TEST REPORT

Report No. \qquad Project No. \qquad FCC ID \qquad	CHTEW21060081 Report Verification: SHT2104027102EW Q5EGP700	
Applicant's name :	Kirisun Communication Co.,Ltd.	
Address......................................:	3rd Floor, Building A, Tongfang Information Habour, No. 11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China	
Test item description	Poc Trunked Two-way Radio	
Trade Mark	KIRISUN	
Model/Type refere	GP700	
Listed Model(s)		
Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247	
Date of receipt of test sample	Apr. 26, 2021	
Date of testing.	Apr. 27, 2021-Jun. 08, 2021	
Date of issue.	Jun. 09, 2021	
Result.....................................:	PASS	
Compiled by (Position+Printed name+Signature): File administrator Silvia Li		
Supervised by (Position+Printed name+Signature):	Project Engineer Aaron Fang Aaron.Fang	
Approved by (Position+Printed name+Signature):	RF Manager Hans Hu femsHM	
Testing Laboratory Name :	Shenzhen Huatongwei International Inspection Co., Ltd.	
Address......................................:	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China	
Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.		
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.		

Contents

1. TEST STANDARDS AND REPORT VERSION 3
1.1. Test Standards 3
1.2. Report version 3
2. TEST DESCRIPTION 4
3. SUMMARY 5
3.1. Client Information 5
3.2. Product Description 5
3.3. Radio Specification Description 5
3.4. Testing Laboratory Information 6
4. TEST CONFIGURATION 7
4.1 \quad Test frequency list 7
4.2. Descriptions of Test mode 7
4.3. Test mode 7
4.4. Support unit used in test configuration and system 8
4.5. Testing environmental condition 8
4.6. Measurement uncertainty 8
4.7. Equipment Used during the Test 9
5. TEST CONDITIONS AND RESULTS 11
5.1. Antenna Requirement 11
5.2. AC Conducted Emission 12
5.3. Peak Output Power 15
5.4. 20 dB Bandwidth 16
5.5. $\quad 99 \%$ Occupied Bandwidth 17
5.6. Carrier Frequencies Separation 18
5.7. Hopping Channel Number 19
5.8. Dwell Time 20
5.9. Duty Cycle Correction Factor (DCCF) 21
5.10. Pseudorandom Frequency Hopping Sequence 22
5.11. Conducted Band edge and Spurious Emission 23
5.12. Radiated Band edge Emission 24
5.13. Radiated Spurious Emission 26
6. TEST SETUP PHOTOS 30
7. EXTERANAL AND INTERNAL PHOTOS 31
8. APPENDIX REPORT 31

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of $902-928 \mathrm{MHz}, 2400-2483.5 \mathrm{MHz}$, and $5725-5850 \mathrm{MHz}$
- ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices
- KDB 558074 D01 15.247 Meas Guidance v05r02: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	$2021-06-09$	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result
5.1	Antenna Requirement	$15.203 / 15.247(\mathrm{c})$	PASS
5.2	AC Conducted Emission	15.207	PASS
5.3	Peak Output Power	$15.247(\mathrm{~b})(1)$	PASS
5.4	20 dB Bandwidth	$15.247(\mathrm{a})(1)$	PASS
5.5	99% Occupied Bandwidth	PASS ${ }^{* 1}$	
5.6	Carrier Frequency Separation	$15.247(\mathrm{a})(1)$	PASS
5.7	Hopping Channel Number	$15.247(\mathrm{a})(1)$	PASS
5.8	Dwell Time	PASS	
5.9	Duty Cycle Correction Factor	PASS ${ }^{* 1}$	
5.10	Pseudorandom Frequency Hopping Sequence	$15.247(\mathrm{~b})(4)$	PASS
5.11	Conducted Band Edge and Spurious Emission	$15.247(\mathrm{~d}) / 15.205$	PASS
5.12	Radiated Band Edge Emission	$15.205 / 15.209$	PASS
5.13	Radiated Spurious Emission	PASS	

Note:

- The measurement uncertainty is not included in the test result.
- \quad *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	Kirisun Communication Co.,Ltd.
Address:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China
Manufacturer:	Kirisun Communication Co.,Ltd.
Address:	3rd Floor, Building A, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China

3.2. Product Description

Name of EUT:	Poc Trunked Two-way Radio
Trade Mark:	KIRISUN
Model No.:	GP700
Listed Model(s):	-
Power supply:	DC 3.7V
Battery Information:	DC 3.7V, 3600mAh
Adapter Information:	Model:FJ-SW126K1201000DU Input: AC100-240V, $50 / 60 \mathrm{~Hz}, 0.4 \mathrm{~A}$ Max Output: $12.0 \mathrm{Vdc}, 1000 \mathrm{~mA}$
Hardware version:	V1.2
Software version:	V1.0

3.3. Radio Specification Description

Bluetooth version:	V4.1
Support function ${ }^{* 2}:$	EDR
Modulation:	GFSK, $\pi / 4 \mathrm{DQPSK}, 8 \mathrm{DPSK}$
Operation frequency:	$2402 \mathrm{MHz} \sim 2480 \mathrm{MHz}$
Channel number:	79
Channel separation:	1 MHz
Antenna type:	FPC antenna
Antenna gain:	-4.0 dBi

Note:
*2: only show the RF function associated with this report.

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.	
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China	
	Phone: 86-755-26715499 E-mail: $\mathbf{c s @ s z h t w . c o m . c n ~}$ http:/www.szhtw.com.cn	Type
Qualifications	Accreditation Number	
	FCC	762235

4. TEST CONFIGURATION

4.1. Test frequency list

According to section $15.31(\mathrm{~m})$, regards to the operating frequency range over 10 MHz , must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

Channel	Frequency (MHz)
00	2402
01	2403
\vdots	\vdots
39	2441
\vdots	\vdots
77	2479
78	2480

4.2. Descriptions of Test mode

Preliminary tests were performed in different data rates and recorded the RF output power in the clause 5.3

Note:

1) The manufacturer declare that the maximum power value of the product is set as a default value in the enter test mode software.
2) All the test data for each data rate were verified, found GFSK Modulation which is worse case mode

4.3. Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmitting.

Test Item	Modulation / Data Rate				
	GFSK 1 Mbps	m/4DQPSK $2 M b p s$	8DPSK		
	\checkmark	\checkmark	3Mbps		
Conducted test item	\checkmark	-	\checkmark		
Radiated test item					-

Remark:

- For radiated test item, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests.
- The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.
The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?					
$\checkmark \quad$ No					
Item	Equipement	Trade Name	Model No.	FCC ID	Power cord
1					
2					

4.5. Testing environmental condition

Type	Requirement	Actual
Temperature:	$15 \sim 35^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$
Relative Humidity:	$25 \sim 75 \%$	50%
Air Pressure:	$860 \sim 1060 \mathrm{mbar}$	1000 mbar

4.6. Measurement uncertainty

Test Item	Measurement Uncertainty
AC Conducted Emission $(150 \mathrm{kHz} \sim 30 \mathrm{MHz})$	3.02 dB
Radiated Emission $(30 \mathrm{MHz} \sim 1000 \mathrm{MHz}$	4.90 dB
Radiated Emissions $(1 \mathrm{GHz} \sim 25 \mathrm{GHz})$	4.96 dB
Peak Output Power	0.51 dB
Power Spectral Density	0.51 dB
Conducted Spurious Emission	0.51 dB
6dB Bandwidth	70 Hz

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k=1.96$.

4.7. Equipment Used during the Test

Conducted Emission							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\bullet	Shielded Room	Albatross projects	HTWE0114	N/A	N/A	$2018 / 09 / 28$	$2023 / 09 / 27$
\bullet	EMI Test Receiver	R\&S	HTWE0111	ESCI	101247	$2020 / 10 / 19$	$2021 / 10 / 18$
\bullet	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	$2020 / 10 / 15$	$2021 / 10 / 14$
\bullet	Pulse Limiter	R\&S	HTWE0033	ESH3-Z2	100499	$2020 / 10 / 15$	$2021 / 10 / 14$
\bullet	RF Connection Cable	HUBER+SUHNER	HTWE0113-02	ENVIROFLE X_142	EF-NM- BNCM-2M	$2020 / 10 / 15$	$2021 / 10 / 14$
\bullet	Test Software	R\&S	N/A	ES-K1	N/A	N/A	N/A

Radiated emission-6th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\bullet	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	$2018 / 09 / 30$	$2021 / 09 / 29$
\bullet	EMI Test Receiver	R\&S	HTWE0099	ESCI	100900	$2020 / 10 / 19$	$2021 / 10 / 18$
\bullet	Loop Antenna	R\&S	HTWE0170	HFH2-Z2	100020	$2021 / 04 / 06$	$2022 / 04 / 05$
\bullet	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0123	VULB9163	538	$2021 / 04 / 06$	$2022 / 04 / 05$
\bullet	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	N/A	$2020 / 11 / 13$	$2021 / 11 / 12$
\bullet	RF Connection Cable	HUBER+SUHNER	HTWE0062-01	N/A	N/A	$2021 / 02 / 26$	$2022 / 02 / 25$
\bullet	RF Connection Cable	HUBER+SUHNER	HTWE0062-02	SUCOFLEX104	$501184 / 4$	$2021 / 02 / 26$	$2022 / 02 / 25$
\bullet	Test Software	R\&S	N/A	ES-K1	N/A	N/A	N/A

Radiated emission-7th test site							
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\bigcirc	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	N/A	2018/09/27	2021/09/26
\bigcirc	Spectrum Analyzer	R\&S	HTWE0098	FSP40	100597	2020/10/20	2021/10/19
\bigcirc	Horn Antenna	SCHWARZBECK	HTWE0126	9120D	1011	2020/04/01	2023/03/31
\bigcirc	Broadband Horn Antenna	SCHWARZBECK	HTWE0103	BBHA9170	BBHA9170472	2018/10/11	2021/10/11
\bigcirc	Pre-amplifier	CD	HTWE0071	PAP-0102	12004	2020/11/13	2021/11/12
\bigcirc	Broadband Preamplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2021/03/05	2022/03/04
-	RF Connection Cable	HUBER+SUHNER	HTWE0120-01	$\begin{gathered} 6 m \text { 18GHz } \\ \text { S Serisa } \end{gathered}$	N/A	2021/02/26	2022/02/25
\bigcirc	RF Connection Cable	HUBER+SUHNER	HTWE0120-02	6 m 3 GHz RG Serisa	N/A	2021/02/26	2022/02/25
\bigcirc	RF Connection Cable	HUBER+SUHNER	HTWE0120-03	6 m 3 GHz RG Serisa	N/A	2021/02/26	2022/02/25
\bigcirc	RF Connection Cable	HUBER+SUHNER	HTWE0120-04	6 m 3 GHz RG Serisa	N/A	2021/02/26	2022/02/25
\bigcirc	$\begin{aligned} & \text { RF Connection } \\ & \text { Cable } \end{aligned}$	HUBER+SUHNER	HTWE0121-01	$\begin{gathered} 6 \mathrm{~m} \text { 18GHz } \\ \mathrm{S} \text { Serisa } \\ \hline \end{gathered}$	N/A	2021/02/26	2022/02/25
\bigcirc	Test Software	Audix	N/A	E3	N/A	N/A	N/A

RF Conducted Method

Used	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
\bullet	Signal and spectrum Analyzer	R\&S	FSV40	100048	$2020 / 10 / 19$	$2021 / 10 / 18$
\bullet	Spectrum Analyzer	Agilent	N9020A	MY50510187	$2020 / 10 / 19$	$2021 / 10 / 18$
\bullet	Power Meter	Anritsu	ML249A	N/A	$2020 / 10 / 19$	$2021 / 10 / 18$
O	Radio communication tester	R\&S	CMW500	$137688-$ Lv	$2020 / 10 / 19$	$2021 / 10 / 18$

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):
(i) Systems operating in the $2400-2483.5 \mathrm{MHz}$ band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi .

TEST RESULT

Passed

Not ApplicableThe antenna type is a FPC antenna, the directional gain of the antenna less than 6 dBi , please refer to the below antenna photo.

5.2. AC Conducted Emission

LIMIT
FCC CFR Title 47 Part 15 Subpart C Section 15.207

Frequency range (MHz)	Limit (dBuV)	
	Quasi-peak	Average
$0.15-0.5$	66 to 56^{*}	56 to 46^{*}
$0.5-5$	56	46
$5-30$	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was setup according to ANSI C63.10 requirements.
2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m , raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a $50 \mathrm{ohm} / 50 \mathrm{uH}$ coupling impedance for the measuring equipment.
4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
7. Conducted emissions were investigated over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz .
8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Please refer to the clause 4.3

TEST RESULT

Passed

5.3. Peak Output Power

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(1):

For frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the $5725-5850 \mathrm{MHz}$ band: 1 watt. For all other frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band: 0.125 watts.

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the pathloss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW \geq the 20 dB bandwidth of the emission being measured, VBW \geq RBW
Sweep $=$ auto, Detector function $=$ peak, Trace $=$ max hold
4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 4.3

TEST RESULT

Not Applicable
TEST Data

Please refer to appendix A on the appendix report

5.4. 20 dB Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel
RBW $\geq 1 \%$ of the 20 dB bandwidth, VBW \geq RBW
Sweep = auto, Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 4.3

TEST RESULT

Not Applicable
TEST Data

Please refer to appendix B on the appendix report

5.5. 99\% Occupied Bandwidth

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input.
2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output andthe spectrum analyzer).
Center Frequency =channel center frequency
Span $\geq 1.5 \times$ OBW
RBW $=1 \% \sim 5 \% O B W$
VBW $\geq 3 \times$ RBW
Sweep time= auto couple
Detector = Peak
Trace mode = max hold
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE:

Please refer to the clause 4.3

TEST RESULT

Passed

TEST Data

Please refer to appendix C on the appendix report

5.6. Carrier Frequencies Separation

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, Frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW .

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels
RBW $\geq 1 \%$ of the span, VBW \geq RBW
Sweep $=$ auto, Detector function = peak, Trace $=$ max hold
4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 4.3

TEST RESULTS

TEST Data

Please refer to appendix D on the appendix report

5.7. Hopping Channel Number

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):
Frequency hopping systems in the $2400-2483.5 \mathrm{MHz}$ band shall use at least 15 channels.

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:

Span = the frequency band of operation
RBW $\geq 1 \%$ of the span, VBW \geq RBW
Sweep = auto, Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 4.3

TEST RESULTS

Not Applicable
TEST Data

Please refer to appendix E on the appendix report

5.8. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel, RBW $=1 \mathrm{MHz}$, VBW \geq RBW
Sweep = as necessary to capture the entire dwell time per hopping channel,
Detector function = peak, Trace = max hold
4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 4.3

TEST RESULTS

PassedNot Applicable

TEST Data

Please refer to appendix F on the appendix report

5.9. Duty Cycle Correction Factor (DCCF)

LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
2. Set to the maximum power setting and enable the EUT transmit continuously
3. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel, RBW $=1 \mathrm{MHz}, \mathrm{VBW} \geq$ RBW
Sweep = as necessary to capture the entire dwell time per hopping channel,
Detector function = peak, Trigger mode
4. Measure and record the duty cycle data

TEST MODE:

Please refer to the clause 4.3

TEST Data

Please refer to appendix G on the appendix report

5.10. Pseudorandom Frequency Hopping Sequence

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the $2400-2483.5 \mathrm{MHz}$ band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW . The system shall hop to chan-nel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose $5^{\text {th }}$ and $9^{\text {th }}$ stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage.The sequence begins with the frist one of 9 consecutive ones,forexample:the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence
An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.
The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

5.11. Conducted Band edge and Spurious Emission

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

1. Connect the antenna port(s) to the spectrum analyzer input.
2. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured
RBW $=100 \mathrm{kHz}, \mathrm{VBW} \geq 3 \times$ RBW
Detector = peak, Sweep time = auto couple, Trace mode = max hold
Allow trace to fully stabilize
Use the peak marker function to determine the maximum amplitude level.
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
4. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

TEST MODE:

Please refer to the clause 4.3

TEST RESULT

Not Applicable
TEST Data

Please refer to appendix H on the appendix report

5.12. Radiated Band edge Emission
 LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

1. The EUT was setup and tested according to ANSI C63.10 .
2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
5. Use the following spectrum analyzer settings:
a) Span shall wide enough to fully capture the emission being measured
b) Set RBW $=100 \mathrm{kHz}$ for $<1 \mathrm{GHz}$, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
c) Set RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for $>1 \mathrm{GHz}$, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
For average measurement: use duty cycle correction factor method (DCCF)
Averager level = Peak level + DCCF

TEST MODE:

Please refer to the clause 4.3

TEST RESULT

Passed

Note:

1) Level= Reading + Factor; Factor =Antenna Factor+ Cable Loss- Preamp Factor
2) Over Limit = Level- Limit
3) Average measurement was not performed if peak level is lower than average limit($54 \mathrm{dBuV} / \mathrm{m}$).

Test ch	nel:	CHOO			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	$\begin{aligned} & \text { Limit } \\ & \text { dBuV/m } \end{aligned}$	Over limit	Remark
1	2310.00	34.53	27.96	7.30	37.56	32.23	74.00	-41.77	Peak
2	2389.05	42.93	27.72	7.71	37.45	40.91	74.00	-33.09	Peak
3	2390.03	33.12	27.72	7.72	37.45	31.11	74.00	-42.89	Peak

Test c	nnel:	CH78			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	2483.50	52.81	27.43	7.80	37.26	50.78	74.00	-23.22	Peak
2	2500.00	33.58	27.40	7.81	37.26	31.53	74.00	-42.47	Peak

5.13. Radiated Spurious Emission
 LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
$0.009 \mathrm{MHz} \sim 0.49 \mathrm{MHz}$	$2400 / \mathrm{F}(\mathrm{kHz}) @ 300 \mathrm{~m}$	Quasi-peak
$0.49 \mathrm{MHz} \sim 1.705 \mathrm{MHz}$	$24000 / \mathrm{F}(\mathrm{kHz}) @ 30 \mathrm{~m}$	Quasi-peak
$1.705 \mathrm{MHz} \sim 30 \mathrm{MHz}$	$30 @ 30 \mathrm{~m}$	Quasi-peak

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,
Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.

Frequency	Limit (dBuV/m @3m)	Value
$30 \mathrm{MHz} \sim 88 \mathrm{MHz}$	40.00	Quasi-peak
$88 \mathrm{MHz} \sim 216 \mathrm{MHz}$	43.50	Quasi-peak
$216 \mathrm{MHz} \sim 960 \mathrm{MHz}$	46.00	Quasi-peak
$960 \mathrm{MHz} \sim 1 \mathrm{GHz}$	54.00	Quasi-peak
Above 1 GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

> $9 \mathrm{kHz} \sim 30 \mathrm{MHz}$

> $\quad 30 \mathrm{MHz} \sim 1 \mathrm{GHz}$

> Above 1 GHz

TEST PROCEDURE

1. The EUT was setup and tested according to ANSI C63.10 .
2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz , and 1.5 m for above 1 GHz . The turn table is rotated 360 degrees to determine the position of the maximum emission level.
3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Set to the maximum power setting and enable the EUT transmit continuously.
6. Use the following spectrum analyzer settings
a) Span shall wide enough to fully capture the emission being measured;
b) Below 1 GHz :

RBW $=120 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$, Sweep=auto, Detector function=peak, Trace=max hold;
If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
c) Set RBW $=1 \mathrm{MHz}, \mathrm{VBW}=3 \mathrm{MHz}$ for $>1 \mathrm{GHz}$, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement
For average measurement: use duty cycle correction factor method (DCCF)
Averager level = Peak level + DCCF

TEST MODE:

Please refer to the clause 4.3

TEST RESULT

Passed

\square Not Applicable
Note:

1) Level= Reading + Factor/Transd; Factor/Transd =Antenna Factor+ Cable Loss- Preamp Factor
2) Over Limit = Level- Limit
3) Average measurement was not performed if peak level is lower than average limit($54 \mathrm{dBuV} / \mathrm{m}$) for above 1 GHz .

TEST DATA FOR $9 \mathbf{k H z}$ ~ $\mathbf{3 0} \mathbf{~ M H z}$

The EUT was pre-scanned this frequency band, found the radiated level 20 dB lower than the limit, so don't show data on this report.

TEST DATA FOR 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH39 which it was worst case, so only show the worst case's data on this report.

TEST DATA FOR $1 \mathrm{GHz} \sim 25 \mathrm{GHz}$

Test channel		CH39			Polarity			Horizontal	
Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
	MHz	dBuV/m	dB	dB	dB	dBuV/m	$\mathrm{dBuV} / \mathrm{m}$	limit	
1	1280.07	34.98	25.96	5.36	36.37	29.93	74.00	-44.07	Peak
2	3291.39	35.70	28.53	9.00	36.83	36.40	74.00	-37.60	Peak
3	4946.07	31.26	31.49	11.53	35.20	39.08	74.00	-34.92	Peak
4	7643.68	31.01	36.31	14.70	33.17	48.85	74.00	-25.15	Peak
Test channel		CH39			Polarity			Vertical	
Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
	MHz	dBuV/m	dB	dB	dB	dBuV/m	$\mathrm{dBuV} / \mathrm{m}$	limit	
1	1378.14	36.15	26.19	5.51	36.49	31.36	74.00	-42.64	Peak
2	3402.13	35.20	28.61	9.17	36.75	36.23	74.00	-37.77	Peak
3	4256.33	34.82	30.21	10.52	36.11	39.44	74.00	-34.56	Peak
4	8725.48	30.22	37.70	15.33	34.75	48.50	74.00	-25.50	Peak

6. TEST SETUP PHOTOS

Radiated Emission

AC Conducted Emission

7. EXTERANAL AND INTERNAL PHOTOS

Reference to the test report No. : CHTEW21060077

8. APPENDIX REPORT

