

11nHT20-HCH		11nHT40-LCH			
Marker 1 24.98500000000 GHZ PRO: Fast Comparison of the second s	Peak Search	Construction Marginer Senser 3A Construction Marginer Senser 3A Construction Marginer Senser 3A Construction Sen			
RefOrmet 188 Mkr1 24.985 GHz 1 o dBidw -46.879 dBm 1 00 -46.879 dBm	Next Pk Right	Prior Ref offset 1 dB Mkr1 2.422 GHz Auto 1 dre 0 dBlailv Ref 11.00 dBm -3.325 dBm -3.325 dBm 1 0 dB -3.325 dBm -6.55000000 GHz -6.550000000 GHz			
170 270 270 470 470	Next Pk Left	Start Freq 200 201 202 203 204 205			
00	Marker Delta	Stop Freq Stop Freq 10.000 GHz CF Step			
Visit Noted On Hz #VBW 300 kHz Sweep 1.334 s (1001 pts) MMR MODE TRC: Sci. X Y Function Function Function within Funct	Mkr→CF	Charles in Tobol On Hz #VBW 300 kHz Sweep 800.1 ms (100 kHz) Sweep 800.1 ms (100 kHz) Sweep 800.1 ms (100 kHz) Auto Man 1 N 1 2.422 GHz -3.325 GBm ParcTolix Hot Hz ParcTolix Hot Hz Freq Offset			
	Mkr→Ref Lvi More	3 OHz			
	1 of 2	10 Log Lin			

11nHT40-LCH				11nHT40-LCH			
Keysight Spectrum Analyzer - Swept SA RF 50 & AC Marker 1 796.300000000	NHZ PNO: Fast IFGain:Low #Atten: 30 dB	ALIGN AUTO 11:30:06 AM May 18, 2017 Avg Type: Log-Pwr TRACE 23:4 - 10 Avg Hold:>10/10 TYPE Det PNNNNN	Peak Search	Keysight Spectrum Analyzer - Swept SA RF S0 & AC Marker 1 24.9850000000		ALIGN AUTO 11:30:32 AM May 18, 2017 Avg Type: Log-Pwr TRACE 23 4 50 Avg/Hold:>10/10 TVPE Der PWNNNN	Peak Search
Ref Offset 1 dB 10 dB/div Ref 11.00 dBm		Mkr1 796.30 MHz -58.429 dBm	Next Peak	Ref Offset 1 dB		Mkr1 24.985 GHz -47.274 dBm	Next Peak
-9.00 -19.0 -29.0		CL1-23.95 dBn	Next Pk Right	-9.00 -19.0 -29.0		CL1-23.85 dim	Next Pk Right
-39.0 -49.0 -59.0	ul, vi bulati un programma de la companya de la comp	1 nitrational scalar of the standard before strating full as pringers	Next Pk Left	-49.0 -59.0	alayor and and a second and a second and		Next Pk Left
59.0		Stop 1.0000 GHz	Marker Delta	-83.0 -79.0 Start 10.000 GHz		Stop 25.000 GHz	Marker Delta
#Res BW 100 kHz	#VBW 300 kHz	Sweep 92.73 ms (1001 pts)	Mkr→CF	#Res BW 100 kHz	#VBW 300 kHz	Sweep 1.434 s (1001 pts)	Mkr→CF
	96.30 MHz -58.429 dBm		Mkr→RefLvl		24.985 GHz 47.274 dBm		Mkr→RefLvl
7 8 9 10 11			More 1 of 2	7 8 9 10 11			More 1 of 2
MSG		STATUS		MSG		STATUS	

11nHT40-MCH		11nHT40-HCH
Knylight Spectrum Andyror - Specific Sector - Specific ALIGN AUTO [1133:16 AIM May 16, 2017] Markor 1 24,985000000000 GHz FPRC: same FFGC:int.com Trig: Free Run Ang Type: Log-Part Ang Type: Log-Part Ang Type: Log-Part Ang Type: Log-Part Ang Type: Log-Part Trig: Free Run Ang Type: Log-Part Ang Type: Log-Part Trig: Free Run Com	Peak Search	Knyglet Sectore Adaptive Sheet SA Knyglet Sectore Adaptive Sa
Ref Offset 1 dB Mkr1 24,985 GHz 10 dB/div Ref 11.00 dBm -47.284 dBm	NextFeak	Ref Ordex1 aB Mkr1 2.457 GHz Annotation
100 900 190 XI 3:0 de	Next Pk Right	100 Title>
200 301 480	Next Pk Left	200 Graticule 2010 - Crff
	Marker Delta	010
Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1001 pts)	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 860.1 ms (1001 pts) Display Lines▶
NR NOS TRC Sci. X Y Function Function Function Punction Punction <td>Mkr⊸RefLvl</td> <td>Image Notes TRCs Stcl. X Y Function Function</td>	Mkr⊸RefLvl	Image Notes TRCs Stcl. X Y Function
	More 1 of 2	
MGG STATUS		NGC STATUS

11nHT40-HCH		11nHT40-HCH			
Toyoff System Andrew Sager 5. Social Stress Markor 1 S46.650000000 MHz Social Stress Markor 1 S46.650000000 MHz Trig Free Num Anglidos 1000 mm Markor 1 S46.650000000 MHz Trig Free Num Anglidos 1000 mm	Peak Search	Wingster State State State State State State			
Ref Offset 108 - 58,548 dBm - 58,548 dBm	Next Peak	Ref offset 1 dB 10 dB/div Ref 11.00 dBm -47.371 dBm			
100	Next Pk Right	100 Next Pk Right 100 Next Pk			
20 20 20	Next Pk Left	200			
	Marker Delta	000 Marker Delta			
Start 0.0300 GHz Stop 1.0000 GHz #Res BW 100 kHz Sweep 92.73 ms (100 r bt) wm Mote ms Sul x y Pachok Hz Sweep 92.73 ms (100 r bt)		Start 10.000 GHz #VBW 300 kHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Stop 25.000 GHz Mrm.CF Mrm.CF Mrm.CF			
1 1 f 946.65 MHz -58.548 dBm 2 -	Mkr→RefLvl	L N 1 f 24.310 GHz -47.371 dBm 2 3 4			
7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	More 1 of 2	7 8 9 9 9 9 9 10			
4 III STATUS		MO STATUS			

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

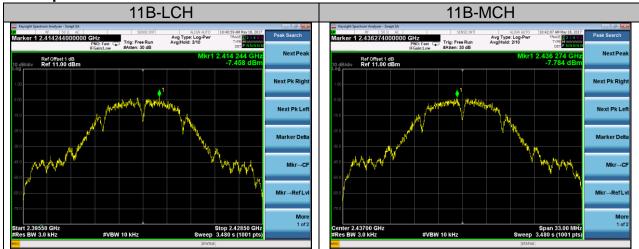
10.1 MEASUREMENT PROCEDURE

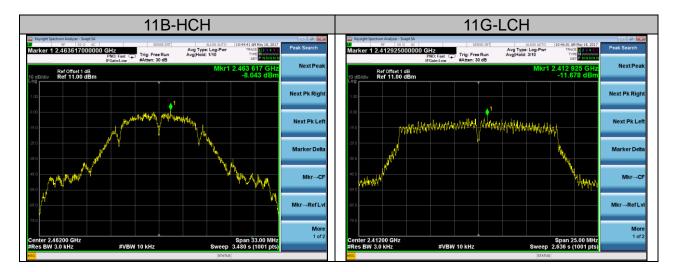
- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

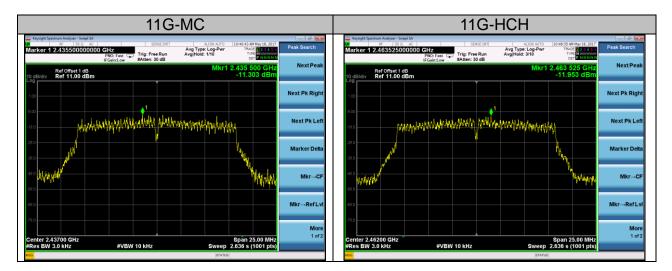
Note: The method of AVGPSD in the KDB 558074 item 10.3 was used in this testing.

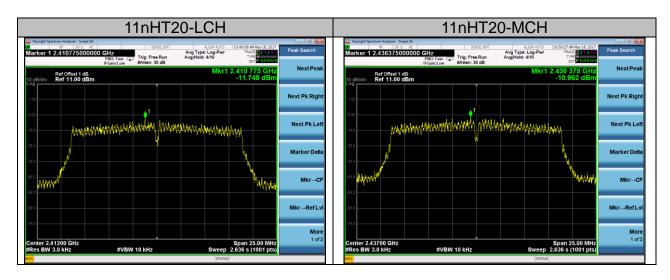
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

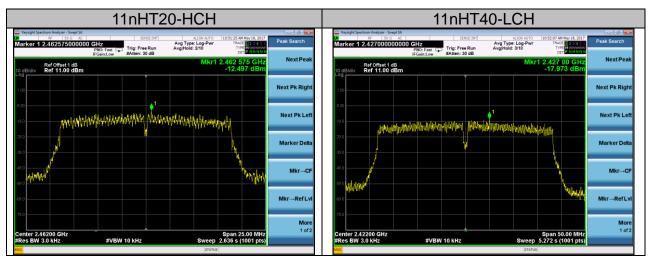
Refer To Section 8.2.

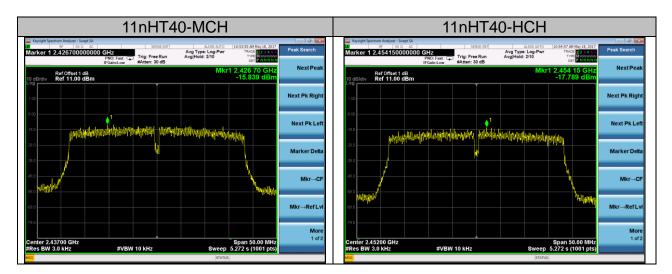

10.3 MEASUREMENT EQUIPMENT USED

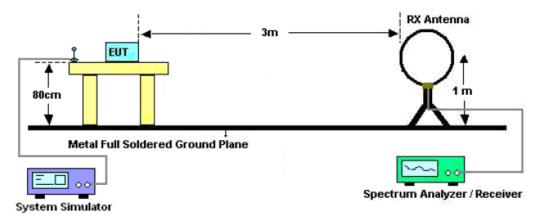

Refer To Section 6.


10.4 LIMITS AND MEASUREMENT RESULT

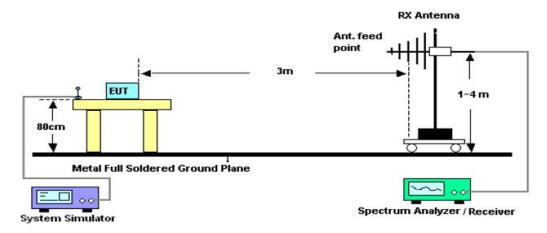

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	LCH	-7.458	8	PASS
11B	MCH	-7.784	8	PASS
	НСН	-8.043	8	PASS
	LCH	-11.678	8	PASS
11G	MCH	-11.303	8	PASS
	HCH	-11.953	8	PASS
	LCH	-11.748	8	PASS
11nHT20	MCH	-10.962	8	PASS
	HCH	-12.497	8	PASS
	LCH	-17.973	8	PASS
11nHT40	MCH	-15.839	8	PASS
	HCH	-17.789	8	PASS



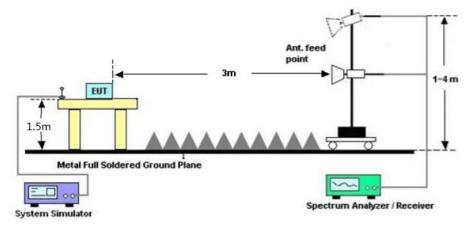



11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

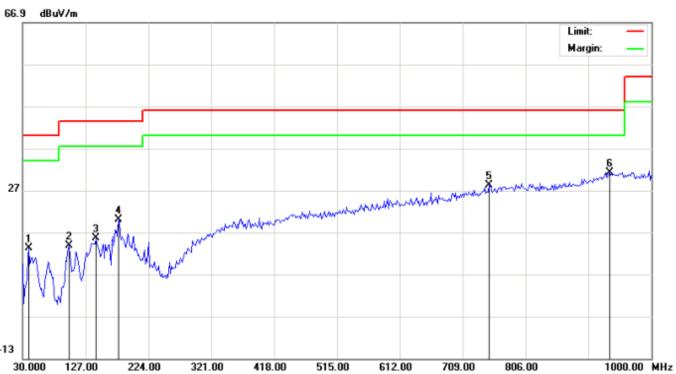
RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

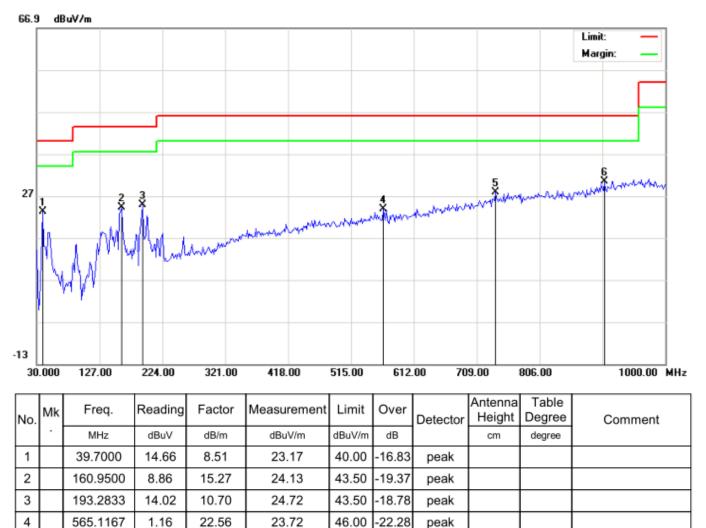

Note: All modes were tested For restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.



RADIATED EMISSION BELOW 1GHZ

-13	*		Mulu	worker	nnum man	-species	N.M.M.	www	55		
30	.000	127.00	224.00	321.00	418.00	515.00	612	.00 70	9.00	806.00	1000.00 MHz
No.	Mk	Freq.	Reading dBuV	Factor	Measurement	Limit	Over dB	Detector	Antenna Height	Degree	Comment
1	\vdash	39.7000	1.78	11.51	13.29	40.00	ав -26.71	peak	cm	degree	
2	\square	101.1333	3.54	10.22	13.76	43.50	-29.74				
3		143.1667	1.23	14.43	15.66	43.50	-27.84	peak			
4		178.7332	9.02	11.02	20.04	43.50	-23.46	peak			
5		749.4167	1.69	26.61	28.30	46.00	-17.70	peak			
6	*	935.3333	1.61	29.59	31.20	46.00	-14.80	peak			

RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL

RESULT: PASS

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

RESULT: PASS

738.1000

906.2333

1.57

1.69

5

6

Note: 1. Factor=Antenna Factor + Cable loss, Margin= Result -Limit.

26.29

28.78

2. The "Factor" value can be calculated automatically by software of measurement system.

27.86

30.47

3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

46.00

46.00

-18.14

-15.53

peak

peak

RADIATED EMISSION ABOVE 1GHZ

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Common			
TX 11b 2412MHz										
4824	40.59	10.44	51.03	74	-22.97	Pk	Horizontal			
4824	30.09	10.44	40.53	54	-13.47	AV	Horizontal			
7236	41.44	10.39	51.83	74	-22.17	pk	Horizontal			
7236	31.66	10.39	42.05	54	-11.95	AV	Horizontal			
4824	41.68	10.39	52.07	74	-21.93	Pk	Vertical			
4824	29.22	10.39	39.61	54	-14.39	AV	Vertical			
7236	42.05	10.68	52.73	74	-21.27	Pk	Vertical			
7236	30.43	10.68	41.11	54	-12.89	AV	Vertical			
			TX 11b 2437M	Hz						
4874	41.21	10.39	51.60	74	-22.40	Pk	Horizontal			
4874	32.08	10.39	42.47	54	-11.53	AV	Horizontal			
7311	40.42	12.68	53.10	74	-20.90	Pk	Horizontal			
7311	27.31	12.68	39.99	54	-14.01	AV	Horizontal			
4874	43.06	10.39	53.45	74	-20.55	Pk	Vertical			
4874	30.53	10.39	40.92	54	-13.08	AV	Vertical			
7311	39.41	12.68	52.09	74	-21.91	Pk	Vertical			
7311	28.56	12.68	41.24	54	-12.76	AV	Vertical			
			TX 11b 2462M	Hz						
4924	42.31	10.39	52.70	74	-21.30	pk	Horizontal			
4924	28.91	10.39	39.30	54	-14.70	AV	Horizontal			
7386	39.52	12.68	52.20	74	-21.80	pk	Horizontal			
7386	29.21	12.68	41.89	54	-12.11	AV	Horizontal			
4924	41.65	10.39	52.04	74	-21.96	pk	Vertical			
4924	31.38	10.39	41.77	54	-12.23	AV	Vertical			
7386	38.79	12.68	51.47	74	-22.53	pk	Vertical			
7386	29.77	12.68	42.45	54	-11.55	AV	Vertical			

RESULT: PASS

Note:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Emission Level = Meter Reading + Factor

3. Margin = Emission Leve - Limit

4.1GHz-25GHz(All test modes had been pre-tested. The 802.11b mode is the worst case and recorded

in the report. No recording in the test report at least have 20dB margin).

12. BAND EDGE EMISSION

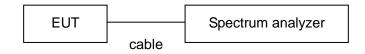
12.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

2)Conducted Emissions at the bang edge

a)The transmitter output was connected to the spectrum analyzer


b)Set RBW=100kHz,VBW=300kHz

c)Suitable frequency span including 100kHz bandwidth from band edge

12.2. TEST SET-UP

Radiated same as 11.2

Conducted set up

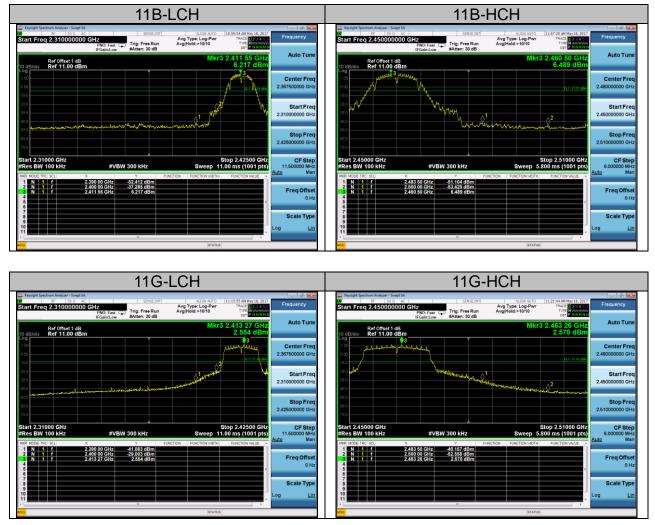
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре		
			TX 11b 2	2412MHz				
2399.9	66.90	-13	53.90	74	-20.10	pk	Horizontal	
2399.9	55.79	-13	42.79	54	-11.21	AV	Horizontal	
2400	66.80	-12.99	53.81	74	-20.19	pk	Horizontal	
2400	53.58	-12.99	40.59	54	-13.41	AV	Horizontal	
2399.9	65.57	-12.97	52.60	74	-21.40	pk	Vertical	
2399.9	54.58	-12.97	41.61	54	-12.39	AV	Vertical	
2400	65.41	-12.94	52.47	74	-21.53	pk	Vertical	
2400	54.73	-12.94	41.79	54	-12.21	AV	Vertical	
			TX 11b 2	2462MHz				
2483.5	66.19	-12.78	53.41	74	-20.59	pk	Horizontal	
2483.5	54.53	-12.78	41.75	54	-12.25	AV	Horizontal	
2483.6	65.06	-12.77	52.29	74	-21.71	pk	Horizontal	
2483.6	54.34	-12.77	41.57	54	-12.43	AV	Horizontal	
2483.5	65.13	-12.76	52.37	74	-21.63	pk	Vertical	
2483.5	55.20	-12.76	42.44	54	-11.56	AV	Vertical	
2483.6	64.74	-12.72	52.02	74	-21.98	pk	Vertical	
2483.6	54.29	-12.72	41.57	54	-12.43	AV	Vertical	

12.3. Radiated Test Result

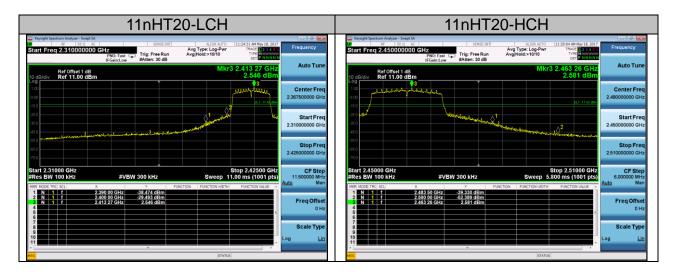
RESULT: PASS

Note: Scan with 11b,11g,11n, the worst casw is 11b Mode

Factor=Antenna Factor + Cable loss - Amplifier gain,


Emission Level = Meter Reading + Factor

Margin= Emission Level -Limit.


The "Factor" value can be calculated automatically by software of measurement system.

12.4. Conducted Test Result

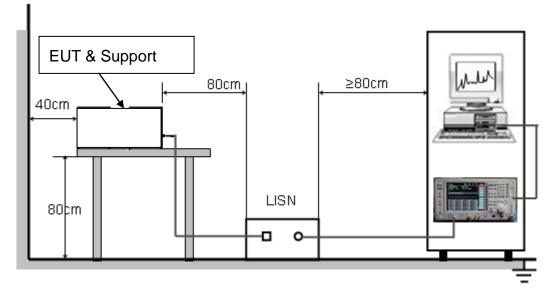
Test Graph

Report No.: AG C00607170501FE04 Page 39 of 43

11nHT40-LCH		11nHT40-HCH
Ref Offset 1 dB Stretz Prog 113:00 M May 18, 2002 Start Frog 2.310000000 GHz Fills: Free Run PRO: fram Aug Type: Log-Pwr Trig: Free Run #Atten: 30 dB Aug Type: Log-Pwr Avg]Hold>1010 Trig: Free Run to Start Freg 2.310000000 GHz Ref Offset 1 dB Mkr3 2.419 485 GHz Aug Type: Log-Pwr trig: Free Run #Atten: 30 dB Mkr3 2.419 485 GHz 10 db/dw Ref Offset 1 dB -2.911 dBm	Frequency Auto Tune	Instruct Sector August Sector Frequency Start Frag 2.440000000 GHz Ficanciaw Frequency Frequency August Sector August Sector Trig: Free Run August Sector August Sector Trig: Free Run August Sector August Sector<
	Center Freq 2.377500000 GHz	Log 100 100 100 100 100 100 100 10
20 1 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Start Freq 2.310000000 GHz	200 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
60 90 Start 2.31000 GHz Stop 2.44500 GHz	Stop Freq 2.44500000 GHz CF Step	Stop Freq 73D Start 2.44000 GHz Start 2.44000 GHz
#Res BW 100 kHz #VBW 300 kHz Sweep 12.93 ms (1001 pts)	13.500000 MHz Auto Man	FRees BW 100 kHz #VBW 300 kHz Sweep. 6.733 ms (1001 pts) 7.000000 MHz Iwe indoe thic Sci. x y Parcholin April Parcholin April Ap
N 1 7 2409 6000 SUIT 1/2/10 BBB 2 2111 400m 2 2111 400m	Freq Offset 0 Hz	N I
	Scale Type	Scale Type
AGG STATUS		NGC STATUS

13. FCC LINE CONDUCTED EMISSION TEST

13.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage				
Frequency	Q.P.(dBuV)	Average(dBuV)			
150kHz~500kHz	66-56	56-46			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

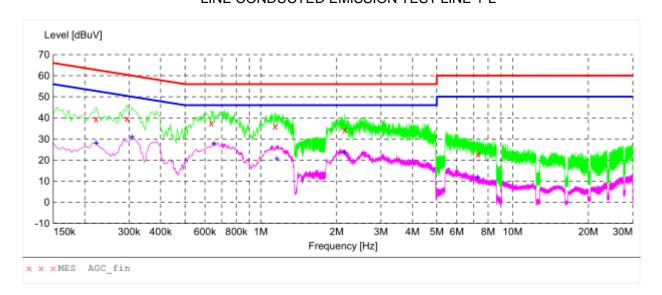
Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST


- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN.
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

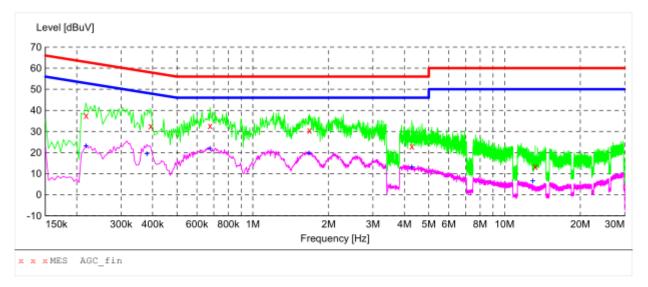
Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST LINE 1-L


MEASUREMENT RESULT: "AGC_fin"

2017	/5/20 10:	36							
F	requency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.222000	39.60	10.3	63	23.1	QP	L1	FLO	ON
	0.294000	39.70	10.3	60	20.7	QP	L1	FLO	ON
	0.636000	37.50	10.3	56	18.5	QP	L1	FLO	ON
	1.140000	36.00	10.4	56	20.0	QP	L1	FLO	ON
	2.148000	34.30	10.5	56	21.7	QP	L1	FLO	ON
	7.291500	22.80	10.7	60	37.2	QP	L1	FLO	ON

MEASUREMENT RESULT: "AGC fin2"

2017/5/20 10:36

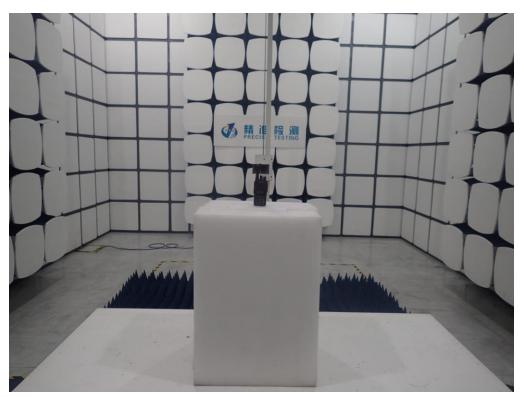
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
								STATE
MHz	dBuV	dB	dBuV	dB				
0.222000	27.80	10.3	53	24.9	AV	L1	FLO	ON
0.307500	30.90	10.3	50	19.1	AV	L1	FLO	ON
0.649500	27.70	10.3	46	18.3	AV	L1	FLO	ON
1.158000	20.60	10.4	46	25.4	AV	L1	FLO	ON
2.148000	23.70	10.5	46	22.3	AV	L1	FLO	ON
7.278000	12.00	10.7	50	38.0	AV	L1	FLO	ON

Line Conducted Emission Test Line 2-N

MEASUREMENT RESULT: "AGC_fin"

20)17/5/20 10:	:05							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.217500	37.60	10.3	63	25.3	QP	N	FLO	ON
	0.393000	32.60	10.3	58	25.4	QP	N	FLO	ON
	0.676500	32.70	10.3	56	23.3	QP	N	FLO	ON
	1.680000	30.60	10.4	56	25.4	QP	N	FLO	ON
	4.285500	23.00	10.5	56	33.0	QP	N	FLO	ON
	13.240500	13.30	11.0	60	46.7	QP	N	FLO	ON

MEASUREMENT RESULT: "AGC fin2"


20)17/5/20 10:	05							
	Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	AUX
									STATE
	MHz	dBuV	dB	dBuV	dB				
	0.217500	23.10	10.3	53	29.8	AV	N	FLO	ON
	0.379500	19.30	10.3	48	29.0	AV	N	FLO	ON
	0.676500	21.90	10.3	46	24.1	AV	N	FLO	ON
	1.671000	19.70	10.4	46	26.3	AV	N	FLO	ON
	4.285500	13.10	10.5	46	32.9	AV	N	FLO	ON
	12.934500	6.50	11.0	50	43.5	AV	N	FLO	ON

APPENDIX A: PHOTOGRAPHS OF TEST SETUP LINE CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP

----END OF REPORT----