

FCC Test Report

Report No.: RWAQ202400228A

Applicant: Kirisun Communication Co.,Ltd.

Address: 3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan

Road Nanshan District, Shenzhen 518057 China

Product Name: DMR Digital Repeater

Product Model: TB2210-H5

Multiple Models: N/A

Trade Mark: Tait

FCC ID: Q5ETB2210H5

Standards: FCC CFR Title 47 Part 90

Test Date: 2024-03-19 to 2024-04-03

Test Result: Complied

Issue Date: 2024-04-08

Reviewed by:

Approved by

Abel Chen

Project Engineer

Jacob Kong

Jacob Gon

Manager

Prepared by:

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★"

Report Template: TR-4-E-047/1.0 Page 1 of 62

Announcement

- 1. This test report shall not be reproduced in full or partial, without the written approval of World Alliance Testing and Certification (Shenzhen) Co., Ltd
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.
- 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

Revision History

Version No. Issued Date		Description	
00	2024-04-08	Original	

Report Template: TR-4-E-047/1.0 Page 2 of 62

Contents

1	Gene	rai into	rmation	4
	1.1	Client	Information	. 4
	1.2	Produ	ct Description of EUT	4
	1.3	Meası	urement Uncertainty	4
	1.4	Labora	atory Location	5
	1.5	Test M	1ethodology	5
2	Desc	ription (of Measurement	6
	2.1	Test C	Configuration	6
	2.2	Test A	uxiliary Equipment	6
	2.3		etup	
	2.4		rocedure	
	2.5		urement Method	
	2.6		rement Equipment	
3				
•	3.1		ummary	
	3.2			
	3.3		anducted Test Data	
		3.3.1	Modulation Characteristic	
		3.3.2	RF Output Power	
		3.3.3	Occupied Bandwidth and Emission Mask	
		3.3.4	Spurious Emission at Antenna Terminal	
		3.3.5	Frequency stability	
		3.3.6	Transient Frequency Behavior	
	3.4		ted emission Test Data	
4	Test		hoto	
_		Dhata		

1 General Information

1.1 Client Information

Applicant:	Kirisun Communication Co.,Ltd.	
Address:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road	
	Nanshan District, Shenzhen 518057 China	
Manufacturer:	Kirisun Communication Co.,Ltd.	
Address:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road	
	Nanshan District, Shenzhen 518057 China	

1.2 Product Description of EUT

Sample Serial number	6N-1 for CE&RE& RF conducted test(assigned by WATC)
Sample Received Date	2024-03-08
Sample Status	Good Condition
Operating Frequency Range	400-470 MHz
Rated Output Power#	40Watts, 35Watts, 30Watts, 25Watts, 20Watts, 15Watts, 10Watts, 5Watts
Data Rate of Digital Channel [#]	9600 bits per second
Modulation Technology	FM, 4FSK
Channel Spacing	12.5kHz
Antenna Type	External antenna
Antenna Gain#	10dBi
Power Supply	AC 100-240V 50/60 Hz or DC 10.8-15.6V, 15A
Operating temperature#	-30 deg.C to +60 deg.C
Adapter Information	N/A
Modification	Sample No Modification by the test lab

1.3 Measurement Uncertainty

Parameter		Expanded Uncertainty (Confidence of 95%(U = 2Uc(y)))
	Below 30MHz	±2.78dB
Emissions, Radiated	Below 1GHz	±4.84dB
	Above 1GHz	±5.44dB
Emissions, Conducted		1.75dB
Conducted Power		0.74dB
Frequency Error		150Hz
Bandwidth		0.34%
Modulation Limiting		1.32%

Note 1: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Note 2: The Decision Rule is based on simple acceptance with ISO Guide 98-4:2012 Clause 8.2 (Measurement uncertainty is not taken into account when stating conformity with a specified requirement.)

Report Template: TR-4-E-047/1.0 Page 4 of 62

1.4 Laboratory Location

World Alliance Testing and Certification (Shenzhen) Co., Ltd

No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Tel: +86-755-29691511, Email: ga@watc.com.cn

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 463912, the FCC Designation No.: CN5040.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160.

1.5 Test Methodology

FCC CFR Title 47 Part 2, 90 ANSI C63.26-2015 ANSI TIA-603-E-2016

2 Description of Measurement

2.1 Test Configuration

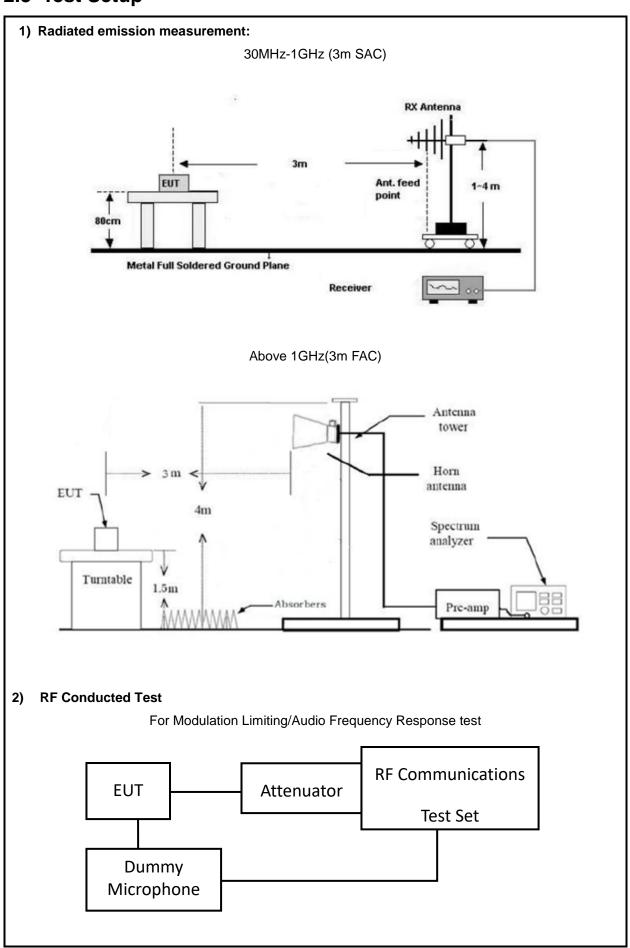
<u> </u>							
Operating frequency range: 400-470MHz							
Acco	According to Per C63.26-2015, section 5.1, below frequencies was tested						
Modulation	Channel spacing [kHz]	Lowest Channel [MHz]	Middle Channel [MHz]	High channel [MHz]			
FM	12.5	400.0125	450.0125	469.9875			
4FSK	12.5	400.0125	450.0125	469.9875			

Test Mode:	
Transmitting mode:	Keep the EUT in continuous transmitting with modulation

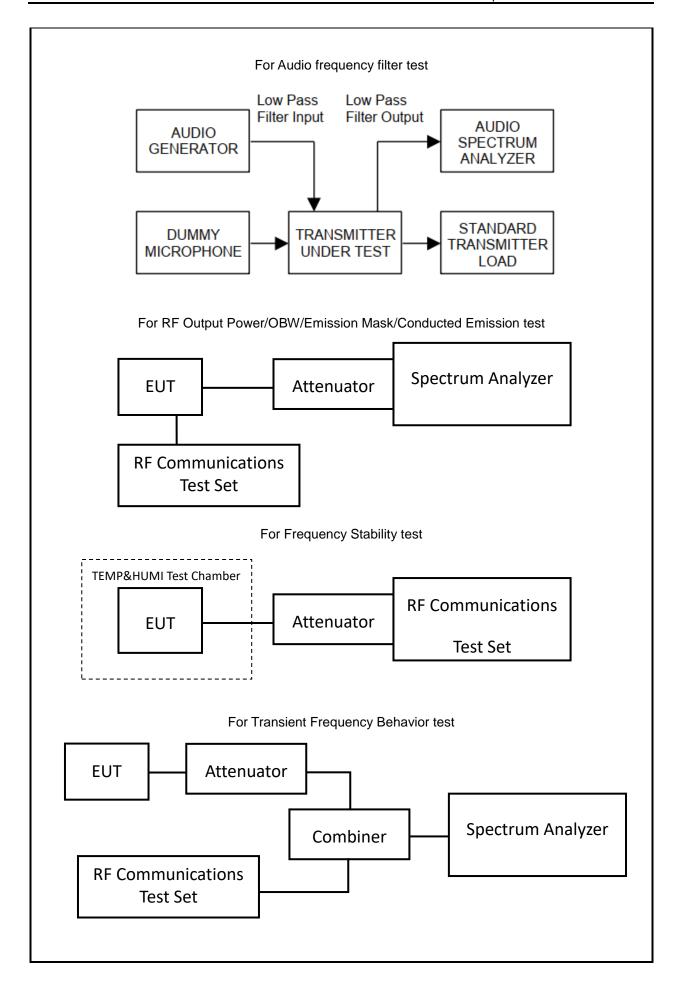
Worst-Case Configuration:

The device support AC power supply mode and DC power supply mode, for AC power supply mode, the AC power was first convert to DC Power, than share same circuit with the DC power supply mode, so the AC power supply mode was selected to test, the DC power supply mode was additional test for frequency stability

For antenna-conducted emission and radiated emission was investigated from 30MHz to 10 times of fundamental with the EUT transmits at the highest output power as worst-case scenario.


2.2 Test Auxiliary Equipment

Manufacturer	Description	Model	Serial Number	
unknown	load	unknown	unknown	
unknown	RF cable	unknown	unknown	


Report Template: TR-4-E-047/1.0 Page 6 of 62

2.3 Test Setup

2.4 Test Procedure

Radiated Emission Procedure:

a) For 30MHz-1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.

b) For above 1GHz:

- 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m.
- 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations.
- 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data.

RF Conducted Test:

- 1. The antenna port of EUT was connected to the RF port of the test equipment (RF Communications Test Set or Spectrum analyzer) through Attenuator and RF cable.
- 2. The cable assembly insertion loss of 30.6dB (including 30dB Attenuator and 0.6dB cable) was entered as an offset in the spectrum analyzer. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 0.6dB was assumed as worst case. This was later verified to be true by laboratory. (if the RF cable provided by client, the cable loss declared by client)
- 3. The EUT is keeping in continuous transmission mode with modulation signals required.

Report Template: TR-4-E-047/1.0 Page 9 of 62

2.5 Measurement Method

Description of Test	Measurement Method	
Modulation Limiting	ANSI C63.26-2015 section 5.3.2	
Audio Frequency Response	ANSI C63.26-2015 section 5.3.3.2	
Audio frequency filter	ANSI TIA-603-E-2016 section 2.2.15	
Occupied Bandwidth	ANSI C63.26-2015 section 5.4.4	
RF Output Power	ANSI C63.26-2015 section 5.2.3.3	
Emission Mask	ANSI C63.26-2015 section 5.7.3	
Spurious Emission at Antenna Terminal	ANSI C63.26-2015 section 5.7.4	
Frequency Stability	ANSI C63.26-2015 section 5.6	
Spurious Radiated Emissions	ANSI C63.26-2015 section 5.5.4	
Transient Frequency Behavior	ANSI C63.26-2015 section 6.5.2.2	

2.6 Measurement Equipment

Manufacturer	Description	Model	Management No.	Calibration Date	Calibration Due Date		
Radiated Emission Test							
R&S	EMI test receiver	ESR3	102758	2023/7/3	2024/7/2		
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40-N	101608	2023/7/3	2024/7/2		
SONOMA INSTRUMENT	Low frequency amplifier	310	186014	2023/7/12	2024/7/11		
COM-POWER	preamplifier	PAM-118A	18040152	2023/8/21	2024/8/20		
SCHWARZBECK	Log - periodic wideband antenna	VULB 9163	9163-872	2023/7/7	2024/7/6		
Astro Antenna Ltd	Horn antenna	AHA-118S	3015	2023/7/6	2024/7/5		
N/A	Coaxial Cable	N/A	NO.9	2023/8/8	2024/8/7		
N/A	Coaxial Cable	N/A	NO.10	2023/8/8	2024/8/7		
N/A	Coaxial Cable	N/A	NO.11	2023/8/8	2024/8/7		
Audix	Test Software	E3	191218 V9	/	/		
		RF Conducted	Test				
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSV40	101419	2023/9/12	2024/9/11		
ROHDE& SCHWARZ	SPECTRUM ANALYZER	FSU-26	200680/026	2023/7/12	2024/7/11		
BIRD	30dB attenuator	300-WA-FFN-30	1207	2023/7/26	2024/7/25		
BACL	TEMP&HUMI Test Chamber	BTH-150	30022	2023/7/12	2024/7/11		
FLUKE	Digital Multimeter	15B+	N/A	2023/7/12	2024/7/11		
НР	RF comminication test set	HP8920A	N/A	2023/7/12	2024/7/11		
N/A	Coaxial Cable	NO.9	N/A	2023/8/8	2024/8/7		
N/A	Coaxial Cable	NO.10	N/A	2023/8/8	2024/8/7		

Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards.

3 Test Results


3.1 Test Summary

FCC Rules	Description of Test	Result
§2.1055; §90.213	Frequency Stability	Compliance
§2.1046; §90.205	RF Output Power	Compliance
§2.1049; §90.209; §90.210	Occupied Bandwidth & Emission Mask	Compliance
§2.1051; §90.210	Spurious Emission at Antenna Terminal	Compliance
§2.1053; §90.210	Spurious Radiated Emissions	Compliance
§90.214	Transient Frequency Behavior	Compliance
§2.1047	Modulation Characteristic	Compliance

3.2 Limit

Test items	Limit				
	Table 1 to § 90.213(a)—Minimum Frequency Stability [Parts per million (ppm)]				
			Mobile stations		
	Frequency range (MHz)	Fixed and base stations	Over 2 watts output power	2 watts or less output power	
	Below 25	¹²³ 100	100	200	
	25-50	20	20	50	
	72-76	5		50	
	150-174	⁵ 11 5	⁶ 5	^{4 6} 50	
	216-220	1.0		1.0	
	220-222 ¹²	0.1	1.5	1.5	
	421-512	^{7 11 14} 2.5	8 5	8 5	
	channel bandwidth designated for itine less, must have a froperate with a 6.25 2.0 ppm. The 421-512 MH bandwidth must have with a 6.25 kHz channel bandwidth	or designed to operant use or designer	erate on a frequency ed for low-power op of 5.0 ppm. Mobile s dwidth must have a base stations with a bility of 1.5 ppm. Fix aust have a frequency ations designed to o alency stability of 2.5	peration of two watts or stations designed to frequency stability of	
Occupied Bandwidth	Operations using equipment designed to operate with a 25 kHz channel bandwidth will be authorized a 20 kHz bandwidth. Operations using equipment designed to operate with a 12.5 kHz channel bandwidth will be authorized a 11.25 kHz bandwidth. Operations using equipment designed to operate with a 6.25 kHz channel bandwidth will be authorized a 6 kHz bandwidth. All stations must operate on channels with a bandwidth of 12.5 kHz or less beginning January 1, 2013, unless the operations meet the efficiency standard of § 90.203(j)(3).				

§90.205(d): 150-174 MHz

The maximum allowable station ERP is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 1. Applicants requesting an ERP in excess of that listed in table 1 must submit an engineering analysis based upon generally accepted engineering practices and standards that includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires.

§90.205(h): 450-470 MHz

RF Output Power

The maximum allowable station effective radiated power (ERP) is dependent upon the station's antenna HAAT and required service area and will be authorized in accordance with table 2. Applicants requesting an ERP in excess of that listed in table 2 must submit an engineering analysis based upon generally accepted engineering practices and standards that includes coverage contours to demonstrate that the requested station parameters will not produce coverage in excess of that which the applicant requires.

§90.205(s):

The output power shall not exceed by more than 20 percent either the output power shown in the Radio Equipment List [available in accordance with § 90.203(a)(1)] for transmitters included in this list or when not so listed, the manufacturer's rated output power for the particular transmitter specifically listed on the authorization.

Emission Mask D—12.5 kHz channel bandwidth equipment.

For transmitters designed to operate with a 12.5 kHz channel bandwidth, any emission must be attenuated below the power (P) of the highest emission contained within the authorized bandwidth as follows:

- (1) On any frequency from the center of the authorized bandwidth f0 to 5.625 kHz removed from f0: Zero dB.
- (2) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 5.625 kHz but no more than 12.5 kHz: At least 7.27(fd-2.88 kHz) dB.

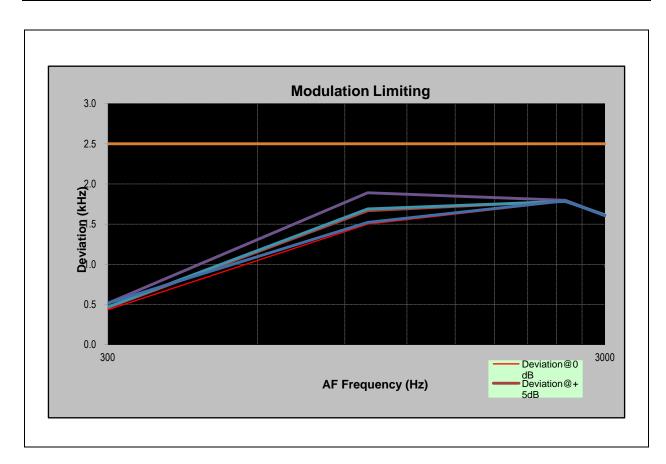
Emission Mask

Spurious Emission at Antenna Terminal

Spurious Radiated Emissions

- (3) On any frequency removed from the center of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 12.5 kHz: At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
- (4) The reference level for showing compliance with the emission mask shall be established using a resolution bandwidth sufficiently wide (usually two or three times the channel bandwidth) to capture the true peak emission of the equipment under test. In order to show compliance with the emission mask up to and including 50 kHz removed from the edge of the authorized bandwidth, adjust the resolution bandwidth to 100 Hz with the measuring instrument in a peak hold mode. A sufficient number of sweeps must be measured to insure that the emission profile is developed. If video filtering is used, its bandwidth must not be less than the instrument resolution bandwidth. For emissions beyond 50 kHz from the edge of the authorized bandwidth, see paragraph (o) of this section. If it can be shown that use of the above instrumentation settings do not accurately represent the true interference potential of the equipment under test, an alternate procedure may be used provided prior Commission approval is obtained.

	Transmitters designed to operate in the 150-174 MHz and 421-512 MHz frequency bands must maintain transient frequencies within the maximum								
	frequency difference I	1							
	Time intervals ^{1 2}	Maximum frequency	All eq	juipment					
		difference ³	150 to 174 MHz	421 to 512 MHz					
	Transient Frequency Behavior for Equipment Designed to Operate on 25 kHz Channels								
	t ₁ ⁴	±25.0 kHz	5.0 ms	10.0 ms					
	t ₂	±12.5 kHz	20.0 ms	25.0 ms					
	t_3^4	±25.0 kHz	5.0 ms	10.0 ms					
	Transient Frequency Behavior for Equipment Designed to Operate on 12.5 kHz Channels								
	t ₁ ⁴	±12.5 kHz	5.0 ms	10.0 ms					
	t ₂	±6.25 kHz	20.0 ms	25.0 ms					
	t ₃ ⁴	±12.5 kHz	5.0 ms	10.0 ms					
Transient Frequency Behavior	Transient Frequency	Behavior for Equip	ment Designed to Operate	on 6.25 kHz Channels					
Table 11 Togachey Bonavior	t ₁ ⁴	±6.25 kHz	5.0 ms	10.0 ms					
	t ₂	±3.125 kHz	20.0 ms	25.0 ms					
	t ₃ ⁴	±6.25 kHz	5.0 ms	10.0 ms					
	 1_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t₁ is the time period immediately following t_{on}. t₂ is the time period immediately following t₁. t₃ is the time period from the instant when the transmitter is turned off until t_{off}. t_{off} is the instant when the 1 kHz test signal starts to rise. ² During the time from the end of t₂ to the beginning of t₃, the frequency difference must not exceed the limits specified in § 90.213. ³ Difference between the actual transmitter frequency and the assigned transmitter frequency. ⁴ If the transmitter carrier output power rating is 6 watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period. 								
	 (a) Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter, or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted. (b) Equipment which employs modulation limiting. A curve or family of curves 								
Modulation Characteristic	showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.								
	(c) Single sideband and independent sideband radiotelephone transmitters which employ a device or circuit to limit peak envelope power. A curve showing the peak envelope power output versus the modulation input voltage shall be supplied. The modulating signals shall be the same in frequency as specified in paragraph (c) of §2.1049 for the occupied bandwidth tests.								
	(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.								

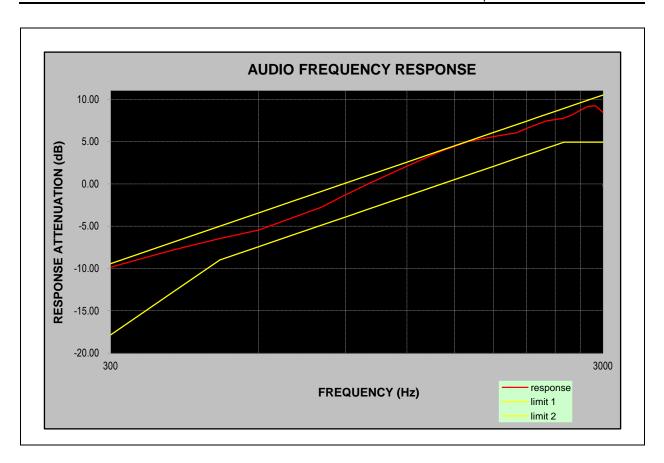

3.3 RF Conducted Test Data

Test Date:	2024-03-19~2024-04-03	Test By:	Ryan Zhang
Environment condition:	Temperature: 21.2~22.5°C; Re 101.0~101.8kPa	elative Humidity:48~61%;	ATM Pressure:

3.3.1 Modulation Characteristic

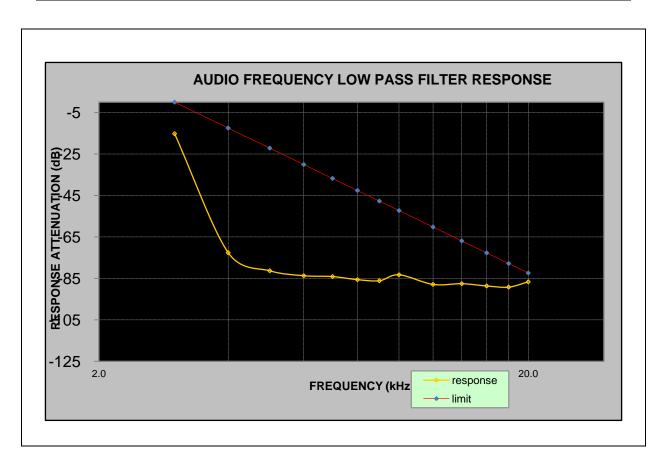
Modulation Limiting

	Test Frequency: 450.0125 MHz, Channel Spacing: 12.5kHz										
Audio Frequency (Hz)	Deviation (@+0dB) [kHz]	Deviation (@+5dB) [kHz]	Deviation (@+10dB) [kHz]	Deviation (@+15dB) [kHz]	Deviation (@+20dB) [kHz]	Limit [kHz]					
300	0.434	0.459	0.515	0.467	0.516	2.500					
1000	1.500	1.667	1.891	1.690	1.521	2.500					
2500	1.782	1.788	1.797	1.782	1.790	2.500					
3000	1.603	1.605	1.612	1.617	1.607	2.500					


Report Template: TR-4-E-047/1.0 Page 16 of 62

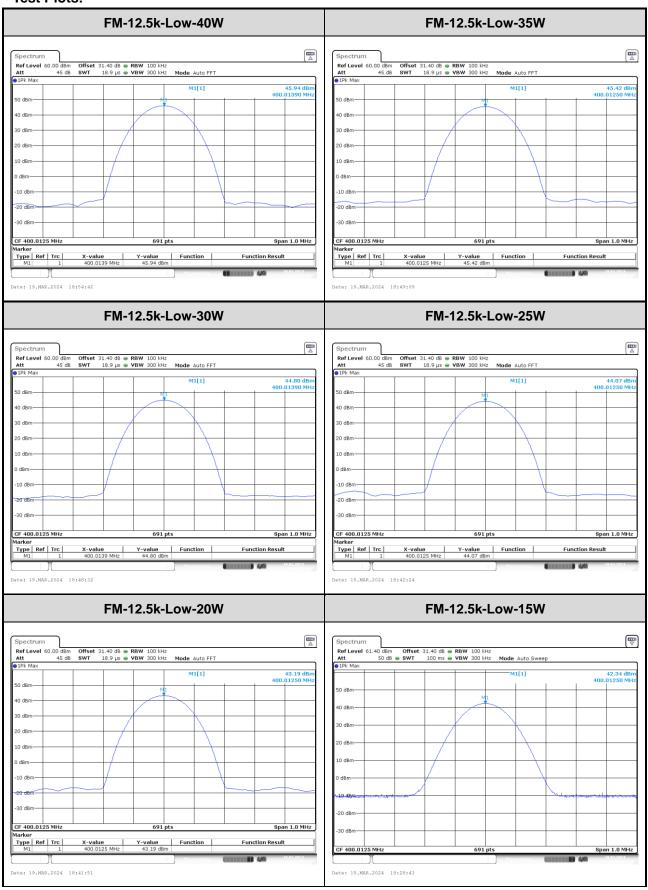
Audio Frequency Response

Test Frequency: 450.0125MHz, Channel Spacing: 12.5kHz							
Audio Frequency (Hz)	Response Attenuation (dB)	High Limit (dB)	Low Limit (dB)				
300	-9.84	-9.4	-17.8				
400	-7.83	-6.9	-12.9				
500	-6.45	-5.0	-9.0				
600	-5.45	-3.4	-7.4				
700	-4.04	-2.1	-6.1				
800	-2.81	-0.9	-4.9				
900	-1.29	0.1	-3.9				
1000	0.00	1.0	-3.0				
1200	2.10	2.6	-1.4				
1400	3.82	3.9	-0.1				
1600	5.03	5.1	1.1				
1800	5.59	6.1	2.1				
2000	6.04	7.0	3.0				
2100	6.57	7.4	3.4				
2200	7.02	7.8	3.8				
2300	7.43	8.2	4.2				
2400	7.61	8.6	4.6				
2500	7.78	8.9	4.9				
2600	8.18	9.3	4.9				
2700	8.70	9.6	4.9				
2800	9.18	9.9	4.9				
2900	9.22	10.2	4.9				
3000	8.46	10.5	4.9				

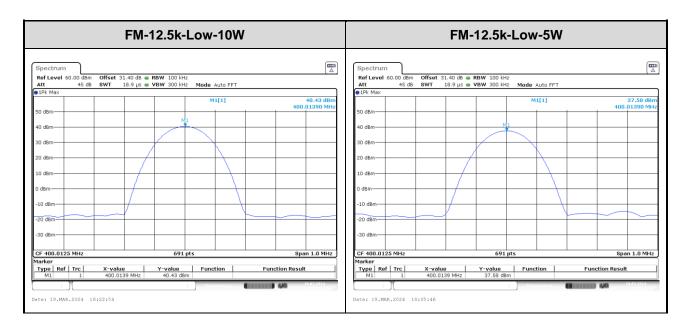


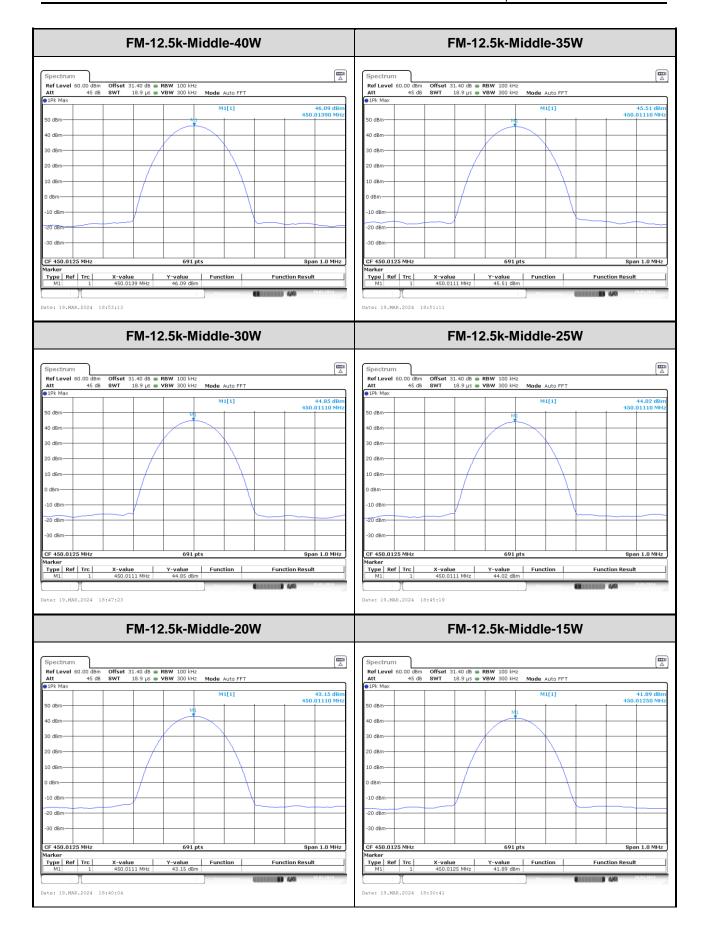
Audio Low Pass Filter Response

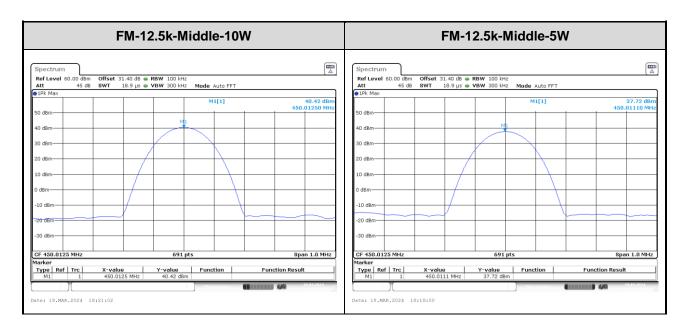
Test Frequency: 450.0125 MHz, Channel Spacing: 12.5kHz							
Audio Frequency	Response Attenuation	Limit					
(kHz)	(dB)	(dB)					
1.0	0.00	/					
3.0	-15.22	0.0					
4.0	-72.61	-12.5					
5.0	-81.32	-22.2					
6.0	-83.70	-30.1					
7.0	-84.11	-36.8					
8.0	-85.60	-42.6					
9.0	-86.12	-47.7					
10.0	-83.25	-52.3					
12.0	-87.90	-60.2					
14.0	-87.55	-66.9					
16.0	-88.65	-72.7					
18.0	-89.21	-77.8					
20.0	-86.65	-82.4					

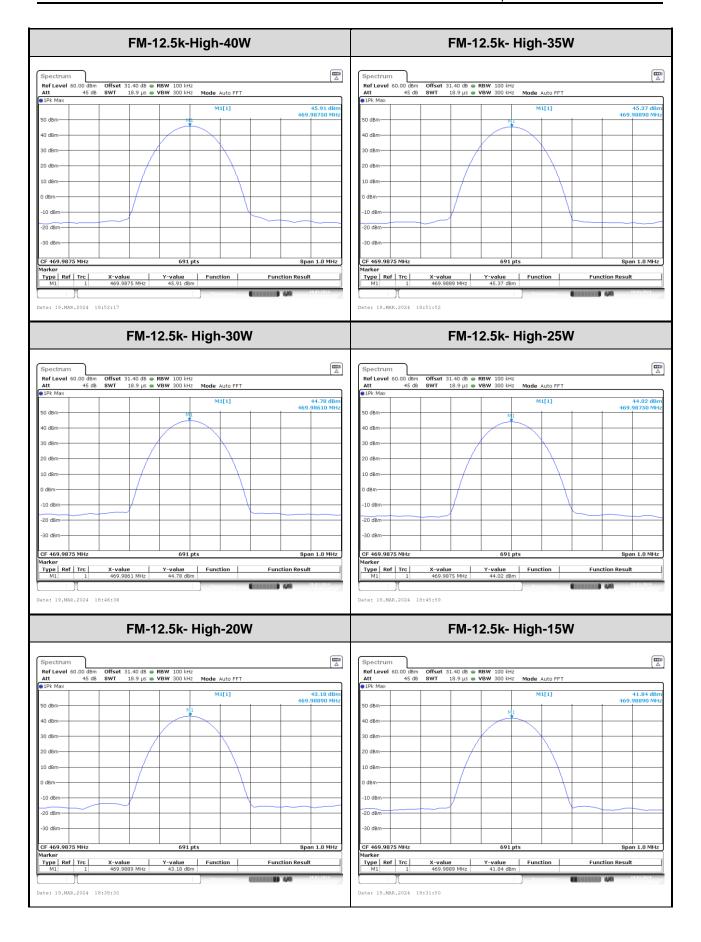

3.3.2 RF Output Power

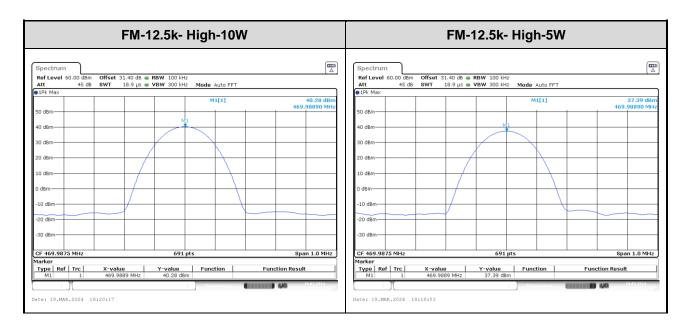
Modulation	Channel	Power	Conducted Output power						Limit	
	Spacing		Low Channel		Middle Channel		High Channel		(W)	Verdict
	(kHz)	(W)	(dBm)	(W)	(dBm)	(W)	(dBm)	(W)		
		40	45.94	39.26	46.09	40.64	45.91	38.99	≤48	Pass
		35	45.42	34.83	45.51	35.56	45.37	34.43	≤42	Pass
		30	44.80	30.20	44.85	30.55	44.78	30.06	≤36	Pass
FM	10.5	25	44.07	25.53	44.02	25.23	44.02	25.23	≤30	Pass
FIVI	12.5	20	43.19	20.84	43.15	20.65	43.18	20.80	≤24	Pass
		15	42.34	17.14	41.89	15.45	41.84	15.28	≤18	Pass
		10	40.43	11.04	40.42	11.02	40.28	10.67	≤12	Pass
		5	37.58	5.73	37.72	5.92	37.39	5.48	≤6	Pass
		40	45.93	39.17	46.08	40.55	45.90	38.90	≤48	Pass
		35	45.43	34.91	45.52	35.65	45.33	34.12	≤42	Pass
		30	44.79	30.13	44.84	30.48	44.78	30.06	≤36	Pass
4501/	10.5	25	44.09	25.64	44.07	25.53	44.02	25.23	≤30	Pass
4FSK	12.5	20	43.16	20.70	43.10	20.42	43.12	20.51	≤24	Pass
		15	42.03	15.96	41.99	15.81	41.95	15.67	≤18	Pass
		10	40.39	10.94	40.46	11.12	40.32	10.76	≤12	Pass
		5	37.58	5.73	37.73	5.93	37.41	5.51	≤6	Pass

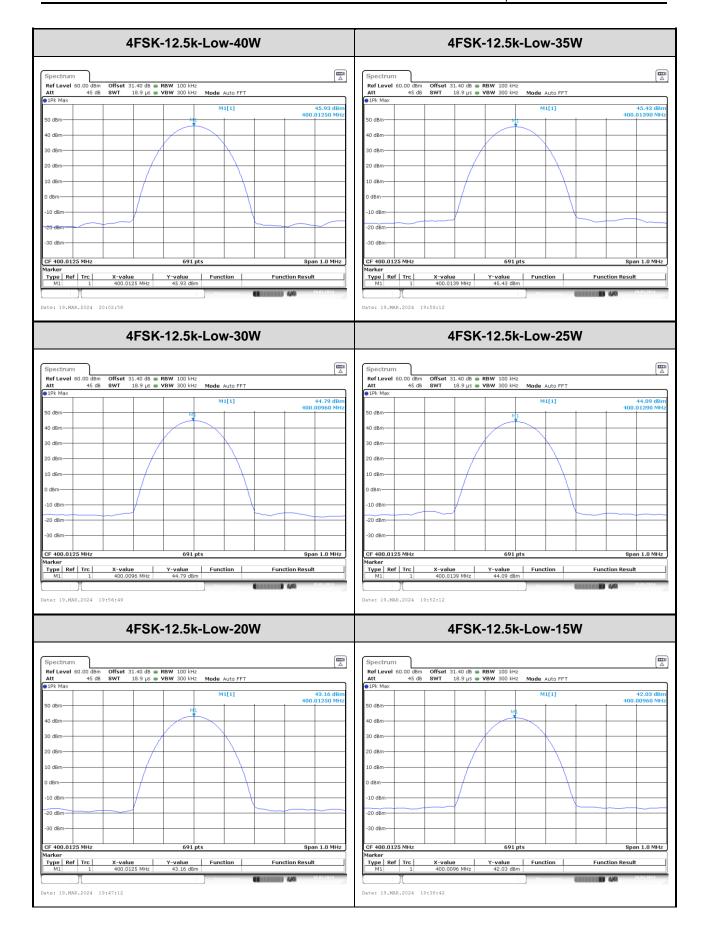

Note: The output power shall not exceed by more than 20 percent the manufacturer's rated output power for the particular transmitter specifically listed on the authorization.

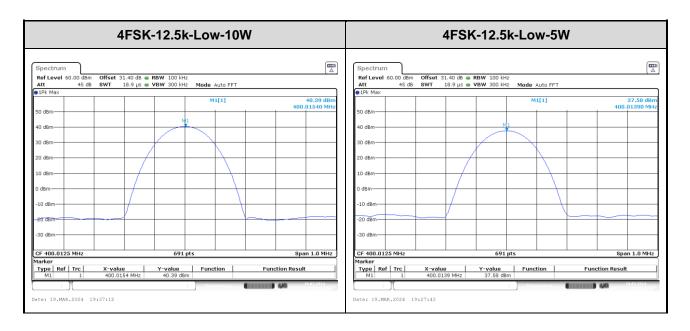

Test Plots:

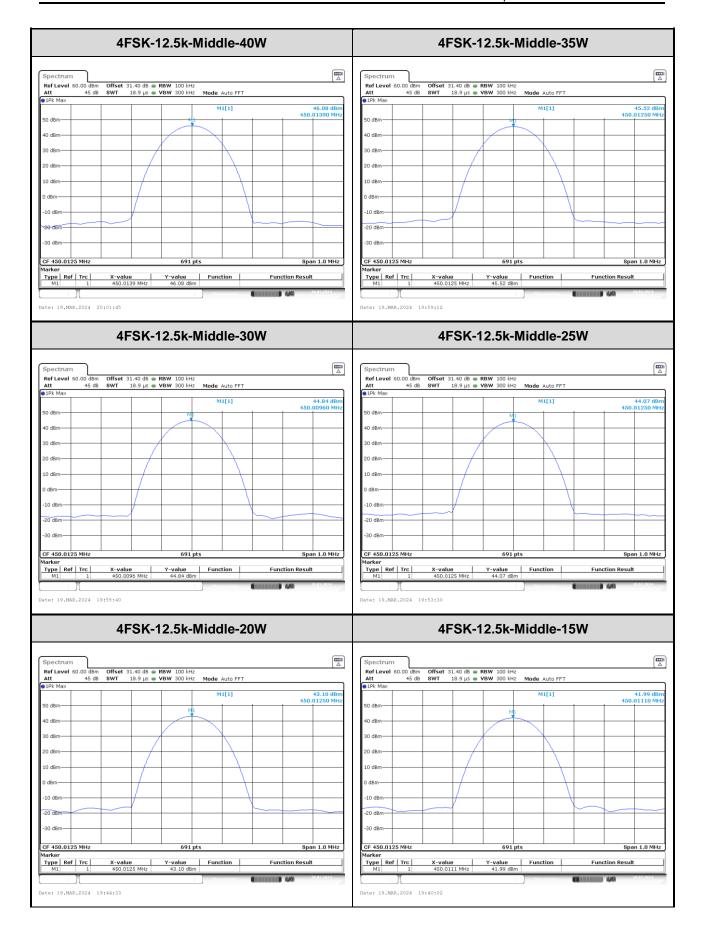


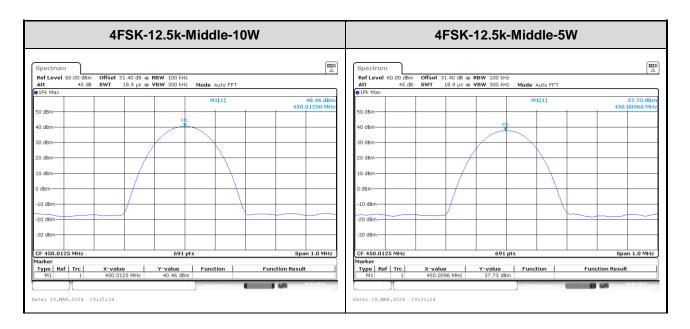


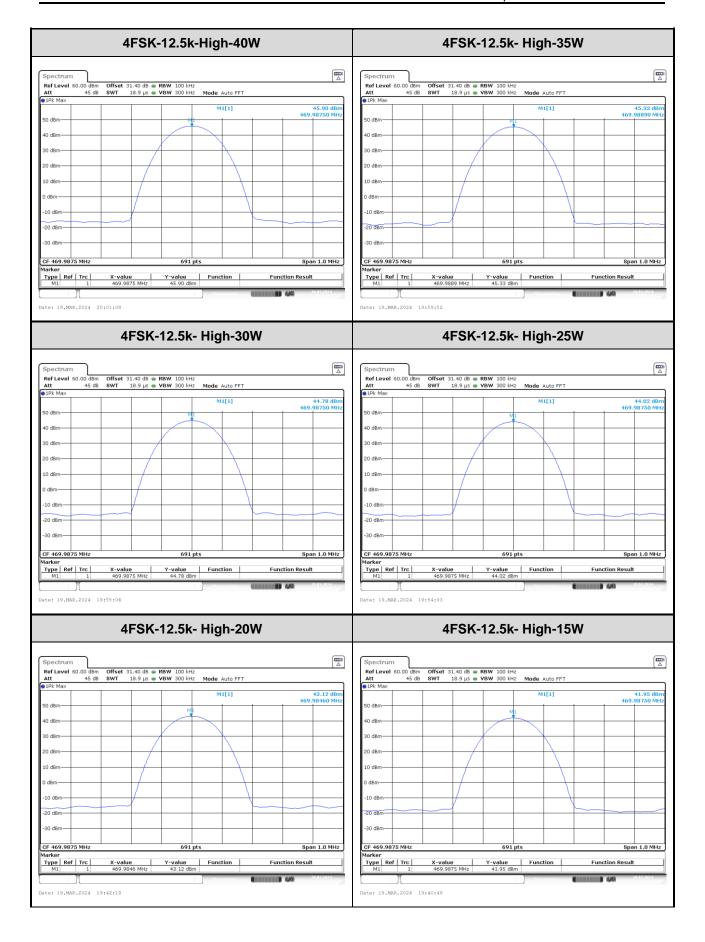


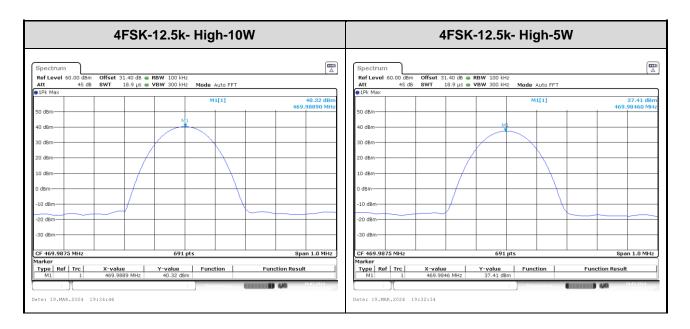












3.3.3 Occupied Bandwidth and Emission Mask

	Channel	Rated	Bandwidth(kHz)						Limit	
Modulation	Spacing	Power	Low Channel		Middle Channel		High Channel		(kHz)	Verdict
	(kHz)	(W)	99%	26dB	99%	26dB	99%	26dB	, ,	
		40	9.841	10.130	5.210	10.130	5.137	10.130	≤11.25	Pass
		35	9.841	10.203	5.210	10.130	5.137	10.130	≤11.25	Pass
		30	9.841	10.203	5.210	10.130	5.137	10.130	≤11.25	Pass
FM	12.5	25	9.841	10.203	5.210	10.130	5.137	10.130	≤11.25	Pass
LIVI	12.5	20	9.841	10.203	5.210	10.203	5.137	10.130	≤11.25	Pass
		15	9.841	10.203	5.210	10.203	5.137	10.130	≤11.25	Pass
		10	9.841	10.203	5.210	10.203	5.137	10.130	≤11.25	Pass
		5	9.841	10.203	5.210	10.058	5.137	10.130	≤11.25	Pass
		40	7.525	9.768	7.525	9.841	7.453	9.768	≤11.25	Pass
		35	7.525	9.768	7.525	9.841	7.453	9.768	≤11.25	Pass
		30	7.525	9.479	7.525	9.841	7.453	9.768	≤11.25	Pass
4FSK	12.5	25	7.525	9.841	7.525	9.841	7.453	9.768	≤11.25	Pass
4FSK	12.5	20	7.525	9.841	7.525	9.841	7.453	9.768	≤11.25	Pass
		15	7.525	9.841	7.525	9.841	7.453	9.768	≤11.25	Pass
		10	7.525	9.841	7.525	9.551	7.453	9.479	≤11.25	Pass
		5	7.598	9.841	7.525	9.841	7.453	9.768	≤11.25	Pass

Note:

Emission bandwidth was based on calculation method instead of measurement.

Emission Designator: Per CFR 47 §2.201& §2.202, BW = 2M + 2D

For FM Mode (Channel Spacing: 12.5 kHz)

Emission Designator: 11K0F3E

In this case, the maximum modulating frequency is 3.0 kHz with a 2.5 kHz deviation.

BW = 2(M+D) = 2*(3.0 kHz + 2.5 kHz) = 11 kHz = 11K0

F3E portion of the designator represents an FM voice transmission

Therefore, the entire designator for 12.5 kHz channel spacing FM mode is 11K0F3E.

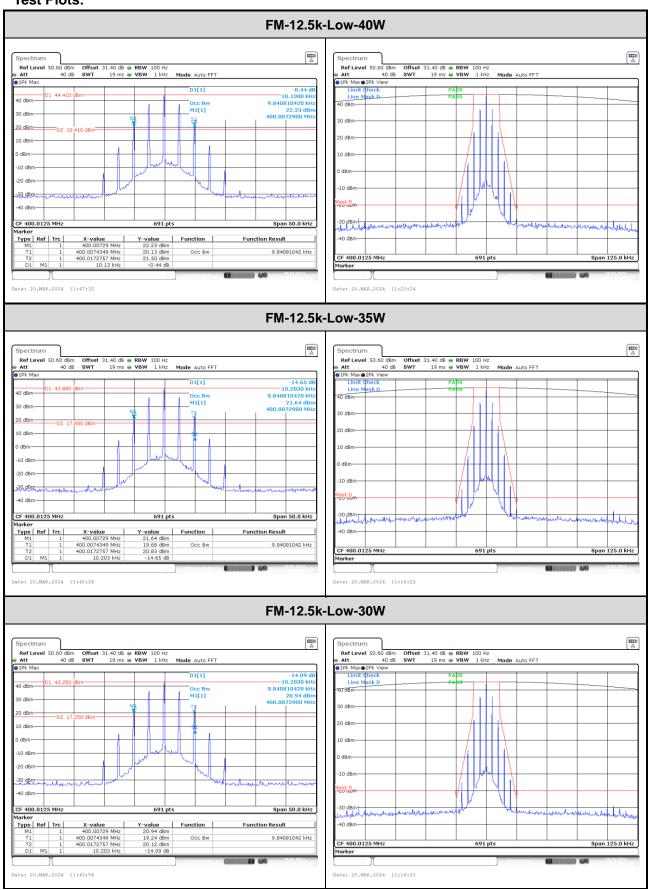
For Digital Mode (Channel Spacing: 12.5 kHz)

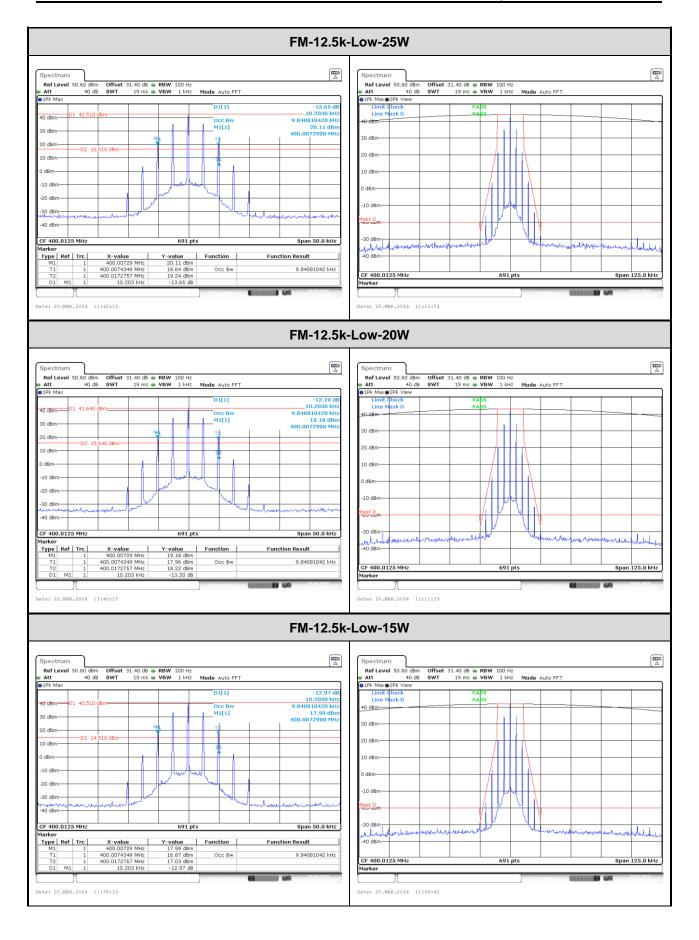
Emission Designator: 7K60F1D and 7K60F1E

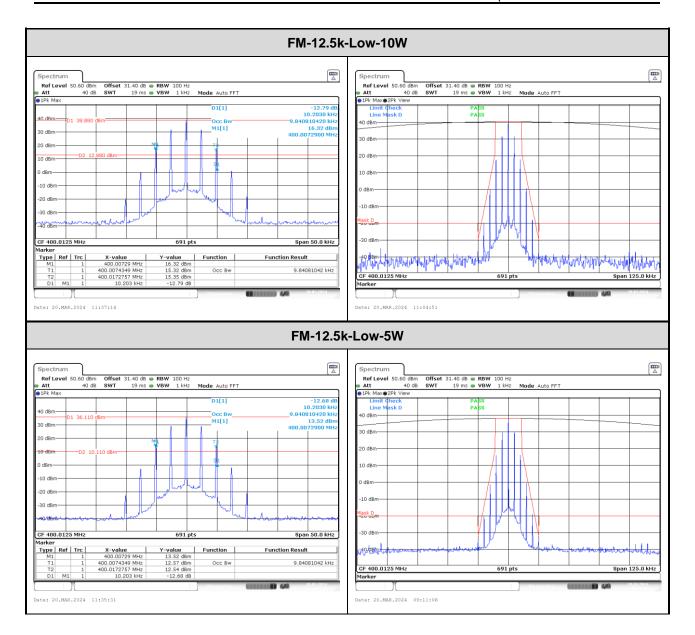
The 99% energy rule (title 47CFR 2.1049) was used for digital mode. It basically states that 99% of the modulation energy falls within X kHz, in this case, 7.60 kHz. The emission mask was obtained from 47CFR 90.210(d).

 $\ensuremath{\mathsf{F1D}}$ and $\ensuremath{\mathsf{F1E}}$ portion of the designator indicates digital information.

Therefore, the entire designator for 12.5 kHz channel spacing digital mode is 7K60F1D and 7K60F1E.


Report Template: TR-4-E-047/1.0 Page 33 of 62


	Channel	Rated	Er	mission Mask Res	ult		
Modulation	Spacing (kHz)	Power (W)	Low Channel	Middle Channel	High Channel	Limit	Verdict
		40	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		35	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		30	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
FM	12.5	25	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
ΓIVI	12.5	20	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		15	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		10	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		5	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		40	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		35	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		30	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
4501/	10 E	25	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
4FSK	12.5	20	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		15	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		10	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass
		5	Refer test plot	Refer test plot	Refer test plot	Refer test plot	Pass


Test Plots:

