. Select 6 closest readings or more to the limits for measurements.
- Determine the level of spurious emissions using the following equation: LVLc (dBuV) = Measured LVL (dBuV) + CF
- 8. Correction factors in dB (CF) = Antenna factor (dB) + Cable loss (dB).
- 9. Convert the adjusted LVLc from dBuV/m to dBm using the following formula:

LVLc (dBm) =
$$10 Log \left(\frac{(FS \times D)^2}{30} \times 1000\right)$$

10. Manually peak search, record reading in dBm and save data.

(Note: Steps 8 above are performed prior to testing and **CF** is entered in test software. Steps 3, 4, 5, 6, 7 and 9 above are performed with test software.)

Measurement Survey:

The site is constructed in accordance with ANSI C63.4 requirements and is recognized by the FCC to be in compliance for a 3m site. The spectrum is scanned from 30MHz to the 10th harmonic of the highest frequency generated by the EUT. Measurements are to be performed from 30 MHz to the 6 GHz with the EUT set to the main operating frequency.

For radiated measurements, all data in this report shows the worst case emissions data between H/V antenna polarizations and for all 3 orthogonal orientations of the EUT.

- 8.6 Measurement Uncertainty +/- 3 dB
- 8.7 Measurement Verdict Pass.

8.8 Measurement Plots

30 dB down Emission Mask – GT83000VP

Date: 10.3EP.2013 04:45:25

30 dB down Emission Mask – GT83000R2

Date: 10.3EP.2013 05:14:35

30 dB down Emission Mask – GT83100

Date: 11.3EP.2013 03:31:10

8.9 Measurement Plots

Spurious Emissions: 1 GHz - 6GHz - GT83000VP

Spurious Emissions: 30MHz – 1GHz – GT83000R2

Spurious Emissions: 1GHz – 6GHz – GT83000R2

Spurious Emissions: 30MHz - 1GHz - GT83100

Spurious Emissions: 1GHz - 6GHz - GT83100

8.10 Measurement Verdict

Pass.

9 <u>Test Equipment</u>

Instrument/Ancillary	Model	Manufacturer	Serial No.	Cal Date	Cal Interval
EMI Receiver/Analyzer	ESU 40	Rohde & Schwarz	100251	Aug 2012	2 Years
Biconilog Antenna	3141	EMCO	0005-1186	Mar 2012	3 years
Horn Antenna (1-18GHz)	3115	ETS	00035111	Mar 2012	3 years
Communication Antenna	IBP5-900/1940	Kathrein	n/a	n/a	n/a
High Pass Filter	5HC2700	Trilithic Inc.	9926013	Part of system calib	ration
High Pass Filter	4HC1600	Trilithic Inc.	9922307	Part of system calib	ration
6GHz High Pass Filter	HPM50106	Microtronics	001	Part of system calibration	
Pre-Amplifier	JS4-00102600	Miteq	00616	Part of system calib	ration

Test Report #: EMC_3SISE-033-13001_GT8xxxx_FCC95 FCC ID: Q6KGT83000A Date of Report : 2013-10-23 IC ID: 5043A-GT83000B

11 <u>Revision History</u>

Date	Report Name	Changes to report	Report prepared by
2013-10-23	EMC_3SISE-003-13001_GT8xxxx_FCC95	First Version	Danh Le