FCC and ISEDC Test Report:

Iridium Satellite LLC

Transceiver Module, Model: CertusTM 9770

In accordance with FCC 47 CFR Part 15B and Industry Canada RSS-GEN

Prepared for: IRIDIUM SATELLITE LLC

1750 Tysons Blvd Suite 1400

McLean VA 22102 USA

FCC ID: Q639770 IC: 4629A-9770

COMMERCIAL-IN-CONFIDENCE

Document Number: 75946605-03 | Issue: 01

SIGNATURE				
A3 lawsen.				
NAME JOB TITLE RESPONSIBLE FOR ISSUE DATE				
Andy Lawson Senior Engineer Authorised Signatory 31 October 2019				
Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD document control rules.				

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 25, FCC 47 CFR Part 2 and Industry Canada RSS-170 and ISEDC RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME	DATE	SIGNATURE
Testing	Graeme Lawler	31 October 2019	GN awler :

FCC Accreditation Industry Canada Accreditation

90987 Octagon House, Fareham Test Laboratory IC2932B-1 Octagon House, Fareham Test Laboratory

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2018 and ISEDC RSS-GEN: Issue 5 + A1 (2019-03) for the tests detailed in section 1.3.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2019 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164 TUV SUD Ltd is a TÜV SÜD Group Company

Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuv-sud.co.uk TÜV SÜD Octagon House Concorde Way Fareham Hampshire PO15 5RL United Kingdom

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2	Introduction	2
1.3	Brief Summary of Results	3
1.4	Application Form	4
1.5	Product Information	6
1.6	Deviations from the Standard	
1.7	EUT Modification Record	7
1.8	Test Location	8
2	Test Details	9
2.1	Radiated Disturbance	9
3	Incident Reports	36
4	Measurement Uncertainty	37

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Issue Description of Change	
1	First Issue	31 October 2019

Table 1

1.2 Introduction

Applicant Iridium Satellite LLC

Manufacturer Iridium Satellite LLC

Model Number(s) CertusTM 9770

Serial Number(s) Y0002M

Hardware Version(s) P3142-009a change note P3142-CN-017 v0.2

Software Version(s) PPDO v0.2.1

Number of Samples Tested 1

Test Specification/Issue/Date FCC 47 CFR Part 15B: 2018

ISEDC RSS-GEN: Issue 5 + A1 (2019-03)

Order Number 59151

Date 19-July-2019

Date of Receipt of EUT 06-September-2019
Start of Test 08-September-2019
Finish of Test 15-September-2019
Name of Engineer(s) Graeme Lawler

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B and ISEDC RSS-GEN is shown below.

Section	Specification Clause		Test Description	Result	Comments/Base Standard
	Part 15B	RSS-GEN			
Configuratio	Configuration and Mode: DC Powered - Iridium Receive				
2.1	15.109	7.1	Radiated Disturbance	Pass	ANSI C63.4 / ANSI C63.10

Table 2

COMMERCIAL-IN-CONFIDENCE Page 3 of 37

1.4 Application Form

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment)	Transceiver module for connection to the Iridium satellite network
Manufacturer:	Iridium satellite LLC
Model:	CertusTM 9770
Part Number:	IRID0058PA3
Hardware Version:	P3142-009a change note P3142-CN-017 v0.2
Software Version:	PPDO v0.2.1
FCC ID (if applicable)	Q639770
IC ID (if applicable)	4629A-9770

Intentional Radiators

Technology	Iridium
Frequency Band (MHz)	1616-1626.5
Conducted Declared Output Power (dBm)	40
Antenna Gain (dBi)	3
Supported Bandwidth(s) (MHz)	36k,72k,288k
Modulation Scheme(s)	QPSK
ITU Emission Designator	41K7Q7W, 83K4Q7, 333K3Q7W
Bottom Frequency (MHz)	1616.5000
Middle Frequency (MHz)	1621.1667
Top Frequency (MHz)	1625.8330

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	3.2 GHz	
Lowest frequency generated or used in the device or on which the device operates or tunes 19.2 MHz		
Class A Digital Device (Use in commercial, industrial or business environment) ⊠		
Class B Digital Device (Use in residential environment only) \square		

AC Power Source

AC supply frequency: Click to edit (Hz)		
Click to edit V		Max current: Click to edit A
Single Phase □	Three Phase □	

DC Power Source

Nominal voltage: 12 V
Extreme upper voltage: 14.5 V
Extreme lower voltage: 9.5 V
Max current: 1.6. A
Battery Power Source

Voltage: Click to edit V	
End-point voltage: Click or tap here to enter text V (Point at which the battery will terminate)	
Alkaline □ Leclanche □ Lithium □ Nickel Cadmium □ Lead Acid* □ *(Vehicle regulated)	
Other □ Please detail: Click to edit	

Charging

Can the EUT transmit whilst being charged	Yes □ No ⊠
---	------------

Temperature

Minimum temperature: -40 °C	Maximum temperature: +70 °C

Antenna Characteristics

Antenna connector ⊠ State impedance 50 Ohm						
Temporary antenna connector □ State impedance Click to edit Ohm						
Integral antenna ☐ Type Click to edit	State impedance Click to edit dBi					
External antenna Type Click to edit	State impedance 50 R					

Ancillaries (if applicable)

Manufacturer: Click to edit	Part Number: Click to edit
Model: Click to edit	Country of Origin: Click to edit

I hereby declare that the information supplied is correct and complete.

Name: Les Nuttall

Position held: Snr Consultant

Date: 15/8/2019

1.5 Product Information

1.5.1 Technical Description

The Equipment Under Test (EUT) was an Iridium Satellite LLC, Transceiver Module, Model: Certus™ 9770.

The primary function of the EUT is a transceiver module for connection to the Iridium satellite network.

Figure 1 - General View

Figure 2 - Rear View

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted					
Model: Certus [™] 977	Model: Certus [™] 9770: Serial Number: Y0002M							
0	As supplied by the customer	Not Applicable	Not Applicable					

Table 3

1.8 Test Location

TÜV SÜD conducted the following tests at our Fareham Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation					
Configuration and Mode: DC Powered - Iridium Receiv	Configuration and Mode: DC Powered - Iridium Receive						
Radiated Disturbance	Graeme Lawler	UKAS					

Table 4

Office Address:

Octagon House Concorde Way Segensworth North Fareham Hampshire PO15 5RL United Kingdom

2 Test Details

2.1 Radiated Disturbance

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 Industry Canada RSS-GEN, Clause 7.1

2.1.2 Equipment Under Test and Modification State

Certus[™] 9770, S/N: Y0002M - Modification State 0

2.1.3 Date of Test

08-September-2019 to 15-September-2019

2.1.4 Test Method

The EUT was set up in a semi-anechoic chamber on a remotely controlled turntable and placed on a non-conductive table 0.8m above a reference ground plane.

For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in X, Y and Z planes with reference to the ground plane.

A pre-scan of the EUT emissions profile was made at a 3m distance while varying the antenna-to-EUT azimuth and polarisation using a peak detector.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.1.5 Example Calculation

Below 1 GHz:

Quasi-Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB) Margin (dB) = Quasi-Peak level (dB μ V/m) - Limit (dB μ V/m)

Above 1 GHz:

CISPR Average level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB) Margin (dB) = Limit $(dB\mu V/m)$ - CISPR Average level $(dB\mu V/m)$

Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB) Margin (dB) = Peak level (dB μ V/m) - Limit (dB μ V/m)

2.1.6 Example Test Setup Diagram

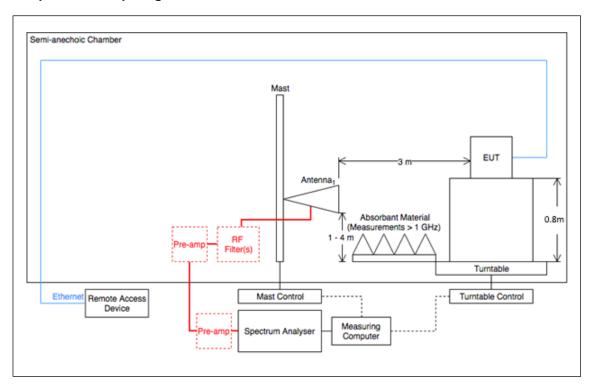


Figure 3 - Radiated Disturbance Example Test Setup

2.1.7 Environmental Conditions

Ambient Temperature 16.3 - 17.5 °C Relative Humidity 55.0 - 74.7 %

2.1.8 Specification Limits

Required Specification Limits, Field Strength (Class A @ 10m)							
Frequency Range (MHz)	(µV/m)	(dBµV/m)					
30 to 88	90	39.1					
88 to 216	150	43.5					
216 to 960	210	46.4					
Above 960	300	49.5					

Supplementary information:

Quasi-peak detector to be used for measurements below 1 GHz CISPR Average detector to be used for measurements above 1 GHz Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.

Table 5

2.1.9 Test Results

Results for Configuration and Mode: DC Powered - Iridium Receive.

Performance assessment of the EUT made during this test: Pass.

Tested to Class A Test Limits.

Detailed results are shown below.

Highest frequency generated or used within the EUT: 3.2 GHz Which necessitates an upper frequency test limit of: 18 GHz

Frequency Range of Test: 30 MHz to 1 GHz - X Orientation

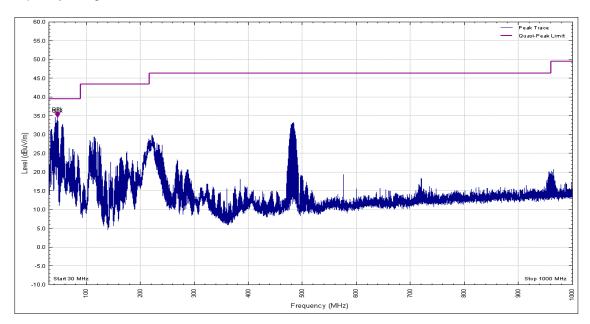


Figure 4 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
46.471	34.1	39.5	-5.4	Q-Peak	74	100	Vertical
46.482	34.6	39.5	-4.9	Q-Peak	74	103	Vertical
55.764	30.2	39.5	-9.3	Q-Peak	70	105	Vertical

Table 6

No other emissions were detected within 10 dB of the limit.

Frequency Range of Test: 30 MHz to 1 GHz - X Orientation

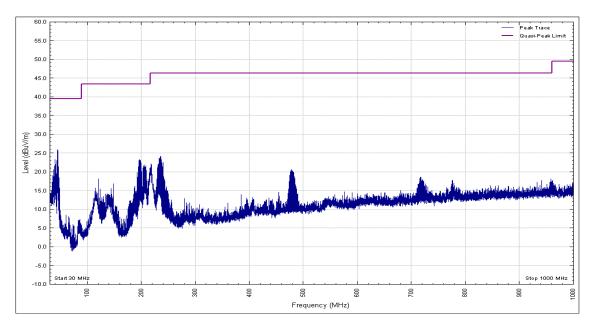


Figure 5 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 7

*No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - Peak - X Orientation

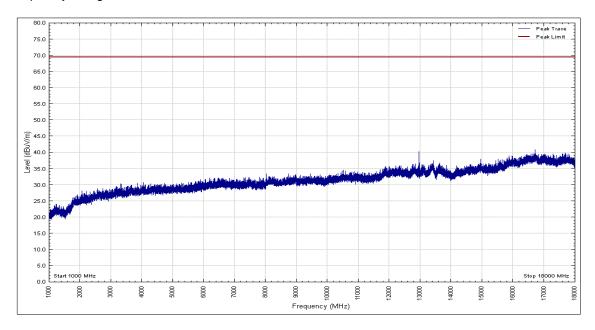


Figure 6 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 8

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - CISPR Average - X Orientation

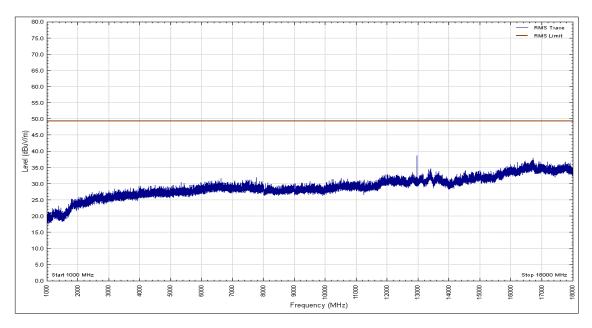


Figure 7 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 9

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - Peak - X Orientation

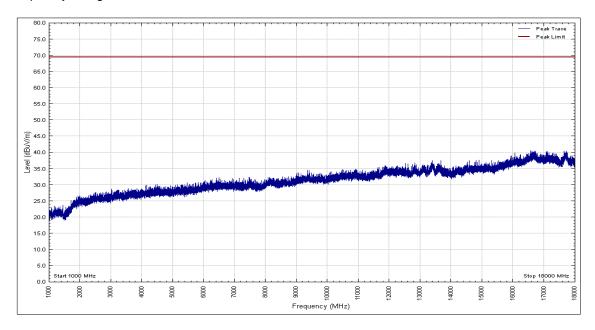


Figure 8 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 10

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - CISPR Average - X Orientation

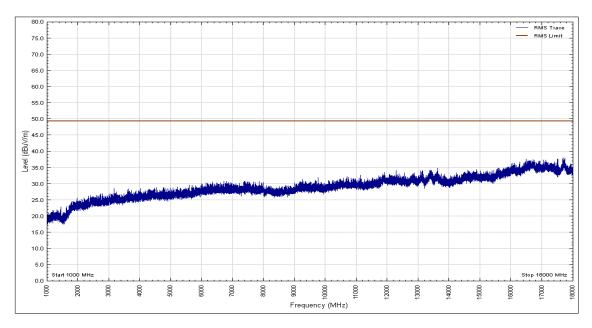


Figure 9 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 11

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 30 MHz to 1 GHz - Y Orientation

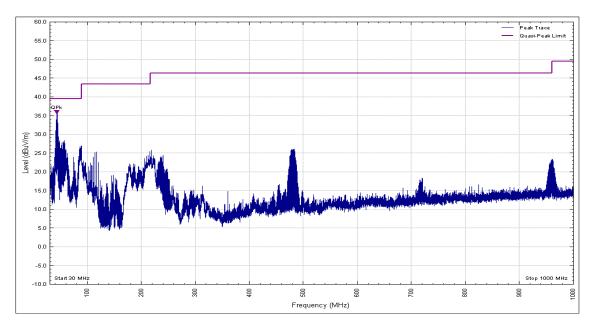


Figure 10 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
43.092	34.9	39.5	-4.6	Q-Peak	222	103	Vertical
46.471	34.1	39.5	-5.4	Q-Peak	74	100	Vertical

Table 12

No other emissions were detected within 10 dB of the limit.

Frequency Range of Test: 30 MHz to 1 GHz - Y Orientation

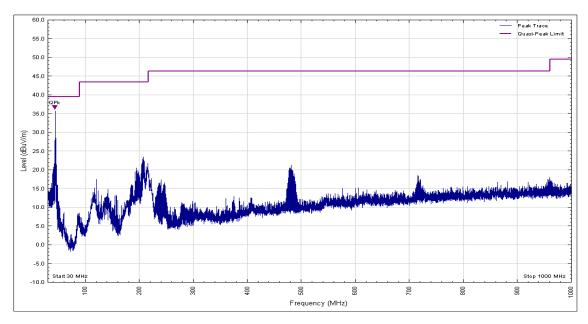


Figure 11 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
43.715	35.8	39.5	-3.8	Q-Peak	220	258	Horizontal

Table 13

No other emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - Peak - Y Orientation

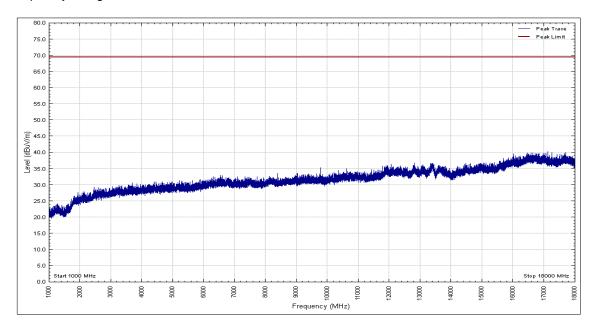


Figure 12 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 14

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - CISPR Average - Y Orientation

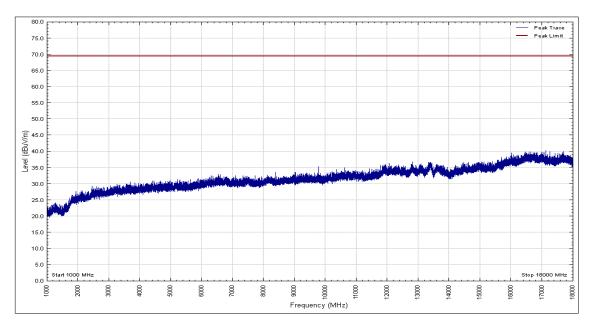


Figure 13 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 15

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - Peak - Y Orientation

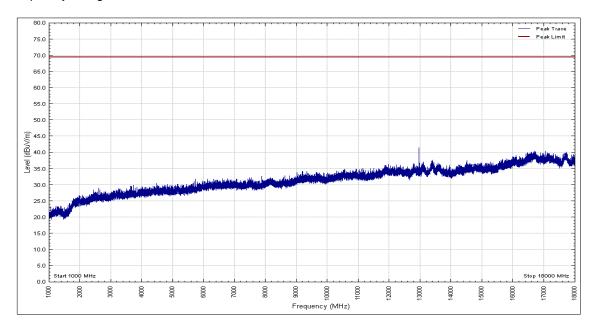


Figure 14 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 16

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - CISPR Average - Y Orientation

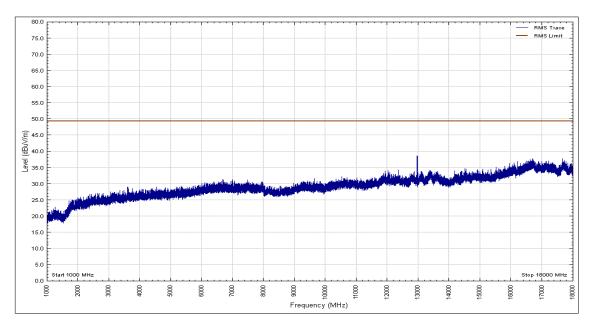


Figure 15 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 17

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 30 MHz to 1 GHz - Z Orientation

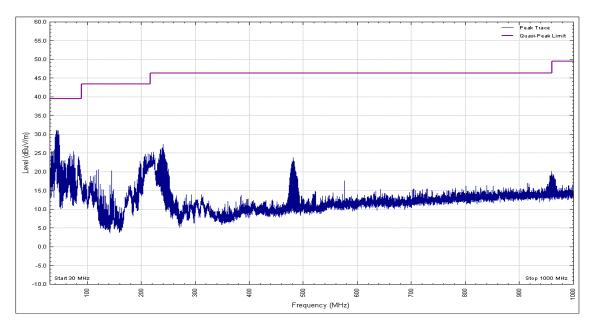


Figure 16 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
43.101	30.8	39.5	-8.7	Q-Peak	170	104	Vertical

Table 18

No other emissions were detected within 10 dB of the limit.

Frequency Range of Test: 30 MHz to 1 GHz - Z Orientation

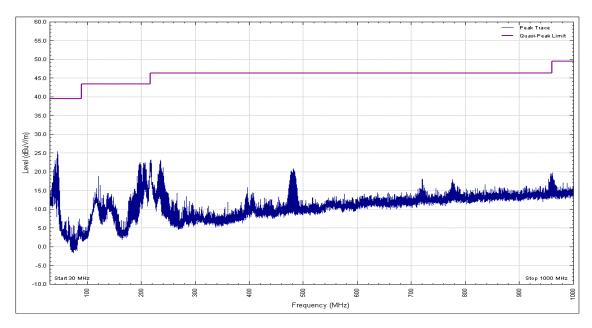


Figure 17 - Graphical Results - Horizontal Polarity

F	requency (MHz)	Level (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 19

*No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - Peak - Z Orientation

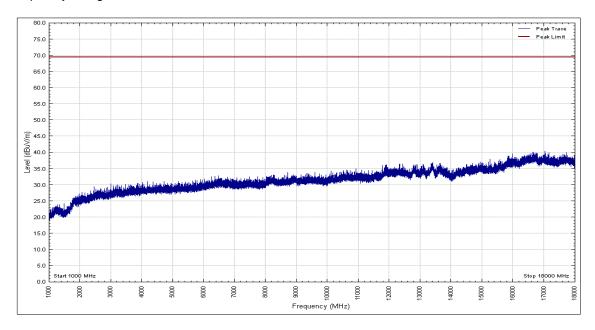


Figure 18 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 20

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - CISPR Average - Z Orientation

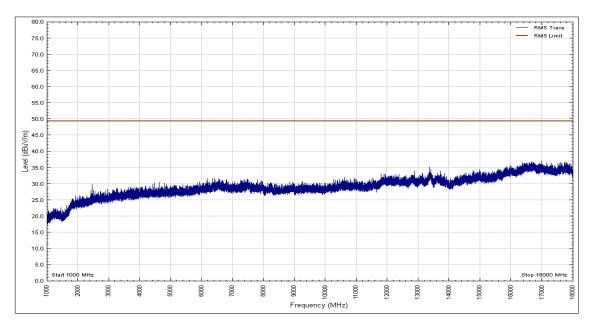


Figure 19 - Graphical Results - Vertical Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 21

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - Peak - Z Orientation

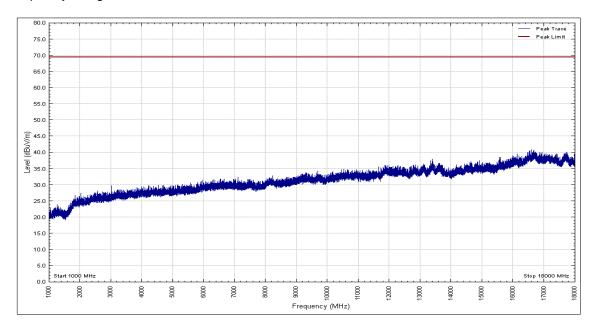


Figure 20 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 22

^{*}No emissions were detected within 10 dB of the limit.

Frequency Range of Test: 1 GHz to 18 GHz - CISPR Average - Z Orientation

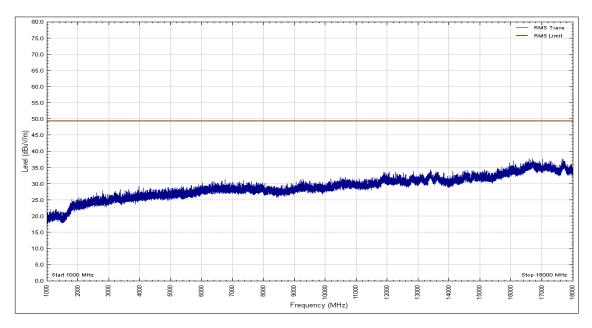


Figure 21 - Graphical Results - Horizontal Polarity

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 23

^{*}No emissions were detected within 10 dB of the limit.

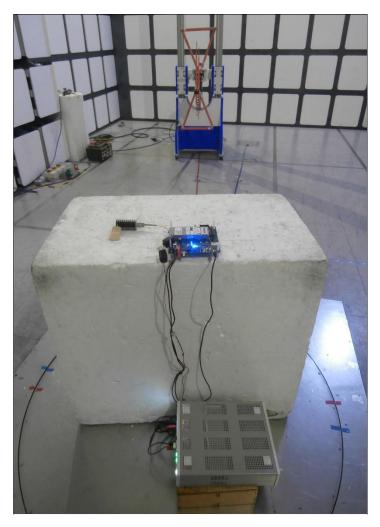


Figure 22 - 30 MHz to 1 GHz - X Orientation

Figure 23 - 30 MHz to 1 GHz - Y Orientation

Figure 24 - 30 MHz to 1 GHz - Z Orientation

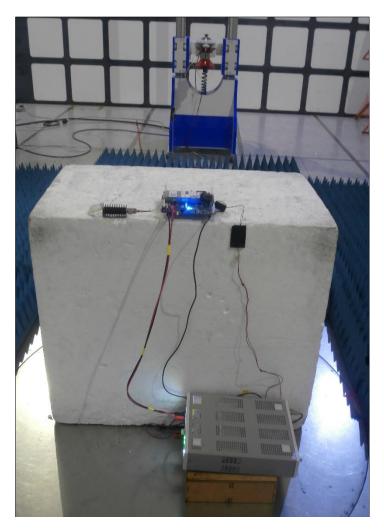


Figure 25 - 1 GHz to 9 GHz - X Orientation

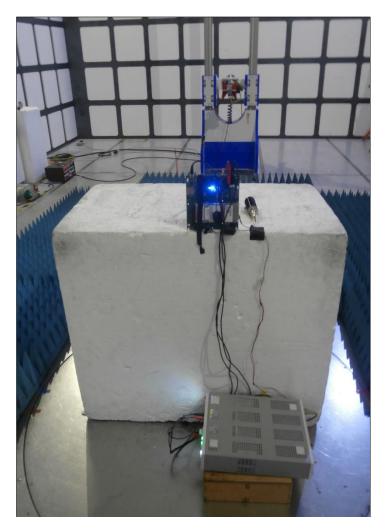


Figure 26 - 1 GHz to 9 GHz - Y Orientation

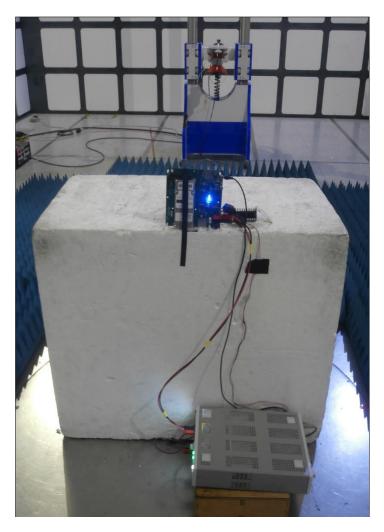


Figure 27 - 1 GHz to 9 GHz - Z Orientation

2.1.10 Test Location and Test Equipment Used

This test was carried out in EMC Chamber 5.

Instrument	Manufacturer	Type No	TE No	Calibration Period (months)	Calibration Due
Screened Room (5)	Rainford	Rainford	1545	36	23-Jan-2021
EmX Emissions Software	TUV SUD	EmX	5125	-	Software
Test Receiver (ESW)	Rohde & Schwarz	ESW44	5351	12	31-Jul-2020
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Mast Controller	Maturo Gmbh	NCD	4810	-	TU
Tilt Antenna Mast	Maturo Gmbh	TAM 4.0-P	4811	-	TU
Antenna with permanent attenuator (Bilog)	Schaffner	CBL6143	287	24	15-May-2020
1GHz to 8GHz Low Noise Amplifier	Wright Technologies	APS04-0085	4365	12	25-Oct-2019
Double Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	4722	12	05-Mar-2020
Pre-Amplifier	Phase One	PS04-0086	1533	12	08-Feb-2020
Hygromer	Rotronic	A1	2677	12	20-Feb-2020
Comb Generator	Schaffner	RSG1000	3034	-	TU
True RMS Multimeter	Fluke	179	4006	12	22-Jan-2020
Termination (50ohm)	Weinschel	1426-4	4325	12	27-Jun-2020
Digital Multi-meter	Iso-tech	IDM93N	4435	12	04-Oct-2019
Cable (Rx, Km-Km 2m)	Scott Cables	KPS-1501-2000- KPS	4526	6	11-Dec-2019
8m N-Type RF Cable	Teledyne	PR90-088-8MTR	5093	12	04-Oct-2019
1.5m 40GHz RF Cable	Scott Cables	KPS-1501-2000- KPS	5127	6	11-Dec-2019

Table 24

TU - Traceability Unscheduled

3 Incident Reports

No incidents reports were raised.

4 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB

Table 25

Worst case error for both Time and Frequency measurement 12 parts in 10^6 . All measurement uncertainties have been calculated using CISPR guidelines.