TEST REPORT Report No.:: CHTEW23070005 Report verification: Project No.:: SHT2305086502EW FCC ID: Q5EUP405S01 Applicant's name: Kirisun Communication Co.,Ltd. 3rd Floor, Building A, Tongfang Information Habour, No.11 Address....: Langshan Road, Nanshan District, Shenzhen 518057, P.R.China Product name: **DMR Two Way Radio** Trade Mark....:: KIRISUN Model No. **UP405S** Listed Model(s)....: **UP305** FCC CFR Title 47 Part 90 Standard....:: Jun.13, 2023 Date of receipt of test sample..... Date of testing..... Jun.13, 2023-Jul.07, 2023 Date of issue..... Jul.07, 2023 PASS Result: Compiled by (Position-Printed name-Signature): File administrators Fanghui Zhu Supervised by (Position-Printed name-Signature): Project Engineer Caspar Chen Approved by (Position-Printed name-Signature): RF Manager Hans Hu Testing Laboratory Name.....: Shenzhen Huatongwei International Inspection Co., Ltd. Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. The test report merely correspond to the test sample. Report No.: CHTEW23070005 Page: 2 of 42 Issued: 2023-07-06 # **Contents** | <u>1</u> | TEST STANDARDS AND REPORT VERSION | 3 | |-----------------|--|---------------------------------------| | | | | | 1.1. | Test standard | 3 | | 1.2. | Report revised information | 3 | | 2_ | TEST DESCRIPTION | 4 | | _ | | · | | <u>3</u> | SUMMARY | 5 | | 3.1 | Client information | 5 | | 3.2 | Product description | 5 | | 3.3 | Radio Specification Description *1 | 5 | | 3.4 | Testing laboratory information | 6 | | <u>4</u> | TEST CONFIGURATION | 7 | | <u>-</u> | 1201 GONT TOOKATION | , , , , , , , , , , , , , , , , , , , | | 4.1 | Test frequency list | 7 | | 4.2 | Operation mode | 7 | | 4.3 | Support unit used in test configuration and system | 8 | | 4.4 | Testing environmental condition | 9 | | 4.5 | Measurement uncertainty | 9 | | 4.6 | Equipment used during the testing | 10 | | <u>5</u> | TEST CONDITIONS AND RESULTS | 11 | | E 4 | Conducted corrier output never | 44 | | 5.1
5.2 | Conducted carrier output power 99% occupied bandwidth & 26dB bandwidth | 11
12 | | 5.2
5.3 | Emission mask | 14 | | 5.4 | Modulation limit | 16 | | 5. 5 | Audio frequency response | 17 | | 5.6 | Frequency stability VS temperature | 19 | | 5.7 | Frequency stability VS voltage | 20 | | 5.8 | Transmitter frequency behavior | 21 | | 5.9 | Transmit conducted spurious emission | 23 | | 5.10 | Transmitter radiated spurious emission | 24 | | <u>6</u> | TEST SETUP PHOTOS | 33 | | <u>7</u> | EXTERNAL AND INTERNAL PHOTOS | 34 | | - 4 | E demodel de | | | 7.1 | External photos | 34 | | 1.3. | Internal Photos | 39 | | <u>8</u> | APPENDIX REPORT | 42 | Report No.: CHTEW23070005 Page: 3 of 42 Issued: 2023-07-06 # 1 TEST STANDARDS AND REPORT VERSION #### 1.1. Test standard The tests were performed according to following standards: FCC Rules Part 90: Private land mobile radio services. <u>FCC Rules Part 2:</u> Frequency allocations and radio treaty matters; General rules and regulations <u>ANSI C63.26-2015:</u> American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services <u>ANSI/TIA-603-E-2016:</u> Land Mobile FM or PM Communications Equipment and Performance Standards <u>ANSI C63.4-2014:</u> American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz # 1.2. Report revised information | Revised No. | Date of issued | Description | |----------------|----------------|-------------| | N/A 2023-07-06 | | Original | | | | | | | | | | | | | | | | | Report No.: CHTEW23070005 Page: 4 of 42 Issued: 2023-07-06 # **2 TEST DESCRIPTION** | Section | Test Item | Section | Result | Test Engineer | |---------|---|----------------------------------|--------|---------------| | 5.1 | Conducted carrier output power | Part 90.205
Part 2.1046(a) | Pass | Caspar Chen | | 5.2 | 99% occupied bandwidth & 26dB bandwidth | Part 90.209 & 210
Part 2.1049 | Pass | Caspar Chen | | 5.3 | Emission mask | Part 90.209 & 210
Part 2.1049 | Pass | Caspar Chen | | 5.4 | Modulation limit | Part 2.1047(b) | Pass | Caspar Chen | | 5.5 | Audio frequency response | Part 2.1047(a) | Pass | Caspar Chen | | 5.6 | Frequency stability VS temperature | Part 90.213
Part 2.1055 | Pass | Caspar Chen | | 5.7 | Frequency stability VS voltage | Part 90.213
Part 2.1055 | Pass | Caspar Chen | | 5.8 | Transient frequency behavior | Part 90.214 | Pass | Caspar Chen | | 5.9 | Transmit conducted spurious emission | Part 90.210
Part 2.1051 | Pass | Caspar Chen | | 5.10 | Transmit radiated spurious emission | Part 90.210
Part 2.1053 | Pass | Yifan Wang | Note: The measurement uncertainty is not included in the test result. Report No.: CHTEW23070005 Page: 5 of 42 Issued: 2023-07-06 # 3 **SUMMARY** # 3.1 Client information | Applicant: | Kirisun Communication Co.,Ltd. | | |---------------|---|--| | Address: | 3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China | | | Manufacturer: | Kirisun Communication Co.,Ltd. | | | Address: | 3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China | | # 3.2 Product description | Main unit information: | | | | |-----------------------------|--------------------------------|--|--| | Product name: | DMR Two Way Radio | | | | Trade mark: | KIRISUN | | | | Model No.: | UP405S | | | | Listed model(s): | UP305 | | | | Power supply: | DC 7.4V from battery | | | | Hardware version: | V1B.11.203021200 | | | | Software version: | V5.3.6.23 | | | | Accessory unit information: | | | | | | Model: FJ-SW126K0900500DU | | | | Adapter information: | Input: 100-240V 50/60Hz 0.4Max | | | | | Output: 9V 0.5A | | | # 3.3 Radio Specification Description *1 | Device type: | ⊠ Portable | ☐ Mobile | | |------------------------------|------------------|------------------|---------| | Support Frequency Range: | 136~174MHz | | | | Support type: | ⊠ Analog | ⊠ Digital | | | Support digital protocol: *2 | DMR | | | | Support data rate for DMR: | 9.6kbps | | | | Modulation type: | Analog: FM | | | | Modulation type: | Digital: 4FSK | | | | Channel Separation: | Analog: | | ☐ 25kHz | | Charlier Separation. | Digital : | ☐ 6.25kHz | | | Emission Designator: *3 | Analog: | 11K0F3E | | | Emission Designator. | Digital: | 7K10FXE, 7K10FXD | | | Rated power class: | ⊠ High Power: 5W | | | | Antenna Type: | SMA | | | | Antenna Gain: | 2dBi | | | Report No.: CHTEW23070005 Page: 6 of 42 Issued: 2023-07-06 #### Note: - (1) *1 This information is provided by this applicant. - (2) *2 The DMR standard specifies two-slot Time Division Multiplexing Technology to split the 12.5 kHz channel into two virtual 6.25kHz communication paths. This equates to an efficiency of one voice channel per 6.25 kHz of bandwidth even though it operates in channels of 12.5 kHz - (3) *3 According to FCC Part 2.202 requirements, the Necessary Bandwidth is calculated as follows: - For FM Voice Modulation Channel Spacing = 12.5 KHz, D = 2.5 KHz max, K = 1, M = 3 KHz Bn = 2M + 2DK = 2*3 + 2*2.5*1 = 11 KHz Emission designation: 11K0F3E - For FM Data Modulation Channel Spacing = 12.5 KHz, R = 9600 bps, D = 2160 Hz, S = 4, K = 0.518 ms Bn = (R/log_2S) + 2DK = $7037 \approx 7.1$ KHz Emission designation: 7K10FXE, 7K10FXD ## 3.4 Testing laboratory information | Laboratory Name | Shenzhen Huatongwei International Inspection Co., Ltd. | | | |----------------------|--|----------------------|--| | Laboratory Location | 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China | | | | Contact information: | Tel: 86-755-26715499 E-mail: cs@szhtw.com.cn http://www.szhtw.com.cn | | | | | Туре | Accreditation Number | | | Qualifications | FCC Test Firm Registration Number | 762235 | | | | FCC Designation Number | CN1181 | | Report No.: CHTEW23070005 Page: 7 of 42 Issued: 2023-07-06 # **4 TEST CONFIGURATION** # 4.1 Test frequency list According to ANSI C63.26 section 5.1.2.1: Measurements of transmitters shall be performed and, if required, reported for each frequency band in which the EUT can be operated with the device transmitting at the number of frequencies in each band specified in Table 2. | Frequency range over which EUT operates | Number of
frequencies | Location in frequency range of operation | |---|--------------------------|--| | 1 MHz or less | 1 | Middle | | 1 MHz to 10 MHz | 2 | 1 near top and 1 near bottom | | More than 10 MHz | 3 | 1 near top, 1 near middle, and 1 near bottom | ## So test frequency as follow: | Frequency range | Channel separation | Test channel | Test Frequency (MHz) | | | |-----------------|--------------------|-----------------|----------------------|-------|--| | (MHz) | (kHz) | | TX | RX | | | | | CH _L | 136.1 | 136.1 | | | 136~174 | 12.5 | CH _M | 155 | 155 | | | | | CH _H | 173.9 | 173.9 | | # 4.2 Operation mode | Test | Transmitting | Transmitting | Receiving | Analog | Digital | Powe | r level | |--------|--------------|--------------|-----------|---------|---------|------|---------| | mode | Transmitting | Receiving | 12.5kHz | 12.5kHz | High | Low | | | TX-ANH | | | | | | | | | TX-ANL | | | | | | | | | TX-DNH | | | | | | | | | TX-DNL | | | | | | | | ## Note: ■: is operation mode. | Modulation Type | Description | | |--|---|--| | UM | Un-modulation | | | AM2 | Apply a 1000 Hz tone and adjust the audio frequency generator to produce 20% of the rated system deviation. | | | AM6 | Apply a 1000 Hz modulating signal to the transmitter from the audio frequency generator, and adjust the level to obtain 60% of full rated system deviation, then increase the level from the audio generator by 20 dB | | | AM5 Modulate the transmitter with a 2500 Hz sine wave at an input level 16 dithan that necessary to produce 50% of rated system deviation. | | | | DM A 511 bit binary pseudo-random bit sequence based on ITU-T Rec. O.153 | | | Report No.: CHTEW23070005 Page: 8 of 42 Issued: 2023-07-06 Pre-scan above all test mode, found below test mode which it was worse case mode, so only show the test data for worse case mode on the test report. | Section | Test Item | Modulation Type | Test mode (Worse case mode) | |---------|---|-----------------|--------------------------------| | 5.1 | Conducted carrier output power | ИМ | TX-DNH, TX-DNL, TX-ANH, TX-ANL | | 5.2 | 99% occupied bandwidth & 26dB bandwidth | AM6, DM | TX-DNH, TX-DNL, TX-ANH, TX-ANL | | 5.3 | Emission mask | AM5, DM | TX-DNH, TX-DNL, TX-ANH, TX-ANL | | 5.4 | Modulation limit | AM6 | TX-ANH | | 5.5 | Audio frequency response | AM2 | TX-ANH | | 5.6 | Frequency stability VS temperature | ИМ | TX-DNH, TX-DNL, TX-ANH, TX-ANL | | 5.7 | Frequency stability VS voltage | UM | TX-DNH, TX-DNL, TX-ANH, TX-ANL | | 5.8 | Transient frequency behavior | UM | TX-DNH, TX-ANH | | 5.9 | Transmit conducted spurious emission | AM5, DM | TX-DNH, TX-ANH | | 5.10 | Transmit radiated spurious emission | AM5, DM | TX-DNH, TX-ANH | # 4.3 Support unit used in test configuration and system The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. The following peripheral devices and interface cables were connected during the measurement: | Whether support unit is used? | | | | | |-------------------------------|-----------|------------|-----------|--| | ✓ | No | | | | | Item | Equipment | Trade Name | Model No. | | | 1 | | | | | | 2 | | | | | Report No.: CHTEW23070005 Page: 9 of 42 Issued: 2023-07-06 # 4.4 Testing environmental condition | Туре | Requirement | Actual | |--------------------|------------------------|----------| | Temperature: | 15~35°C | 25°C | | Relative Humidity: | 25~75% | 50% | | Air Pressure: | 860~1060mbar | 1000mbar | | | Normal voltage: | DC 7.40V | | Test voltage: | Extreme lower voltage: | DC 6.30V | | | Extreme upper voltage: | DC 7.40V | # 4.5 Measurement uncertainty | No. | Test Items | Measurement Uncertainty | |-----|---|-------------------------| | 1 | Conducted Carrier Output Power | 0.63 | | 2 | 99% Occupied Bandwidth & 26dB bandwidth | 0.002% | | 3 | Emission Mask | 0.92dB | | 4 | Frequency Stability | 0.06ppm | | 5 | Transmit Conducted Spurious Emission | 1.68dB | | 6 | Transmit Radiated Spurious Emission | 4.54dB for 30MHz-1GHz | | 0 | Transmit Itadiated Opunous Emission | 5.10dB for above 1GHz | This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96. Report No.: CHTEW23070005 Page: 10 of 42 Issued: 2023-07-06 # 4.6 Equipment used during the testing | • | RF Conducted test item | | | | | | | |------|---------------------------------------|--------------|------------------|--------------|------------|---------------------------------|---------------------------------| | Used | Test Equipment | Manufacturer | Equipment
No. | Model No. | Serial No. | Last Cal.
Date
(YY-MM-DD) | Next Cal.
Date
(YY-MM-DD) | | • | Spectrum
Analyzer | Agilent | HTWE0286 | N9020A | MY50510187 | 2022/08/25 | 2023/08/24 | | • | Signal &
Spectrum
Analyzer | R&S | HTWE0262 | FSW26 | 103440 | 2022/08/25 | 2023/08/24 | | • | RF
Communication
Test Set | HP | HTWE0038 | 8920A | 3813A10206 | 2022/08/25 | 2023/08/24 | | • | Digital intercom communication tester | Aeroflex | HTWE0255 | 3920B | 1001682041 | 2022/08/25 | 2023/08/24 | | • | RF Control Unit | Tonscend | HTWE0294 | JS0806-2 | N/A | N/A | N/A | | • | Filter-VHF | Microwave | HTWE0309 | N26460M1 | 498702 | N/A | N/A | | • | Filter-UHF | Microwave | HTWE0311 | N25155M2 | 498704 | N/A | N/A | | • | Attenuator | JFW | HTWE0292 | 50FH-030-100 | N/A | 2023/05/15 | 2024/05/14 | | • | Attenuator | JFW | HTWE0293 | 50-A-MFN-20 | 0322 | 2023/05/15 | 2024/05/14 | | • | Test software | HTW | N/A | Radio ATE | N/A | N/A | N/A | | • | Auxiliary Equipment | | | | | | | |------|---------------------|--------------|---------------|-----------|------------|---------------------------------|---------------------------------| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal.
Date
(YY-MM-DD) | Next Cal.
Date
(YY-MM-DD) | | • | Climate chamber | ESPEC | HTWE0254 | GPL-2 | N/A | 2022/08/29 | 2023/08/28 | | • | DC Power
Supply | Gwinstek | HTWE0274 | SPS-2415 | GER835793 | N/A | N/A | | • | Radiated Spurious Emission | | | | | | | | |------|----------------------------|--------------------|---------------|----------------------|------------|------------------------------|------------------------------|--| | Used | Test Equipment | Manufacturer | Equipment No. | Model No. | Serial No. | Last Cal. Date
(YY-MM-DD) | Next Cal. Date
(YY-MM-DD) | | | • | Semi-Anechoic
Chamber | Albatross projects | HTWE0122 | SAC-3m-01 | C11121 | 2018/09/27 | 2023/09/26 | | | • | Spectrum
Analyzer | R&S | HTWE0098 | FSP40 | 100597 | 2022/08/25 | 2023/08/24 | | | • | Loop Antenna | R&S | HTWE0546 | HFH2-Z2E | 101073 | 2021/05/25 | 2024/05/24 | | | • | Horn Antenna | ETS | HTWE0548 | 3117 | 240120 | 2022/05/20 | 2025/05/19 | | | • | Ultra-Broadband
Antenna | SCHWARZBECK | HTWE0547 | VULB9163 | 945 | 2022/05/23 | 2025/05/22 | | | 0 | Horn Antenna | STEATITE | HTWE0549 | QMS-00880 | 25661 | 2022/05/20 | 2025/05/19 | | | • | Pre-amplifier | CD | HTWE0071 | PAP-0102 | 12004 | 2022/11/04 | 2023/11/03 | | | • | Broadband
Preamplifier | SCHWARZBECK | HTWE0201 | BBV 9718 | 9718-248 | 2023/02/27 | 2024/02/26 | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-01 | 6m 18GHz
S Serisa | N/A | 2023/02/24 | 2024/02/23 | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-02 | 6m 3GHz
RG Serisa | N/A | 2023/02/24 | 2024/02/23 | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0119-05 | 6m 3GHz
RG Serisa | N/A | 2023/02/24 | 2024/02/23 | | | • | RF Connection
Cable | HUBER+SUHNER | HTWE0120-04 | 6m 3GHz
RG Serisa | N/A | 2023/02/24 | 2024/02/23 | | | • | EMI Test
Software | Audix | N/A | E3 | N/A | N/A | N/A | | Report No.: CHTEW23070005 Page: 11 of 42 Issued: 2023-07-06 # 5 TEST CONDITIONS AND RESULTS # 5.1 Conducted carrier output power ## **LIMIT** #### FCC Part 90.205, FCC Part 2.1046 Applicants for licenses must request and use no more power than the actual power necessary for satisfactory operation. ## **TEST CONFIGURATION** #### **TEST PROCEDURE** - (1) Connect the equipment as illustrated - (2) Correct for all losses in the RF path - (3) Measure the transmitter output power with RMS detector - (4) If the power output is adjustable, measurements shall be made for the highest and lowest power levels. #### **TEST MODE** Refer to the section 4.2 ## **TEST RESULT** ## **TEST DATA** Report No.: CHTEW23070005 Page: 12 of 42 Issued: 2023-07-06 ## 5.2 99% occupied bandwidth & 26dB bandwidth #### LIMIT FCC Part 90.209, FCC Part 2.1049 | Frequency band (MHz) | Channel spacing (kHz) | Authorized bandwidth (kHz) | |---------------------------------------|-----------------------|----------------------------| | Below 25 ² | | | | 25-50 | 20 | 20 | | 72-76 | 20 | 20 | | 150-174 | 17.5 | ^{1 3} 20/11.25/6 | | 216-220 ⁵ | 6.25 | 20/11.25/6 | | 220-222 | 5 | 4 | | 406-512 ² | ¹ 6.25 | ¹³⁶ 20/11.25/6 | | 806-809/851-854 | 12.5 | 20 | | 809-824/854-869 | 25 | ⁶ 20 | | 896-901/935-940 | 12.5 | 13.6 | | 902-928 ⁴ | | | | 929-930 | 25 | 20 | | 1427-1432 ⁵ | 12.5 | 12.5 | | ³ 2450-2483.5 ² | | | | Above 2500 ² | | | #### **TEST CONFIGURATION** #### Test setup for Analog: #### Test setup for Digital: #### **TEST PROCEDURE** - (1) Connect the equipment as illustrated - (2) Spectrum set as follow: Centre frequency = the nominal EUT channel center frequency, Span shall be set wide enough to capture all modulation products including the emission skirts (typically a span of $1.5 \times OBW$ is sufficient) RBW = 1% to 5% of the anticipated OBW, VBW ≥ 3 × RBW, Sweep = auto, Detector function = peak, Trace = max hold - (3) Set 99% Occupied Bandwidth and 26dB Bandwidth - (4) Measure and record the results in the test report. Report No.: CHTEW23070005 Page: 13 of 42 Issued: 2023-07-06 # **TEST MODE** Refer to the section 4.2 # **TEST RESULT** # **TEST DATA** Report No.: CHTEW23070005 Page: 14 of 42 Issued: 2023-07-06 #### 5.3 Emission mask #### **LIMIT** FCC Part 90.210, FCC Part 2.1049 | | Mask for equipment
with audio low | Mask for equipment without audio low | |--------------------------------|--------------------------------------|--------------------------------------| | Frequency band (MHz) | pass filter | pass filter | | Below 25 ¹ | A or B | A or C | | 25-50 | В | С | | 72-76 | В | С | | 150-174 ² | B, D, or E | C, D or E | | 150 paging only | В | С | | 220-222 | F | F | | 421-512 ^{2 5} | B, D, or E | C, D, or E | | 450 paging only | В | G | | 806-809/851-854 ⁶ | В | Н | | 809-824/854-869 ^{3 5} | В | G | | 896-901/935-940 | I | J | | 902-928 | К | К | | 929-930 | В | G | | 4940-4990 MHz | L or M | L or M | | 5850-5925 ⁴ | | | | All other bands | В | С | #### Emission Mask D — 12.5 kHz channel bandwidth equipment For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows: - (1) On any frequency from the centre of the authorized bandwidth f₀ to 5.625 kHz removed from f₀: 0dB - (2) On any frequency removed from the centre of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(f_d -2.88 kHz) dB. - (3) On any frequency removed from the centre of the authorized bandwidth by a displacement frequency (f_d in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation. **SPECTRUM** **ANALYZER** ### **TEST CONFIGURATION** TRANSMITTER **UNDER TEST** **STANDARD** TRANSMITTER LOAD Report No.: CHTEW23070005 Page: 15 of 42 Issued: 2023-07-06 #### **TEST PROCEDURE** - 1) Connect the equipment as illustrated. - 2) Spectrum set as follow: Centre frequency = fundamental frequency, span=120kHz for 12.5kHz channel spacing, RBW=100Hz, VBW=1000Hz, Sweep = auto, - Detector function = peak, Trace = max hold - 3) Key the transmitter, and set the level of the unmodulated carrier to a full scale reference line. This is the 0dB reference for the measurement. - 4) Apply Input Modulation Signal to EUT according to Section 4.2 - 5) Measure and record the results in the test report. #### **TEST MODE** Refer to the section 4.2 ## **TEST RESULT** #### **TEST DATA** Report No.: CHTEW23070005 Page: 16 of 42 Issued: 2023-07-06 #### 5.4 Modulation limit #### LIMIT FCC Part 2.1047(b) 2.5kHz for 12.5 KHz Channel Spacing System. ## **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1) Connect the equipment as illustrated. - 2) Adjust the transmitter per the manufacturer's procedure for full rated system deviation. - 3) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for ≤0.25 Hz to ≥15,000 Hz. Turn the de-emphasis function off. - 4) Apply Input Modulation Signal to EUT according to Section 4.2 and vary the input level from –20 to +20dB. - Measure both the instantaneous and steady-state deviation at and after the time of increasing the audio input level - 6) Repeat step 4-5 with input frequency changing to 300Hz, 1004Hz, 1500Hz and 2500Hz in sequence. ### **TEST MODE** Refer to the section 4.2 #### **TEST RESULT** # **TEST DATA** Report No.: CHTEW23070005 Page: 17 of 42 Issued: 2023-07-06 # 5.5 Audio frequency response #### LIMIT FCC Part2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted. An additional 6 dB per octave attenuation is allowed from 2500 Hz to 3000 Hz in equipment operating in the 25 MHz to 869 MHz range. #### TEST CONFIGURATION #### **TEST PROCEDURE** - Connect the equipment as illustrated. - 2) Set the test receiver to measure peak positive deviation. Set the audio bandwidth for 50 Hz to 15,000 Hz. Turn the de-emphasis function off. - 3) Set the DMM to measure rms voltage. - 4) Adjust the transmitter per the manufacturer's procedure for full rated system deviation. - 5) Apply Input Modulation Signal to EUT according to Section 4.2 - 6) Set the test receiver to measure rms deviation and record the deviation reading. - 7) Record the DMM reading as V_{RFF} . - 8) Set the audio frequency generator to the desired test frequency between 300 Hz and 3000 Hz. - Vary the audio frequency generator output level until the deviation reading that was recorded in step 6) is obtained. - 10) Record the DMM reading as V_{FREO} - 11) Calculate the audio frequency response at the present frequency as: audio frequency response=20log₁₀ (V_{FREQ}/V_{REF}). - 12) Repeat steps 8) through 11) for all the desired test frequencies Report No.: CHTEW23070005 Page: 18 of 42 Issued: 2023-07-06 # **TEST MODE** Refer to the section 4.2 # **TEST RESULT** # **TEST DATA** Report No.: CHTEW23070005 Page: 19 of 42 Issued: 2023-07-06 # 5.6 Frequency stability VS temperature <u>LIMIT</u> FCC Part 90.213, FCC Part 2.1055 | | | Mobile stations | | | |--------------------------|-------------------------|---------------------------|------------------------------|--| | Frequency range (MHz) | Fixed and base stations | Over 2 watts output power | 2 watts or less output power | | | Below 25 | 1 2 3100 | 100 | 200 | | | 25-50 | 20 | 20 | 50 | | | 72-76 | 5 | | 50 | | | 150-174 | 5 11 5 | 6 ₅ | ⁴⁶ 50 | | | 216-220 | 1.0 | | 1.0 | | | 220-222 ¹² | 0.1 | 1.5 | 1.5 | | | 421-512 | 7 11 142.5 | 85 | ⁸ 5 | | | 806-809 | 141.0 | 1.5 | 1.5 | | | 809-824 | 141.5 | 2.5 | 2.5 | | | 851-854 | 1.0 | 1.5 | 1.5 | | | 854-869 | 1.5 | 2.5 | 2.5 | | | 896-901 | 140.1 | 1.5 | 1.5 | | | 902-928 | 2.5 | 2.5 | 2.5 | | | 902-928 ¹³ | 2.5 | 2.5 | 2.5 | | | 929-930 | 1.5 | | | | | 935-940 | 0.1 | 1.5 | 1.5 | | | 1427-1435 | ⁹ 300 | 300 | 300 | | | Above 2450 ¹⁰ | | | | | #### **TEST CONFIGURATION** #### **TEST PROCEDURE** - 1) The EUT output port was connected to communication tester. - 2) The EUT was placed inside the temperature chamber. - 3) Turn EUT off and set the chamber temperature to -30 °C. After the temperature stabilized for approximately 30 minutes recorded the frequency as MCF_{MHz} . - 4) Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz - 5) Repeat step 3 measure with 10°C increased per stage until the highest temperature of +50°C reached. ## TEST MODE Refer to the section 4.2 ## **TEST RESULT** ## **TEST DATA** Report No.: CHTEW23070005 Page: 20 of 42 Issued: 2023-07-06 # 5.7 Frequency stability VS voltage <u>LIMIT</u> FCC Part 90.213, FCC Part 2.1055 | | | Mobile stations | | | |--------------------------|-------------------------|---------------------------|------------------------------|--| | Frequency range (MHz) | Fixed and base stations | Over 2 watts output power | 2 watts or less output power | | | Below 25 | ^{1 2 3} 100 | 100 | 200 | | | 25-50 | 20 | 20 | 50 | | | 72-76 | 5 | | 50 | | | 150-174 | 5 115 | ⁶ 5 | ^{4 6} 50 | | | 216-220 | 1.0 | | 1.0 | | | 220-222 ¹² | 0.1 | 1.5 | 1.5 | | | 421-512 | 7 11 142.5 | 85 | 85 | | | 806-809 | 141.0 | 1.5 | 1.5 | | | 809-824 | 141.5 | 2.5 | 2.5 | | | 851-854 | 1.0 | 1.5 | 1.5 | | | 854-869 | 1.5 | 2.5 | 2.5 | | | 896-901 | 140.1 | 1.5 | 1.5 | | | 902-928 | 2.5 | 2.5 | 2.5 | | | 902-928 ¹³ | 2.5 | 2.5 | 2.5 | | | 929-930 | 1.5 | | | | | 935-940 | 0.1 | 1.5 | 1.5 | | | 1427-1435 | ⁹ 300 | 300 | 300 | | | Above 2450 ¹⁰ | | | | | #### **TEST CONFIGURATION** ## **TEST PROCEDURE** - 1) The EUT output port was connected to communication tester. - 2) The EUT was placed inside the temperature chamber at 25°C - 3) Record the carrier frequency of the transmitter as MCF_{MHZ} - 4) Calculate the ppm frequency error by the following: ppm error=(MCF_{MHZ}/ACF_{MHZ}-1)*10⁶ where MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz - 5) Repeat step 3 measure with varied ±15% of the nominal value measured at the input to the EUT ## **TEST MODE** Refer to the section 4.2 #### **TEST RESULT** #### **TEST DATA** Report No.: CHTEW23070005 Page: 21 of 42 Issued: 2023-07-06 # 5.8 Transmitter frequency behavior #### LIMIT #### FCC part 90.214 Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum frequency difference limits during the time intervals indicated: | | Maximum
frequency | All equipment | | |-------------------------------|---------------------------|----------------------------|------------------------| | Time intervals ^{1 2} | difference ³ | 150 to 174 MHz | 421 to 512 MHz | | Transient | Frequency Behavior for E | quipment Designed to Opera | te on 25 kHz Channels | | t ₁ 4 | ±25.0 kHz | 5.0 ms | 10.0 ms | | t ₂ | ±12.5 kHz | 20.0 ms | 25.0 ms | | 4 | ±25.0 kHz | 5.0 ms | 10.0 ms | | Transient | Frequency Behavior for Eq | uipment Designed to Operat | e on 12.5 kHz Channels | | 4 | ±12.5 kHz | 5.0 ms | 10.0 ms | | -2 | ±6.25 kHz | 20.0 ms | 25.0 ms | | 4 | ±12.5 kHz | 5.0 ms | 10.0 ms | | Transient | Frequency Behavior for Eq | uipment Designed to Operat | e on 6.25 kHz Channels | | 14 | ±6.25 kHz | 5.0 ms | 10.0 ms | | -2 | ±3.125 kHz | 20.0 ms | 25.0 ms | | t ₃ ⁴ | ±6.25 kHz | 5.0 ms | 10.0 ms | #### Note: - 1. On is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. - 1) t₁ is the time period immediately following ton. - 2) t₂ is the time period immediately following t₁. - 3) t₃ is the time period from the instant when the transmitter is turned off until toff. - 4) t_{off} is the instant when the 1 kHz test signal starts to rise. - During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in §90.213. - 3. Difference between the actual transmitter frequency and the assigned transmitter frequency. - If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period. ## **TEST CONFIGURATION** ## **TEST PROCEDURE** - a) Connect test equipment as shown in above figure - Verify RF attenuator power rating for EUT providing adequate protection to the combining network and measurement equipment. - c) Tune spectrum analyzer center frequency to EUT frequency and span to at least 100 kHz. Set amplitude according to EUT RF power. - d) Switch transmitter on and adjust settings in accordance with step c); switch transmitter to the off position. - e) Set analyzer to FM mode; re-tune analyzer to EUT frequency and span according to step c), while in FM demodulation mode. - f) An RF test signal of the same frequency as the EUT from the signal generator shall be modulated by a frequency of 1 kHz with a deviation equal to plus or minus the value of the channel spacing (separation). The RF signal strength shall be adjusted allowing the analyzer to demodulate the signal in FM mode. - g) Adjust analyzer x axis to capture at least 100 ms of demodulated signal. - h) Adjust analyzer y axis for the correct deviation amplitude. - The analyzer display should show a continuous 1 kHz signal and the channel spacing deviation amplitude. Report No.: CHTEW23070005 Page: 22 of 42 Issued: 2023-07-06 j) Change analyzer settings to single sweep and external trigger. For newer analyzers, the channel bandwidth might have to be adjusted for the correct sample rate and sweep speed. - k) Turn on EUT and adjust analyzer to display desired signal by adjusting trigger settings and considerations in step j). Turn off EUT. - I) Repeat step k) until optimum set-up is achieved. - m) Start measurement by turning on EUT. Observe measurements results in analyzer display, EUT_{ON} starts at the moment the 1 kHz signal is suppressed (t2). See Figure 11 for transient frequency behavior with switch on. - n) Record values observed in step m) as frequency difference versus time. - o) Turn off EUT. EUT_{OFF} is considered at the start of the 1 kHz signal defined as t3. See Figure 12 for transient frequency behavior with switch off. - p) Record the values observed in step o) as frequency difference versus time. #### TEST MODE Refer to the section 4.2 | TEST | RESUL 1 | ĺ | |-------------|----------------|---| |-------------|----------------|---| #### **TEST DATA** Report No.: CHTEW23070005 Page: 23 of 42 Issued: 2023-07-06 ## 5.9 Transmit conducted spurious emission #### **LIMIT** FCC Part 90.210, FCC Part 2.1051 **Emission Mask D**—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows: (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation. In general, the worse case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-50-10log (P) EL is the emission level of the Output Power expressed in dBm, Limit (dBm) = P(dBm)-50-10 log (Pwatts) = -20dBm #### **TEST CONFIGURATION** ### TEST PROCEDURE - 1. Connect the equipment as illustrated, with the notch filter by-passed. - Apply Input Modulation Signal to EUT according to Section 4.2 - 3. Adjust the spectrum analyzer for the following settings: Below 1GHz: RBW=100kHz, VBW=300kHz Above 1GHz: RBW=1MHz, VBW=3MHz Detector=Peak, Sweep time=Auto, Trace=Max hold - 4. Scan frequency range up to 10th harmonic. - 5. Record the frequencies and levels of spurious emissions ## **TEST MODE** Refer to the section 4.2 #### **TEST RESULT** #### **TEST DATA** Report No.: CHTEW23070005 Page: 24 of 42 Issued: 2023-07-06 # 5.10 Transmitter radiated spurious emission ## LIMIT FCC Part 90.210, FCC Part 2.1051 **Emission Mask D**—12.5 kHz channel bandwidth equipment. For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows: (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation. In general, the worse case attenuation requirement shown above was applied. Calculation: Limit (dBm) =EL-50-10log (P) EL is the emission level of the Output Power expressed in dBm, Limit (dBm) = P(dBm)-50-10 log (Pwatts) = -20dBm ## **TEST CONFIGURATION** #### Below 1GHz: #### **Above 1GHz:** Report No.: CHTEW23070005 Page: 25 of 42 Issued: 2023-07-06 #### **TEST PROCEDURE** - 1. Place the EUT in the center of the turntable. - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane. - 2. Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels. - 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode. - 4. Receiver or Spectrum set as follow: - Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto - Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto - 5. Each emission under consideration shall be evaluated: - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height. - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position. - c) Return the turntable to the azimuth where the highest emission amplitude level was observed. - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude. - e) Record the measured emission amplitude level and frequency - 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude. - Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement. - 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna. - 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor. - 10. For each emission that was detected and measured in the initial test - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude. - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6. - c) Record the output power level of the signal generator when equivalence is achieved in step b). - 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization. - 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation: Pe = Ps(dBm) cable loss (dB) + antenna gain (dBd) where Pe = equivalent emission power in dBm Ps = source (signal generator) power in dBm - NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole. - 13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from: gain (dBd) = gain (dBi) 2.15 dB. If necessary, the antenna gain can be calculated from calibrated antenna factor information Report No.: CHTEW23070005 Page: 26 of 42 Issued: 2023-07-06 14. Provide the complete measurement results as a part of the test report. ## **TEST MODE** Refer to the section 4.2 # **TEST RESULT** # **TEST DATA** Refer to the below test data Report No.: CHTEW23070005 Page: 27 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 28 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 29 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 30 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 31 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 32 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 33 of 42 Issued: 2023-07-06 # 6 TEST SETUP PHOTOS Report No.: CHTEW23070005 Page: 34 of 42 Issued: 2023-07-06 # **EXTERNAL AND INTERNAL PHOTOS** #### 7.1 **External photos** Report No.: CHTEW23070005 Page: 35 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 36 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 37 of 42 Issued: 2023-07-06 # UP305 Report No.: CHTEW23070005 Page: 38 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 39 of 42 Issued: 2023-07-06 # 1.3. Internal Photos ## **UP405S** Report No.: CHTEW23070005 Page: 40 of 42 Issued: 2023-07-06 Report No.: CHTEW23070005 Page: 41 of 42 Issued: 2023-07-06 ## UP305 Report No.: CHTEW23070005 Page: 42 of 42 Issued: 2023-07-06 # 8 APPENDIX REPORT