

6 Randolph Way Hillsborough, NJ 08844 Tel: (908) 927 9288 Fax: (908) 927 0728

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

RADIO CONTROL 1:6 RACING CAR RECEIVER MODEL: KR-798(RX) FCC ID: Q5KKR-798R

June 14, 2005

This report concerns (check one): Original grant <u>x</u> Class II change Equipment type: <u>Superregenerative Receiver</u>						
Deferred grant requested per 47 CF $0.457(d)(1)(ii)$? yes nox If yes, defer until: (date) Company agrees to notify the Commission by (date) of the intended date of announcement of the product so that the grant can be issued on that date.						
Transition Rules Request per 15.37? yes nox If no, assumed Part 15, Subpart B for unintentional radiators - the new 47 CFR [10-1-90 Edition] provision.						
Report prepared for: Report prepared by: Report number:	K&B INTERNATIONAL LTD. Advanced Compliance Lab 0048-050614-01R					

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	5
1.3 Product Information	
1.4 Test Methodology	6
1.5 Test Facility	6
1.6 Test Equipment	6
1.7 Statement of the Document Use	
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 Special Accessories	9
3.3 Configuration of Tested System	9
4. SYSTEM SCHEMATICS/BLOCK DIAGRAM	11
5. RADIATED EMISSION DATA	12
5.1 Field Strength Calculation	12
5.2 Test Methods and Conditions	
5.3 Test Data	12
6 PHOTOS OF TESTED FUT	15

Figures

Figure 2.1 FCC Label	8
Figure 2.2 Location of Label on Back of the EUT	8
Figure 3.1 Radiated Test Setup, Position 1	10
Figure 4.1 EUT Schematics	11
Figure 6.1 Front View	15
Figure 6.2 Bottom View	16
Figure 6.3 Cover Open View	17
Figure 6.4 Component Side	18
Figure 6.5 Foil Side	19

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: RADIO CONTROL 1:6 RACING CAR RECEIVER

Model: KR-798(RX)

Applicant: K&B INTERNATIONAL LTD..

RM406, 4/F., EMPIRE CENTRE, NO. 68 MODY RD.,

TST EAST, KOWLOON, HONGKONG

Test Type: FCC Part 15C CERTIFICATION

Result: PASS

Tested by: ADVANCED COMPLIANCE LABORATORY

Test Date: Oct. 20, 2004

Report Number: 0048-050614-01R

The above equipment was tested by Compliance Laboratory, Advanced Technologies, Inc. for compliance with the requirement set forth in the FCC rules and regulations Part 15, subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li

Lab Manager

Advanced Compliance Lab

Date: June 14, 2005

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	RADIO CONTROL 1:6 RACING CAR	Q5KKR-798R	
	RECEIVER KR-798(RX) (1)		
Housing	PLASTICS		
Power Supply	12V DC Battery		
Clock/OSC Freq.	49.86 MHz		
Transmitter	FCC Part15C Certification	Q5KKR-798	

(1) EUT submitted for Approval.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-2003 at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at Somerset, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	Description	Last Cal dd/mm/y	Cal Due dd/mm/y
				\mathbf{y}	\mathbf{y}
Hewlett-Packard	HP8546A	3625A00341	EMI Receiver	23/10/03	23/10/04
EMCO	3104C	9307-4396	20-300MHz Biconical Antenna	12/02/04	12/02/05
EMCO	3146	9008-2860	200-1000MHz Log-Periodic Antenna	09/02/04	09/02/05
Fischer Custom	LISN-2	900-4-0008	Line Impedance Stabilization Networks	23/08/04	23/08/05
Fischer Custom	LISN-2	900-4-0009	Line Impedance Stabilization Networks	23/08/04	23/08/05
EMCO	6502	2665	10KHz-30MHz Active Loop Antenna	27/02/04	27/02/05
EMCO	3115	4945	Double Ridge Guide Horn Antenna	15/09/04	15/09/05
Rohde&Schwarz	SMS	833366	Signal Generator		

All Test Equipment Used are Calibrated Traceable to NIST Standards.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

FCC ID: Q5KKR-798R

This device complies with part 15 of the FCC Rules. Operating is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Figure 2.1 FCC Label

Figure 2.2 Location of Label at the bottom of EU1

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). And its antenna was permanently attached to the EUT with max. length, 19in.

Testing was performed as EUT was operated with external 49.85MHz CW signal, which was provided by R&S Signal Generator. This setup follows ANSI C63.4's related testing procedure.

.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 illustrates this system, which is tested standing along.

Figure 3.1 Radiated Test Setup

4. SYSTEM BLOCK DIAGRAM



Figure 4.1 System Block Diagram

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

$$FS = RA + AF + CF + AG$$

where FS: Corrected Field Strength in dBμV/m

RA: Amplitude of EMI Receiver before correction in dBµV

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

5.2 Test Methods and Conditions

The initial step in collecting radiated data is a EMI Receiver scan of the measurement range below 30MHz using peak detector and 9KHz IF bandwidth / 30KHz video bandwidth. For the range 30MHz - 1GHz, 120KHz IF bandwidth / 120KHz video bandwidth are used. Both bandwidths are 1MHz for above 1GHz measurement. Up to 10th harmonics were investigated.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

June 14, 2005

Date:

Test Personnel:

Tester Signature

Typed/Printed Name: Edward Lee

Som

Radiated Test Data

Frequency	Polarity [H, V]	Height	Azimuth	Peak(2) Reading	Class B(1) 3m Limit	Difference from limit
(MHz)	Position	(m)	(Degree)	(dBµV/m)	(dBµV/m)	(dB)
48.7	Н	1.4	190	36.4	40	-3.6
50.7	Н	1.3	190	38.6	40	-1.4
52.9	Н	1.4	190	36.7	40	-3.3
55.0	Н	1.4	190	35.3	40	-4.7
57.3	Н	1.4	190	34.0	40	-6
59.1	Н	1.3	190	32.3	40	-7.7
62.0	Н	1.3	190	32.4	40	-7.6
48.7	V	1.2	140	34.8	40	-5.2
50.7	V	1.2	140	37.6	40	-2.4
52.9	V	1.2	140	35.0	40	-5
55.0	V	1.2	140	33.1	40	-6.9
57.3	V	1.2	140	32.0	40	-8

6. PHOTOS OF TESTED EUT

The following photos show the inside details of the EUT.