Report No.: AGC00607170501FE03 Page 1 of 47

FCC Test Report

Report No.: AGC00607170501FE03

FCC ID : Q5EW60W65

APPLICATION PURPOSE: Original Equipment

PRODUCT DESIGNATION: POC Trunked Two-way Radio

BRAND NAME : KIRISUN

MODEL NAME: W60, iTALK-220, W65, iTALK-200

CLIENT: Kirisun Communications Co., Ltd.

DATE OF ISSUE : May. 24, 2017

STANDARD(S) TEST PROCEDURE(S)FCC Part 15 Rules
ANSI C63.10 (2013)

REPORT VERSION : V1.0

Attestation of Global Compliance (Shenzhen) Co., Ltd

CAUTION:

This report shall not be reproduced except in full without the written permission of the test laboratory and shall not be quoted out of context.

Report No.: AGC00607170501FE03 Page 2 of 47

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes
V1.0	/	May. 24, 2017	Valid	Original Report

TABLE OF CONTENTS

1. VERIFICATION OF CONFORMITY	5
2. GENERAL INFORMATION	6
2.1. PRODUCT DESCRIPTION	6
2.2. TABLE OF CARRIER FREQUENCYS	6
2.3. RECEIVER INPUT BANDWIDTH	7
2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE	7
2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR	7
2.6. RELATED SUBMITTAL(S) / GRANT (S)	8
2.7. TEST METHODOLOGY	8
2.8. SPECIAL ACCESSORIES	8
2.9. EQUIPMENT MODIFICATIONS	8
3. MEASUREMENT UNCERTAINTY	9
4. DESCRIPTION OF TEST MODES	9
5. SYSTEM TEST CONFIGURATION	10
5.1. CONFIGURATION OF EUT SYSTEM	10
5.2. EQUIPMENT USED IN EUT SYSTEM	10
5.3. SUMMARY OF TEST RESULTS	10
6. TEST FACILITY	11
7. PEAK OUTPUT POWER	13
7.1. MEASUREMENT PROCEDURE	13
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	13
7.3. LIMITS AND MEASUREMENT RESULT	13
8. 20DB BANDWIDTH	17
8.1. MEASUREMENT PROCEDURE	17
8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	17
8.3. LIMITS AND MEASUREMENT RESULTS	17
9. CONDUCTED SPURIOUS EMISSION	20
9.1. MEASUREMENT PROCEDURE	20
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)	20
9.3. MEASUREMENT EQUIPMENT USED	20
9.4. LIMITS AND MEASUREMENT RESULT	20
10. RADIATED EMISSION	26
10.1. MEASUREMENT PROCEDURE	26
10.2. TEST SETUP	27
10.3. LIMITS AND MEASUREMENT RESULT	28

10.4. TEST RESULT	29
11. BAND EDGE EMISSION	32
11.1. MEASUREMENT PROCEDURE	32
11.2. TEST SET-UP	32
11.3. Radiated TEST RESULT	33
11.4 Conducted TEST RESULT	33
12. NUMBER OF HOPPING FREQUENCY	38
12.1. MEASUREMENT PROCEDURE	38
12.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	38
12.3. MEASUREMENT EQUIPMENT USED	38
12.4. LIMITS AND MEASUREMENT RESULT	38
13.1. MEASUREMENT PROCEDURE	39
13.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	39
13.3. MEASUREMENT EQUIPMENT USED	39
13.4. LIMITS AND MEASUREMENT RESULT	39
Test Graph	40
14. FREQUENCY SEPARATION	41
14.1. MEASUREMENT PROCEDURE	41
14.2. TEST SETUP (BLOCK DIAGRAM OF CONFIGURATION)	41
14.3. MEASUREMENT EQUIPMENT USED	41
14.4. LIMITS AND MEASUREMENT RESULT	41
15. FCC LINE CONDUCTED EMISSION TEST	42
15.1. LIMITS OF LINE CONDUCTED EMISSION TEST	42
15.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST	42
15.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST	43
15.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST	43
15.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST	44
APPENDIX A: PHOTOGRAPHS OF TEST SETUP	46

Page 5 of 47

1. VERIFICATION OF CONFORMITY

Applicant	Kirisun Communications Co., Ltd.		
Address	3-6Flrs, ROBETA Building, No.1, QiMin Road, Song Ping Shan Area, Science & Industry Park, Nanshan District, Shenzhen518057 P.R.China		
Manufacturer	Kirisun Communications Co., Ltd.		
Address	3-6Flrs, ROBETA Building, No.1, QiMin Road, Song Ping Shan Area, Science & Industry Park, Nanshan District, Shenzhen518057 P.R.China		
Product Designation	POC Trunked Two-way Radio		
Brand Name	KIRISUN		
Test Model	W60		
Series Model	iTALK-220, W65, iTALK-200		
Difference Description	All the same, except for the model name and appearance.W60 and iTALK-220 with screen and buttons, W65 and iTALK-200 without screen and buttons.		
Date of test	May. 10, 2017~May. 22, 2017		
Deviation	None		
Condition of Test Sample	Normal		
Report Template	AGCRT-US-BR/RF		

We hereby certify that:

The above equipment was tested by Dongguan Precise Testing Service Co., Ltd. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with radiated emission limits of FCC Rules Part 15.247.

Tested By	donjon strang	
	Donjon Huang(Huang Dongyang)	May. 22, 2017
Reviewed By	Bore xie	
	Bart Xie(Xie Xiaobin)	May. 24, 2017
Approved By	Solya Zhong	
	Solger Zhang(Zhang Hongyi) Authorized Officer	May. 24, 2017

Page 6 of 47

2. GENERAL INFORMATION

2.1. PRODUCT DESCRIPTION

The EUT is "POC Trunked Two-way Radio" designed as a "Communication Device". It is designed by way of utilizing the FHSS technology to achieve the system operation.

A major technical description of EUT is described as following

	<u> </u>
Operation Frequency	2.402 GHz to 2.480GHz
Bluetooth Version	V 4.0
Modulation	GFSK, π /4-DQPSK, 8DPSK
Number of channels	79(For BR/EDR)
Hardware Version	V1.0
Software Version	V1.0
IMEI Number	353435056170386
Antenna Designation	Integrated Antenna
Antenna Gain	0.6dBi
Power Supply	DC3.7V by Battery

2.2. TABLE OF CARRIER FREQUENCYS

Frequency Band	Channel Number	Frequency	
	0	2402MHZ	
	1	2403MHZ	
	:	:	
	38	2440 MHZ	
2400~2483.5MHZ	39	2441 MHZ	
	40	2442 MHZ	
	:	:	
	77	2479 MHZ	
	78	2480 MHZ	

Page 7 of 47

2.3. RECEIVER INPUT BANDWIDTH

The input bandwidth of the receiver is 1.3MHZ,In every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally the type of connection(e.g. single of multislot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also the slave of the connection will use these settings.

Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.4. EXAMPLE OF A HOPPING SEQUENCY IN DATA MODE

Example of a 79 hopping sequence in data mode: 40,21,44,23,42,53,46,55,48,33,52,35,50,65,54,67 56,37,60,39,58,69,62,71,64,25,68,27,66,57,70,59 72,29,76,31,74,61,78,63,01,41,05,43,03,73,07,75 09,45,13,47,11,77,15,00,64,49,66,53,68,02,70,06 01, 51, 03, 55, 05, 04

2.5. EQUALLY AVERAGE USE OF FREQUENCIES AND BEHAVIOUR

The generation of the hopping sequence in connection mode depends essentially on two input values:

- 1. LAP/UAP of the master of the connection.
- 2. Internal master clock

The LAP(lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP(upper address part) are the 24MSB's of the 48BD ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For ehavior zation with other units only offset are used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30). In most case it is implemented as 28 bit counter. For the deriving of the hopping sequence the entire. LAP(24 bits),4LSB's(4bits)(Input 1) and the 27MSB's of the clock(Input 2) are used. With this input values different mathematical procedures(permutations, additions, XOR-operations) are performed to generate te Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following ehavior:

The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer(and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always Differ from the first one.

Page 8 of 47

2.6. RELATED SUBMITTAL(S) / GRANT (S)

This submittal(s) (test report) is intended for **FCC ID: Q5EW60W65** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10 (2013). Radiated testing was performed at an antenna to EUT distance 3 meters.

2.8. SPECIAL ACCESSORIES

Refer to section 5.2.

2.9. EQUIPMENT MODIFICATIONS

Not available for this EUT intended for grant.

Page 9 of 47

3. MEASUREMENT UNCERTAINTY

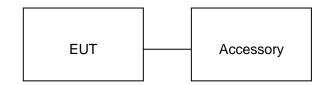
Conducted measurement: +/- 2.75dB Radiated measurement: +/- 3.2dB

4. DESCRIPTION OF TEST MODES

NO.	TEST MODE DESCRIPTION		
1	Low channel GFSK		
2	Middle channel GFSK		
3	High channel GFSK		
4	Low channel π /4-DQPSK		
5	Middle channel π /4-DQPSK		
6	High channel π /4-DQPSK		
7	Low channel 8DPSK		
8	Middle channel 8DPSK		
9	High channel 8DPSK		
10	Normal Hopping		

Note:

- 1. All the test modes can be supply by Built-in Li-ion battery, only the result of the worst case was recorded in the report, if no other cases.
- 2. For Radiated Emission, 3axis were chosen for testing for each applicable mode.



Report No.: AGC00607170501FE03 Page 10 of 47

5. SYSTEM TEST CONFIGURATION

5.1. CONFIGURATION OF EUT SYSTEM

Configuration:

5.2. EQUIPMENT USED IN EUT SYSTEM

Item	Equipment	Model No.	ID or Specification	Remark
1	POC Trunked Two-way Radio	W60	FCC ID: Q5EW60W65	EUT
2	Adapter	GPE-053B-V051000-Z KBC-W65	DC 5.0V/1A 700mA	Accessory
3	Battery	KB-W65	DC3.7V/ 3600mAh	Accessory
4	USB Cable	N/A	N/A	Accessory
5	Earphone	N/A	N/A	Accessory

5.3. SUMMARY OF TEST RESULTS

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.247	Peak Output Power	Compliant
§15.247	20 dB Bandwidth	Compliant
§15.247	Spurious Emission	Compliant
§15.209	Radiated Emission	Compliant
§15.247	Band Edges	Compliant
§15.207	Conduction Emission	Compliant
§15.247	Number of Hopping Frequency	Compliant
§15.247	Time of Occupancy	Compliant
§15.247	Frequency Separation	Compliant

Report No.: AGC00607170501FE03 Page 11 of 47

6. TEST FACILITY

Site Dongguan Precise Testing Service Co., Ltd.	
Location Building D,Baoding Technology Park,Guangming Road2,Dongcheng District, Dongguan, Guangdong, China,	
FCC Registration No.	371540
Description	The test site is constructed and calibrated to meet the FCC requirements in documents ANSI C63.10:2013.

ALL TEST EQUIPMENT LIST

FOR RADIATED EMISSION TEST (BELOW 1GHZ)

Radiated Emission Test Site							
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration		
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017		
Trilog Broadband Antenna (25M-1GHz)	SCHWARZBECK	VULB9160	9160-3355	July 3, 2016	July 2, 2017		
Signal Amplifier	SCHWARZBECK	BBV 9475	9745-0013	July 3, 2016	July 2, 2017		
RF Cable	SCHWARZBECK	AK9515E	96221	July 3, 2016	July 2, 2017		
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017		
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A		
Active loop antenna (9K-30MHz)	Schwarzbeck	FMZB1519	1519-038	June 5, 2016	June 4, 2017		
Spectrum analyzer	Agilent	E4407B	MY46185649	June 5, 2016	June 4, 2017		
Power Probe	R&S	NRP-Z23	100323	July 24,2016	July 23,2017		
RF attenuator	N/A	RFA20db	68	N/A	N/A		

FOR RADIATED EMISSION TEST (1GHZ ABOVE)

Radiated Emission Test Site						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017	
Horn Antenna (1G-18GHz)	SCHWARZBECK	BBHA9120D	9120D-1246	July 10, 2016	July 9, 2017	
Spectrum Analyzer	Agilent	E4411B	MY4511453	July 3, 2016	July 2, 2017	
Signal Amplifier	SCHWARZBECK	BBV 9718	9718-269	July 6, 2016	July 5, 2017	
RF Cable	SCHWARZBECK	AK9515H	96220	July 7, 2016	July 6, 2017	
3m Anechoic Chamber	CHENGYU	966	PTS-001	June 5, 2016	June 4, 2017	
MULTI-DEVICE Positioning Controller	Max-Full	MF-7802	MF780208339	N/A	N/A	

Report No.: AGC00607170501FE03 Page 12 of 47

Horn Ant (18G-40GHz)	Schwarzbeck	BBHA 9170	9170-181	June 5, 2016	June 4, 2017
Power Probe	R&S	NRP-Z23	100323	July 24,2016	July 23,2017
RF attenuator	N/A	RFA20db	68	N/A	N/A

Conducted Emission Test Site						
Name of Equipment	Manufacturer	Model Number	Serial Number	Last Calibration	Due Calibration	
EMI Test Receiver	Rohde & Schwarz	ESCI	101417	July 3, 2016	July 2, 2017	
Artificial Mains Network	Narda	L2-16B	000WX31025	July 7, 2016	July 6, 2017	
Artificial Mains Network (AUX)	Narda	L2-16B	000WX31026	July 7, 2016	July 6, 2017	
RF Cable	SCHWARZBECK	AK9515E	96222	July 3, 2016	July 2, 2017	
Shielded Room	CHENGYU	843	PTS-002	June 5,2016	June 4,2017	

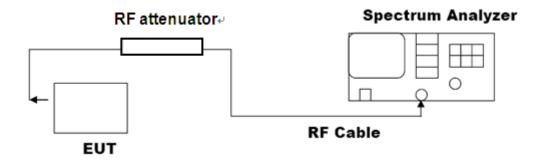
Page 13 of 47

7. PEAK OUTPUT POWER

7.1. MEASUREMENT PROCEDURE

For peak power test:

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, middle and the bottom operation frequency individually.
- 3. RBW > the 20 dB bandwidth of the emission being measured, VBW ≥ RBW.
- 4. Record the maximum power from the Spectrum Analyzer.


For average power test:

- 1. Connect EUT RF output port to power probe through an RF attenuator.
- 2. Connect the power probe to the PC.
- 3. Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 4. Record the maximum power from the software.

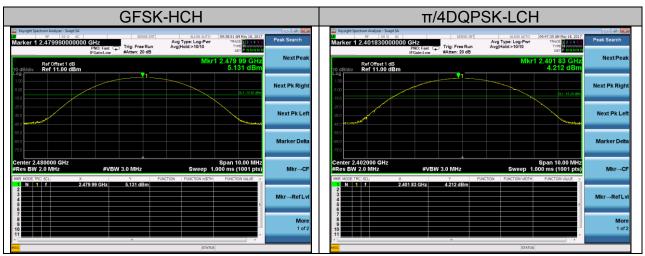
Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements.

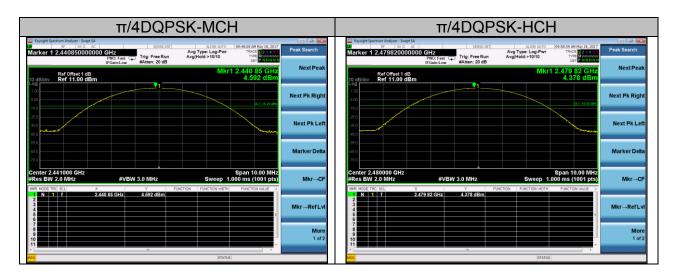
7.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

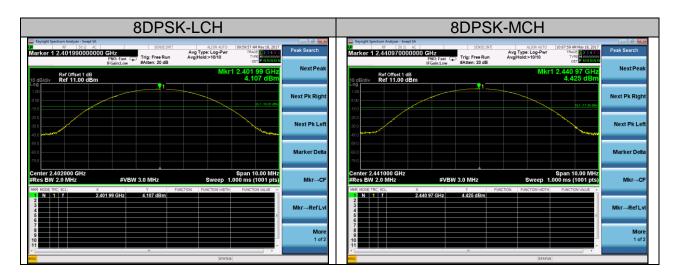
PEAK POWER TEST SETUP

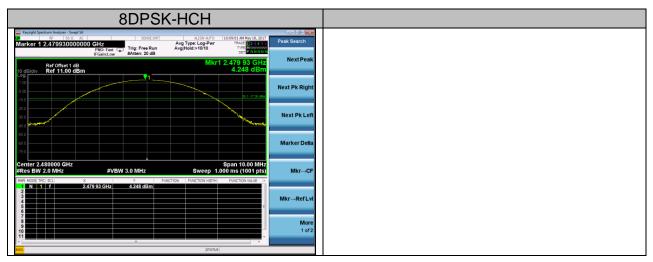
7.3. LIMITS AND MEASUREMENT RESULT

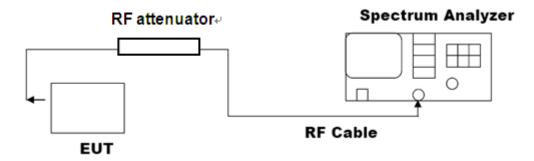
Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	4.951	30	Pass
GFSK	2.441	5.325	30	Pass
	2.480	5.131	30	Pass


Report No.: AGC00607170501FE03 Page 14 of 47


Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	4.212	30	Pass
π /4-DQPSK	2.441	4.592	30	Pass
	2.480	4.378	30	Pass


Mode	Frequency (GHz)	Peak Power (dBm)	Applicable Limits (dBm)	Pass or Fail
	2.402	4.107	30	Pass
8DPSK	2.441	4.425	30	Pass
 	2.480	4.248	30	Pass

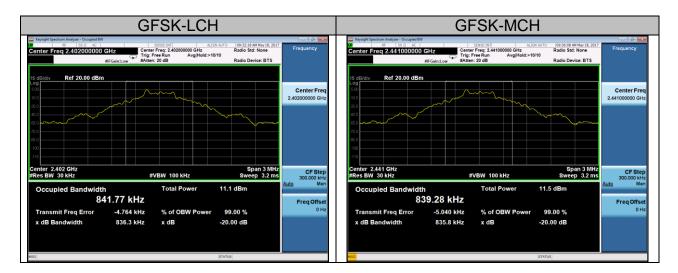

Test Graph

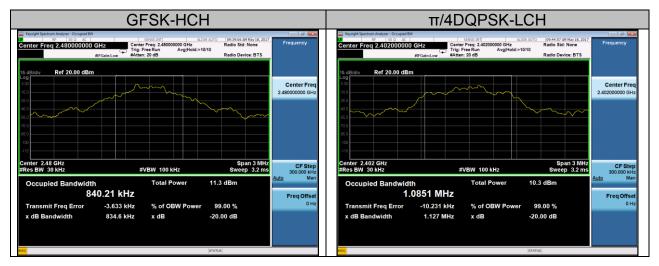

Page 17 of 47

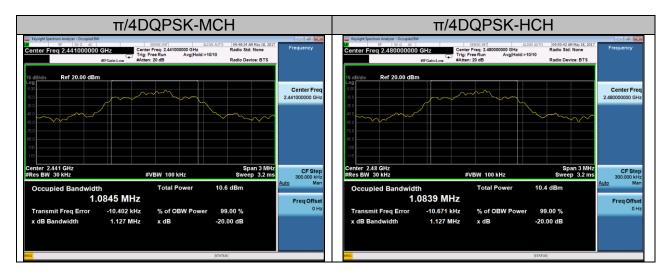
8. 20DB BANDWIDTH

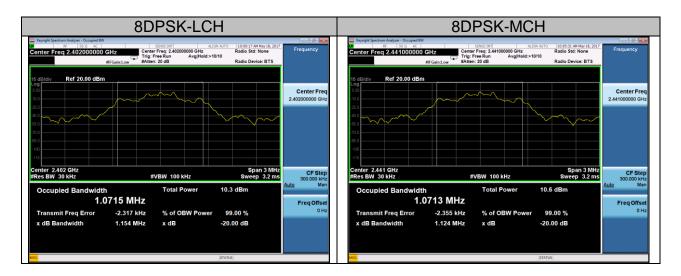
8.1. MEASUREMENT PROCEDURE

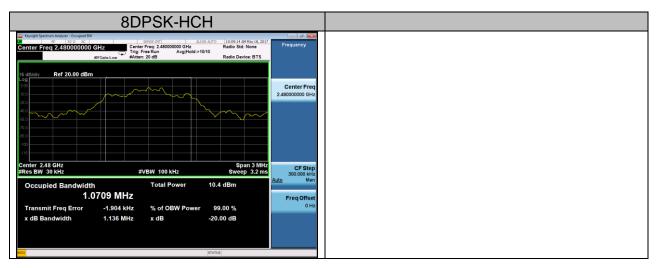
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2, Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- 3. Set Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hoping channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW; Sweep = auto; Detector function = peak
- 4. Set SPA Trace 1 Max hold, then View.


8.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)




8.3. LIMITS AND MEASUREMENT RESULTS


Mode	Channel.	20dB Bandwidth [KHz]	Verdict
GFSK	LCH	836.3	PASS
GFSK	MCH	835.8	PASS
GFSK	HCH	834.6	PASS
π/4DQPSK	LCH	1127	PASS
π/4DQPSK	MCH	1127	PASS
π/4DQPSK	HCH	1127	PASS
8DPSK	LCH	1154	PASS
8DPSK	MCH	1124	PASS
8DPSK	HCH	1136	PASS


Test Graph

Page 20 of 47

9. CONDUCTED SPURIOUS EMISSION

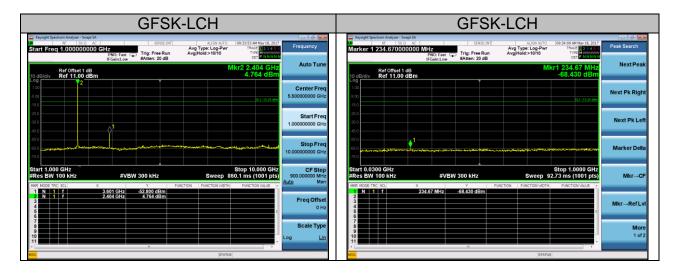
9.1. MEASUREMENT PROCEDURE

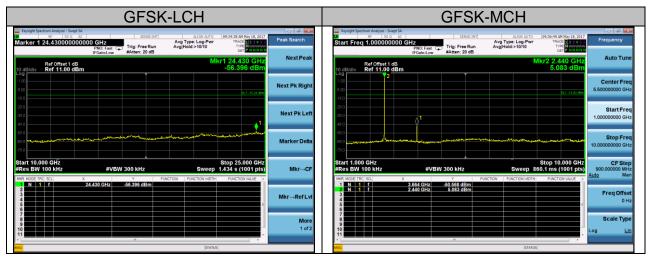
- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Set the EUT Work on the top, the Middle and the bottom operation frequency individually.
- 3. Set the Span = wide enough to capture the peak level of the in-band emission and all spurious emissions from the lowest frequency generated in the EUT up through the 10th harmonic.
 RBW = 100 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak.
- 4. Set SPA Trace 1 Max hold, then View.

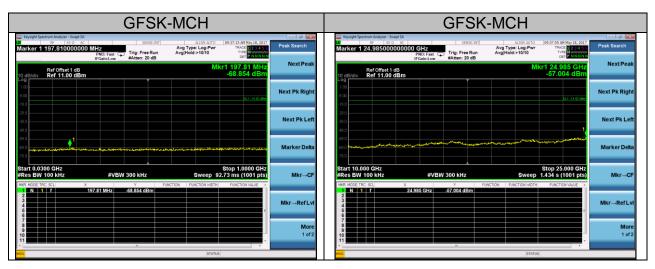
Note: The EUT was tested according for compliance ANSI C63.10 (2013) requirements. Owing to satisfy the requirements of the number of measurement points, we set the RBW=1MHz, VBW > RBW, scan up through 10th harmonic, and consider the tested results as the worst case, if the tested results conform to the requirement, we can deem that the real tested results(set the RBW=100KHz, VBW > RBW) are conform to the requirement.

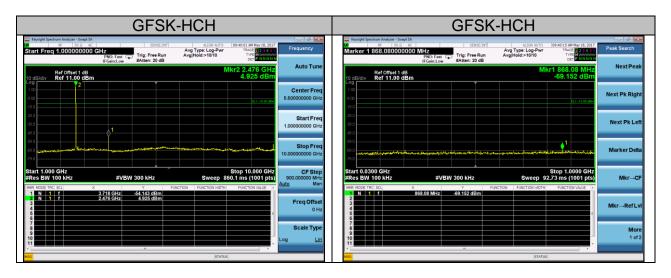
9.2. TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

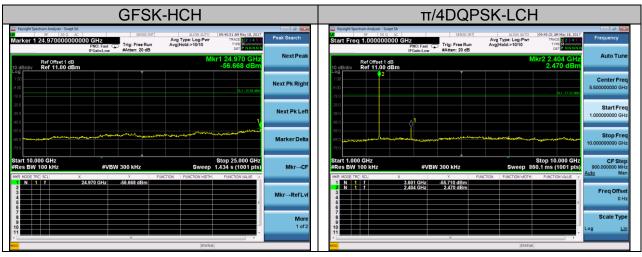
The same as described in section 8.2


9.3. MEASUREMENT EQUIPMENT USED


The same as described in section 6


9.4. LIMITS AND MEASUREMENT RESULT


LIMITS AND MEASUREMENT RESULT					
Applicable Limite	Measurement Result				
Applicable Limits	Test Data	Criteria			
In any 100 KHz Bandwidth Outside the	At least -20dBc than the limit				
frequency band in which the spread spectrum	Specified on the BOTTOM	PASS			
intentional radiator is operating, the radio frequency	Channel				
power that is produce by the intentional radiator					
shall be at least 20 dB below that in 100KHz					
bandwidth within the band that contains the highest					
level of the desired power.	At least -20dBc than the limit	PASS			
In addition, radiation emissions which fall in the	Specified on the TOP Channel	PASS			
restricted bands, as defined in §15.205(a), must also					
comply with the radiated emission limits specified					
in§15.209(a))					


Test Graph

