

Nemko Test Report:

4L0613RUS3

Applicant:

Motion Computing, Inc. 8601 RR 2222 Bldg 2 Building 1, Suite 250 Austin, TX 78730

Equipment Under Test: (E.U.T.)

In Accordance With:

FCC Part 15, Subpart C, 15.247 Digital Transmission System Transceiver

LE1600 Series, Model T004 with Intel 2200 BG card

Tested By:

Nemko Dallas Inc. 802 N. Kealy Lewisville, Texas 75057-3136

JL Fish

Authorized By:

John Fish, EMC Engineer

Date:

14 Apr 2005

Table of Contents

Section 1.	Summary of Test Results	3
Section 2.	Equipment Under Test (E.U.T.)	5
Section 3.	Powerline Conducted Emissions	7
Section 4.	Occupied Bandwidth	.11
Section 5.	Maximum Peak Output Power	.18
Section 6.	RF Exposure	.19
Section 7	Spurious Emissions at Antenna Terminals	20
Section 8.	Radiated Emissions	23
Section 9.	Peak Power Spectral Density	27
Section 10.	Test Equipment List	34
ANNEX A -	TEST DETAILS	35
ANNEX B -	TEST DIAGRAMS	46

Section 1. Summary of Test Results

Manufacturer: Motion Computing, Inc.

Model No.: T004

Serial No.: None

General: All measurements are traceable to national standards.

These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, Subpart C, Paragraph 15.247 for Direct Sequence Spread Spectrum devices. Radiated tests were conducted is accordance with ANSI C63.4-2003. Radiated emissions are made on an open area test site. A description of the test facility is on file with the FCC.

THIS TEST REPORT RELATES ONLY TO THE ITEM(S) TESTED.

THE FOLLOWING DEVIATIONS FROM, ADDITIONS TO, OR EXCLUSIONS FROM THE TEST SPECIFICATIONS HAVE BEEN MADE. NONE See "Summary of Test Data".

NVLAP LAB CODE: 100426-0

Nemko Dallas Inc. authorizes the above named company to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Dallas Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

Summary Of Test Data

NAME OF TEST	PARA. NO.	RESULT
Powerline Conducted Emissions	15.207(a)	Complies
Minimum 6 dB Bandwidth	15.247(a)(2)	Complies
Channel Separation	15.247(a)(1)	Complies
Pseudorandom Hopping Algorithm	15.247(a)(1)	Complies
Time of Occupancy	15.247(a)(1)(ii)	Complies
20 dB Occupied Bandwidth	15.247(a)(1)	Complies
Maximum Peak Power Output	15.247(b)(1)	Complies
Spurious Emissions (Antenna Conducted)	15.247(c)	Complies
Spurious Emissions (Restricted Bands)	15.247(c)	Complies
Peak Power Spectral Density	15.247(d)	Complies

Footnotes:

Section 2. Equipment Under Test (E.U.T.)

General Equipment Information

Frequency Band:

902 – 928 MHz
 2400 – 2483.5 MHz
 5725 – 5850 MHz

Channel Spacing:

5 MHz

User Frequency Adjustment:

Software controlled

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

Description of EUT

The T004 is a portable computer platform based on ultra-portable tablet PC technology utilizing Microsoft's Tablet version of Windows XP. The PC is compatible with 802.11b and g technologies.

The PC also has Bluetooth capability.

System Diagram

Section 3. Powerline Conducted Emissions

NAME OF TEST: Powerline Conducted Emissions	PARA. NO.: 15.207(a)
TESTED BY: Kevin Rose	DATE: 12/20/04

Test Results: Complies.

Measurement Data: See attached plots.

Measurement Uncertainty: +/- 1.7 dB

NOTE: The device was tested with both radio modules transmitting simultaneously (Bluetooth and WiLAN).

NEMKC	Dallas,	Inc.	e			0			Dallas 80 Lewisv Tel: (§ Fax: (§	Headqu 2 N. Kea /ille, TX 972) 436 972) 436	Jarters: aly 75057 3-9600 3-2667	
Comple ⁻ Prelimin	Conducted Emissions Powerline Voltage Measurement Complete X Job # : 410613e Test # : CEPV-01 Preliminary Page 1 of 2											
Client N EUT Na EUT Mc EUT Pa EUT Se EUT Co	Client Name : Motion Computing Inc. EUT Name : LE1600 Series EUT Model #: T004 EUT Part #: EDX20 EUT Serial #: 56 EUT Config.: transmitting max power and DVD operating											
Specifica Transdu HP Filte Cable 1 Cable 2 Detecto Detecto Limiter #	Specification : FCC B Reference : EN 55022 Class B Transducer # : 969 Temp. (deg. C) : 20 Date : 12/20/04 HP Filter # : 1433 Humidity (%) : 19 Time : 10:26 Cable 1 # : 1998 EUT Voltage : 120 Staff : KEVIN ROSE Cable 2 # : 1129 EUT Frequency : 60 Location : ROOM 2 Detector 1 # : 718 Peak Bandwidth: 10 kHz Photo ID: 4L0613E CEPV-01 Detector 2 # : 966 QP Bandwidth 10 kHz Photo ID: 4L0613E CEPV-01 Limiter # : Avg. Bandwidth 10 kHz Figure 4.2 Figure 4.2 Figure 4.2								SE EPV-01			
Meas. Freq. (MHz) 0.1527	EUT Test Point Neutral	Detector Type (P,QP, A) A	Limit Type (QP, A) A	Meter Reading (dBuV) 47.0	Path Loss (dB)	Transducer Factor (dB) 0	Corrected Reading (dBuV) 47.0	Spec (dE Q.P. 65.85	2.limit 3uV) Avg. 55.852	CR/SL Diff. (dB) -8.9	Pass Fail Unc. Pass	Comment
0.1527 0.2298 0.2298 0.4568 0.4568	Neutral Neutral Neutral Neutral	QP A QP A QP	QP A QP A QP	56.8 36.0 45.2 32.5 36.2	0 0 0 0 0	0 0 0 0 0	56.8 36.0 45.2 32.5 36.2	65.85 62.46 62.46 56.75 56.75	55.852 52.457 52.457 46.751 46.751	-9.1 -16.5 -17.3 -14.3 -20.6	Pass Pass Pass Pass Pass	
a	0.4568 Neutral QP QP 36.2 0 0 36.2 56.75 46.751 -20.6 Pass											
\EMCS	₁₅окн± L Share\AU	L TOMATE\	L DATASI	-TS\CEF	™iн± ⊃Voltag∉	e Rev C.xl	Documen	t Contro	nain L	^{I™} DS EM		.₩≖ LT

4L0613RUS3

Test Data – Powerline Conducted Emissions

Dallas Headquarters:					
802 N. Kealy					
Lewisville, TX 75057					
Tel: (972) 436-9600					
Fax: (972) 436-2667					

Conducted Emissions												
Complete Prelimina	e ary	X		Р	'owerline	Voltage M	easureme	Job # :	<u>4l0613e</u> Page	2	Test # : of	CEPV-01 2
Client Na	ent Name : Motion Computing Inc.											
EUT Nor	ne: del#:	T004	21000 Series									
EUT Par	t#:	EDX20	DX20									
EUT Ser	ial # :	56	56									
EUT Cor	nfig. :	transmitti	ng max j	ower ar	nd DVD op	perating						
Specifica	ation :	FCC B						Refe	rence :	EN 550	022 Clas	is B
Meas.	EUT	Detector	Limit	Meter	Path	Transducer	Corrected	Spec	.limit	CR/SL	Pass	
Freq.	Test	Туре	Туре	Reading	Loss	Factor	Reading	(dB	uV)	Diff.	Fail	
(MHz)	Point	(P,QP, A)	(QP, A)	(dBuV)	(dB)	(dB)	(dBuV)	Q.P.	Avg.	(dB)	Unc.	Comment
0.1527	Hot	A	A	46.0	0.0	0.0	46.0	65.85	55.852	-9.9	Pass	·
0.1527		QP A		5/.2	0.0	0.0	57.2	65.85	55.852	-8.7	Pass	·
0.2290	Hot			30.0 47.0	0.0	0.0	30.0 47 ()	62.40	52.407	-14.5	Pass	·
0.4568	Hot	A	A	25.6	0.0	0.0	25.6	56.75	46.751	-21.2	Pass	
0.4568	Hot	QP	QP	35.2	0.0	0.0	35.2	56.75	46.751	-21.6	Pass	
	800	MAL .						CISPR	22 8 CO MD			
	10.0	1			1MHz	1	<u> </u>		10MHz		300	нт
\EMCSI	\EMCShare\AUTOMATE\DATASHTS\CEP_Voltage Rev C.xls Document Control #EMC DS EM COND VOLT											

Photos – Powerline Conducted Emissions

Front

Side

Section 4. Occupied Bandwidth

NAME OF TEST: Occupied Bandwidth	PARA. NO.: 15.247(a)(2)
TESTED BY: David Light	DATE: 12/21/04

Test Results:	Complies.					
802.11g						
Measurement Data:	See 6 dB BW plot					
	Measured 6 dB bandwidth: Channel Separation:	16.5 MHz 5 MHz				
802.11b						
Measurement Data:	See 6 dB BW plot					
	Measured 6 dB bandwidth: Channel Separation:	10 MHz 5 MHz				

TEST REPORT NO.: 4L0613RUS3

802.11g

ata Plot	liko Dallas, liic.							
			<u>Occupie</u>	l Bandwid	th			
Page <u>1</u> o No.: ecification: sted By:	of <u>4</u> 4L0613 15.247 David Light	Tempera Relative Hur	Date: 12/21/2 ature(°C): 22 midity(%) 45		Co Prelim	omplete ninary:	<u>X</u>	
J.T.:	TABLET PC							
nfiguration: nule Number	- TX W/ TX UTILIT	Y SET TO 25 POWE	R					
ation:	AC 3		R	BW: 100 kHz				
ector Type:	Peak		v	BW: 100 kHz	_			
t Fauinr	ont Used							
tenna:	1304		Directional Cou	pler:				
-Amp:			Cabl	e #1: 1484				
er:			Cabl	e #2: 1485				
eiver:	1464		Cabl	e #3:				
enuator #1			Cabl	e #4:				
enuator #2:			М	ixer:				
tional equip	ment used:	7 dD						
	D				hybridge			
					- N	den		
	•					The Party	-	
		- What have a						
	- ALARA TAR	apres When Prover					THE AND	Marrie -
	-Alexandra	ar as hitely and a					THE AND THE	Minghar
	-Alastant	approximation and a second						Hunghar
	-Alastan							Monghar
	and a second second	aprendent and a second and a						they have

TEST REPORT NO .:

4L0613RUS3

802.11g

TEST REPORT NO .:

4L0613RUS3

802.11g

Dallas Headquarters: 802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

EQUIPMENT: LE 1600 Series, Model T004

TEST REPORT NO .:

4L0613RUS3

802.11b

TEST REPORT NO .:

4L0613RUS3

802.11b

Dallas Headquarters: 802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667

TEST REPORT NO .:

4L0613RUS3

802.11b

Section 5. Maximum Peak Output Power

NAME OF TEST: Maximum Peak Output power	PARA. NO.: 15.247(b)(1)
TESTED BY: David Light	DATE: 12/21/04

Test Results:

Complies.

Measurement Data: Refer to attached data

Frequency	Mode	Peak Power	Peak Power	Antenna Gain
(MHz)		(dBm)	(mW)	(dBi)
2412	802.11b	13.8	23.99	0
2437	802.11b	13.5	22.39	0
2462	802.11b	13.4	21.88	0
2412	802.11g	13.6	22.91	0
2437	802.11g	13.4	21.88	0
2462	802.11g	13.1	20.42	0

The measurement was repeated at +/- 15% of nominal supply voltage with no variation noted in rf power output.

Section 6. **RF Exposure**

NAME OF TEST: RF Exposure	PARA. NO.: 15.247(b)(4)
TESTED BY:	DATE:

Test Results: Please refer to SAR report for body SAR results.

Measurement Data:

Section 7 Spurious Emissions at Antenna Terminals

NAME OF TEST: Spurious Emissions at Antenna Terminals PARA. NO.: 15.247 (c)

TESTED BY: David Light

DATE: 1/5/05

Test Results: Complies.

Measurement Data: See attached plots.

The spectrum was thoroughly searched from 30 MHz to 26 GHz in all modes on three channels. There were no emissions detected within 20 dB of the specification limit of -20 dBc in any 100 kHz bandwidth. Plots are presented to demonstrate compliance at the band edges.

Test Equipment: 1464-1626-1470-988-989

Test Data – Spurious Emissions at Antenna Terminals 802.11b

Nemko Dallas, Inc.						Dallas Headquarters: 802 N. Kealy Lewisville, TX 75057 Tel: (972) 436-9600 Fax: (972) 436-2667							
Data Plo	t				<u>Occu</u>	pied Bar	ndwidth						
Page 4_ 0 Job No.: Specification: Tested By: E.U.T.: Configuration:	4 4L0613 15.2 David L TABLE TX UPP	ight T PC MGHT - T>	R K POWER	Temperatur telative Humid SET TO 25 IN	Date: 12/21/ e(°C): 22 ity(%) 45	/2004		-					
	₩f F	ATTEI RL –	N Ød 10.0	dB 3dBm	1	Ød B∕	∆ 1	MKR 3.00	23.1 MHz	.6d B			
	D	∆MK 13. 23.	R ØØ 1 16 (ЧНz ∃В				at and a	hor tine	andra and a			
		henhed	ha gente di l	m prophelish	Vinder	Mar Marty	Ŵ				\sim		
) *F	CENT RBW	ER 2 100	2.400 (Hz	ØØGH VBI	z W 100)kHz	SF	AN 5 SWP	50.00 50.0)MHz Jms		
Notes:	Lower Chann 802.11	bandedge el 1 b @ 11 M	bps										

Test Data – Spurious Emissions at Antenna Terminals

802.11g

Section 8. Radiated Emissions

NAME OF TEST: Radiated Emissions	PARA. NO.: 15.247 (c)
TESTED BY: David Light	DATE: 1/29/04

Test Results: Complies.

Measurement Data: See attached table.

TEST REPORT NO.:4L0613RUS3

Radiated Er	nissions -	- 802.111	0					
N Nemko						Dall Lev Tel	as Headquar 802 N. Kealy visville, TX 75 : (972) 436-9	ters: 057 600
<u>Nei</u>	mko Dal	<u>las, Inc.</u>				Fax	k: (972) 436-2	667
				<u>Radi</u>	ated Emission	15		
Page <u>1</u> of	<u>1</u>							
Job No.:	4L0050			Date:	12/28/2004			
Specification:	15.247/15.2	05	Temp	perature(°C):	20	-		
Tested By:	David Light		Relative I	Humidity(%)	50	-		
E.U.T.:	TABLET P	C w/802.11b						
Configuration:	Upright on l	long edge - Co	ontinuous t	ransmit @ 11	l Mbps Tx utili	ity set at 25		
Sample Number:	1			-				
Location:	AC 3	-			RBW:	1 MHz		
Detector Type:	Peak	-			Peak VBW:	1 MHz		
					Avg VBW	10 Hz		
			<u>Test Equ</u>	ipment Used	I			
Antenna:	1304			Direct	tional Coupler:	#N/A		
Pre-Amp:	1016	.			Cable #1:	1484		
Filter:	1650				Cable #2:	1485		
Receiver:	1464	- -			Cable #3:	#N/A		
Attenuator #1	#N/A	- -			Cable #4:	#N/A		
Attenuator #2:	#N/A	- -			Mixer:	#N/A		
Additional test ed	quipment:	988-983-991	-992					
Measurement Un	certainty: +/-	3.6 dB						
Frequency (MHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity
								Tx 2462 MHz
2483.5	41.0	28.2	3.1	0.0	72.3	74	54	Peak/Horizontal
2483.5	22.3	28.2	3.1	0.0	53.6	74	54	Average/Horizontal
2483.5	38.0	28.2	3.1	0.0	69.3	74	54	Peak/Vertical
2483.5	22.0	28.2	3.1	0.0	53.3	74	54	Average/Vertical
Notes:	The de	vice was	s tested	d on 3 c	hannels.]	The spect	rum was	searched to 25GHz
	No emi	ssions w	vere de	etected a	above the	e noise flo	or. Band	edge data provided.

Radiated Emissions - 802.11g

Dallas Headquarters:							
802 N. Kealy							
Lewisville, TX 75057							
Tel: (972) 436-9600							
Eav: (072) 436-2667							

				Radi	ated Emission	S			
Page <u>1</u> of	f <u>1</u>								
Job No.:	4L0613			Date:	12/28/2004				
Specification:	15.247/15.2	05	Temp	perature(°C):	20				
Tested By:	David Light		Relative I	Humidity(%)	50				
E.U.T.:	TABLET P	C w/802.11g							
Configuration:	Upright on l	ong edge - Co	ontinuous t	ransmit @ 54	4 Mbps Tx utili	ty set at 25			
Sample Number:	1			_					
Location:	AC 3				RBW:	1 MHz			
Detector Type:	Peak				Peak VBW:	1 MHz			
I					Avg VBW:	10 Hz			
			<u>Test Equ</u>	ipment Used	1				
Antenna:	1304			Direct	tional Coupler:	#N/A			
Pre-Amp:	1016				Cable #1:	1484			
Filter:	1650				Cable #2:	1485			
Receiver:	1464				Cable #3:	#N/A			
Attenuator #1	#N/A				Cable #4:	#N/A			
Attenuator #2:	#N/A				Mixer:	#N/A			
Additional test ed	quipment:	988-983-991	-992						
Measurement Un	certainty: +/-	3.6 dB							
Frequency (MHz)	Meter Reading (dBuV)	Antenna Factor (dB)	Cable Loss (dB)	Pre-Amp Gain (dB)	Corrected Reading (dBuV/m)	Peak Limit (dBuV/m)	Average Limit (dBuV/m)	Detector / Polarity	
			<u> </u>					Tx 2462 MHz	
2483.5	34.5	28.2	3.1	0.0	65.8	74	54	Peak/Horizontal	
2483.5	22.6	28.2	3.1	0.0	53.9	74	54	Average/Horizontal	
2483.5	33.0	28.2	3.1	0.0	64.3	74	54	Peak/Vertical	
2483.5	22.4	28.2	3.1	0.0	53.7	74	54	Average/Vertical	
Notes:	The de	vice was	s tested	d on 3 cl	hannels.	The spec	trum was	searched to 25GHz	
	No emi	ssions w	vere de	tected a	above no	ise floor	Band edd	ne data provided	

Radiated Photographs

Section 9. Peak Power Spectral Density

NAME OF TEST: Peak Power Spectral Density	PARA. NO.: 15.247(d)
TESTED BY: David Light	DATE: 1/4/05

Test Results: Complies.

Measurement Data: See attached data..

TEST REPORT NO.:4L0613RUS3

Peak Power Spectral Density

802.11b)											
N			Î	()						Dallas H 802 Lewisv Tel: (9 Fax: (9	Headquarter 2 N. Kealy ille, TX 7505 72) 436-960	rs: 7 0 7
Nen	n <mark>ko D</mark> a	llas, Inc.								. a.a. (e	. 2) 100 200	
Data Plot Page <u>1</u> o Job No.: Specification: Tested By: E.U.T.: Configuration: Sample Number: Location: Detector Type:	f <u>3</u> 4L0613 15.247(David I Tablet I Upright <u>1</u> Lab Pea	e) ight PC on long edge 1 k	Relat -Tx 11 Mbp:	Pe: D Temperatured tive Humidity s-802.11b	ak Pow ate: 1 (°C):	er Spect /4/2005 20 60 RBW: <u>3 k</u> VBW: <u>3 k</u>	t ral Der	<u>nsity</u> - -	(Preli	Complete	X	
Test Equipm Antenna: Pre-Amp: Filter: Receiver: Attenuator #1 Attenuator #2: Additional equip Measurement Ur	ent Use	<u>d</u> <u>4</u> <u>0</u> <u>1</u> : <u>+/-1.7</u>	' dB		Directional	Coupler: Cable #1: Cable #2: Cable #3: Mixer:	1626	-				
	R		20c 0.0dI dBm									
Notes:	Chann 802.11	el 1 b @ 11 Mbj	ps									

Peak Power Spectral Density

802.11b

Peak Power Spectral Density

802.11b

 Dallas Headquarters:

 802 N. Kealy

 Lewisville, TX 75057

 Tel:
 (972) 436-9600

 Fax:
 (972) 436-2667

Nemko Dallas, Inc.

TEST REPORT NO.:

4L0613RUS3

Peak Power Spectral Density

Peak Power Spectral Density

802.11g

Peak Power Spectral Density

802.11g

 Dallas Headquarters:

 802 N. Kealy

 Lewisville, TX 75057

 Tel:
 (972) 436-9600

 Fax:
 (972) 436-2667

Section 10. Test Equipment List

Nemko ID	Description	Manufacturer Model Number	Serial Number	Calibration Date	Calibration Due
1464	Spectrum analyzer	Hewlett Packard 8563E	3551A04428	07/30/04	07/31/06
1484	Cable 2.0-18.0 Ghz	Storm PR90-010-072	N/A	08/26/04	08/26/05
1485	Cable 2.0-18.0 Ghz	Storm PR90-010-216	N/A	08/02/04	08/02/05
1016	Pre-Amp	HEWLETT PACKARD 8449A	2749A00159	11/12/04	11/12/05
759	ANTENNA, LOG PERIODIC	A.H. SYSTEMS SAS-200/510	556	07/23/04	07/23/05
760	Antenna biconical	Electro Metrics MFC-25	477	06/22/04	06/22/05
791	PREAMP, 25dB	ICC LNA25	398	11/12/04	11/12/05
1304	HORN ANTENNA	ELECTRO METRICS RGA-60	6151	09/22/03	09/22/05
988	HARMONIC MIXER	Hewlett Packard 11970A	2332A01929	CNR	N/A
989	HARMONIC MIXER	Hewlett Packard 11970U	2332A00116	CNR	N/A
1626	CABLE, 5 ft	MEGAPHASE 10311 1GVT4	N/A	CBU	N/A
1030	PEAK POWER SENSOR	HP 84811A	2539A03573	12/23/04	1/23/05
1029	PEAK POWER METER	HP 8900D	3303U0012	12/23/04	1/23/05
1470	10 db Attenuator DC 18 Ghz	MCL Inc. BW-S10W2 10db-2WDC	NONE	CBU	N/A
1650	WR90 Band Pass Filter	Nemko None	None	CBU	N/A
991	Horn antenna	EMCO 3160-10	9704-1049	CNR	N/A
992	Horn antenna	EMCO 3160-09	9705-1079	CNR	N/A

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

ANNEX A - TEST DETAILS

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: Powerline Conducted Emissions PARA. NO.: 15.207(a)

Minimum Standard: §15.207 Conducted limits.

(a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 mH/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of Conducted	Limit (dBmV)
Emission (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
	- ·· -	

* Decreases with the logarithm of the frequency.

(b) The limit shown in paragraph (a) of this section shall not apply to carrier current systems operating as intentional radiators on frequencies below 30 MHz. In lieu thereof, these carrier current systems shall be subject to the following standards:

(1) For carrier current systems containing their fundamental emission within the frequency band 535-1705 kHz and intended to be received using a standard AM broadcast receiver: no limit on conducted emissions.

(2) For all other carrier current systems: 1000 mV within the frequency band 535-1705 kHz, as measured using a 50 mH/50 ohms LISN.

(3) Carrier current systems operating below 30 MHz are also subject to the radiated emission limits as provided in §15.205 and §§15.209, 15.221, 15.223, 15.225 or 15.227, as appropriate.

(c) Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to the AC power lines. Devices that include, or make provision for, the use of battery chargers which permit operating while charging, AC adaptors or battery eliminators or that connect to the AC power lines indirectly, obtaining their power through another device which is connected to the AC power lines, shall be tested to demonstrate compliance with the conducted limits.

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: Occupied Bandwidth

PARA. NO.: 15.247(a)(2)

Minimum Standard: The minimum 6 dB bandwidth shall be at least 500 kHz

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: Maximum Peak Output Power PARA. NO.: 15.247(b)(1)

Minimum Standard: The maximum peak output power shall not exceed 1 watt.

If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Systems operating in the 2400-2483.5 MHz band that are used exclusively for fixed, point to point operation may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceed 6 dBi.

Systems operating in the 5725 – 5850 MHz band that are used exclusively for fixed, point-to-point operation may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter peak output power.

Direct Measurement Method For Detachable Antennas:

If the antenna is detachable, a peak power meter is used to measure the power output with the transmitter operating into a 50 ohm load. The dBi gain of the antenna(s) employed shall be reported.

Substitution Antenna Method for Integral Antennas:

The peak field strength of the carrier is measured in a worst-case configuration with a RBW > 5 times the occupied bandwidth of the transmitted waveform. For cases where the RBW of the test instrument is not sufficient, the power is measured using a peak power meter instead of the spectrum analyzer.

The RBW of the spectrum analyzer shall be set to a value greater than the measured 6 dB occupied bandwidth of the E.U.T.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: Channel Separation PARA. NO.: 15.24	7(a)((1)
---	-------	----	---

Minimum Standard: Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

NAME OF TEST: Pseudorandom Hopping Algorithm PARA. NO.: 15.247(a)(1)

Minimum Standard:The system shall hop to channel frequencies that are selected from
a pseudo-randomly ordered list of hopping frequencies. Each
frequency must be used equally on average by each transmitter.
The system receivers shall have input bandwidths that match the
hopping channel bandwidths of their transmitters and shall shift
frequencies in synchronization with the transmitted signals.

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: Time of Occupancy

PARA. NO.: 15.247(a)(1)(ii)

Minimum Standard:

Frequency	20 dB	No. of	Average Time of
Band	Bandwidth	Hopping	Occupancy
(MHz)		Channels	
902 - 928	<250 kHz	50	=<0.4 sec. in 20
			sec.
902 – 928	=>250	25	=<0.4 sec. in 10
	kHz		sec.
2400 –		75	=<0.4 sec. in 30
2483.5			sec.
5725 - 5850		75	=<0.4 sec. in 30
			sec.

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: 1 MHz VBW: = RBW Span: 0 Hz LOG dB/div.: 10 dB Sweep: Sufficient to see one hop time sequence. Trigger: Video

The occupancy time of one hop is measured as above. The average time of occupancy is calculated over the appropriate period of time from above table (10, 20, or 30 seconds).

Avg. time of occupancy = (period from table/duration of one hop)/no. of channels multiplied by the duration of one hop.

For instance:

If a 2.4 GHz system has a measured hop duration time of 1 msec. and uses 75 channels, then the average time of occupancy would be:

(30 sec./.001 sec.)/75 chan. = 400 x 1 msec. = 400 msec. or 0.4 sec. in 30 sec.

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: Occupied Bandwidth

PARA. NO.: 15.247(a)(2)

Minimum Standard:

Frequency Band (MHz)	Maximum 20 dB Bandwidth
902 - 928	500 kHz
2400 – 2483.5	1 MHz
5725 – 5850	1 MHz

Method Of Measurement:

The spectrum analyzer is set as follows:

RBW: At least 1% of span/div. VBW: >RBW Span: Sufficient to display 20 dB bandwidth LOG dB/div.: 10 dB Sweep: Auto

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: RF Ex	posure	PARA. NO.: 15.247(b)(4)

Minimum Standard: Systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines stipulated in 1.1307(b)(1) of CFR 47.

NAME OF TEST: Spurious Emissions(conducted) PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits. Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM IS SEARCHED TO THE 10th HARMONIC OF THE HIGHEST FREQUENCY GENERATED IN THE EUT.

Method Of Measurement:

30 MHz - 10th harmonic plot RBW: 100 kHz VBW: 300 kHz Sweep: Auto Display line: -20 dBc

Lower Band Edge

RBW: At least 1% of span/div. VBW: >RBW Span: As necessary to display any spurious at band edge. Sweep: Auto Center Frequency: 902 MHz, 2400 MHz, or 5725 MHz Marker: Peak of fundamental emission Marker ∆: Peak of highest spurious level below center frequency.

Upper Band Edge RBW: At least 1% of span/div. VBW: >RBW Span: As necessary to display any spurious at band edge. Sweep: Auto Center Frequency: 928 MHz, 2483.5 MHz, or 5850 MHz Marker: Peak of fundamental emission Marker ∆: Peak of highest spurious level above center frequency.

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

NAME OF TEST: Radiated Spurious Emissions PARA. NO.: 15.247(c)

Minimum Standard: In any 100kHz bandwidth outside the frequency band in which the transmitter is operating, emissions shall be at least 20 dB below the fundamental emission or shall not exceed the following field strength limits:

Emissions falling in the restricted bands of 15.205 shall not exceed the following field strength limits:

Frequency (MHz)	Field Strength (μV/m @ 3m)	Field Strength (dB @ 3m)
30 - 88	100	40.0
88 - 216	150	43.5
216 - 960	200	46.0
Above 960	500	54.0

THE SPECTRUM WAS SEARCHED TO THE 10th HARMONIC

13.203 Restricted Darids				
MHz	MHz	MHz	GHz	
0.09-0.11	16.42-16.423	399.9-410	4.5-5.25	
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5	
6.125-6.218	74.8-75.2	1660-1710	10.6-12.7	
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4	
6.31175-6.31225	123-138	2200-2300	14.47-14.5	
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4	
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12	
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5	
12.57675-12.57725	322-335.4	3600-4400	Above 38.6	
13.36-13.41	1718			

15.205 Restricted Bands

Tuning range	Number of channels tested	Channel location in band
1 MHz or less	1	middle
1 to 10 MHz	2	top and bottom
more than 10 MHz	3	top, middle, bottom

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

NAME OF TEST: Transmitter Power Density PARA. NO.: 15.247(d)

Minimum Standard: The transmitted power density averaged over any 1 second interval shall not be greater than +8 dBm in any 3 kHz bandwidth.

Method Of Measurement: The spectrum analyzer is set as follows:

RBW: 3 kHz VBW: >3 kHz Span: => measured 6 dB bandwidth Sweep: Span(kHz)/3 (i.e. for a span of 1.5 MHz the sweep rate is 1500/3 = 500 sec. LOG dB/div.: 2 dB

Note: For devices with spectrum line spacing =< 3 kHz, the RBW of the analyzer is reduced until the spectral lines are resolved. The measurement data is normalized to 3 kHz by summing the power of all the individual spectral lines within a 3 kHz band in linear power units.

For Devices With Integral Antenna:

For devices with non-detachable antennas, the received field strength is peaked and the spectrum analyzer is set as above. The peak emission level is then measured and converted to a field strength by adding the appropriate antenna factor and cable loss. This field strength is then converted to an equivalent isotropic radiated power using the same method as described for Peak Power output.

Tuning Range	Number Of Channels Tested	Channel Location In Band
1 MHz or Less	1	Middle
1 to 10 MHz	2	Top And Bottom
More Than 10 MHz	3	Top, Middle, Bottom

FCC PART 15, SUBPART C

EQUIPMENT: LE 1600 Series, Model T004 TEST REPORT NO.: 4L0613RUS3

ANNEX B - TEST DIAGRAMS

Test Site For Radiated Emissions

Conducted Emissions

Peak Power At Antenna Terminals

Minimum 6 dB Bandwidth Peak Power Spectral Density Spurious Emissions (conducted)

