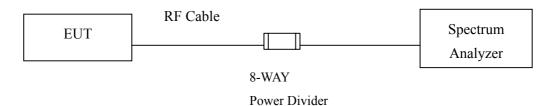


6. Undesirable Emission

6.1. Test Equipment


The following test equipments are used during the radiated emission tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
X	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010
X	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr., 2010

Note:

- 4. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 5. The test instruments marked with "X" are used to measure the final test results.
- 6. The power combiner is used for measure 11n mode.

6.2. Test Setup

6.3. Limits

Inside of the restricted band(section 2.7 table1): Apply to section 2.7 table2 limit.

Outside of the restricted band (section A9):

5 .15GHz - 5.35 GHz < -27 dBm/MHz EIRP, 5.47GHz - 5.725 GHz < -27 dBm/MHz EIRP, 5.725GHz - 5.825 GHz < -27 dBm/MHz EIRP,

<-17 dBm/MHz EIRP (all emission within the frequency range from the band edge to 10 MHz above or below the band edge).

6.4. Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

6.5. Uncertainty

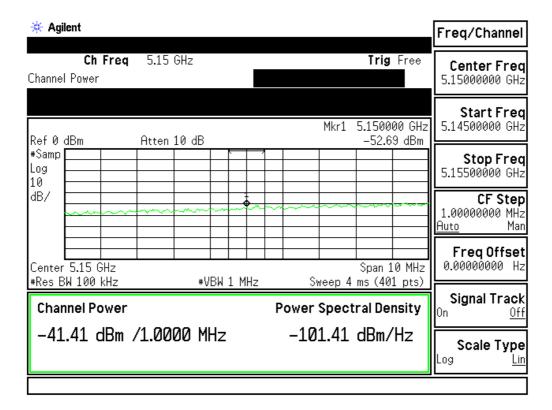
- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

6.6. Test Result of Undesirable Emission

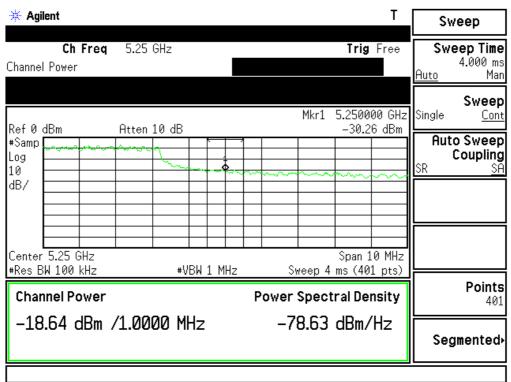
Product : Tablet PC MC-C5 / MC-F5

Test Item : Undesirable Emission

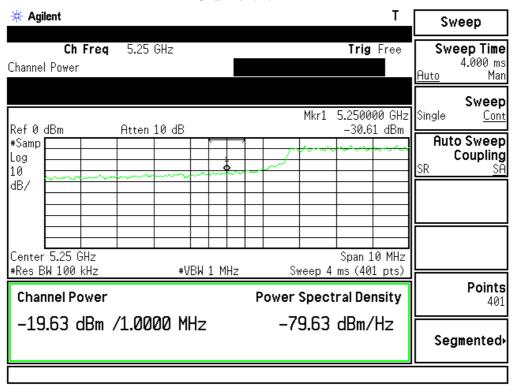
Test Site : No.3 OATS


Test Mode : Mode 1: Transmitter (802.11a-6Mbps)

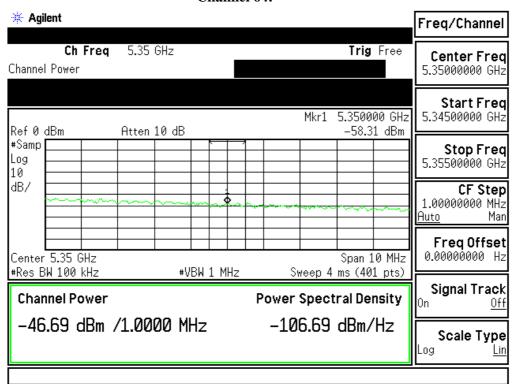
CONDCUT	CONDCUTED BAND EDGE EMISSIONS TEST RESULTS										
Test Freq.	TX	Power Spec Den.	Antenna	Corrected	Limits	Margin(dB)	Test				
(MHz)	Chain	Reading	Gain(dBi)	Measurement	(dBm/MHz)	+=FAIL	Channel				
		(dBm/MHz)		(dBm/MHz)							
802.11a	802.11a										
5150	A	-52.69	1.85	-50.84	-27	-23.84	5180				
5250	A	-30.26	1.85	-28.41	-27	-1.41	5240				
5250	A	-30.61	1.85	-28.76	-27	-1.76	5260				
5350	A	-58.31	1.85	-56.46	-27	-29.46	5320				
5470	A	-53.36	1.85	-51.51	-27	-24.51	5500				
5725	A	-54.27	1.85	-52.42	-27	-25.42	5700				


Note: Corrected Measurement = Power Spec Den. Reading + Antenna Gain

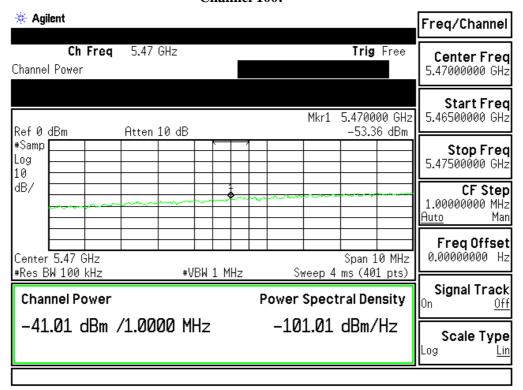
Channel 36:



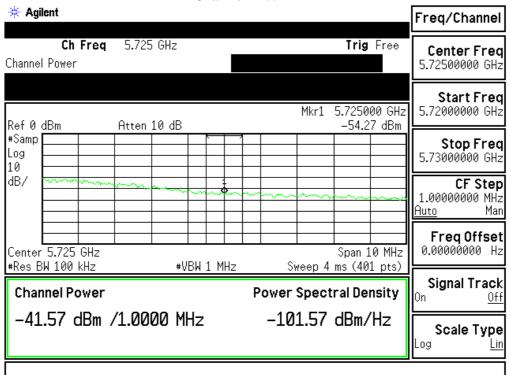
Channel 48:



Channel 52:



Channel 64:

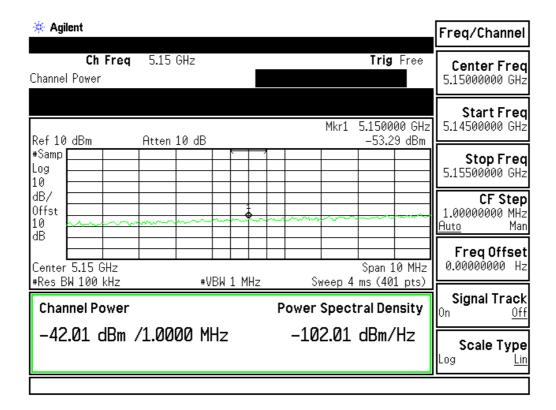


Channel 100:

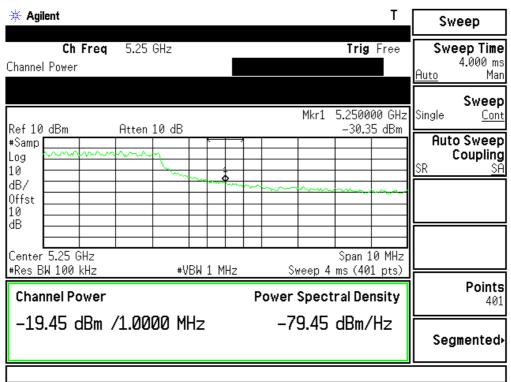
Channel 140:

Test Item : Undesirable Emission

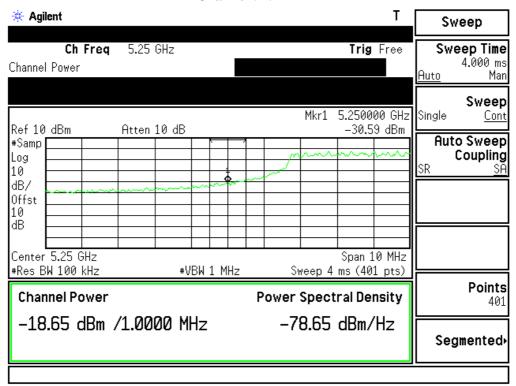
Test Site : No.3 OATS


Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps)

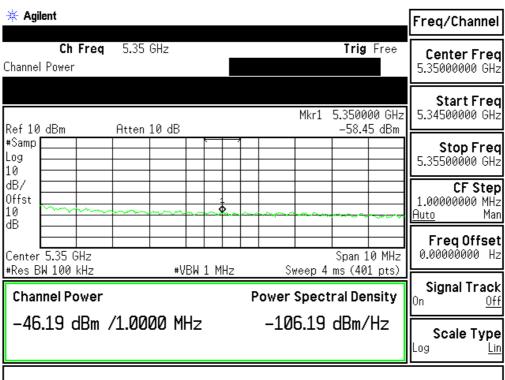
CONDCUT	CONDCUTED BAND EDGE EMISSIONS TEST RESULTS										
Test Freq.	TX	Power Spec Den.	Antenna	Corrected	Limits	Margin(dB)	Test				
(MHz)	Chain	Reading	Gain(dBi)	Measurement	(dBm/MHz)	+=FAIL	Channel				
		(dBm/MHz)		(dBm/MHz)							
802.11n (20M	802.11n (20MHz Wide)										
5150	A+B	-53.29	1.85	-51.44	-27	-24.44	5180				
5250	A+B	-30.35	1.85	-28.5	-27	-1.50	5240				
5250	A+B	-30.59	1.85	-28.74	-27	-1.74	5260				
5350	A+B	-58.45	1.85	-56.6	-27	-29.6	5320				
5470	A+B	-53.47	1.85	-51.62	-27	-24.62	5500				
5725	A+B	-55.53	1.85	-53.68	-27	-26.68	5570				


Note: Corrected Measurement = Power Spec Den. Reading + Antenna Gain

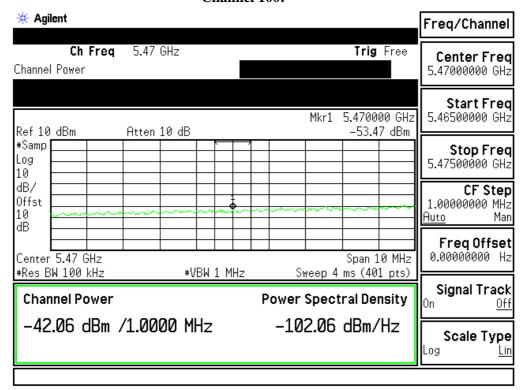
Channel 36:



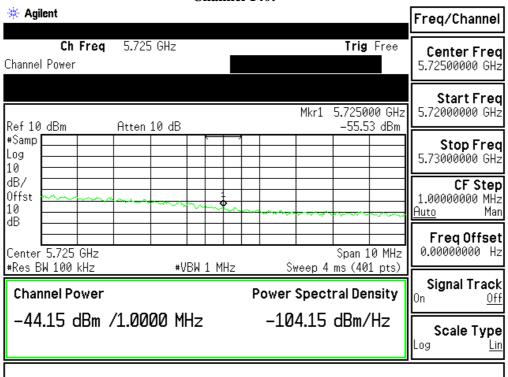
Channel 48:



Channel 52:



Channel 64:

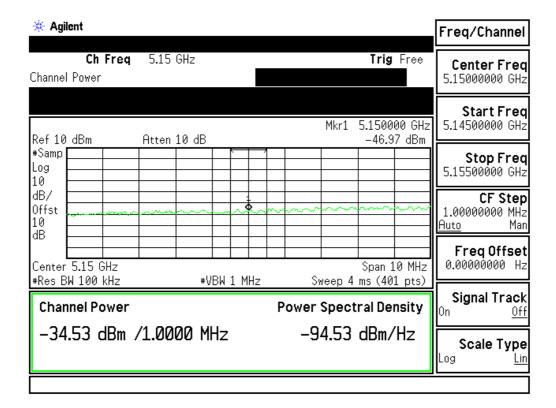


Channel 100:

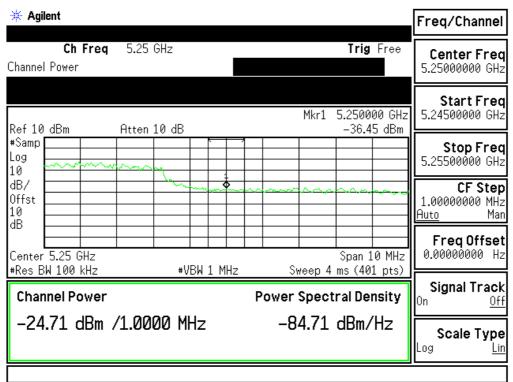
Channel 140:

Test Item : Undesirable Emission

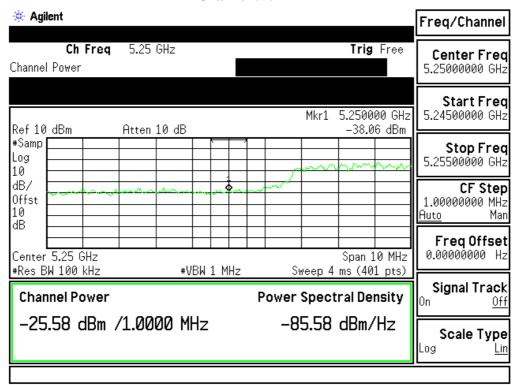
Test Site : No.3 OATS


Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps)

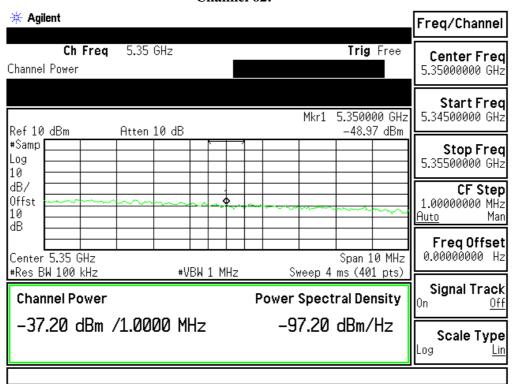
CONDCUT	CONDCUTED BAND EDGE EMISSIONS TEST RESULTS										
Test Freq.	TX	Power Spec Den.	Antenna	Corrected	Limits	Margin(dB)	Test				
(MHz)	Chain	Reading	Gain(dBi)	Measurement	(dBm/MHz)	+=FAIL	Channel				
		(dBm/MHz)		(dBm/MHz)							
802.11n (40M	802.11n (40MHz Wide)										
5150	A+B	-46.97	1.85	-45.12	-27	-18.12	5190				
5250	A+B	-36.45	1.85	-34.6	-27	-7.60	5230				
5250	A+B	-38.06	1.85	-36.21	-27	-9.21	5270				
5350	A+B	-48.97	1.85	-47.12	-27	-20.12	5310				
5470	A+B	-47.1	1.85	-45.25	-27	-18.25	5510				
5725	A+B	-65.04	1.85	-63.19	-27	-36.19	5670				


Note: Corrected Measurement = Power Spec Den. Reading + Antenna Gain

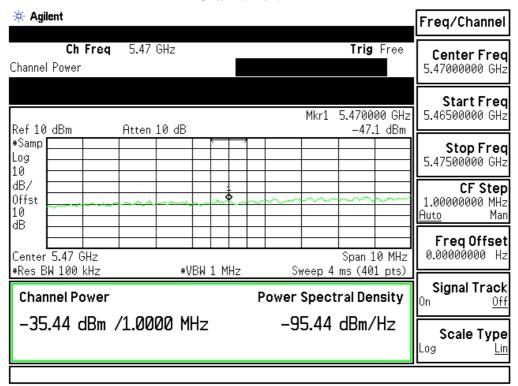
Channel 38:



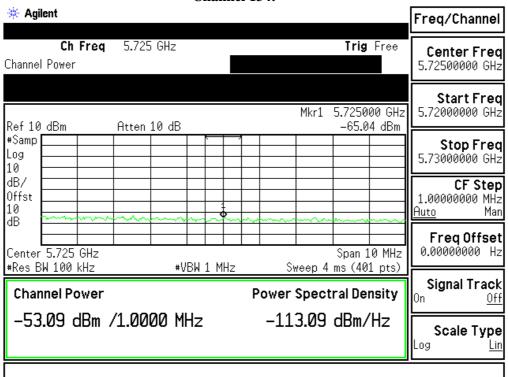
Channel 46:



Channel 54:



Channel 62:



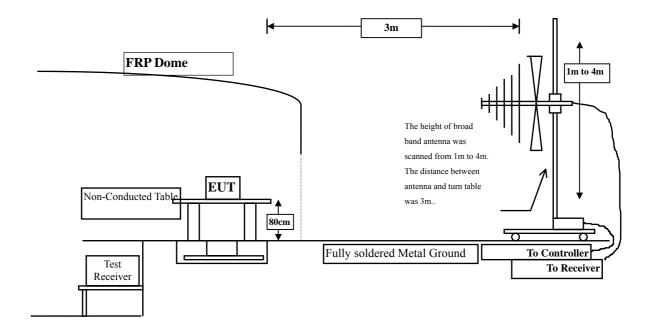
Channel 102:

Channel 134:

7. Radiated Emission

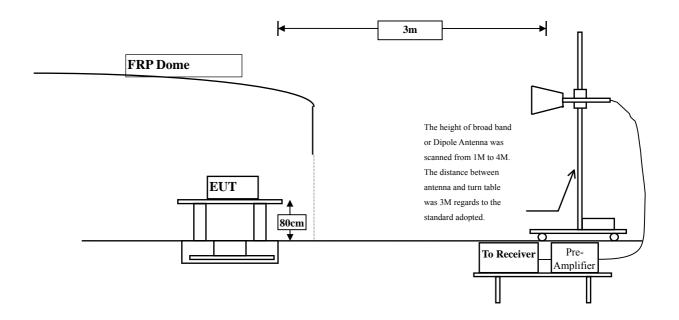
7.1. Test Equipment

The following test equipments are used during the radiated emission test:


Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3	X	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	X	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	X	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
	X	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.


7.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

7.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits							
Frequency MHz	uV/m @3m	dBuV/m@3m					
30-88	100	40					
88-216	150	43.5					
216-960	200	46					
Above 960	500	54					

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

7.4. **Test Procedure**

The EUT was setup according to ANSI C63.4, 2003 and tested according to FCC Public Notice DA 02-2138 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement.

The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement.

The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

7.5. **Uncertainty**

- + 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

7.6. Test Result of Radiated Emission

Product : Tablet PC MC-C5 / MC-F5

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10360.000	12.930	35.660	48.590	-25.410	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
10360.000	*	*	*	*	54.000
15540.000	*	*	*	*	54.000
20720.000	*	*	*	*	54.000
25900.000	*	*	*	*	54.000
31080.000	*	*	*	*	54.000
36260.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10360.000	10360.000	13.724	37.460	51.184	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
10360.000	*	*	*	*	54.000
15540.000	*	*	*	*	54.000
20720.000	*	*	*	*	54.000
25900.000	*	*	*	*	54.000
31080.000	*	*	*	*	54.000
36260.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10440.000	13.322	35.690	49.012	-24.988	74.000
15600.000	*	*	*	*	74.000
20800.000	*	*	*	*	74.000
26000.000	*	*	*	*	74.000
31200.000	*	*	*	*	74.000
36400.000	*	*	*	*	74.000
Average					
Detector:					
10440.000	*	*	*	*	54.000
15600.000	*	*	*	*	54.000
20800.000	*	*	*	*	54.000
26000.000	*	*	*	*	54.000
31200.000	*	*	*	*	54.000
36400.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5220MHz)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10440.000	14.245	36.110	50.355	-23.645	74.000
15600.000	*	*	*	*	74.000
20800.000	*	*	*	*	74.000
26000.000	*	*	*	*	74.000
31200.000	*	*	*	*	74.000
36400.000	*	*	*	*	74.000
Average					
Detector:					
10440.000	*	*	*	*	54.000
15600.000	*	*	*	*	54.000
20800.000	*	*	*	*	54.000
26000.000	*	*	*	*	54.000
31200.000	*	*	*	*	54.000
36400.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10480.000	13.693	36.730	50.424	-23.576	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
31440000	*	*	*	*	74.000
36680.000	*	*	*	*	74.000
Average					
Detector:					
10480.000	*	*	*	*	54.000
15720.000	*	*	*	*	54.000
20960.000	*	*	*	*	54.000
26200.000	*	*	*	*	54.000
31440000	*	*	*	*	54.000
36680.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10480.000	10480.000	14.620	36.690	51.311	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
31440000	*	*	*	*	74.000
36680.000	*	*	*	*	74.000
Average					
Detector:					
10480.000	*	*	*	*	54.000
15720.000	*	*	*	*	54.000
20960.000	*	*	*	*	54.000
26200.000	*	*	*	*	54.000
31440000	*	*	*	*	54.000
36680.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5260MHz)

Factor Level Level		
MHz dB dBuV dBuV/m	dB	dBuV/m
Horizontal		
Peak Detector:		
10520.000 14.015 35.550 49.565	-24.435	74.000
15780.000 * * *	*	74.000
21040.000 * * *	*	74.000
26300.000 * * *	*	74.000
31560.000 * * *	*	74.000
36820.000 * * *	*	74.000
Average		
Detector:		
10520.000 * * *	*	54.000
15780.000 * * *	*	54.000
21040.000 * * *	*	54.000
26300.000 * * *	*	54.000
31560.000 * * *	*	54.000
36820.000 * * *	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5260MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10520.000	14.818	37.330	52.148	-21.852	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
31560.000	*	*	*	*	74.000
36820.000	*	*	*	*	74.000
Average					
Detector:					
10520.000	*	*	*	*	
15780.000	*	*	*	*	54.000
21040.000	*	*	*	*	54.000
26300.000	*	*	*	*	54.000
31560.000	*	*	*	*	54.000
36820.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10600.000	14.550	35.540	50.089	-23.911	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
31800.000	*	*	*	*	74.000
37100.000	*	*	*	*	74.000
Average					
Detector:					
10600.000	*	*	*	*	54.000
15900.000	*	*	*	*	54.000
21200.000	*	*	*	*	54.000
26500.000	*	*	*	*	54.000
31800.000	*	*	*	*	54.000
37100.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10600.000	14.881	35.540	50.421	-23.579	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500.000	*	*	*	*	74.000
31800.000	*	*	*	*	74.000
37100.000	*	*	*	*	74.000
Average					
Detector:					
10600.000	*	*	*	*	54.000
15900.000	*	*	*	*	54.000
21200.000	*	*	*	*	54.000
26500.000	*	*	*	*	54.000
31800.000	*	*	*	*	54.000
37100.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10640.000	14.690	35.080	49.770	-24.230	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
31920.000	*	*	*	*	74.000
37240.000	*	*	*	*	74.000
Average					
Detector:					
10640.000	*	*	*	*	54.000
15960.000	*	*	*	*	54.000
21280.000	*	*	*	*	54.000
26600.000	*	*	*	*	54.000
31920.000	*	*	*	*	54.000
37240.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10640.000	15.083	35.350	50.433	-23.567	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
31920.000	*	*	*	*	74.000
37240.000	*	*	*	*	74.000
Average					
Detector:					
10640.000	*	*	*	*	54.000
15960.000	*	*	*	*	54.000
21280.000	*	*	*	*	54.000
26600.000	*	*	*	*	54.000
31920.000	*	*	*	*	54.000
37240.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11000.000	16.399	35.450	51.849	-22.151	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	*	*	*	*	74.000
Average					
Detector:					
11000.000	*	*	*	*	54.000
16500.000	*	*	*	*	54.000
22000.000	*	*	*	*	54.000
27500.000	*	*	*	*	54.000
33000.000	*	*	*	*	54.000
38500.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11000.000	17.132	35.450	52.582	-21.418	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	*	*	*	*	74.000
Average					
Detector:					
11000.000	*	*	*	*	54.000
16500.000	*	*	*	*	54.000
22000.000	*	*	*	*	54.000
27500.000	*	*	*	*	54.000
33000.000	*	*	*	*	54.000
38500.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5600MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11200.000	16.656	33.220	49.876	-24.124	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
33600.000	*	*	*	*	74.000
39200.000	*	*	*	*	74.000
Average					
Detector:					
11200.000	*	*	*	*	54.000
16800.000	*	*	*	*	54.000
22400.000	*	*	*	*	54.000
28000.000	*	*	*	*	54.000
33600.000	*	*	*	*	54.000
39200.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5600MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11200.000	17.726	34.150	51.876	-22.124	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
33600.000	*	*	*	*	74.000
39200.000	*	*	*	*	74.000
Average					
Detector:					
11200.000	*	*	*	*	54.000
16800.000	*	*	*	*	54.000
22400.000	*	*	*	*	54.000
28000.000	*	*	*	*	54.000
33600.000	*	*	*	*	54.000
39200.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11400.000	16.530	33.530	50.061	-23.939	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
34200.000	*	*	*	*	74.000
39900.000	*	*	*	*	74.000
Average					
Detector:					
11400.000	*	*	*	*	54.000
17100.000	*	*	*	*	54.000
22800.000	*	*	*	*	54.000
28500.000	*	*	*	*	54.000
34200.000	*	*	*	*	54.000
39900.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11400.000	17.138	34.060	51.198	-22.802	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
34200.000	*	*	*	*	74.000
39900.000	*	*	*	*	74.000
Average					
Detector:					
11400.000	*	*	*	*	54.000
17100.000	*	*	*	*	54.000
22800.000	*	*	*	*	54.000
28500.000	*	*	*	*	54.000
34200.000	*	*	*	*	54.000
39900.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11400.000	16.530	34.980	51.511	-22.489	74.000
16580.000	*	*	*	*	74.000
21760.000	*	*	*	*	74.000
26940.000	*	*	*	*	74.000
32120.000	*	*	*	*	74.000
37300.000	*	*	*	*	74.000
Average					
Detector:					
11400.000	23.060	27.390	50.450	-3.550	54.000
16580.000	*	*	*	*	54.000
21760.000	*	*	*	*	54.000
26940.000	*	*	*	*	54.000
32120.000	*	*	*	*	54.000
37300.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11400.000	17.138	34.550	51.688	-22.312	74.000
16580.000	*	*	*	*	74.000
21760.000	*	*	*	*	74.000
26940.000	*	*	*	*	74.000
32120.000	*	*	*	*	74.000
37300.000	*	*	*	*	74.000
Average					
Detector:					
11400.000	*	*	*	*	54.000
16580.000	*	*	*	*	54.000
21760.000	*	*	*	*	54.000
26940.000	*	*	*	*	54.000
32120.000	*	*	*	*	54.000
37300.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector:					
10440.000	13.322	36.330	49.652	-24.348	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
31320.000	*	*	*	*	74.000
36540.000	*	*	*	*	74.000
Average					
Detector:					
10440.000	*	*	*	*	54.000
15660.000	*	*	*	*	54.000
20880.000	*	*	*	*	54.000
26100.000	*	*	*	*	54.000
31320.000	*	*	*	*	54.000
36540.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10440.000	14.245	35.590	49.835	-24.165	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
31320.000	*	*	*	*	74.000
36540.000	*	*	*	*	74.000
Average					
Detector:					
10440.000	*	*	*	*	54.000
15660.000	*	*	*	*	54.000
20880.000	*	*	*	*	54.000
26100.000	*	*	*	*	54.000
31320.000	*	*	*	*	54.000
36540.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10480.000	13.693	36.690	50.384	-23.616	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
31440.000	*	*	*	*	74.000
36680.000	*	*	*	*	74.000
Average					
Detector:					
10480.000	*	*	*	*	54.000
15720.000	*	*	*	*	54.000
20960.000	*	*	*	*	54.000
26200.000	*	*	*	*	54.000
31440.000	*	*	*	*	54.000
36680.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10480.000	14.620	37.150	51.771	-22.229	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
31440.000	*	*	*	*	74.000
36680.000	*	*	*	*	74.000
Average					
Detector:					
10480.000	*	*	*	*	54.000
15720.000	*	*	*	*	54.000
20960.000	*	*	*	*	54.000
26200.000	*	*	*	*	54.000
31440.000	*	*	*	*	54.000
36680.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5260MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10520.000	14.015	37.850	51.865	-22.135	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
31560.000	*	*	*	*	74.000
36820.000	*	*	*	*	74.000
Average					
Detector:					
10520.000	*	*	*	*	54.000
15780.000	*	*	*	*	54.000
21040.000	*	*	*	*	54.000
26300.000	*	*	*	*	54.000
31560.000	*	*	*	*	54.000
36820.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5260MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10520.000	14.818	37.880	52.698	-21.302	74.000
15780.000	*	*	*	*	74.000
21040.000	*	*	*	*	74.000
26300.000	*	*	*	*	74.000
31560.000	*	*	*	*	74.000
36820.000	*	*	*	*	74.000
Average					
Detector:					
10520.000	*	*	*	*	54.000
15780.000	*	*	*	*	54.000
21040.000	*	*	*	*	54.000
26300.000	*	*	*	*	54.000
31560.000	*	*	*	*	54.000
36820.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5300MHz)

Correct	Reading	Measurement	Margin	Limit
Factor	Level	Level		
dB	dBuV	dBuV/m	dB	dBuV/m
14.550	37.150	51.699	-22.301	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
	Factor dB 14.550 * * * * * * * *	Factor Level dBuV 14.550 37.150 * * * * * * * * * * * * * * *	Factor Level dBuV/m 14.550 37.150 51.699 * * * * * * * * * * * * * * *	Factor Level Level dBuV/m dB 14.550 37.150 51.699 -22.301 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10600.000	14.881	37.400	52.281	-21.719	74.000
15900.000	*	*	*	*	74.000
21200.000	*	*	*	*	74.000
26500000	*	*	*	*	74.000
31800.000	*	*	*	*	74.000
37100.000	*	*	*	*	74.000
Average					
Detector:					
10600.000	*	*	*	*	54.000
15900.000	*	*	*	*	54.000
21200.000	*	*	*	*	54.000
26500000	*	*	*	*	54.000
31800.000	*	*	*	*	54.000
37100.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10640.000	14.690	37.150	51.840	-22.160	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
31920.000	*	*	*	*	74.000
37240.000	*	*	*	*	74.000
Average					
Detector:					
10640.000	*	*	*	*	54.000
15960.000	*	*	*	*	54.000
21280.000	*	*	*	*	54.000
26600.000	*	*	*	*	54.000
31920.000	*	*	*	*	54.000
37240.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5320MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10640.000	15.083	37.770	52.853	-21.147	74.000
15960.000	*	*	*	*	74.000
21280.000	*	*	*	*	74.000
26600.000	*	*	*	*	74.000
31920.000	*	*	*	*	74.000
37240.000	*	*	*	*	74.000
Average					
Detector:					
10640.000	*	*	*	*	54.000
15960.000	*	*	*	*	54.000
21280.000	*	*	*	*	54.000
26600.000	*	*	*	*	54.000
31920.000	*	*	*	*	54.000
37240.000	*	*	*	*	54.000
15960.000 21280.000 26600.000 31920.000 37240.000 Average Detector: 10640.000 15960.000 21280.000 26600.000 31920.000	* * * * * * * * * * *	* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * *	74.000 74.000 74.000 74.000 74.000 54.000 54.000 54.000 54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11000.000	16.399	36.650	53.049	-20.951	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	*	*	*	*	74.000
Average					
Detector:					
11000.000	*	*	*	*	54.000
16500.000	*	*	*	*	54.000
22000.000	*	*	*	*	54.000
27500.000	*	*	*	*	54.000
33000.000	*	*	*	*	54.000
38500.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11000.000	17.132	36.540	53.672	-20.328	74.000
16500.000	*	*	*	*	74.000
22000.000	*	*	*	*	74.000
27500.000	*	*	*	*	74.000
33000.000	*	*	*	*	74.000
38500.000	*	*	*	*	74.000
Average					
Detector:					
11000.000	*	*	*	*	54.000
16500.000	*	*	*	*	54.000
22000.000	*	*	*	*	54.000
27500.000	*	*	*	*	54.000
33000.000	*	*	*	*	54.000
38500.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5600MHz)

Correct	Reading	Measurement	Margin	Limit
Factor	Level	Level		
dB	dBuV	dBuV/m	dB	dBuV/m
16.656	36.150	52.806	-21.194	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	74.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
*	*	*	*	54.000
	Factor dB 16.656 * * * * * * * *	Factor Level dBuV 16.656 36.150 * * * * * * * * * * * * * * *	Factor Level dBuV/m 16.656 36.150 52.806 * * * * * * * * * * * * * * * * * * * * * * *	Factor Level Level dB dBuV dBuV/m dB 16.656 36.150 52.806 -21.194 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5600MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11200.000	17.726	35.990	53.716	-20.284	74.000
16800.000	*	*	*	*	74.000
22400.000	*	*	*	*	74.000
28000.000	*	*	*	*	74.000
33600.000	*	*	*	*	74.000
39200.000	*	*	*	*	74.000
Average					
Detector:					
11200.000	*	*	*	*	54.000
16800.000	*	*	*	*	54.000
22400.000	*	*	*	*	54.000
28000.000	*	*	*	*	54.000
33600.000	*	*	*	*	54.000
39200.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5700MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11400.000	16.530	35.250	51.781	-22.219	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
34200.000	*	*	*	*	74.000
39900.000	*	*	*	*	74.000
Average					
Detector:					
11400.000	*	*	*	*	54.000
17100.000	*	*	*	*	54.000
22800.000	*	*	*	*	54.000
28500.000	*	*	*	*	54.000
34200.000	*	*	*	*	54.000
39900.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5700MHz)

Frequency	Correct Factor	Reading Level	Measurement Level	Margin	Limit
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
-	αБ	dDu v	dDu v/III	цБ	dDu V/III
Vertical					
Peak Detector:					
11400.000	17.138	35.180	52.318	-21.682	74.000
17100.000	*	*	*	*	74.000
22800.000	*	*	*	*	74.000
28500.000	*	*	*	*	74.000
34200.000	*	*	*	*	74.000
39900.000	*	*	*	*	74.000
Average					
Detector:					
11400.000	*	*	*	*	54.000
17100.000	*	*	*	*	54.000
22800.000	*	*	*	*	54.000
28500.000	*	*	*	*	54.000
34200.000	*	*	*	*	54.000
39900.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector:					
10380.000	12.939	37.010	49.949	-24.051	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
31140.000	*	*	*	*	74.000
36330.000	*	*	*	*	74.000
Average					
Detector:					
10380.000	*	*	*	*	54.000
15570.000	*	*	*	*	54.000
20760.000	*	*	*	*	54.000
25950.000	*	*	*	*	54.000
31140.000	*	*	*	*	54.000
36330.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10380.000	13.796	37.440	51.236	-22.764	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
31140.000	*	*	*	*	74.000
36330.000	*	*	*	*	74.000
Average					
Detector:					
10380.000	*	*	*	*	54.000
15570.000	*	*	*	*	54.000
20760.000	*	*	*	*	54.000
25950.000	*	*	*	*	54.000
31140.000	*	*	*	*	54.000
36330.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5230MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10460.000	11.494	39.726	51.220	-22.780	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
31380.000	*	*	*	*	74.000
36610.000	*	*	*	*	74.000
Average					
Detector:					
10460.000	*	*	*	*	54.000
15690.000	*	*	*	*	54.000
20920.000	*	*	*	*	54.000
26150.000	*	*	*	*	54.000
31380.000	*	*	*	*	54.000
36610.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5230MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10460.000	12.419	37.941	50.360	-23.640	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
31380.000	*	*	*	*	74.000
36610.000	*	*	*	*	74.000
Average					
Detector:					
10460.000	*	*	*	*	54.000
15690.000	*	*	*	*	54.000
20920.000	*	*	*	*	54.000
26150.000	*	*	*	*	54.000
31380.000	*	*	*	*	54.000
36610.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10540.000	14.151	36.050	50.200	-23.800	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
31620.000	*	*	*	*	74.000
36890.000	*	*	*	*	74.000
Average					
Detector:					
10540.000	*	*	*	*	54.000
15810.000	*	*	*	*	54.000
21080.000	*	*	*	*	54.000
26350.000	*	*	*	*	54.000
31620.000	*	*	*	*	54.000
36890.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
10540.000	14.829	37.090	51.918	-22.082	74.000
15810.000	*	*	*	*	74.000
21080.000	*	*	*	*	74.000
26350.000	*	*	*	*	74.000
31620.000	*	*	*	*	74.000
36890.000	*	*	*	*	74.000
Average					
Detector:					
10540.000	*	*	*	*	54.000
15810.000	*	*	*	*	54.000
21080.000	*	*	*	*	54.000
26350.000	*	*	*	*	54.000
31620.000	*	*	*	*	54.000
36890.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5310MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10620.000	14.623	35.850	50.473	-23.527	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
31860.000	*	*	*	*	74.000
37170.000	*	*	*	*	74.000
Average					
Detector:					
10620.000	*	*	*	*	54.000
15930.000	*	*	*	*	54.000
21240.000	*	*	*	*	54.000
26550.000	*	*	*	*	54.000
31860.000	*	*	*	*	54.000
37170.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5310MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					_
Peak Detector:					
10620.000	14.970	36.060	51.030	-22.970	74.000
15930.000	*	*	*	*	74.000
21240.000	*	*	*	*	74.000
26550.000	*	*	*	*	74.000
31860.000	*	*	*	*	74.000
37170.000	*	*	*	*	74.000
Average					
Detector:					
10620.000	*	*	*	*	54.000
15930.000	*	*	*	*	54.000
21240.000	*	*	*	*	54.000
26550.000	*	*	*	*	54.000
31860.000	*	*	*	*	54.000
37170.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5510MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11020.000	16.474	36.030	52.503	-21.497	74.000
16530.000	*	*	*	*	74.000
22040.000	*	*	*	*	74.000
27550.000	*	*	*	*	74.000
33060.000	*	*	*	*	74.000
38570.000	*	*	*	*	74.000
Average					
Detector:					
11020.000	*	*	*	*	54.000
16530.000	*	*	*	*	54.000
22040.000	*	*	*	*	54.000
27550.000	*	*	*	*	54.000
33060.000	*	*	*	*	54.000
38570.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5510MHz)

MHz Eactor dB Level dBuV Level dBuV/m dB dBuV/m Vertical Peak Detector: 11020.000 17.224 35.220 52.444 -21.556 74.000 16530.000 * * * * 74.000 22040.000 * * * * 74.000	Frequency	Correct	Reading	Measurement	Margin	Limit
Vertical Peak Detector: 11020.000 17.224 35.220 52.444 -21.556 74.000 16530.000 * * * * 74.000 22040.000 * * * * 74.000		Factor	Level	Level		
Peak Detector: 11020.000 17.224 35.220 52.444 -21.556 74.000 16530.000 * * * * 74.000 22040.000 * * * * 74.000	MHz	dB	dBuV	dBuV/m	dB	dBuV/m
11020.000 17.224 35.220 52.444 -21.556 74.000 16530.000 * * * * 74.000 22040.000 * * * * 74.000	Vertical					
16530.000 * * * * 74.000 22040.000 * * * * 74.000	Peak Detector:					
22040.000 * * * * * 74.000	11020.000	17.224	35.220	52.444	-21.556	74.000
220.0000	16530.000	*	*	*	*	74.000
7 4.000	22040.000	*	*	*	*	74.000
27550.000 * * * * * 74.000	27550.000	*	*	*	*	74.000
33060.000 * * * * * 74.000	33060.000	*	*	*	*	74.000
38570.000 * * * * * 74.000	38570.000	*	*	*	*	74.000
Average	Average					
Detector:	Detector:					
11020.000 * * * * 54.000	11020.000	*	*	*	*	54.000
16530.000 * * * * 54.000	16530.000	*	*	*	*	54.000
22040.000 * * * * 54.000	22040.000	*	*	*	*	54.000
27550.000 * * * * 54.000	27550.000	*	*	*	*	54.000
33060.000 * * * * 54.000	33060.000	*	*	*	*	54.000
38570.000 * * * * 54.000	38570.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5590MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11180.000	16.657	36.010	52.666	-21.334	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
33540.000	*	*	*	*	74.000
39130.000	*	*	*	*	74.000
Average					
Detector:					
11180.000	*	*	*	*	54.000
16770.000	*	*	*	*	54.000
22360.000	*	*	*	*	54.000
27950.000	*	*	*	*	54.000
33540.000	*	*	*	*	54.000
39130.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5590MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11180.000	17.681	35.070	52.750	-21.250	74.000
16770.000	*	*	*	*	74.000
22360.000	*	*	*	*	74.000
27950.000	*	*	*	*	74.000
33540.000	*	*	*	*	74.000
39130.000	*	*	*	*	74.000
Average					
Detector:					
11180.000	*	*	*	*	54.000
16770.000	*	*	*	*	54.000
22360.000	*	*	*	*	54.000
27950.000	*	*	*	*	54.000
33540.000	*	*	*	*	54.000
39130.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5670MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
11340.000	16.408	34.440	50.847	-23.153	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
34020.000	*	*	*	*	74.000
39690.000	*	*	*	*	74.000
Average					
Detector:					
11340.000	*	*	*	*	54.000
17010.000	*	*	*	*	54.000
22680.000	*	*	*	*	54.000
28350.000	*	*	*	*	54.000
34020.000	*	*	*	*	54.000
39690.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Item : Harmonic Radiated Emission Data

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5670MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Vertical					
Peak Detector:					
11340.000	17.167	35.680	52.847	-21.153	74.000
17010.000	*	*	*	*	74.000
22680.000	*	*	*	*	74.000
28350.000	*	*	*	*	74.000
34020.000	*	*	*	*	74.000
39690.000	*	*	*	*	74.000
Average					
Detector:					
11340.000	*	*	*	*	54.000
17010.000	*	*	*	*	54.000
22680.000	*	*	*	*	54.000
28350.000	*	*	*	*	54.000
34020.000	*	*	*	*	54.000
39690.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector					
271.042	-8.015	35.136	27.121	-18.879	46.000
333.246	-5.583	39.242	33.659	-12.341	46.000
379.900	-2.537	37.119	34.582	-11.418	46.000
566.513	2.754	34.810	37.564	-8.436	46.000
667.595	3.824	31.922	35.746	-10.254	46.000
799.780	4.906	34.346	39.252	-6.748	46.000
Vertical					
Peak Detector					
162.184	-8.039	44.641	36.602	-6.898	43.500
197.174	-2.759	40.277	37.519	-5.981	43.500
212.725	-2.578	31.245	28.667	-14.833	43.500
399.339	-2.060	32.035	29.975	-16.025	46.000
512.084	-1.280	31.467	30.187	-15.813	46.000
599.559	0.934	35.459	36.392	-9.608	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5300MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector					
113.587	-9.603	42.143	32.540	-10.960	43.500
399.339	-1.290	42.565	41.275	-4.725	46.000
799.780	4.906	34.310	39.216	-6.784	46.000
867.816	4.436	25.760	30.195	-15.805	46.000
900.862	4.186	31.463	35.649	-10.351	46.000
933.908	4.848	30.472	35.319	-10.681	46.000
Vertical					
Peak Detector					
45.551	-10.245	44.090	33.845	-6.155	40.000
64.990	-14.418	50.029	35.611	-4.389	40.000
160.240	-8.343	43.602	35.260	-8.240	43.500
195.230	-3.032	39.884	36.852	-6.648	43.500
566.513	0.093	32.046	32.139	-13.861	46.000
624.830	1.272	33.218	34.490	-11.510	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
510.140	0.140	32.437	32.576	-13.424	46.000
576.232	3.206	27.324	30.530	-15.470	46.000
667.595	3.824	32.443	36.267	-9.733	46.000
700.641	3.200	35.329	38.529	-7.471	46.000
766.733	4.195	28.137	32.333	-13.667	46.000
834.770	4.686	24.745	29.432	-16.568	46.000
Vertical					
Peak Detector					
140.802	-7.263	43.929	36.667	-6.833	43.500
181.623	-4.996	40.433	35.437	-8.063	43.500
201.062	-2.380	39.252	36.872	-6.628	43.500
366.293	-4.364	34.261	29.897	-16.103	46.000
514.028	-1.230	29.581	28.351	-17.649	46.000
801.723	3.088	30.958	34.046	-11.954	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector					
113.587	-9.603	42.723	33.120	-10.380	43.500
168.016	-14.578	45.915	31.336	-12.164	43.500
339.078	-5.192	40.438	35.246	-10.754	46.000
667.595	3.824	31.922	35.746	-10.254	46.000
733.687	3.630	29.791	33.421	-12.579	46.000
966.954	5.369	29.248	34.617	-19.383	54.000
Vertical					
Peak Detector					
63.046	-15.067	50.178	35.110	-4.890	40.000
113.587	-8.349	43.903	35.553	-7.947	43.500
203.006	-2.404	39.051	36.647	-6.853	43.500
624.830	1.272	32.045	33.317	-12.683	46.000
667.595	1.600	36.773	38.373	-7.627	46.000
801.723	3.088	32.243	35.331	-10.669	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5300MHz)

Correct	Reading	Measurement	Margin	Limit
Factor	Level	Level		
dB	dBuV	dBuV/m	dB	dBuV/m
				_
1.582	28.967	30.549	-15.451	46.000
3.824	31.127	34.951	-11.049	46.000
3.214	23.708	26.922	-19.078	46.000
4.195	28.003	32.199	-13.801	46.000
4.186	31.463	35.649	-10.351	46.000
4.848	30.472	35.319	-10.681	46.000
-7.421	46.126	38.705	-4.795	43.500
-2.404	39.712	37.308	-6.192	43.500
-3.049	31.239	28.190	-17.810	46.000
3.088	31.906	34.994	-11.006	46.000
5.348	32.235	37.583	-8.417	46.000
5.789	29.634	35.423	-10.577	46.000
	Factor dB 1.582 3.824 3.214 4.195 4.186 4.848 -7.421 -2.404 -3.049 3.088 5.348	Factor Level dBuV 1.582 28.967 3.824 31.127 3.214 23.708 4.195 28.003 4.186 31.463 4.848 30.472 -7.421 46.126 -2.404 39.712 -3.049 31.239 3.088 31.906 5.348 32.235	Factor dB Level dBuV Level dBuV/m 1.582 28.967 30.549 3.824 31.127 34.951 3.214 23.708 26.922 4.195 28.003 32.199 4.186 31.463 35.649 4.848 30.472 35.319 -7.421 46.126 38.705 -2.404 39.712 37.308 -3.049 31.239 28.190 3.088 31.906 34.994 5.348 32.235 37.583	Factor dB dBuV dBuV/m dB 1.582 28.967 30.549 -15.451 3.824 31.127 34.951 -11.049 3.214 23.708 26.922 -19.078 4.195 28.003 32.199 -13.801 4.186 31.463 35.649 -10.351 4.848 30.472 35.319 -10.681 -7.421 46.126 38.705 -4.795 -2.404 39.712 37.308 -6.192 -3.049 31.239 28.190 -17.810 3.088 31.906 34.994 -11.006 5.348 32.235 37.583 -8.417

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) (5500MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
374.068	-2.917	41.381	38.464	-7.536	46.000
550.962	2.023	27.066	29.089	-16.911	46.000
700.641	3.200	35.329	38.529	-7.471	46.000
900.862	4.186	30.387	34.573	-11.427	46.000
933.908	4.848	30.928	35.775	-10.225	46.000
1000.000	5.730	37.603	43.333	-10.667	54.000
Vertical					
Peak Detector					
64.990	-14.418	49.771	35.353	-4.647	40.000
136.914	-7.602	43.771	36.170	-7.330	43.500
189.399	-3.881	40.230	36.349	-7.151	43.500
624.830	1.272	36.126	37.398	-8.602	46.000
875.591	4.802	29.435	34.237	-11.763	46.000
933.908	5.789	29.439	35.228	-10.772	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector					
329.359	-5.827	37.672	31.845	-14.155	46.000
533.467	1.222	31.582	32.804	-13.196	46.000
576.232	3.206	27.334	30.540	-15.460	46.000
603.447	4.270	28.501	32.771	-13.229	46.000
733.687	3.630	29.791	33.421	-12.579	46.000
784.228	4.576	24.663	29.239	-16.761	46.000
Vertical					
Peak Detector					
140.802	-7.263	43.193	35.931	-7.569	43.500
160.240	-8.343	43.679	35.337	-8.163	43.500
374.068	-3.817	33.429	29.612	-16.388	46.000
624.830	1.272	33.594	34.866	-11.134	46.000
696.753	1.516	27.723	29.239	-16.761	46.000
834.770	3.863	28.156	32.019	-13.981	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5270MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector					
53.327	-13.108	48.196	35.089	-4.911	40.000
113.587	-9.603	44.295	34.692	-8.808	43.500
171.904	-14.444	44.995	30.551	-12.949	43.500
339.078	-5.192	40.786	35.594	-10.406	46.000
722.024	3.474	23.029	26.503	-19.497	46.000
933.908	4.848	30.340	35.187	-10.813	46.000
Vertical					
Peak Detector					
183.567	-4.716	39.061	34.345	-9.155	43.500
751.182	2.070	27.010	29.080	-16.920	46.000
887.255	5.057	24.021	29.079	-16.921	46.000
955.291	6.030	24.225	30.255	-15.745	46.000
976.673	6.130	25.776	31.906	-22.094	54.000
998.056	6.210	23.677	29.887	-24.113	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) (5590MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					_
Peak Detector					
512.084	0.220	33.451	33.671	-12.329	46.000
527.635	0.941	36.657	37.598	-8.402	46.000
599.559	4.265	38.703	42.968	-3.032	46.000
667.595	3.824	31.922	35.746	-10.254	46.000
875.591	4.380	28.268	32.648	-13.352	46.000
1000.000	5.730	37.802	43.532	-10.468	54.000
Vertical					
Peak Detector					
179.679	-5.284	42.250	36.966	-6.534	43.500
203.006	-2.404	37.644	35.240	-8.260	43.500
428.497	-1.820	33.378	31.558	-14.442	46.000
527.635	-0.889	32.084	31.195	-14.805	46.000
667.595	1.600	36.669	38.269	-7.731	46.000
856.152	4.364	25.359	29.723	-16.277	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

8. Band Edge

8.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

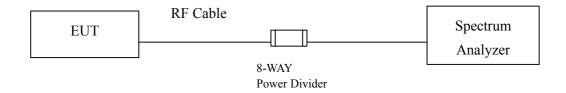
	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010
X	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr., 2010

Note:

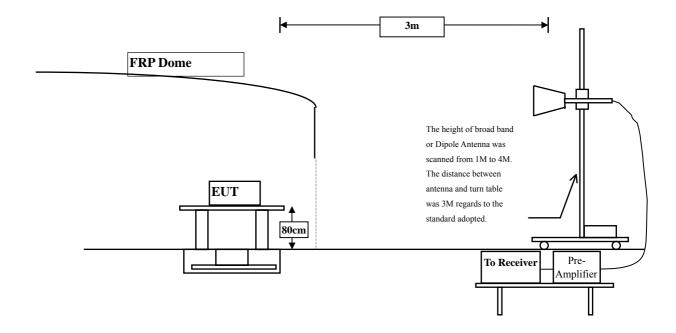
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.
- 3. The power combiner is used for measure 11n mode.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:


Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
⊠Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	X	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2009
	X	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	X	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2009
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	X	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	X	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	X	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

- 1. All instruments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.



8.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

8.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	uV/m @3m	dBuV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

- Remarks: 1. RF Voltage (dBuV) = 20 log RF Voltage (uV)
 - 2. In the Above Table, the tighter limit applies at the band edges.
 - 3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

8.4. **Test Procedure**

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2003 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

- \pm 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

8.6. Test Result of Band Edge

Product : Tablet PC MC-C5 / MC-F5

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps)-Channel 36

Fundamental Filed Strength

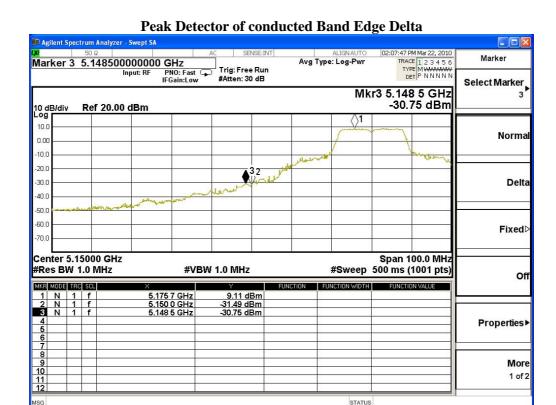
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
	1 7	<u> </u>			Detector
Pole	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	
Horizontal	5180	35.962	69.71	105.671	Peak
Horizontal	5180	35.962	59	94.961	Average
Vertical	5180	36.739	71.32	108.058	Peak
Vertical	5180	36.739	60.17	96.908	Average

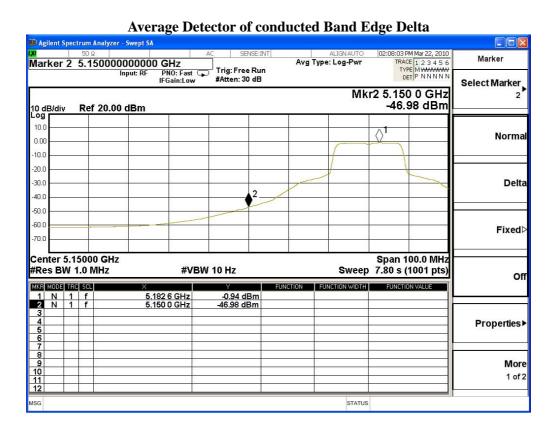
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5148.5	105.671	39.86	65.811	Peak
Horizontal	5150	94.961	46.04	48.921	Average
Vertical	5148.5	108.058	39.86	68.198	Peak
Vertical	5150	96.908	46.04	50.868	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) -Channel 64

Fundamental Filed Strength

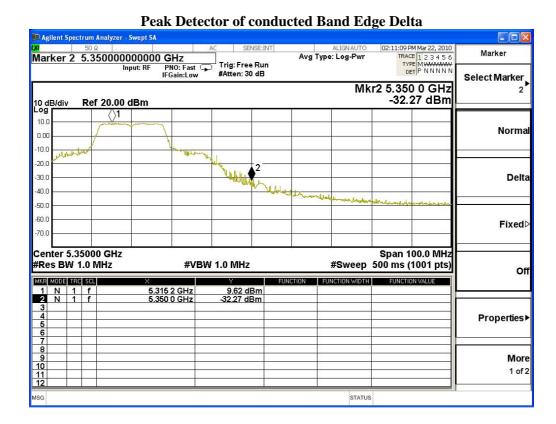
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5320	36.573	69.12	105.693	Peak
Horizontal	5320	36.573	58.8	95.373	Average
Vertical	5320	36.817	69.33	106.147	Peak
Vertical	5320	36.817	58.5	95.317	Average

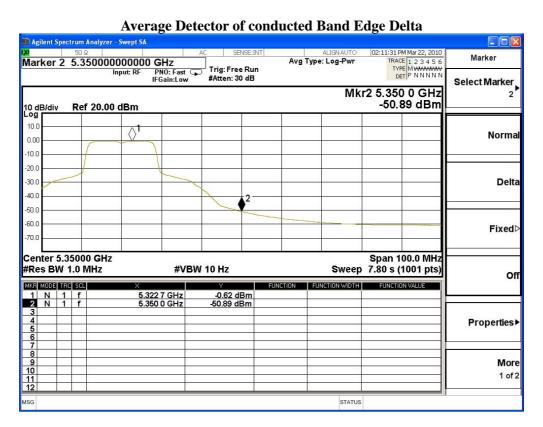
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz
Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5350	105.693	41.89	63.803	Peak
Horizontal	5350	95.373	50.27	45.103	Average
Vertical	5350	106.147	41.89	64.257	Peak
Vertical	5350	95.317	50.27	45.047	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 1: Transmitter (802.11a-6Mbps) -Channel 100

Fundamental Filed Strength

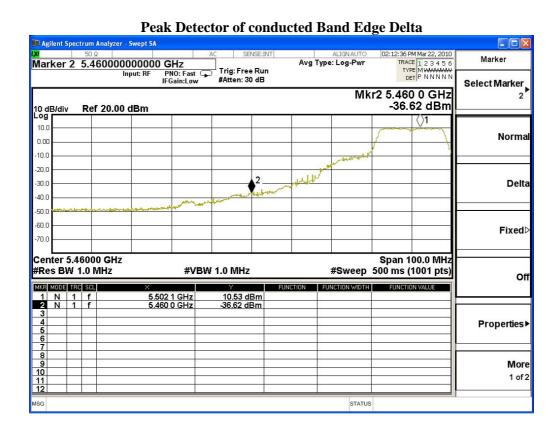
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5500	37.553	70.08	107.633	Peak
Horizontal	5500	37.553	59.62	97.173	Average
Vertical	5500	37.534	70.22	107.754	Peak
Vertical	5500	37.534	59.53	97.064	Average

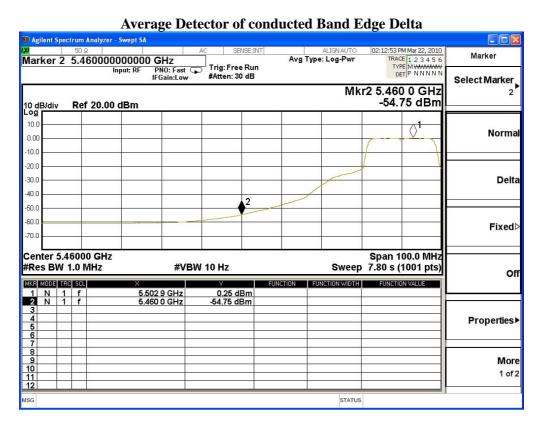
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz
Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5460	107.633	47.15	60.483	Peak
Horizontal	5460	97.173	55	42.173	Average
Vertical	5460	107.754	47.15	60.604	Peak
Vertical	5460	97.064	55	42.064	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) -Channel 36

Fundamental Filed Strength

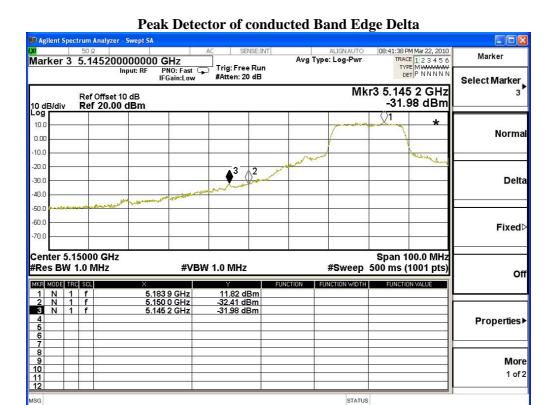
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	
Horizontal	5180	35.962	71.49	107.451	Peak
Horizontal	5180	35.962	58.6	94.561	Average
Vertical	5180	36.739	69.33	106.068	Peak
Vertical	5180	36.739	57.18	93.918	Average

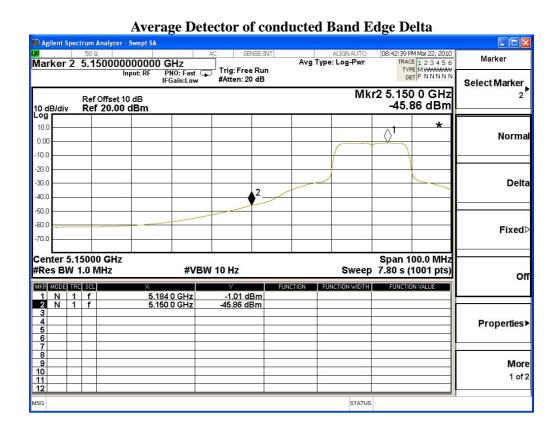
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5145.2	107.451	43.8	63.651	Peak
Horizontal	5150	94.561	44.95	49.611	Average
Vertical	5145.2	106.068	43.8	62.268	Peak
Vertical	5150	93.918	44.95	48.968	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) -Channel 64

Fundamental Filed Strength

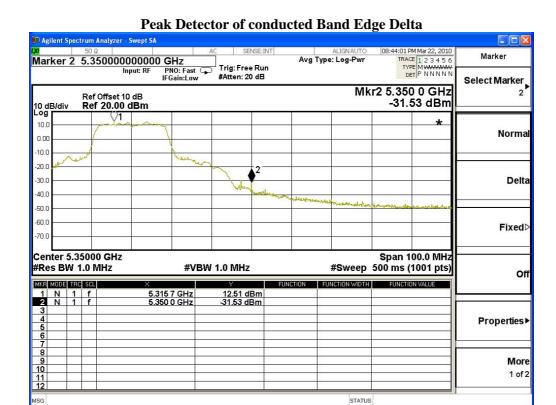
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5320	36.573	71.35	107.923	Peak
Horizontal	5320	36.573	58.62	95.193	Average
Vertical	5320	36.817	69.44	106.257	Peak
Vertical	5320	36.817	56.58	93.397	Average

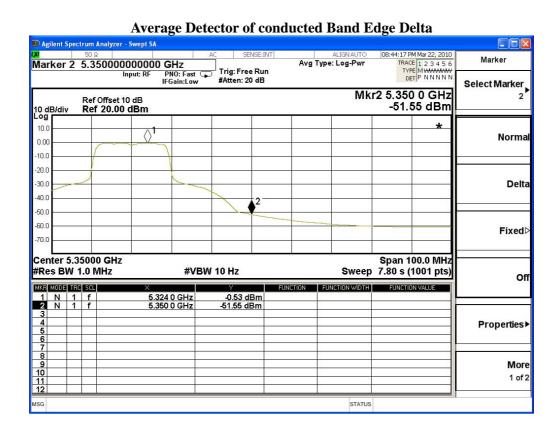
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5350	107.923	44.04	63.883	Peak
Horizontal	5350	95.193	51.02	44.173	Average
Vertical	5350	106.257	44.04	62.217	Peak
Vertical	5350	93.397	51.02	42.377	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 2: Transmitter (802.11n-20BW 13Mbps) -Channel 100

Fundamental Filed Strength

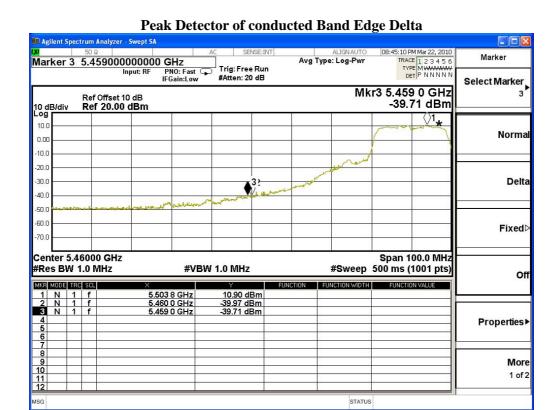
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5500	37.553	69.68	107.233	Peak
Horizontal	5500	37.553	56.6	94.153	Average
Vertical	5500	37.534	68.52	106.054	Peak
Vertical	5500	37.534	55.85	93.384	Average

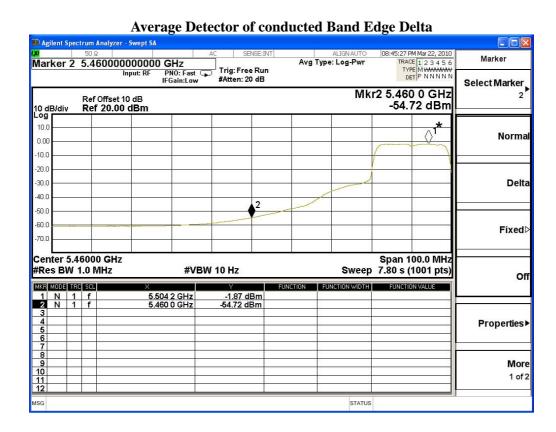
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz
Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5459	107.233	50.61	56.623	Peak
Horizontal	5460	94.153	52.85	41.303	Average
Vertical	5459	106.054	50.61	55.444	Peak
Vertical	5460	93.384	52.85	40.534	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) -Channel 38

Fundamental Filed Strength

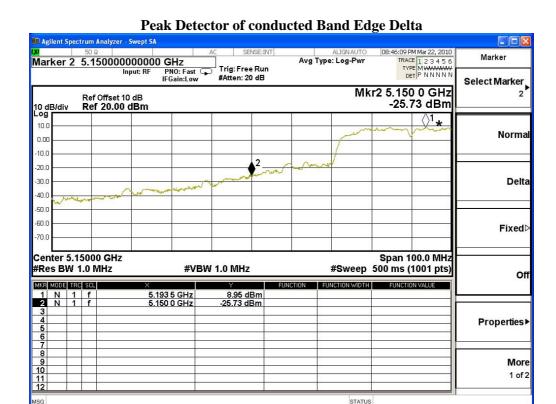
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	
Horizontal	5190	35.936	65.06	100.995	Peak
Horizontal	5190	35.936	52	87.935	Average
Vertical	5190	36.794	64.86	101.653	Peak
Vertical	5190	36.794	51.82	88.613	Average

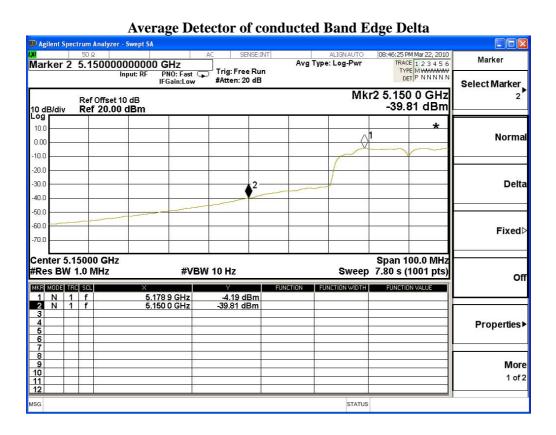
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5150	100.995	34.68	66.315	Peak
Horizontal	5150	87.935	35.62	52.315	Average
Vertical	5150	101.653	34.68	66.973	Peak
Vertical	5150	88.613	35.62	52.993	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) -Channel 62

Fundamental Filed Strength

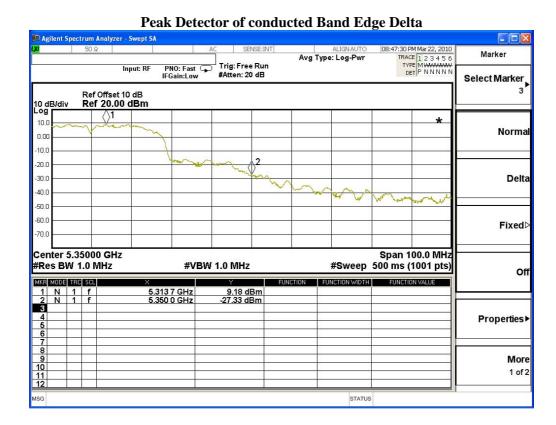
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5310	36.572	67.12	103.692	Peak
Horizontal	5310	36.572	54.17	90.742	Average
Vertical	5310	36.789	64.57	101.359	Peak
Vertical	5310	36.789	51.47	88.259	Average

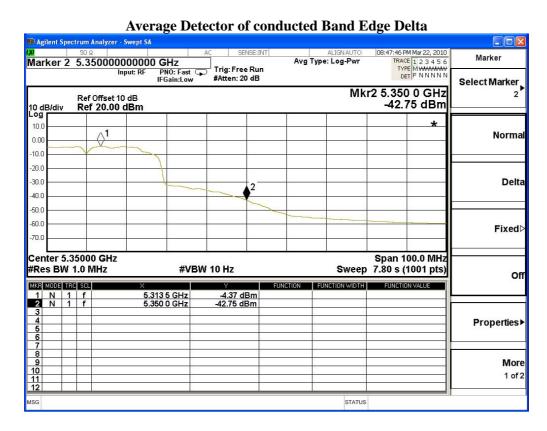
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5350	103.692	36.51	67.182	Peak
Horizontal	5350	90.742	38.38	52.362	Average
Vertical	5350	101.359	36.51	64.849	Peak
Vertical	5350	88.259	38.38	49.879	Average


Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

Test Item : Band Edge Data
Test Site : No.3 OATS

Test Mode : Mode 3: Transmitter (802.11n-40BW 27Mbps) -Channel 102

Fundamental Filed Strength

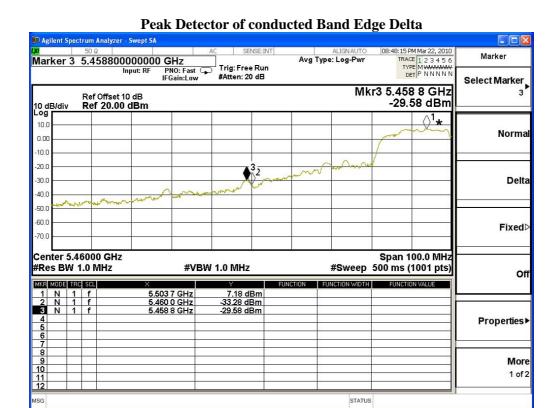
Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5510	37.596	67.02	104.616	Peak
Horizontal	5510	37.596	54.47	92.066	Average
Vertical	5510	37.565	66.38	103.945	Peak
Vertical	5510	37.565	53.54	91.105	Average

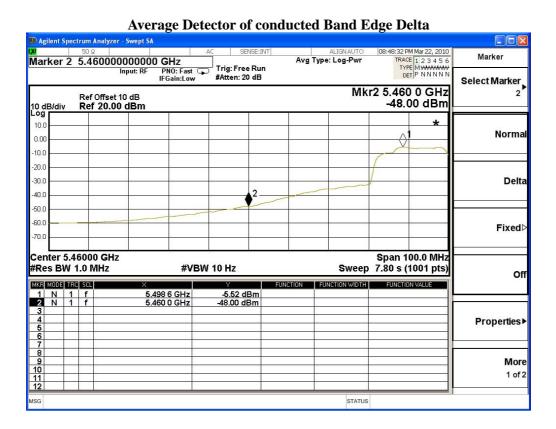
Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz
Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	5458.8	104.616	36.76	67.856	Peak
Horizontal	5460	92.066	42.48	49.586	Average
Vertical	5458.8	103.945	36.76	67.185	Peak
Vertical	5460	91.105	42.48	48.625	Average

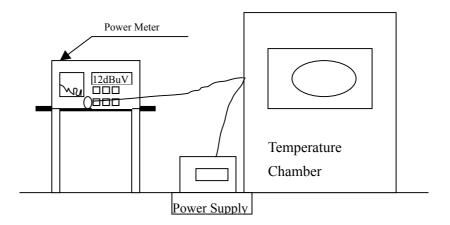

Note:


The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

9. Frequency Stability


9.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2009
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2009
X	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

9.2. Test Setup

9.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

9.4. Test Procedure

The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

9.5. Uncertainty

± 150 Hz

9.6. Test Result of Frequency Stability

Product : Tablet PC MC-C5 / MC-F5

Test Item : Frequency Stability
Test Site : Temperature Chamber

Test Mode : Carrier Wave (for 802.11a/n-20MHz Channel) (Beginning)

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (50) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (-20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

Test Item : Frequency Stability
Test Site : Temperature Chamber

Test Mode : Carrier Wave (for 802.11a/n-20MHz Channel) (AFTER 2mins)

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (50) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (-20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

Test Item : Frequency Stability
Test Site : Temperature Chamber

Test Mode : Carrier Wave (for 802.11a/n-20MHz Channel) (AFTER 5mins)

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (50) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (-20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

Test Item : Frequency Stability
Test Site : Temperature Chamber

Test Mode : Carrier Wave (for 802.11a/n-20MHz Channel) (AFTER 10mins)

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (50) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.00	5180.0100	-0.01
		44	5220.00	5220.0100	-0.01
		48	5240.00	5240.0090	-0.01
		52	5260.00	5260.0085	-0.01
		60	5300.00	5300.0100	-0.01
		62	5310.00	5310.0100	-0.01
Tnom (-20) °C	Vnom (120)V	64	5320.00	5320.0100	-0.01
		100	5500.00	5500.0100	-0.01
		102	5510.00	5510.0100	-0.01
		118	5590.00	5590.0100	-0.01
		120	5600.00	5600.0100	-0.01
		134	5670.00	5670.0100	-0.01
		140	5700.00	5700.0095	-0.01

10 EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs