EUT PHOTOGRAPHS TOTAL VIEW OF EUT TOP VIEW OF EUT # **BOTTOM VIEW OF EUT** FRONT VIEW OF EUT # **BACK VIEW OF EUT** LEFT VIEW OF EUT # RIGHT VIEW OF EUT **OPEN VIEW-1 OF EUT** # **OPEN VIEW-2 OF EUT** **INTERNAL VIEW-1 OF EUT** # **INTERNAL VIEW-2 OF EUT** # APPENDIX D. PROBE CALIBRATION DATA # COMOSAR E-Field Probe Calibration Report Ref: ACR.351.1.14.SATU.A # ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. 1&2F, NO.2 BUILDING, HUAFENG NO.1 INDUSTRIAL PARK, GUSHU COMMUNITY XIXIANG STREET BAOAN DISTRICT, SHENZHEN, P.R. CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 22/12 EP159 Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 01/12/14 ### Summary: This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions. Ref: ACR.351.1.14.SATU.A | | Name | Function | Date | Signature | |--------------|---------------|-----------------|-----------|-----------------| | Prepared by: | Jérôme LUC | Product Manager | 1/12/2014 | JE | | Checked by : | Jérôme LUC | Product Manager | 1/12/2014 | 255 | | Approved by: | Kim RUTKOWSKI | Quality Manager | 1/12/2014 | from Pruthowski | Customer Name Distribution: ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. | Issue | Date | Modifications | |-------|-----------|-----------------| | A | 1/12/2014 | Initial release | | | | | | | | | | | | | Ref. ACR.351.1.14.SATU.A ### TABLE OF CONTENTS | 1 | Dev | ice Under Test | | |---|------|-------------------------------|---| | 2 | Prod | luct Description | | | | 2.1 | General Information | 4 | | 3 | Mea | surement Method4 | | | | 3.1 | Linearity | 4 | | | 3.2 | Sensitivity | | | | 3.3 | Lower Detection Limit | | | | 3.4 | Isotropy | 5 | | | 3.5 | Boundary Effect | 5 | | 4 | Mea | surement Uncertainty | | | 5 | Cali | bration Measurement Results 6 | | | | 5.1 | Sensitivity in air | 6 | | | 5.2 | Linearity | 7 | | | 5.3 | Sensitivity in liquid | 7 | | | 5.4 | Isotropy | 8 | | 6 | List | of Equipment | | Ref. ACR.351.1.14.SATU.A ### 1 DEVICE UNDER TEST | Device Under Test | | | | |--|----------------------------------|--|--| | Device Type | COMOSAR DOSIMETRIC E FIELD PROBE | | | | Manufacturer | Satimo | | | | Model | SSE5 | | | | Serial Number | SN 22/12 EP159 | | | | Product Condition (new / used) | used | | | | Frequency Range of Probe | 0.3 GHz-3GHz | | | | Resistance of Three Dipoles at Connector | Dipole 1: R1=0.230 MΩ | | | | | Dipole 2: R2=0.226 MΩ | | | | | Dipole 3: R3=0.231 MΩ | | | A yearly calibration interval is recommended. ### 2 PRODUCT DESCRIPTION ### 2.1 GENERAL INFORMATION Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. Figure 1 - Satimo COMOSAR Dosimetric E field Dipole | Probe Length | 330 mm | |--|--------| | Length of Individual Dipoles | 4.5 mm | | Maximum external diameter | 8 mm | | Probe Tip External Diameter | 5 mm | | Distance between dipoles / probe extremity | 2.7 mm | ### 3 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards. ### 3.1 LINEARITY The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg. Page: 4/10 Ref. ACR 351 1.14 SATU A ### 3.2 <u>SENSITIVITY</u> The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards. #### 3.3 LOWER DETECTION LIMIT The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg. ### 3.4 ISOTROPY The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$. ### 3.5 BOUNDARY EFFECT The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface. ### 4 MEASUREMENT UNCERTAINTY The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. | Uncertainty analysis of the probe calibration in waveguide | | | | | | | |--|--------------------------|-----------------------------|------------|----|-----------------------------|--| | ERROR SOURCES | Uncertainty
value (%) | Probability
Distribution | Divisor | ci | Standard
Uncertainty (%) | | | Incident or forward power | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | | Reflected power | 3.00% | Rectangular | √3 | 1 | 1.732% | | | Liquid conductivity | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | | | Liquid permittivity | 4.00% | Rectangular | √3 | 1 | 2.309% | | | Field homogeneity | 3.00% | Rectangular | $\sqrt{3}$ | 1 | 1.732% | | | Field probe positioning | 5.00% | Rectangular | $\sqrt{3}$ | 1 | 2.887% | | | Field probe linearity | 3.00% | Rectangular | √3 | 1 | 1.732% | | Page: 5/10 Ref: ACR.351.1.14.SATU.A | Combined standard uncertainty | | | 5.831% | |---|--|--|---------| | Expanded uncertainty
95 % confidence level k = 2 | | | 11.662% | # 5 CALIBRATION MEASUREMENT RESULTS | Calibration Parameters | | | | | |--------------------------|-------|--|--|--| | Liquid Temperature 21 °C | | | | | | Lab Temperature | 21 °C | | | | | Lab Humidity | 45 % | | | | # 5.1 SENSITIVITY IN AIR | Normx dipole
1 (µV/(V/m) ²) | Normy dipole $2 \left(\mu V / (V/m)^2 \right)$ | Normz dipole | |--|---|--------------| | 5.41 | 4.68 | 5.48 | | DCP dipole 1 | DCP dipole 2 | DCP dipole 3 | |--------------|--------------|--------------| | (mV) | (mV) | (mV) | | 102 | 99 | 95 | Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula: $$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$ Dipole 1 Dipole 2 Dipole 3 Page: 6/10 Ref: ACR.3 1.1.1 .SATU.A ### 5.2 LINEARITY Linearity: I+/-1.97% (+/-0.09dB) ### 5.3 SENSITIVITY IN LIQUID | Liquid | Frequency
(MHz +/- | Permittivity | Epsilon (S/m) | ConvF | |--------|-----------------------|--------------|---------------|-------| | | 100MHz)* | | | | | HL300 | 300 | 45.27 | 0.85 | 4.60 | | BL300 | 300 | 58.01 | 0.94 | 4.68 | | HL450 | 450 | 42.87 | 0.89 | 4.71 | | BL450 | 450 | 56.37 | 0.93 | 4.83 | | HL850 | 835 | 41.12 | 0.91 | 5.27 | | BL850 | 835 | 55.03 | 0.97 | 5.48 | | HL900 | 900 | 40.77 | 0.98 | 5.20 | | BL900 | 900 | 55.49 | 1.04 | 5.28 | | HL1800 | 1750 | 39.22 | 1.38 | 4.58 | | BL1800 | 1750 | 53.27 | 1.51 | 4.71 | | HL1900 | 1880 | 39.54 | 1.41 | 4.51 | | BL1900 | 1880 | 52.88 | 1.55 | 4.45 | | HL2000 | 1950 | 38.97 | 1.45 | 4.31 | | BL2000 | 1950 | 52.01 | 1.58 | 4.33 | | HL2450 | 2450 | 39.17 | 1.85 | 4.42 | | BL2450 | 2450 | 52.47 | 1.99 | 4.31 | | | | | | | LOWER DETECTION LIMIT: 9mW/kg Page: 7/10 Ref: ACR.351.1.14.SATU.A # 5.4 ISOTROPY # HL900 MHz - Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.08 dB # HL1800 MHz - Axial isotropy: 0.07 dB - Hemispherical isotropy: 0.12 dB Page: 8/10 Ref: ACR.351.1.14.SATU.A # HL2450 MHz - Axial isotropy: 0.09 dB - Hemispherical isotropy: 0.14 dB Ref ACR 351.1.14 SATU A # 6 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | |----------------------------------|-------------------------|--------------------|---|---|--|--| | Equipment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | Flat Phantom | Satimo | SN-20/09-SAM71 | Validated. No cal
required. | Validated. No cal
required. | | | | COMOSAR Test Bench | Version 3 | NΛ | Validated. No cal
required. | Validated. No cal
required. | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN100132 | 02/2013 | 02/2016 | | | | Reference Probe | Satimo | EP 94 SN 37/08 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Multimeter | Keithley 2000 | 1188656 | 11/2013 | 11/2016 | | | | Signal Generator | Agilent E4438C | MY49070581 | 12/2013 | 12/2016 | | | | Amplifier | Aethercomm | SN 046 | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. | | | | Power Meter | HP E4418A | US38261498 | 11/2013 | 11/2016 | | | | Power Sensor | HP ECP-E26A | US3/181460 | 11/2013 | 11/2016 | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized prior to test. No cal required. | Characterized prior to tost. No cal required. | | | | Waveguide | Mega Industries | 069Y7-158-13-712 | Validated. No cal
required. | Validated. No cal
required. | | | | Waveguide Transition | Mega Industries | 069Y7-158-13-701 | Validated. No cal
required. | Validated. No cal
required. | | | | Waveguide Termination | Mega Industries | 069Y7-158-13-701 | Validated. No cal
required. | Validated. No cal
required. | | | | Temperature / Humidity
Sensor | Control Company | 11-661-9 | 3/2012 | 3/2014 | | | # APPENDIX E. DIPOLE CALIBRATION DATA # **SAR Reference Dipole Calibration Report** Ref: ACR.318.4.13.SATU.A # ATTESTATION OF GLOBAL COMPLIANCE CO. LTD. 1&2F, NO.2 BUILDING, HUAFENG NO.1 INDUSTRIAL PARK, GUSHU COMMUNITY XIXIANG STREET BAOAN DISTRICT, SHENZHEN, P.R. CHINA SATIMO COMOSAR REFERENCE DIPOLE FREQUENCY: 450 MHZ SERIAL NO.: SN 46/11 DIP 0G450-184 Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144 ### 11/14/13 # Summary: This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions. Ref: ACR.318.4.13.SATU.A | | Name | Function | Date | Signature | |---------------|---------------|-----------------|------------|-----------------| | Prepared by : | Jérôme LUC | Product Manager | 11/14/2013 | JES | | Checked by : | Jérôme LUC | Product Manager | 11/14/2013 | JES | | Approved by : | Kim RUTKOWSKI | Quality Manager | 11/14/2013 | thim Putthowski | | | Customer Name | |----------------|---------------| | | ATTESTATION | | Distribution : | OF GLOBAL | | Distribution: | COMPLIANCE | | | CO. LTD. | | Date | Modifications | |------------|-----------------| | 11/14/2013 | Initial release | | | | | | | | | | | | | Ref: ACR.318.4.13.SATU A ### TABLE OF CONTENTS | 1 | Intro | duction4 | | |---|-------|-----------------------------|---| | 2 | Devi | ce Under Test4 | | | 3 | Prod | uct Description4 | | | | 3.1 | General Information | 4 | | 4 | Mea | surement Method5 | | | | 4.1 | Return Loss Requirements | 5 | | | 4.2 | Mechanical Requirements | 5 | | 5 | Mea | surement Uncertainty | | | | 5.1 | Return Loss | 5 | | | 5.2 | Dimension Measurement | | | | 5.3 | Validation Measurement | | | 6 | Calil | oration Measurement Results | | | | 6.1 | Return Loss and Impedance | 6 | | | 6.2 | Mechanical Dimensions | 6 | | 7 | Valid | dation measurement | | | | 7.1 | Measurement Condition | 7 | | | 7.2 | Head Liquid Measurement | 7 | | | 7.3 | Measurement Result | | | | 7.4 | Body Measurement Result | 5 | | 8 | List | of Equipment | | Ref. ACR.318.4.13.SATU.A ### 1 INTRODUCTION This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards. ### 2 DEVICE UNDER TEST | Device Under Test | | | | |--------------------------------------|----------------------------------|--|--| | Device Type | COMOSAR 450 MHz REFERENCE DIPOLE | | | | Manufacturer | Satimo | | | | Model | SID450 | | | | Serial Number SN 46/11 DIP 0G450-184 | | | | | Product Condition (new / used) Used | | | | A yearly calibration interval is recommended. # 3 PRODUCT DESCRIPTION ### 3.1 GENERAL INFORMATION Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only. Figure 1 – Satimo COMOSAR Validation Dipole Page: 4/10 Ref. ACR.318.4.13.SATU.A ### 4 MEASUREMENT METHOD The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards. ### 4.1 RETURN LOSS REQUIREMENTS The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards. ### 4.2 MECHANICAL REQUIREMENTS The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. ### 5 MEASUREMENT UNCERTAINTY All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty. ### 5.1 RETURN LOSS The following uncertainties apply to the return loss measurement: | Frequency band | Expanded Uncertainty on Return Loss | | | |----------------|-------------------------------------|--|--| | 400-6000MHz | 0.1 dB | | | ### 5.2 <u>DIMENSION MEASUREMENT</u> The following uncertainties apply to the dimension measurements: | Length (mm) | Expanded Uncertainty on Length | | |-------------|--------------------------------|--| | 3 - 300 | 0.05 mm | | ### 5.3 VALIDATION MEASUREMENT The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements. | Scan Volume | Expanded Uncertainty | |-------------|----------------------| | 1 g | 20.3 % | | 10 g | 20.1 % | Page: 5/10 Ref: ACR.318.4.13.SATU.A ### 6 CALIBRATION MEASUREMENT RESULTS ### 6.1 RETURN LOSS AND IMPEDANCE | Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | |-----------------|------------------|------------------|-----------------------------| | 450 | -23.78 | -20 | $54.9 \Omega + 5.1 j\Omega$ | ### 6.2 MECHANICAL DIMENSIONS | Frequency MHz | L mm | | h m | h mm | | d mm | | |---------------|-------------|----------|-------------|----------|-----------|----------|--| | | required | measured | required | measured | required | measured | | | 300 | 420.0 ±1 %. | | 250.0 ±1 %. | | 6.35±1%. | | | | 450 | 290.0 ±1 %. | PASS | 166.7±1%. | FASS | 6.35±1%. | PASS | | | 750 | 176.0 ±1 %. | | 100.0 ±1 %. | | 6.35±1%. | | | | 835 | 161.0 +1 %. | | 89.8+1 %. | | 3.6 +1 %. | | | | 900 | 149.0 ±1 %. | | 83.3±1 %. | | 3.6 ±1 %. | | | | 1450 | 89.1 ±1 %. | | 51.7±1 %. | | 3.6 ±1 %. | | | | 1500 | 80.5 ±1 %. | | 50.0±1 %. | | 3.6 ±1 %. | | | | 1640 | 79.0 ±1 %. | | 45.7±1 %. | | 3.6 ±1 %. | | | | 1750 | 75.2 ±1 %. | | 42.9 ±1 %. | | 3.6 ±1 %. | | | | 1800 | 72.0 ±1 %. | | 41.7±1 % | | 3.6 ±1 %. | | | | 1900 | 68.0 ±1 %. | | 39.5±1 %. | | 3.6 ±1 %. | | | | 1950 | 66.3 ±1 %. | | 38.5 ±1 %. | | 3.6 ±1 %. | | | | 2000 | 645±1%. | | 37.5±1 %. | | 3.6 ±1 %. | | | | 2100 | 61.0 ±1 %. | | 35.7±1 %. | | 3.6 ±1 %. | | | | 2300 | 55.5 ±1 %. | | 32.6 ±1 %. | | 3.6 ⊥1 %. | | | | 2450 | 51.5 ±1 %. | | 30.4±1% | | 3.6 ±1 %. | | | | 2600 | 48.5 ±1 %. | | 28.8±1 %. | | 3.6 ±1 %. | | | | 3000 | 41.5 ±1 %. | | 25.0 ±1 %. | | 3.6 ±1 %. | | | | 3500 | 37.0±1%. | | 26.4±1 %. | | 3.6 ±1 %. | | | | 3700 | 34.7±1%. | | 26.4±1 %. | | 3.6 ±1 %. | | | Page: 6/10 Ref: ACR.318.4.13.SATU.A ### 7 VALIDATION MEASUREMENT The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom. ### 7.1 MEASUREMENT CONDITION | Scftware | OPENSAR V4 | |---|--| | Phantom | SN 20/09 SAM71 | | Probe | SN 18/11 EPG122 | | Liquid | Head Liquid Values: eps': 42.5 sigma: 0.86 | | Distance between dipole center and liquid | 15.0 mm | | Area scan resolution dx=8mm/dy=8mm | | | Zoon Scan Resolution dx=8mm/dy=8m/dz=5mm | | | Frequency 450 MHz | | | Input power | 20 dBm | | Liquid Temperature | 21 °C | | Lab Temperature | 21 °C | | Lab Humicity | 45 % | # 7.2 HEAD LIQUID MEASUREMENT | Frequency
MHz | Relative permittivity (&,') | | Conductiv | ity (o) \$/m | |------------------|-----------------------------|----------|-----------|--------------| | | required | measured | required | measured | | 300 | 45.3 ±5 % | | 0.87±5% | | | 450 | 43.5 ±5 % | PASS | 0.87±5% | PASS | | /50 | 41.9 ±5 % | | U.89 ±5 % | | | 835 | 41.5 ±5 % | | 0.90 ±5 % | | | 200 | 41.5 ±5 % | | 0.97±5% | | | 1450 | 40.5 ±5 % | | 1.20 ±5 % | | | 1500 | 40.4 ±5 % | | 1.23 ±5 % | | | 1640 | 40.2 ±5 % | | 1.31 ±5 % | | | 1750 | 40.1 ±5 % | | 1.37±5% | | | 1800 | 40.0 ±5 % | | 1.40 ±5 % | | | 1900 | 40.0 ±5 % | | 1.40 ±5 % | | | 1950 | 40.0 ±5 % | | 1.40 ±5 % | | | 2000 | 40.0 ±5 % | | 1.40 ±5 % | | | 2100 | 39.8 ±5 % | | 1.49 ±5 % | | | 2300 | 39.5 ±5 % | | 1.67±5% | | | 2450 | 39.2 ±5 % | | 1.80 ±5 % | | | 2600 | 39.0 ±5 % | | 1.96 ±5 % | | | 3000 | 38.5 ±5 % | | 2.40 ±5 % | | | 3500 | 37.9 ±5 % | | 2.91 ±5 % | | Page: 7/10 Ref: ACR.318.4.13.SATU.A ### 7.3 MEASUREMENT RESULT The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power. | Frequency
MHz | 1 g SAR (W/kg/W) | | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------|-------------------|-------------| | | required | measured | required | measured | | 300 | 2.85 | | 1.94 | | | 450 | 4.58 | 4.91 (0.49) | 3.06 | 3.13 (0.31) | | 750 | 8.49 | | 5.55 | | | 835 | 9.56 | | 6.22 | | | 900 | 10.9 | | 6.99 | | | 1450 | 29 | | 16 | | | 1500 | 30.5 | | 16.8 | | | 1640 | 34.2 | | 18.4 | | | 1750 | 36.4 | | 19.3 | | | 1000 | 30.4 | | 20.1 | | | 1900 | 39.7 | | 20.5 | | | 1950 | 40.5 | | 20.9 | | | 2000 | 41.1 | | 21.1 | | | 2100 | 43.6 | | 21.9 | | | 2300 | 48.7 | | 23.3 | | | 2 45 0 | 52.4 | | 24 | | | 2600 | 55.3 | | 24.6 | | | 3000 | 63.8 | | 25.7 | | | 3500 | 67.1 | | 25 | | Page: 3/10 Ref. ACR.318.4.13.SATU.A # 7.4 BODY MEASUREMENT RESULT | Software | OPENSAR V4 | | | |---|--|--|--| | Phantom | SN 20/09 SAM71 | | | | Probe | SN:8/11 EPG122 | | | | Liquid | Body Liquid Values: eps': 57.6 sigma: 0.98 | | | | Distance between dipole center and liquid | 15.0 mm | | | | Area scan resolution | dx=8mm/dy=8mm | | | | Zoon Scan Resolution | dx=8mm/dy=8m/dz=5mm | | | | Frequency | 450 MHz | | | | Input power | 20 dBm | | | | Liquid Temperature | 21°C | | | | Lab Temperature | 21 °C | | | | Lab Humidity | 45 % | | | | Frequency
MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) | | |------------------|------------------|-------------------|--| | | mea sure d | m easured | | | 450 | 5.07 (0.51) | 3.25 (0.38) | | Ref: ACR.318.4.13.SATU.A # 8 LIST OF EQUIPMENT | Equipment Summary Sheet | | | | | | | | |------------------------------------|-------------------------|--------------------|--|---|--|--|--| | E quip ment
Description | Manufacturer /
Model | Identification No. | Current
Calibration Date | Next Calibration
Date | | | | | SAN Phantom | Satimo | SN-20/09-SAM71 | Validated. No ca
required. | Validated. No cal
required. | | | | | COMOSAR Test Bench | Versicn 3 | NA. | Validated. No ca
required. | Validated. No cal
required. | | | | | Network Analyzer | Rhode & Schwarz
ZVA | SN10C132 | 02/2313 | 02/2016 | | | | | Calipers | Carrera | CALIPER-01 | 12/2310 | 12/2013 | | | | | Reference ⊃robe | Satimo | EPG122 SN 18/11 | Characterized pror to test. No cal required. | Characterized prior to test. No cal required. | | | | | Multimeter | Keithley 2000 | 1188656 | 11/2310 | 11/2013 | | | | | Signal Generator | ∧gilont E4438C | MY49070581 | 12/2010 | 12/2013 | | | | | Amplifier | Aethercomm | SN 046 | Characterized pror to test. No cal required. | Characterized prior to test. No cal required. | | | | | Power Mater | H⊃ E4418A | US38261498 | 11/2310 | 11/2013 | | | | | Power Sensor | HP ECP-E26A | US37181460 | 11/2010 | 11/2013 | | | | | Directional Coupler | Narda 4216-20 | 01386 | Characterized pror to test. No cal required. | Characterized prior to test. No cal required. | | | | | Temperature and
Humidity Sensor | Control Company | 11-661-9 | 3/2012 | 3/2014 | | | |