TEST REPORT

Report No....: CHTEW22080249 Report Verification:

Project No.....

Applicant's name.....:

Address.....:

SHT2204094504EW

FCC ID.....:: **Q5EUP305**

Kirisun Communication Co.,Ltd.

Langshan Road, Nanshan District, Shenzhen 518057, P.R.China

3rd Floor, Building A, Tongfang Information Habour, No.11

Test item description: **DMR Two Way Radio**

Trade Mark: **KIRISUN**

Model/Type reference..... **UP305**

Listed Model(s):

FCC CFR Title 47 Part 15 Subpart B Standard::

Date of receipt of test sample..... Jun.29, 2022

Date of testing..... Jun.30, 2022-Aug.12, 2022

Date of issue.....: Aug.15, 2022

Result....: **PASS**

Compiled by

(Position - Printed name - Signature): File administrators Fanghui Zhu

Supervised by

(Position - Printed name - Signature): Project Engineer Caspar Chen Janghwi Zhu Caspar Chen

Approved by

(Position-Printed name-Signature): RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Address....:

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

The test report merely corresponds to the test sample.

Report No.: CHTEW22080249 Page: 2 of 16 Issued: 2022-08-15

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	<u> ა</u>
1.1. 1.2.	Test Standards	3 3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	<u>5</u>
3.1.	Client information	5
3.2.	Product description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	7
4.1.	Operation mode	7
4.2.	Support unit used in test configuration and system	7
4.3.	Testing environmental condition	7
4.4.	Statement of the measurement uncertainty	7
4.5.	Equipments Used during the Test	8
<u>5.</u>	TEST CONDITIONS AND RESULTS	9
5.1.	Conducted Emissions	9
5.1. 5.2.	Radiated Emissions	9 11
J. L .	Nadiated Lillipololio	• • •
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	. 15
7.	EXTERNAL AND INTERNAL PHOTOS OF THE EUT	. 16

Report No.: CHTEW22080249 Page: 3 of 16 Issued: 2022-08-15

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

FCC CFR Title 47 Part 15 Subpart B - Unintentional Radiators

<u>ANSI C63.4: 2014</u> – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz

1.2. Report version

Revision No.	Date of issue	Description
N/A	2022-08-15	Original

Report No.: CHTEW22080249 Page: 4 of 16 Issued: 2022-08-15

2. TEST DESCRIPTION

Section	Test Item	Section in CFR 47	Result	Test Engineer
5.1	Conducted Emissions	15.107(a)	Pass	Quanhai Deng
5.2	Radiated Emissions	15.109(a)	Pass	Dongyang Wu

Note:

1. The measurement uncertainty is not included in the test result.

Report No.: CHTEW22080249 Page: 5 of 16 Issued: 2022-08-15

3. **SUMMARY**

3.1. Client information

Applicant: Kirisun Communication Co.,Ltd.	
Address: 3rd Floor, Building A, Tongfang Information Habour, No.11 Langshar Nanshan District, Shenzhen 518057, P.R.China	
Manufacturer:	Kirisun Communication Co.,Ltd.
Address:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China

3.2. Product description

Name of EUT:	DMR Two Way Radio
Trade mark:	KIRISUN
Model/Type reference:	UP305
Listed model(s):	-
Power supply:	DC 7.40V From Battery
Adapter information:	Model: FJ-SW126K0900500DU
	Input: 100-240Vd.c., 50/60Hz 0.4A
	Output: 9.0Va.c., 0.5A

3.3. Radio Specification Description

Support Frequency Range:	400MHz~470MHz		
Rated Output Power:	⊠ High Power: 4W	⊠ Low Power: 1W	
Modulation Type:	Analog:	FM	
Modulation Type:	Digital :	4FSK	
Supported Digital Protocol:	Digital Protocol: DMR		
Channel Canaration	Analog:	⊠ 12.5kHz	
Channel Separation:	Digital :	☐ 6.25kHz	⊠ 12.5kHz
Emission Designator:	Analog:	11K0F3E	
Emission Designator:	Digital:	7K60FXW, 7K60FXD	
Support data rate: 9.6kbps			
Antenna Type:	SMA		
Antenna Gain:	2dBi		

Report No.: CHTEW22080249 Page: 6 of 16 Issued: 2022-08-15

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.		
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China		
Tel: 86-755-26715499			
Connect information:	E-mail: cs@szhtw.com.cn		
	http://www.szhtw.com.cn		
	Туре	Accreditation Number	
Qualifications	FCC Test Firm Registration Number	762235	
	FCC Designation Number	CN1181	

Report No.: CHTEW22080249 Page: 7 of 16 Issued: 2022-08-15

4. TEST CONFIGURATION

4.1. Operation mode

Test mode	Describe
Charging mode	Keep the EUT in charging mode, but the EUT shut down.
Receive mode	Keep the EUT in receiving mode, but don't charging.

Receive frequency: 406.1125MHz

Section	Test item	Test mode
5.1	Conducted emissions	Charging mode
5.2	Radiated emissions	Charging mode

Only show the test data for worse case mode on the test report.

4.2. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?			
✓ No			
Item	Equipement	Trade Name	Model No.
1			
2			

4.3. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.4. Statement of the measurement uncertainty

Test	Frequency range	Measurement uncertainty
Radiated Emission	30~1000MHz	4.90 dB
Radiated Emission	1~18GHz	4.96 dB
Conducted Disturbance	0.15~30MHz	3.02 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No.: CHTEW22080249 Page: 8 of 16 Issued: 2022-08-15

4.5. Equipments Used during the Test

•	Conducted Emission										
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	2018/09/28	2023/09/27				
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2021/09/14	2022/09/13				
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2021/09/17	2022/09/16				
•	Pulse Limiter	R&S	HTWE0193	ESH3-Z2	101447	2021/09/16	2022/09/15				
•	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	2021/09/17	2022/09/16				
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A				

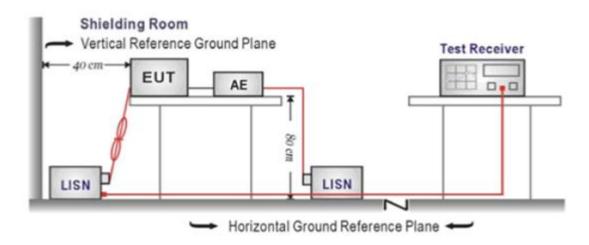
•	Radiated Emission-6th test site										
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)				
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2018/09/30	2022/09/29				
•	EMI Test Receiver	R&S	HTWE0099	ESCI	100900	2021/09/14	2022/09/13				
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0119	VULB9163	546	2020/04/28	2023/04/27				
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	N/A	2021/11/05	2022/11/04				
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-01	N/A	N/A	2022/02/25	2023/02/24				
•	RF Connection Cable	HUBER+SUHN ER	HTWE0062-02	SUCOFLEX10 4	501184/4	2022/02/25	2023/02/24				
•	Test Software	R&S	N/A	ES-K1	N/A	N/A	N/A				

•	Radiated emission-7th test site											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2018/09/27	2022/09/26					
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2021/09/13	2022/09/12					
•	Horn Antenna	SCHWARZBE CK	HTWE0126	9120D	1011	2020/04/01	2023/03/31					
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0201	BBV 9718	9718-248	2022/02/28	2023/02/27					
•	RF Connection Cable	HUBER+SUH NER	HTWE0126-01	RE-7-FH	N/A	2022/03/04	2023/03/03					
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A					

Report No.: CHTEW22080249 Page: 9 of 16 Issued: 2022-08-15

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Emissions


LIMIT

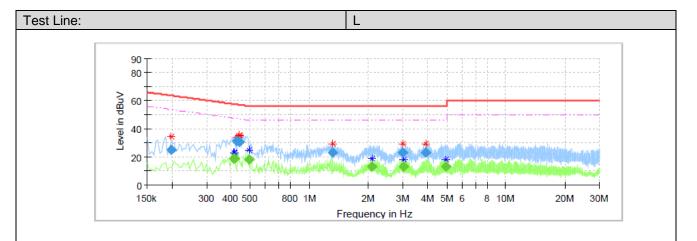
FCC CFR Title 47 Part 15 Subpart B Section 15.107:

Frequency range (MHz)	Limit (dBuV)				
Frequency range (IVITIZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

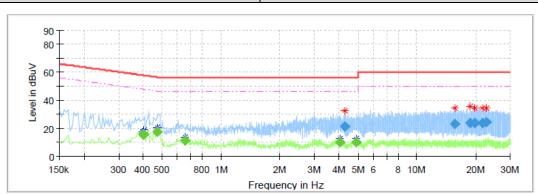
TEST PROCEDURE


- 1. The EUT was setup according to ANSI C63.4
- 2. The EUT was placed on a plat form of nominal size, 1 m by 1.5 m, raised 10 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 10 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedance stabilization network (LISN). The LISN provides a 50ohm / 50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.1

TEST RESULTS


 Report No.: CHTEW22080249 Page: 10 of 16 Issued: 2022-08-15

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)		(dB)
0.199500	24.93		63.63	38.70	L1	10.1
0.411500		18.77	47.62	28.85	L1	10.1
0.415500		18.53	47.54	29.01	L1	10.1
0.427500	31.07		57.30	26.24	L1	10.1
0.443500	30.68		57.00	26.31	L1	10.1
0.491500		18.16	46.14	27.98	L1	10.1
1.319500	22.92		56.00	33.08	L1	10.1
2.076500		13.14	46.00	32.86	L1	10.1
2.995500	23.15	-	56.00	32.85	L1	10.2
3.015500		13.08	46.00	32.92	L1	10.2
3.895500	22.88		56.00	33.12	L1	10.3
4.943500		12.87	46.00	33.13	L1	10.3

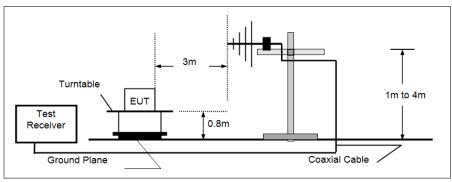
Test Line: N

Final Result

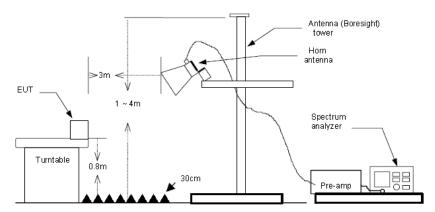
Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)		(dB)
0.399500	-	15.56	47.86	32.30	N	10.1
0.403500		15.42	47.78	32.36	N	10.1
0.471500		17.57	46.49	28.91	N	10.1
0.655500		11.01	46.00	34.99	N	10.2
4.036500	-	9.88	46.00	36.12	N	10.3
4.303500	21.00		56.00	35.00	N	10.3
4.931500	-	10.23	46.00	35.77	N	10.3
15.659500	23.42		60.00	36.58	N	10.6
18.663500	23.62	-	60.00	36.38	N	10.7
19.759500	23.73	-	60.00	36.27	N	10.7
21.767500	24.04	-	60.00	35.96	N	10.7
22.699500	24.39		60.00	35.61	N	10.8

Report No.: CHTEW22080249 Page: 11 of 16 Issued: 2022-08-15

5.2. Radiated Emissions


LIMIT

FCC CFR Title 47 Part 15 Subpart B Section 15.109


Frequency	Limit (dBuV/m @3m)	Value					
30MHz-88MHz	40.00	Quasi-peak					
88MHz-216MHz	43.50	Quasi-peak					
216MHz-960MHz	46.00	Quasi-peak					
960MHz-1GHz	54.00	Quasi-peak					
Above 1GHz	54.00	Average					
Above IGIIZ	74.00	Peak					

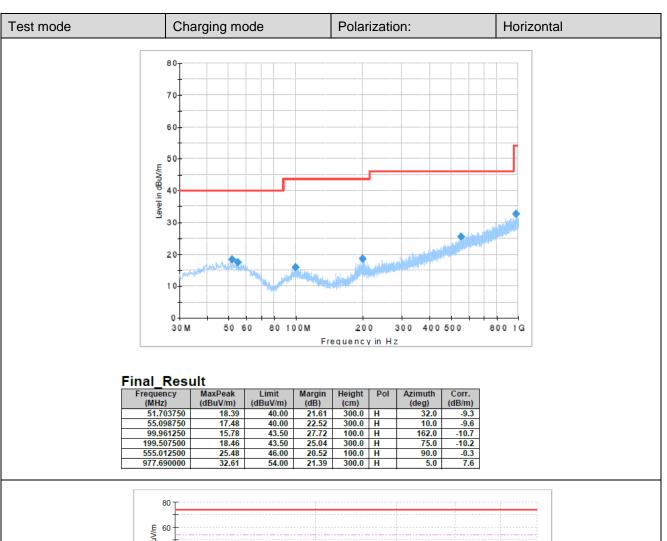
TEST CONFIGURATION

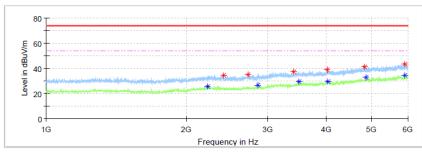
➤ 30MHz ~ 1GHz

Above 1GHz

TEST PROCEDURE

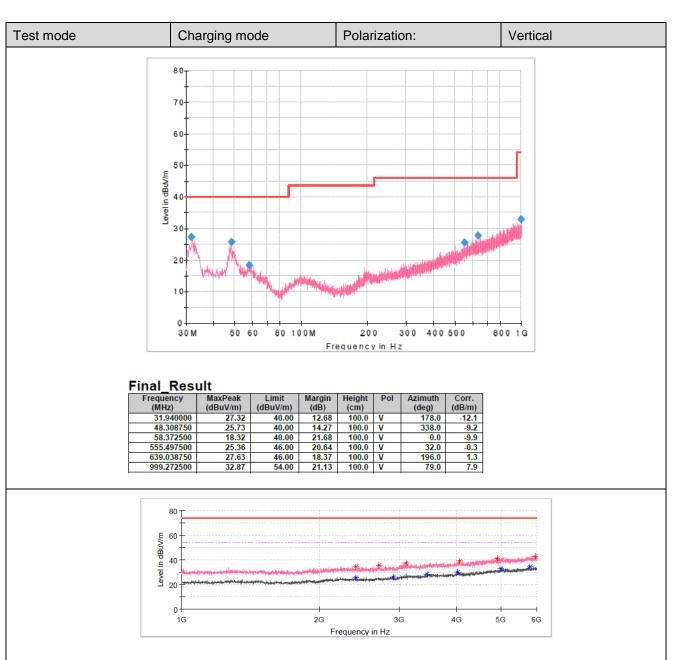
- 1. The EUT was tested according to ANSI C63.4.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground.
- 3. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 4. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz,
 - RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the quasi-peak detector and reported.
 - (3) From 1GHz to 5th harmonic, RBW=1MHz, VBW=3MHz


 Report No.:
 CHTEW22080249
 Page:
 12 of 16
 Issued:
 2022-08-15


 TEST MODE:

Please refer to the clause 4.1

TEST RESULTS


Note: Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of frequency above 6GHz are very lower than limit and not show in test report.

Critical Freqs

Official_fit	cqs							
Frequency	MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)
2411.250000	34.58		74.00	39.42	150.0	Н	0.0	-4.9
2716.250000	34.82		74.00	39.18	150.0	Н	0.0	-4.1
5920.000000		34.63	54.00	19.37	150.0	Н	0.0	8.3
2222.500000		25.48	54.00	28.52	150.0	Н	3.0	-5.0
4875.000000		32.64	54.00	21.36	150.0	Н	3.0	5.2
5913.125000	43.18		74.00	30.82	150.0	Н	3.0	8.2
4838.750000	40.86		74.00	33.14	150.0	Н	63.0	5.1
3413.125000	37.35	-	74.00	36.65	150.0	Н	76.0	-2.3
2853.750000		26.40	54.00	27.60	150.0	Н	173.0	-3.8
4021.250000	39.10		74.00	34.90	150.0	Н	173.0	0.7
3502.500000		29.35	54.00	24.65	150.0	Н	187.0	-1.4
4043.750000		29.72	54.00	24.28	150.0	Н	275.0	0.7

_			_	
•	rit	100		reas
$\mathbf{-}$	IIL	ıca		Eu3

Critical_Freqs								
Frequency	MaxPeak	Average	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)		(deg)	(dB/m)
2909.375000		25.86	54.00	28.14	150.0	٧	0.0	-3.8
3451.875000		28.18	54.00	25.82	150.0	٧	0.0	-1.7
2404.375000	34.44	I	74.00	39.56	150.0	٧	40.0	-4.8
2404.375000		25.40	54.00	28.60	150.0	٧	40.0	-4.8
4020.625000		30.07	54.00	23.93	150.0	٧	99.0	0.6
2706.250000	35.29		74.00	38.71	150.0	٧	243.0	-4.0
4906.875000	41.13	-	74.00	32.87	150.0	٧	285.0	5.5
5794.375000		34.23	54.00	19.77	150.0	٧	285.0	7.9
5949.375000	42.95		74.00	31.05	150.0	٧	285.0	8.5
5005.625000	-	32.51	54.00	21.49	150.0	٧	299.0	5.8
4066.250000	39.05	I	74.00	34.95	150.0	٧	313.0	8.0
3095.000000	37.01		74.00	36.99	150.0	V	341.0	-3.2

Report No.: CHTEW22080249 Page: 15 of 16 Issued: 2022-08-15

6. TEST SETUP PHOTOS OF THE EUT

Conducted Emissions (AC Mains)

Radiated Emissions

Report No.: CHTEW22080249 Page: 16 of 16 Issued: 2022-08-15

7. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

Refer to the test report No.: CHTEW22080248

-----End of Report-----