Report No. : FA1N0901 # **FCC SAR Test Report** **APPLICANT**: Motion Computing Incorporated EQUIPMENT: N6230 mini PCI-E WiFi a/b/g/n + BT module **BRAND NAME**: Motion Computing Incorporated MODEL NAME : 62230ANHMW FCC ID : Q3QIHW62230ANH **STANDARD** : FCC 47 CFR Part 2 (2.1093) IEEE C95.1-1991 IEEE 1528-2003 FCC OET Bulletin 65 Supplement C (Edition 01-01) The product was installed into Host (Brand Name: Motion Computing Incorporated, Model Name: CFT-003) during test. The product was received on Nov. 22, 2011 and completely tested on Nov. 27, 2011. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards. The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full. Reviewed by: IIac-MRA Jones Tsai / Manager #### SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 1 of 39 Report Issued Date : Jan. 20, 2012 ### Report No.: FA1N0901 # **Table of Contents** | 1. Statement of Compliance | | |--|----| | 2. Administration Data | | | 2.1 Testing Laboratory | | | 2.2 Applicant | 5 | | 2.3 Manufacturer | 5 | | 2.4 Factory | | | 2.5 Application Details | 5 | | 3. General Information | | | 3.1 Description of Device Under Test (DUT) | | | 3.2 Product Photos | | | 3.3 Applied Standards | | | 3.4 Device Category and SAR Limits | 7 | | 3.5 Test Conditions | | | 4. Specific Absorption Rate (SAR) | | | 4.1 Introduction | | | 4.2 SAR Definition | 8 | | 5. SAR Measurement System | | | 5.1 E-Field Probe | | | 5.2 Data Acquisition Electronics (DAE) | 11 | | 5.3 Robot | | | 5.4 Measurement Server | | | 5.5 Phantom | | | 5.6 Device Holder | | | 5.7 Data Storage and Evaluation | | | 5.8 Test Equipment List | | | 6. Tissue Simulating Liquids | | | 7. Uncertainty Assessment | | | 8. SAR Measurement Evaluation | 23 | | 8.1 Purpose of System Performance check | | | 8.2 System Setup | | | 8.3 Validation Results | | | 9. DUT Testing Position | | | 10. Measurement Procedures | | | 10.1 Spatial Peak SAR Evaluation | | | 10.2 Area & Zoom Scan Procedures | | | 10.3 Volume Scan Procedures | | | 10.4 SAR Averaged Methods | | | 10.5 Power Drift Monitoring | | | 11. SAR Test Configurations | | | 11.1 Exposure Positions Consideration | | | 12. SAR Test Results | | | 12.1 Conducted Power (Unit: dBm) | | | 12.2 Test Records for Body SAR Test | 37 | | 13. References | 39 | Appendix A. Plots of System Performance Check Appendix B. Plots of SAR Measurement Appendix C. DASY Calibration Certificate Appendix D. Product Photos **Appendix E. Test Setup Photos** TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 2 of 39 Report Issued Date : Jan. 20, 2012 # **Revision History** | REPORT NO. VERSION DESCRIPTION ISSUED DATE | | | | |--|-------------------------|---------------|--| | VERSION | DESCRIPTION | ISSUED DATE | | | Rev. 01 | Initial issue of report | Jan. 20, 2012 | Rev. 01 | | | SPORTON INTERNATIONAL INC. FAX : 886-3-328-4978 FCC ID : Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 3 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 1. Statement of Compliance The maximum results of Specific Absorption Rate (SAR) found during testing for **Motion Computing** Incorporated , N6230 mini PCI-E WiFi a/b/g/n + BT module , Motion Computing Incorporated , 62230ANHMW are as follows. | Band | Position | SAR _{1g}
(W/kg) | |-----------|-----------------|-----------------------------| | WLAN 2.4G | Body (0 cm Gap) | 1.39 | | WLAN 5G | Body (0 cm Gap) | 1.42 | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1991, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (Edition 01-01). SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 4 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 # 2. Administration Data ### 2.1 Testing Laboratory | Test Site | SPORTON INTERNATIONAL INC. | |--------------------|---| | Test Site Location | No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park,
Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
TEL: +886-3-327-3456
FAX: +886-3-328-4978 | ### 2.2 Applicant | Company Name | Motion Computing Incorporated | | |--------------|---|--| | Address | 8601 Ranch Road 2222; Building #2 Austin, Texas 78730 USA | | ### 2.3 Manufacturer | Company Name | Motion Computing Incorporated | | |--------------|---|--| | Address | 8601 Ranch Road 2222; Building #2 Austin, Texas 78730 USA | | ### 2.4 Factory | Company Name | Pegatron Corporation | |--------------|---| | Address | 5F. No. 76, Li-Gong St., Beitou District, Taipei City 112, Taiwan, R.O.C. | ### 2.5 Application Details | Date of Receipt of Application | Nov. 22, 2011 | |--------------------------------|---------------| | Date of Start during the Test | Nov. 22, 2011 | | Date of End during the Test | Nov. 27, 2011 | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 5 of 39 Report Issued Date: Jan. 20, 2012 Report No.: FA1N0901 3. General Information ### 3.1 <u>Description of Device Under Test (DUT)</u> | Product Feature & Specification | | | |---|--|--| | DUT Type | N6230 mini PCI-E WiFi a/b/g/n + BT module | | | Brand Name | Motion Computing Incorporated | | | Model Name | 62230ANHMW | | | FCC ID | Q3QIHW62230ANH | | | Tx Frequency | 802.11b/g/n: 2412 MHz ~ 2462 MHz
802.11a/n: 5180 MHz ~ 5320 MHz; 5500 MHz ~ 5700 MHz; 5745 MHz ~ 5825 MHz
Bluetooth: 2402 MHz ~ 2480 MHz
RFID:13.56MHz | | | Rx Frequency | 802.11b/g/n: 2412 MHz ~ 2462 MHz
802.11a/n: 5180 MHz ~ 5320 MHz; 5500 MHz ~ 5700 MHz; 5745 MHz ~ 5825 MHz
Bluetooth: 2402 MHz ~ 2480 MHz
RFID:13.56MHz | | | Maximum Average
Output Power to
Antenna | 802.11b: 16.78 dBm
802.11g: 16.60 dBm
802.11n (2.4GHz): 16.51 dBm (BW 20MHz)
802.11n (2.4GHz): 16.45 dBm (BW 40MHz)
802.11a: 16.70 dBm
802.11n (5GHz): 16.59 dBm (BW 20MHz)
802.11n (5GHz): 16.46 dBm (BW 40MHz)
Bluetooth: 6.01 dBm
RFID: EIRP -16.60 dbm | | | Antenna Type | WLAN: PIFA Antenna
Bluetooth: PIFA Antenna
RFID: Integrate Antenna | | | Type of Modulation | 802.11b: DSSS (BPSK / QPSK / CCK)
802.11a/g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)
Bluetooth (1Mbps): GFSK
Bluetooth EDR (2Mbps): π /4-DQPSK
Bluetooth EDR (3Mbps): 8-DPSK
RFID: ASK | | | DUT Stage | Production Unit | | | | III's information was declared by manufacturer. Please refer to the specifications or | | **Remark:** The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. | Host Information | | | |-----------------------|-------------------------------|--| | Brand Name | Motion Computing Incorporated | | | Model Name | CFT-003 | | | FCC ID | Q3QTIRFID7960 | | | Tx/Rx Frequency Range | 13.56 MHz | | | Antenna Type | PCB Antenna | | | Type of Modulation | ASK | | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 6 of 39 Report Issued Date : Jan. 20, 2012 Report No. : FA1N0901 ### 3.2 Product Photos Please refer to Appendix D #### 3.3 Applied Standards The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093) - IEEE C95.1-1991 - IEEE 1528-2003 - FCC OET Bulletin 65 Supplement C (Edition 01-01) - FCC KDB 447498 D01 v04 - FCC KDB 616217 D03 v01 - FCC KDB 248227 D01 v01r02 ### 3.4 Device Category and SAR Limits This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. ### 3.5 Test Conditions #### 3.5.1 Ambient Condition | Ambient Temperature | 20 to 24 $^{\circ}\mathrm{C}$ | |---------------------|-------------------------------| | Humidity | < 60 % | #### 3.5.2 Test Configuration For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 7 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ### 4. Specific Absorption Rate (SAR) ### 4.1 Introduction SAR is related to the rate at which energy is absorbed
per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. ### 4.2 SAR Definition The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where: C is the specific heat capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However for evaluating SAR of low power transmitter, electrical field measurement is typically applied. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 8 of 39 Report Issued Date : Jan. 20, 2012 Report No.: FA1N0901 Report No. : FA1N0901 ### 5. SAR Measurement System Fig 5.1 SPEAG DASY System Configurations The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: - A standard high precision 6-axis robot with controller, a teach pendant and software - A data acquisition electronic (DAE) attached to the robot arm extension - A dosimetric probe equipped with an optical surface detector system - > The electro-optical converter (ECO) performs the conversion between optical and electrical signals - A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the accuracy of the probe positioning - A computer operating Windows XP - DASY software - > Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc. - The SAM twin phantom - A device holder - > Tissue simulating liquid - Dipole for evaluating the proper functioning of the system Some of the components are described in details in the following sub-sections. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 9 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ### 5.1 E-Field Probe The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom. #### 5.1.1 E-Field Probe Specification #### <ET3DV6 Probe > | Construction | Symmetrical design with triangular core Built-in optical fiber for surface detection system. Built-in shielding against static charges. PEEK enclosure material (resistant to | | |---------------|---|-------------------------| | | organic solvents, e.g., DGBE) | | | Frequency | 10 MHz to 3 GHz; Linearity: ± 0.2 dB | | | Directivity | ± 0.2 dB in HSL (rotation around probe axis) ± 0.4 dB in HSL (rotation normal to probe axis) | 1000 | | Dynamic Range | 5 μW/g to 100 mW/g; Linearity: ± 0.2 dB | | | Dimensions | Overall length: 330 mm (Tip: 16 mm) Tip diameter: 6.8 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.7 mm | Fig 5.2 Photo of ET3DV6 | #### <EX3DV4 Probe> | Osmatmustism | O (2) 12 | | | |---------------|---|---------|-----------------| | Construction | Symmetrical design with triangular core | | | | | Built-in shielding against static charges | | | | | PEEK enclosure material (resistant to | | | | | organic solvents, e.g., DGBE) | | | | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | | | | Directivity | ± 0.3 dB in HSL (rotation around probe | | T | | | axis) | | | | | ± 0.5 dB in tissue material (rotation | | 3012 | | | normal to probe axis) | | | | Dynamic Range | 10 μW/g to 100 mW/g; Linearity: ± 0.2 dB | | | | | (noise: typically < 1 μW/g) | | | | Dimensions | Overall length: 330 mm (Tip: 20 mm) | | | | | Tip diameter: 2.5 mm (Body: 12 mm) | | | | | Typical distance from probe tip to dipole | | | | | centers: 1 mm | | | | | Centers. 1 mm | | Ţ | | | | 1 | | | | | Fig 5.3 | Photo of EX3DV4 | | | | _ | | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 10 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 #### 5.1.2 E-Field Probe Calibration Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25 dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report. ### 5.2 Data Acquisition Electronics (DAE) The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB. Report No.: FA1N0901 Fig 5.4 Photo of DAE #### 5.3 <u>Robot</u> The SPEAG DASY system uses the high precision robots (DASY4: RX90BL; DASY5: TX90XL) type from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY4: CS7MB; DASY5: CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application: - ➤ High precision (repeatability ±0.035 mm) - ➤ High reliability (industrial design) - > Jerk-free straight movements > Low ELF interference (the closed metallic construction shields against motor control fields) Fig 5.2 Photo of DASY5 #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 11 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 # 5.4 Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY4: 166 MHz, Intel Pentium; DASY5: 400 MHz, Intel Celeron), chipdisk (DASY4: 32 MB; DASY5: 128 MB), RAM (DASY4: 64 MB, DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. Report No.: FA1N0901 Fig 5.1 Photo of Server for DASY4 Fig 5.2 Photo of Server for DASY5 ### 5.5 Phantom #### <SAM Twin Phantom> | OAM TWIITT Hantoille | | | |--------------------------|-------------------------------------
--| | Shell Thickness | $2 \pm 0.2 \text{ mm}$; | | | | Center ear point: 6 ± 0.2 mm | | | Filling Volume | Approx. 25 liters | THE THE PARTY OF T | | Dimensions | Length: 1000 mm; Width: 500 mm; | | | | Height: adjustable feet | <u> </u> | | Measurement Areas | Left Hand, Right Hand, Flat Phantom | Fig 5.3 Photo of SAM Phantom | | | | Fig 5.3 Photo of SAM Phantom | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. SPORTON INTERNATIONAL INC. FAX : 886-3-328-4978 FCC ID : Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 12 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 Report No. : FA1N0901 #### <ELI4 Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|--|-------------------------------| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis: 400 mm | Fig 5.4 Photo of ELI4 Phantom | The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. #### 5.6 Device Holder #### <Device Holder for SAM Twin Phantom> The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (EPR). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity $\varepsilon=3$ and loss tangent $\delta=0.02$. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 13 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 Fig 5.5 Device Holder ### <Laptop Extension Kit> The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms. Fig 5.6 Laptop Extension Kit SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 14 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 #### 5.7 Data Storage and Evaluation #### 5.7.1 Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### 5.7.2 Data Evaluation The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: **Probe parameters**: - Sensitivity Norm_i, a_{i0} , a_{i1} , a_{i2} Conversion factor ConvF_i Diode compression point dcp_i **Device parameters**: - Frequency f - Crest factor cf s: - Conductivity σ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 15 of 39 Report Issued Date : Jan. 20, 2012 Report No.: FA1N0901 The formula for each channel can be given as : $$V_{i} = U_{i} + U_{i}^{2} \cdot \frac{cf}{dcp_{i}}$$ Report No.: FA1N0901 with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: $$\text{E-field Probes}: E_i = \sqrt{\frac{v_i}{\text{Norm}_i \cdot \text{ConvF}}}$$ H-field Probes : $$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$ with V_i = compensated signal of channel i, (i = x, y, z) Norm_i = sensor sensitivity of channel i, (i = x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF = sensitivity enhancement in solution a_{ij} = sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i = electric field strength of channel i in V/m H_i = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ with SAR = local specific absorption rate in mW/g E_{tot} = total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid. Page Number Report Version : 16 of 39 : Rev. 01 Report Issued Date: Jan. 20, 2012 ### 5.8 Test Equipment List | Manufacturer | Manufacturer Name of Equipment | | Serial Number | Calibration | | | |--------------
--------------------------------------|---------------|---------------|---------------|---------------|--| | wanuracturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | SPEAG | Dosimetric E-Field Probe | ET3DV6 | 1788 | Sep. 28, 2011 | Sep. 27, 2012 | | | SPEAG | Dosimetric E-Filed Probe | EX3DV4 | 3792 | Jun. 20, 2011 | Jun. 19, 2012 | | | SPEAG | Dosimetric E-Filed Probe | ES3DV3 | 3270 | Sep. 12, 2011 | Sep. 11, 2012 | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 736 | Jul. 25, 2011 | Jul. 24, 2012 | | | SPEAG | 5GHz System Validation Kit | D5GHzV2 | 1040 | Jun. 21, 2011 | Jun. 20, 2012 | | | SPEAG | Data Acquisition Electronics | DAE3 | 577 | Jun. 20, 2011 | Jun. 19, 2012 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1244 | Jan. 07, 2011 | Jan. 06, 2012 | | | SPEAG | Data Acquisition Electronics | DAE4 | 1279 | Jun. 17, 2011 | Jun. 16, 2012 | | | SPEAG | Device Holder | N/A | N/A | NCR | NCR | | | SPEAG | SAM Phantom | QD 000 P40 C | TP-1303 | NCR | NCR | | | SPEAG | SAM Phantom | QD 000 P40 C | TP-1383 | NCR | NCR | | | SPEAG | SAM Phantom | QD 000 P40 C | TP-1446 | NCR | NCR | | | SPEAG | SAM Phantom | QD 000 P40 C | TP-1478 | NCR | NCR | | | SPEAG | SAM Phantom | QD 000 P41 C | TP-1150 | NCR | NCR | | | SPEAG | SAM Phantom | QD 000 P40 CD | TP-1644 | NCR | NCR | | | SPEAG | SAM Phantom | SM 000 T01 DA | TP-1542 | NCR | NCR | | | SPEAG | ELI4 Phantom | QD 0VA 001 BB | 1026 | NCR | NCR | | | SPEAG | ELI4 Phantom | QD 0VA 001 BA | 1029 | NCR | NCR | | | SPEAG | ELI4 Phantom | QD 0VA 002 AA | TP-1127 | NCR | NCR | | | SPEAG | ELI4 Phantom | QD 0VA 002 AA | TP-1131 | NCR | NCR | | | Agilent | ENA Series Network Analyzer | E5071C | MY46100746 | Jun. 10, 2011 | Jun. 09, 2012 | | | Anritsu | Radio Communication Analyzer | MT8820C | 6201026480 | Aug. 12 ,2011 | Aug. 11 ,2012 | | | Agilent | Wireless Communication Test Set | E5515C | MY48360820 | Jan. 12, 2010 | Jan. 11, 2012 | | | Agilent | Wireless Communication Test Set | E5515C | GB46311322 | Mar. 23, 2011 | Mar. 22, 2013 | | | Agilent | Wireless Communication Test Set | E5515C | MY50264370 | Apr. 19, 2011 | Apr. 18, 2013 | | | R&S | Universal Radio Communication Tester | CMU200 | 114256 | Feb. 08, 2010 | Feb. 07, 2012 | | | Agilent | Dielectric Probe Kit | 85070D | US01440205 | NCR | NCR | | | Agilent | Dual Directional Coupler | 778D | 50422 | NCR | NCR | | | AR | Power Amplifier | 5S1G4M2 | 0328767 | NCR | NCR | | | R&S | Spectrum Analyzer | FSP7 | 101131 | Jul. 29, 2011 | Jul. 28, 2012 | | | R&S | Spectrum Analyzer | FSP30 | 101329 | May. 03, 2011 | May. 02, 2012 | | **Table 5.1 Test Equipment List** #### Note: 1. The calibration certificate of DASY can be referred to appendix C of this report. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 17 of 39 Report Issued Date : Jan. 20, 2012 Report No.: FA1N0901 ### 6. Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.2. Report No.: FA1N0901 Fig 6.1 Photo of Liquid Height for Head SAR Fig 6.2 Photo of Liquid Height for Body SAR The following table gives the recipes for tissue simulating liquid. | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | |-----------|----------|-------|-----------|------|-----------|------|--------------|-------------------| | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | (σ) | (ε _r) | | For Head | | | | | | | | | | 2450 | 55.0 | 0 | 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | | For Body | | | | | | | | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | Table 6.1 Recipes of Tissue Simulating Liquid Simulating Liquid for 5G, Manufactured by SPEAG | Ingredients | (% by weight) | | | |--------------------|---------------|--|--| | Water | 64~78% | | | | Mineral oil | 11~18% | | | | Emulsifiers | 9~15% | | | | Additives and Salt | 2~3% | | | SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 18 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer. The following table shows the measuring results for simulating liquid. | Freq.
(MHz) | Liquid
Type | Temp.
(°C) | Conductivity (σ) | Permittivity (ε _r) | Conductivity
Target (σ) | Permittivity Target (ε _r) | Delta (σ)
(%) | Delta (ε _r)
(%) | Limit
(%) | Date | |----------------|----------------|---------------|------------------|--------------------------------|----------------------------|---------------------------------------|------------------|--------------------------------|--------------|---------------| | 2450 | Body | 21.4 | 1.973 | 52.342 | 1.95 | 52.7 | 1.18 | -0.68 | ±5 | Nov. 22, 2011 | | 2450 | Body | 21.3 | 1.97 | 52.8 | 1.95 | 52.7 | 1.03 | 0.19 | ±5 | Nov. 26, 2011 | | 5200 | Body | 21.3 | 5.325 | 48.639 | 5.3 | 49 | 0.47 | -0.74 | ±5 | Nov. 23, 2011 | | 5200 | Body | 21.2 | 5.32 | 47.5 | 5.3 | 49 | 0.38 | -3.06 | ±5 | Nov. 26, 2011 | | 5200 | Body | 21.4 | 5.14 | 47.5 | 5.3 | 49 | -3.02 | -3.06 | ±5 | Nov. 27, 2011 | | 5500 | Body | 21.2 | 5.71 | 47 | 5.65 | 48.6 | 1.06 | -3.29 | ±5 | Nov. 26, 2011 | | 5500 | Body | 21.4 | 5.52 | 47 | 5.65 | 48.6 | -2.30 | -3.29 | ±5 | Nov. 27, 2011 | | 5800 | Body | 21.2 | 6.22 | 46.4 | 6 | 48.2 | 3.67 | -3.73 | ±5 | Nov. 26, 2011 | | 5800 | Body | 21.4 | 5.99 | 46.5 | 6 | 48.2 | -0.17 | -3.53 | ±5 | Nov. 27, 2011 | **Table 6.2 Measuring Results for Simulating Liquid** SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 19 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ### 7. Uncertainty Assessment The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance. A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement. A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1 | Uncertainty Distributions | Normal | Rectangular | Triangular | U-Shape | |------------------------------------|--------------------|-------------|------------|---------| | Multi-plying Factor ^(a) | 1/k ^(b) | 1/√3 | 1/√6 | 1/√2 | ⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity **Table 7.1 Standard Uncertainty for Assumed Distribution** The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances. Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is showed in Table 7.2. SPORTON INTERNATIONAL INC. FAX : 886-3-328-4978 FCC ID : Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 20 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ⁽b) κ is the coverage factor | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Standard
Uncertainty
(1g) | | |-------------------------------|------------------------------|-----------------------------|---------|------------|---------------------------------|--| | Measurement System | | | | | | | | Probe Calibration | 6.0 | Normal | 1 | 1 | ± 6.0 % | | | Axial Isotropy | 4.7 |
Rectangular | √3 | 0.7 | ± 1.9 % | | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | ± 3.9 % | | | Boundary Effects | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | | Linearity | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | | Readout Electronics | 0.3 | Normal | 1 | 1 | ± 0.3 % | | | Response Time | 0.8 | Rectangular | √3 | 1 | ± 0.5 % | | | Integration Time | 2.6 | Rectangular | √3 | 1 | ± 1.5 % | | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | | | Probe Positioner | 0.4 | Rectangular | √3 | 1 | ± 0.2 % | | | Probe Positioning | 2.9 | Rectangular | √3 | 1 | ± 1.7 % | | | Max. SAR Eval. | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | | Test Sample Related | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | ± 2.9 % | | | Device Holder | 3.6 | Normal | 1 | 1 | ± 3.6 % | | | Power Drift | 5.0 | Rectangular | √3 | 1 | ± 2.9 % | | | Phantom and Setup | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | ± 2.3 % | | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | ± 1.8 % | | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | ± 1.6 % | | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | ± 1.7 % | | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | ± 1.5 % | | | Combined Standard Uncertainty | | | | | | | | Coverage Factor for 95 % | | | | | | | | Expanded Uncertainty | | | | | | | Table 7.2 Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 21 of 39 Report Issued Date : Jan. 20, 2012 Report No.: FA1N0901 | Error Description | Uncertainty
Value
(±%) | Probability
Distribution | Divisor | Ci
(1g) | Standard
Uncertainty
(1g) | | |-------------------------------|------------------------------|-----------------------------|---------|------------|---------------------------------|--| | Measurement System | | | | | | | | Probe Calibration | 6.55 | Normal | 1 | 1 | ± 6.55 % | | | Axial Isotropy | 4.7 | Rectangular | √3 | 0.7 | ± 1.9 % | | | Hemispherical Isotropy | 9.6 | Rectangular | √3 | 0.7 | ± 3.9 % | | | Boundary Effects | 2.0 | Rectangular | √3 | 1 | ± 1.2 % | | | Linearity | 4.7 | Rectangular | √3 | 1 | ± 2.7 % | | | System Detection Limits | 1.0 | Rectangular | √3 | 1 | ± 0.6 % | | | Readout Electronics | 0.3 | Normal | 1 | 1 | ± 0.3 % | | | Response Time | 0.8 | Rectangular | √3 | 1 | ± 0.5 % | | | Integration Time | 2.6 | Rectangular | √3 | 1 | ± 1.5 % | | | RF Ambient Noise | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | | | RF Ambient Reflections | 3.0 | Rectangular | √3 | 1 | ± 1.7 % | | | Probe Positioner | 0.8 | Rectangular | √3 | 1 | ± 0.5 % | | | Probe Positioning | 9.9 | Rectangular | √3 | 1 | ± 5.7 % | | | Max. SAR Eval. | 4.0 | Rectangular | √3 | 1 | ± 2.3 % | | | Test Sample Related | | | | | | | | Device Positioning | 2.9 | Normal | 1 | 1 | ± 2.9 % | | | Device Holder | 3.6 | Normal | 1 | 1 | ± 3.6 % | | | Power Drift | 5.0 | Rectangular | √3 | 1 | ± 2.9 % | | | Phantom and Setup | | | | | | | | Phantom Uncertainty | 4.0 | Rectangular | √3 | 1 | ± 2.3 % | | | Liquid Conductivity (Target) | 5.0 | Rectangular | √3 | 0.64 | ± 1.8 % | | | Liquid Conductivity (Meas.) | 2.5 | Normal | 1 | 0.64 | ± 1.6 % | | | Liquid Permittivity (Target) | 5.0 | Rectangular | √3 | 0.6 | ± 1.7 % | | | Liquid Permittivity (Meas.) | 2.5 | Normal | 1 | 0.6 | ± 1.5 % | | | Combined Standard Uncertainty | | | | | | | | Coverage Factor for 95 % | | | | | | | | Expanded Uncertainty | | | | | | | Table 7.3 Uncertainty Budget of DASY for frequency range 3 GHz to 6 GHz SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : Q3QIHW62230ANH Page Number : 22 of 39 Report Issued Date : Jan. 20, 2012 Report No.: FA1N0901 8. SAR Measurement Evaluation Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. ### 8.1 Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. ### 8.2 System Setup In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: Fig 8.1 System Setup for System Evaluation SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 23 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 - 1. Signal Generator - 2. Amplifier - 3. Directional Coupler - 4. Power Meter - 5. Calibrated Dipole The output power on dipole port must be calibrated to 24 dBm (250 mW) before dipole is connected. Fig 8.2 Photo of Dipole Setup **SPORTON INTERNATIONAL INC.** TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 24 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ### 8.3 Validation Results Comparing to the original SAR value provided by SPEAG, the validation data should be within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report. | Measurement
Date | Frequency
(MHz) | Liquid
Type | Targeted
SAR _{1g}
(W/kg) | Measured
SAR _{1g}
(W/kg) | Normalized
SAR _{1g}
(W/kg) | Deviation (%) | |---------------------|--------------------|----------------|---|---|---|---------------| | Nov. 22, 2011 | 2450 | Body | 52.3 | 13.7 | 54.80 | 4.78 | | Nov. 26, 2011 | 2450 | Body | 52.3 | 13.3 | 53.20 | 1.72 | | Nov. 23, 2011 | 5200 | Body | 76 | 19.5 | 78.00 | 2.63 | | Nov. 26, 2011 | 5200 | Body | 76 | 18.6 | 74.40 | -2.11 | | Nov. 27, 2011 | 5200 | Body | 76 | 18 | 72.00 | -5.26 | | Nov. 26, 2011 | 5500 | Body | 81.7 | 19.5 | 78.00 | -4.53 | | Nov. 27, 2011 | 5500 | Body | 81.7 | 18.8 | 75.20 | -7.96 | | Nov. 26, 2011 | 5800 | Body | 75.4 | 17.8 | 71.20 | -5.57 | | Nov. 27, 2011 | 5800 | Body | 75.4 | 17.2 | 68.80 | -8.75 | **Table 8.1 Target and Measurement SAR after Normalized** FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 25 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 Report No. : FA1N0901 ## 9. DUT Testing Position This DUT was tested in three different positions. They are bottom face of tablet PC, Secondary Landscape, and Secondary Portrait. In these positions, the surface of DUT is touching with phantom 0 cm gap. Please refer to Appendix E for the test setup photos. Fig 9.1 Illustration for Lap-touching Position SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 26 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ### 10. Measurement Procedures The measurement procedures are as follows: - (a) Use engineering software to transmit RF power continuously (continuous Tx) in the highest power channel. - (b) Keep DUT to radiate 100% duty factor. - (c) Measure output power through RF cable and power meter. - (d) Place the DUT in the positions as Appendix E demonstrates. - (e) Set scan area, grid size and other setting on the DASY software. - (f) Measure SAR results for the highest power channel on each testing position. - (g) Find out the largest SAR result on these testing positions of each band - (h) Measure SAR results for other channels in worst SAR testing position if the SAR of highest power channel is larger than 0.8 W/kg According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement #### 10.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest
averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 27 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ### 10.2 Area & Zoom Scan Procedures First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan measures 5x5x7 points with step size 8, 8 and 5 mm for 300 MHz to 3 GHz, and 8x8x8 points with step size 4, 4 and 2.5 mm for 3 GHz to 6 GHz. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. #### 10.3 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the DUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing (step-size is 4, 4 and 2.5 mm). When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. ### 10.4 SAR Averaged Methods In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation. Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm. #### 10.5 Power Drift Monitoring All SAR testing is under the DUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of DUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 28 of 39 Report Issued Date : Jan. 20, 2012 Report No.: FA1N0901 Report No. : FA1N0901 ### 11. SAR Test Configurations ### 11.1 Exposure Positions Consideration #### Secondary Landscape **Primary Landscape** **Back View** | Antenna | Mode | |----------------------------|--------------| | WLAN Main (TX/Rx) | 802.11 b/g/n | | WEAN_INIAIII (TA/KX) | 802.11 a/n | | | Bluetooth | | Bluetooth/WLAN_Aux (TX/RX) | 802.11 b/g/n | | | 802.11 a/n | | RFID (Tx/RX) | RFID | | Antenna | Length | Width | |----------------------------|--------|-------| | WLAN_Main (TX/Rx) | 3cm | 0.8cm | | Bluetooth/WLAN_Aux (TX/RX) | 3cm | 0.8cm | | RFID (Tx/RX) | 2.6cm | 1cm | #### Note: - 1. WLAN_Main antenna hereinafter refers to as Ant. A. - 2. Bluetooth/WLAN_Aux antenna hereinafter refers to as Ant. B. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 29 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 | | Sides f | or SAR tests | s; Tablet mo | de | | | |--------------|-----------------|---------------|------------------------|----------------------|-----------------------|---------------------| | Antenna Mode | Bottom
Face | Front
Face | Secondary
Landscape | Primary
Landscape | Secondary
Portrait | Primary
Portrait | | Ant. A | √ (0 mm) | Х | ✓ (0 mm) | Х | √ (0 mm) | Х | | Ant. B | √ (0 mm) | Х | ✓ (0 mm) | Х | Х | Х | | Ant. A + B | √ (0 mm) | Х | √ (0 mm) | Х | ✓ (0 mm) | Х | #### Note: - 1. The DUT diagonal dimension is 34.6 cm; per KDB 941225 D07, the DUT diagonal > 20 cm and Mini-Tablet procedure is not applied. Therefore, SAR tests follow the Tablet Mode in KDB447498. - There is no screen orientation limitation in DUT; that is 4 orientations are supported. The power reduction for SAR compliance is not triggered by the screen orientation. - 3. As in (1), the test distance is 0 mm to the flat phantom; SAR evaluation is required for Bottom Face and each applicable Edge with the antenna within 5 cm to the user. - 4. Per KDB 447498 D01, the distance from WLAN_Main antenna (Ant. A) to the Primary-Portrait / Primary-Landscape edge > 5 cm, therefore the stand-alone in these configurations SAR are not required. - 5. Per KDB 447498 D01, the distance from Bluetooth/WLAN_Aux antenna (Ant. B) to the Primary-Portrait / Primary-Landscape /Secondary-Portrait edge > 5 cm, therefore the stand-alone SAR in these configurations are not required. - 6. Per KDB 447498 D01. Bluetooth and RFID output power ≤ 60/f thus stand-alone SAR is not required. - 7. WLAN and Bluetooth share the same antenna and cannot transmit simultaneously. - 8. 5 GHz and 2.4 GHz share the same antenna, and will not transmit simultaneously (the transmitting overlapping period will not exceed 30 seconds during AP searching/registration). - 9. 802.11n can simultaneously transmit via antenna A and antenna B, hereinafter refer to as "Ant. A + B" mode. In this mode, SAR evaluation is required for the union of Ant. A and Ant. B; that is Bottom Face, Secondary-Landscape, and Secondary-Portrait here. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 30 of 39 Report Issued Date: Jan. 20, 2012 Report No.: FA1N0901 12. SAR Test Results ### 12.1 Conducted Power (Unit: dBm) | | | | | Average po | ower (dBm) | | | | | |--------|---------|-----------|---------------------|------------|------------|-------|--|--|--| | Mode | Channel | Frequency | | An | t A | | | | | | Wiode | Chaine | (MHz) | Hz) Data Rate (bps) | | | | | | | | | | | 1M | 2M | 5.5M | 11M | | | | | | CH 01 | 2412 MHz | 16.62 | - | ı | - | | | | | 802.11 | CH 06 | 2437 MHz | 16.68 | - | • | - | | | | | | CH 11 | 2462 MHz | 16.78 | 16.63 | 16.6 | 16.72 | | | | | | | | | | | Average po | ower (dBm |) | | | |---------|-----------------------|-----------|-------|-------|-------|------------|-----------|-------|-------|-------| | Mode | Channel | Frequency | | | | An | t A | | | | | Wiode | (MHz) Data Rate (bps) | | | | | te (bps) | 3) | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | CH 01 | 2412 MHz | 14.08 | - | - | - | - | - | - | - | | 802.11g | CH 06 | 2437 MHz | 16.60 | 16.37 | 16.54 | 16.59 | 16.38 | 16.40 | 16.09 | 16.00 | | | CH 11 | 2462 MHz | 14.02 | - | - | - | - | - | - | - | | | | | | Average power (dBm) | | | | | | | | | |--------------------|----------|------------|-------|---------------------|-------|-------|-----------------|-------|-------|-------|--|--| | Mode | Channel | Frequency | | | | An | t A | | | | | | | Wiode | Chamilei | (MHz) Data | | | | | Data Rate (bps) | | | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | 000 115 | CH 01 | 2412 MHz | 12.97 | - | - | - | - | - | - | - | | | | 802.11n –
20M – | CH 06 | 2437 MHz | 16.37 | 16.15 | 16.09 | 16.13 | 16.18 | 16.05 | 15.98 | 15.87 | | | | | CH 11 | 2462 MHz | 12.23 | - | - | - | - | - | - | - | | | | | | | Average power (dBm) | | | | | | | | | | |----------------|---------|-----------------|---------------------|-------|-------|-------|----------|-------|-------|-------|--|--| | Mode | Channel | Frequency | | | | An | t A | | | | | | | Wiode | Chaine | (MHz) Data Rate | | | | | te (bps) | | | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | 902 11p | CH 03 | 2422 MHz | 10.52 | - | - | - | - | - | - | - | | | | 802.11n
40M | CH 06 | 2437 MHz | 16.45 | 16.34 | 16.07 | 15.84 | 15.53 | 15.28 | 15.64 | 15.53 | | | | | CH 09 | 2452 MHz | 10.01 | - | - | - | - | - | - | - | | | #### Note: - 1. Per 2010/10 TCB workshop and KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. Per KDB 248227, 11g and 11n output power is less than 1/4 dB higher than 11b mode, thus the SAR can be excluded. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 31 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 | | | | | Average po | ower (dBm) | | | | | |---------|----------|-----------|-----------------|------------|------------|-------------|--|--|--| | Mode | Channel | Frequency | | An | it B | | | | | | Wode | Chamilei | (MHz) | Data Rate (bps) | | | | | | | | | | | 1M | 2M | 5.5M | 11 M | | | | | | CH 01 | 2412 MHz | 16.40 | 16.23 | 16.21 | 16.31 | | | | | 802.11b | CH 06 | 2437
MHz | 14.63 | - | - | - | | | | | | CH 11 | 2462 MHz | 16.00 | - | - | - | | | | | | | | | | | | Average po | ower (dBm |) | | | |---|--------|----------|-----------|-----------------|-------|-------|------------|-----------|-------|-------|-------| | | Mode | Channel | Frequency | | | | An | t B | | | | | | woue | Chamilei | (MHz) | Data Rate (bps) | | | | | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | | CH 01 | 2412 MHz | 13.89 | - | - | - | - | - | - | - | | 8 | 02.11g | CH 06 | 2437 MHz | 16.37 | 16.34 | 16.36 | 16.3 | 16.26 | 16.03 | 16.07 | 16.09 | | | | CH 11 | 2462 MHz | 13.01 | - | - | - | - | - | - | - | | | | | Average power (dBm) | | | | | | | | | |---------|----------|-----------|---------------------|-------|-------|-------|-------|-------|-------|-------|--| | Mode | Channel | Frequency | | | | An | t B | | | | | | Wiode | Chamilei | (MHz) | Data Rate (bps) | | | | | | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | 802.11n | CH 01 | 2412 MHz | 12.29 | - | - | - | - | - | - | - | | | | CH 06 | 2437 MHz | 16.51 | 16.50 | 16.36 | 16.50 | 16.48 | 16.17 | 16.22 | 16.43 | | | 20M | CH 11 | 2462 MHz | 13.13 | - | - | - | • | - | - | - | | | | | | | | | Average po | ower (dBm |) | | | |---------|----------|-----------|-------|-------|-------|------------|-----------|-------|-------|-------| | Mode | Channel | Frequency | | | | An | t B | | | | | Wiode | Chamilei | (MHz) | , | | | | | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | 802.11n | CH 03 | 2422 MHz | 8.73 | - | - | - | - | - | = | - | | 40M | CH 06 | 2437 MHz | 12.52 | 12.39 | 12.46 | 12.35 | 12.19 | 12.18 | 12.25 | 12.13 | | 40101 | CH 09 | 2452 MHz | 9.43 | - | - | - | - | - | - | - | #### Note: - 1. Per 2010/10 TCB workshop and KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. Per KDB 248227, 11g and 11n output power is less than 1/4 dB higher than 11b mode, thus the SAR can be excluded. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 32 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 | | | | | | - | Average po | ower (dBm |) | | | |---------|---------|-----------|-------|-------|-------|------------|-----------|-------|-------|-------| | Mode | Channel | Frequency | | | | Ant | A+B | | | | | Wode | Channel | (MHz) | | | | Data Ra | te (bps) | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | 802.11n | CH 01 | 2412 MHz | 14.32 | - | - | - | - | - | - | - | | 20M | CH 06 | 2437 MHz | 16.13 | 16.07 | 15.82 | 15.63 | 15.49 | 11.14 | 15.52 | 15.61 | | 20101 | CH 11 | 2462 MHz | 13.59 | - | - | - | - | - | - | - | | | | | | Average power (dBm) | | | | | | | | | | |--|----------------|----------|-----------|---------------------|-------|-------|-------|-------|-------|-------|-------|--|--| | | Mode | Channel | Frequency | | | | Ant | A+B | | | | | | | | Wode | Chamilei | (MHz) | , | | | | | | | | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | | 000 115 | CH 03 | 2422 MHz | 9.86 | - | - | - | - | - | - | - | | | | | 802.11n
40M | CH 06 | 2437 MHz | 15.17 | 15.13 | 15.03 | 15.06 | 14.51 | 14.49 | 14.42 | 14.41 | | | | | | CH 09 | 2452 MHz | 9.17 | - | - | - | - | - | - | - | | | #### Note: - Per 2010/10 TCB workshop and KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. 802.11n can simultaneously transmit via antenna A and antenna B in this mode. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 33 of 39 Report Issued Date: Jan. 20, 2012 Report No.: FA1N0901 | | Channel | Frequency
(MHz) | | | | Average P | ower (dRm) | | | | | |------------------------|--|--|---|--|--|--|---|---|---|---|--| | Na - 1 | | | Average Power (dBm) Ant A | | | | | | | | | | Mode | | | | | | | ite (bps) | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | | CH 036 | 5180 MHz | 16.18 | - | - | - | - | - | - | - | | | | CH 040 | 5200 MHZ | 16.17 | - | - | - | - | - | - | - | | | | CH 044 | 5220 MHz | 16.13 | - | - | - | - | - | - | - | | | | CH 048 | 5240 MHz | 15.64 | - | - | - | - | - | - | - | | | | CH 052 | 5260 MHz | 15.58 | - | - | - | - | - | - | - | | | | CH 056
CH 060 | 5280 MHz | 16.25 | - | - | - | - | - | - | - | | | | CH 060 | 5300 MHz
5320 MHz | 16.14
16.27 | 15.75 | 15.53 | 15.99 | 15.80 | 15.87 | 16.12 | 15.84 | | | | CH 100 | 5500 MHz | 16.17 | - | - | 10.99 | - | - | - | - | | | | CH 104 | 5520 MHz | 16.32 | - | - | - | - | - | - | - | | | | CH 108 | 5540 MHz | 16.23 | - | - | - | - | - | - | - | | | 000 110 | CH 112 | 5560 MHz | 16.31 | - | - | - | - | - | - | - | | | 802.11a | CH 116 | 5580 MHz | 16.36 | 16.20 | 15.93 | 15.98 | 15.94 | 15.90 | 16.09 | 15.88 | | | | CH 120 | 5600 MHz | 16.07 | - | - | - | - | - | - | - | | | | CH 124 | 5620 MHz | 16.22 | - | - | - | - | - | - | - | | | | CH 128 | 5640 MHz | 16.29 | - | - | - | - | - | - | - | | | | CH 132 | 5660 MHz | 16.26 | - | - | - | - | - | - | - | | | | CH 136 | 5680 MHz | 16.34 | - | - | - | - | - | - | - | | | | CH 140 | 5700 MHz | 16.30 | - | - | - | - | - | - | - | | | | CH 149 | 5745 MHz | 16.50 | 16.41 | 16.48 | 16.46 | 16.47 | 16.49 | 16.47 | 16.43 | | | | CH 153
CH 157 | 5765 MHz
5785 MHz | 16.25
16.35 | - | - | - | - | - | - | - | | | | CH 157 | 5805 MHz | 16.43 | - | - | - | - | - | - | - | | | | CH 165 | 5825 MHz | 16.43 | - | - | - | - | | - | | | | | CITIOS | 3023 IVII IZ | 10.43 | <u> </u> | | Average P | ower (dBm) | - | | <u>-</u> | | | | | Frequency | Ant A | | | | | | | | | | Mode | Channel | (MHz) | Data Rate (bps) | | | | | | | | | | | | () | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | CH 036 | 5180 MHz | 15.87 | - | - | - | - | - | - | - | | | | CH 040 | 5200 MHZ | 14.93 | - | - | - | - | - | - | - | | | | CH 044 | 5220 MHz | 16.05 | - | - | - | - | - | - | - | | | | CH 048 | 5240 MHz | 15.54 | - | - | - | - | - | - | - | | | | CH 052 | 5260 MHz | 15.64 | - | - | - | - | - | - | - | | | | CH 056 | 5280 MHz | 14.30 | - | - | - | - | - | - | - | | | | CH 060 | 5300 MHz | 16.18 | - | - | - | - | - | - | - | | | | CH 064
CH 100 | 5320 MHz
5500 MHz | 16.20
16.18 | 15.98 | 16.14 | 16.11 | 16.18 | 16.19 | 16.10 | 16.14 | | | | CH 100 | 5520 MHz | 13.41 | - | - | - | | | | | | | | CH 108 | | | | | | | | - | - | | | 802.11n | 011100 | | | - | - | - | - | - | - | - | | | | CH 112 | 5540 MHz | 14.17 | - | -
-
- | - | - | | - | | | | 20M | CH 112
CH 116 | 5540 MHz
5560 MHz | 14.17
14.51 | - | - | - | - | - | -
-
- | -
-
- | | | ∠UIVI | | 5540 MHz | 14.17 | - | - | - | - | - | - | - | | | ∠UIVI | CH 116 | 5540 MHz
5560 MHz
5580 MHz | 14.17
14.51
16.32 | -
-
15.98 | -
-
16.11 | - | - | - | -
-
- | -
-
- | | | ∠UIVI | CH 116
CH 120 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz | 14.17
14.51
16.32
14.07 | -
-
15.98
- | -
-
16.11
- | -
-
16.24
- | -
-
16.22
- | -
-
16.24
- | -
-
-
16.26 | -
-
-
16.23 | | | ∠UIVI | CH 116
CH 120
CH 124
CH 128
CH 132 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28 | -
-
15.98
-
- | -
-
16.11
-
- | -
-
16.24
-
- | -
16.22
-
- | -
-
16.24
-
- | -
-
16.26
- | -
-
-
16.23
- | | | ZUIVI | CH 116
CH 120
CH 124
CH 128
CH 132
CH 136 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82 | -
-
15.98
-
-
- | -
-
16.11
-
- | -
-
16.24
-
- | -
16.22
-
- | -
-
16.24
-
-
- | -
-
-
16.26
-
- | -
-
-
16.23
-
- | | | ZUIVI | CH 116
CH 120
CH 124
CH 128
CH 132
CH 136
CH 140 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19 | -
-
15.98
-
-
-
-
-
- | -
-
16.11
-
-
-
-
- | -
16.24
-
-
-
-
-
- | -
16.22
-
-
-
-
-
- | -
16.24
-
-
-
-
-
- | -
-
-
16.26
-
-
-
-
-
- | -
-
-
16.23
-
-
-
-
- | | | ZUIVI | CH 116
CH 120
CH 124
CH 128
CH 132
CH 136
CH 140
CH 149 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59 | -
15.98
-
-
-
-
- | -
16.11
-
-
-
- |
-
16.24
-
-
-
-
- | -
16.22
-
-
-
-
- | -
16.24
-
-
-
- | -
-
-
16.26
-
-
-
- | -
-
-
16.23
-
-
-
- | | | ZUIVI | CH 116
CH 120
CH 124
CH 128
CH 132
CH 136
CH 140
CH 149
CH 153 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz
5745 MHz
5765 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59 | -
15.98
-
-
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
-
-
16.40 | -
16.24
-
-
-
-
-
-
16.27 | -
16.22
-
-
-
-
-
-
-
-
16.38 | -
16.24
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
-
-
16.26
-
-
-
-
-
-
-
16.31 | -
-
-
16.23
-
-
-
-
-
-
-
16.23 | | | ZUM | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz
5745 MHz
5765 MHz
5785 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37 | -
15.98
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
16.40 | -
16.24
-
-
-
-
-
16.27 | -
16.22
-
-
-
-
-
-
-
16.38 | -
16.24
-
-
-
-
-
16.29 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
16.23
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | ZUM | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz
5745 MHz
5785 MHz
5805 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37
15.86 | 15.98
-
-
-
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
-
16.40 | -
16.24
-
-
-
-
-
-
-
16.27 | -
16.22
-
-
-
-
-
-
-
16.38 | -
16.24
-
-
-
-
-
-
16.29 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
16.23
-
-
-
-
-
-
16.23 | | | ZUW | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz
5745 MHz
5765 MHz
5785 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37 | -
15.98
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
16.40 | - 16.24
 | -
16.22
-
-
-
-
-
-
16.38
-
- | -
16.24
-
-
-
-
-
16.29 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
16.23
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz
5745 MHz
5765 MHz
5785 MHz
5805 MHz
5805 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37
15.86 | 15.98
-
-
-
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
-
16.40 | - 16.24
16.27
 | - 16.22
16.38
 | -
16.24
-
-
-
-
-
-
16.29 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
16.23
-
-
-
-
-
-
16.23 | | | Mode | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5660 MHz
5660 MHz
5660 MHz
5700 MHz
5745 MHz
5765 MHz
5785 MHz
5805 MHz
5825 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37
15.86 | 15.98
-
-
-
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
-
16.40 | - 16.24
16.27
 | - 16.22
16.38
 | -
16.24
-
-
-
-
-
-
16.29 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
16.23
-
-
-
-
-
-
16.23 | | | | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5640 MHz
5660 MHz
5680 MHz
5700 MHz
5745 MHz
5765 MHz
5785 MHz
5805 MHz
5805 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37
15.86 | 15.98
-
-
-
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
-
16.40 | - 16.24
16.27
 | - 16.22
16.38
 | -
16.24
-
-
-
-
-
-
16.29 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
16.23
-
-
-
-
-
-
16.23 | | | | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 | 5540 MHz
5560 MHz
5580 MHz
5600 MHz
5620 MHz
5660 MHz
5660 MHz
5660 MHz
5700 MHz
5745 MHz
5765 MHz
5785 MHz
5805 MHz
5825 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37
15.86
16.39 | -
15.98
-
-
-
-
-
-
-
16.43 | -
16.11
-
-
-
-
-
16.40
-
- | - 16.24 16.27 | - 16.22 16.38 | -
16.24
-
-
-
-
-
16.29
-
- | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 Channel | 5540 MHz 5560 MHz 5560 MHz 5600 MHz 5620 MHz 5620 MHz 5660 MHz 5660 MHz 5700 MHz 5745 MHz 5765 MHz 5785 MHz 5805 MHz 5805 MHz 5825 MHz | 14.17
14.51
16.32
14.07
14.65
15.24
14.28
13.82
16.19
16.59
15.72
16.37
15.86
16.39 | -
15.98
-
-
-
-
-
-
-
16.43 | - 16.11 16.40 | - 16.24 | 16.22 | -
16.24
-
-
-
-
-
16.29
-
- | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | | | | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 Channel CH 038 CH 046 CH 054 | 5540 MHz 5560 MHz 5580 MHz 5600 MHz 5620 MHz 5640 MHz 5660 MHz 5680 MHz 5700 MHz 5745 MHz 5765 MHz 5805 MHz 5805 MHz 5805 MHz 5805 MHz 5825 MHz 5825 MHz 5190 MHz 5230 MHZ | 14.17 14.51 16.32 14.07 14.65 15.24 14.28 13.82 16.19 16.59 15.72 16.37 15.86 16.39 MCSO 12.80 | 15.98
 | - 16.11
 | 16.24 | 16.22 | - 16.24
 | - 16.26
 | - 16.23
16.23
 | | | Mode | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 165 Channel CH 038 CH 046 CH 054 CH 062 | 5540 MHz 5560 MHz 5580 MHz 5600 MHz 5620 MHz 5640 MHz 5660 MHz 5680 MHz 5745 MHz 5745 MHz 5745 MHz 5785 MHz 5805 MHz 5805 MHz 5805 MHz 5825 MHz 5825 MHz 5190 MHz 5230 MHZ 5230 MHZ | 14.17 14.51 16.32 14.07 14.65 15.24 14.28 13.82 16.19 16.59 15.72 16.37 15.86 16.39 MCS0 16.13 15.99 11.30 | 15.98 | 16.11 | 16.24 | 16.22 | 16.24 | - 16.26
 | - 16.23
 | | | Mode
802.11n | CH 116 CH 120 CH 124 CH 128 CH 128 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 Channel CH 038 CH 046 CH 054 CH 062 CH 102 | 5540 MHz 5560 MHz 5560 MHz 5560 MHz 5600 MHz 5620 MHz 5660 MHz 5660 MHz 5680 MHz 5700 MHz 5705 MHz 5765 MHz 5785 MHz 5785 MHz 5805 MHz 5825 MHz Frequency (MHz) 5190 MHz 5230 MHZ 5230 MHZ 5310 MHz 5310 MHz | 14.17 14.51 16.32 14.07 14.65 15.24 14.28 13.82 16.19 16.59 15.72 16.37 15.86 16.39 MCS0 12.80 16.13 15.99 11.30 15.44 | 15.98 | - 16.11 | | - 16.22 | - 16.24
 | 16.26 | 16.23
 | | | Mode | CH 116 CH 120 CH 124 CH 128 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 Channel CH 038 CH 046 CH 054 CH 062 CH 102 CH 118 | 5540 MHz 5560 MHz 5560 MHz 5560 MHz 5600 MHz 5620 MHz 5640 MHz 5660 MHz 5680 MHz 5700 MHz 5765 MHz 5765 MHz 5785 MHz 5825 MHz Frequency (MHz) 5190 MHz 5230 MHZ 5230 MHZ 5210 MHz 5510 MHz 5510 MHz 5510 MHz | 14.17 14.51 16.32 14.07 14.65 15.24 14.28 13.82 16.19 16.59 15.72 16.37 15.86 16.39 MCS0 12.80 16.13 15.99 11.30 15.44 13.72 | 15.98 | 16.11 | 16.24 | 16.22 | 16.24 | 16.26 | - 16.23
 | | | Mode
802.11n | CH 116 CH 120 CH 124 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 Channel CH 038 CH 046 CH 054 CH 062 CH 102 CH 118 CH 134 | 5540 MHz 5560 MHz 5560 MHz 5580 MHz 5600 MHz 5620 MHz 5640 MHz 5660 MHz 5680 MHz 5700 MHz 5745 MHz 5785 MHz 5805 MHz 5825 MHz 5825 MHz 5190 MHz 5230 MHZ 5230 MHZ 5210 MHz 5510 MHz 5590 MHz | 14.17 14.51 16.32 14.07 14.65 15.24 14.28 13.82 16.19 16.59 15.72 15.86 16.39 MCS0 12.80 16.13 15.99 11.30 15.44 13.72 16.25 | 15.98 | 16.11 | 16.24 | 16.22 | 16.24 | 16.26 | 16.23
 | | | Mode
802.11n | CH 116 CH 120 CH 124 CH 128 CH 128 CH 132 CH 136 CH 140 CH 149 CH 153 CH 157 CH 161 CH 165 Channel CH 038 CH 046 CH 054 CH 062 CH 102 CH 118 | 5540 MHz 5560 MHz 5560 MHz 5560 MHz 5600 MHz 5620 MHz 5640 MHz 5660 MHz 5680 MHz 5700 MHz 5765 MHz 5765 MHz 5785 MHz 5825 MHz Frequency (MHz) 5190 MHz 5230 MHZ 5230 MHZ 5210 MHz 5510 MHz 5510 MHz 5510 MHz | 14.17 14.51 16.32 14.07 14.65 15.24 14.28 13.82 16.19 16.59 15.72 16.37 15.86
16.39 MCS0 12.80 16.13 15.99 11.30 15.44 13.72 | 15.98 | - 16.11 | | - 16.22 | - 16.24
 | 16.26 | 16.23
 | | #### Note: - 1. Per 2010/10 TCB workshop and KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. Per KDB 248227, 11g and 11n output power is less than 1/4 dB higher than 11b mode, thus the SAR can be excluded. #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 34 of 39 Report Issued Date : Jan. 20, 2012 Report No. : FA1N0901 | C SAR Test Report | Report No. : FA1N0901 | |-------------------|-----------------------| | | | | | Channel | Frequency
(MHz) | Average Power (dBm) | | | | | | | | | |---------|------------------|----------------------|----------------------------|--------------|-------|------------|------------|------------|--------------|------------|--| | Mode | | | Ant B | | | | | | | | | | Wode | | | Data Rate (bps) | | | | | | | | | | | | | 6M | 9M | 12M | 18M | 24M | 36M | 48M | 54M | | | | CH 036 | 5180 MHz | 15.88 | 15.72 | 15.61 | 15.68 | 15.62 | 15.75 | 15.69 | 15.70 | | | | CH 040 | 5200 MHZ | 14.09 | - | - | - | - | - | - | - | | | | CH 044 | 5220 MHz | 15.62 | - | - | - | - | - | - | - | | | | CH 048 | 5240 MHz | 15.51 | - | - | - | - | - | - | - | | | | CH 052 | 5260 MHz | 15.19 | - | - | - | - | - | - | - | | | | CH 056
CH 060 | 5280 MHz
5300 MHz | 15.40
15.28 | - | - | - | - | - | - | - | | | | CH 060 | 5320 MHz | 15.26 | - | - | - | - | - | - | - | | | | CH 1004 | 5500 MHz | 15.50 | - | - | | | | - | - | | | | CH 104 | 5520 MHz | 15.53 | _ | _ | _ | _ | _ | _ | _ | | | | CH 108 | 5540 MHz | 15.48 | - | _ | _ | _ | _ | - | _ | | | | CH 112 | 5560 MHz | 15.47 | - | - | - | - | - | - | - | | | 802.11a | CH 116 | 5580 MHz | 15.57 | 15.45 | 15.37 | 15.46 | 15.29 | 15.31 | 15.54 | 15.51 | | | | CH 120 | 5600 MHz | 15.55 | - | - | - | - | - | - | - | | | | CH 124 | 5620 MHz | 15.44 | - | - | - | - | - | - | - | | | | CH 128 | 5640 MHz | 15.31 | - | - | - | - | - | - | - | | | | CH 132 | 5660 MHz | 15.47 | - | - | - | - | - | - | - | | | 1 | CH 136 | 5680 MHz | 15.45 | - | - | - | - | - | - | - | | | | CH 140 | 5700 MHz | 15.24 | - | - | - | - | - | - | - | | | | CH 149 | 5745 MHz | 16.70 | 16.63 | 16.55 | 16.51 | 16.65 | 16.62 | 16.61 | 16.68 | | | | CH 153 | 5765 MHz | 16.22 | <u> </u> | - | - | - | - | - | - | | | | CH 157 | 5785 MHz | 16.68 | - | - | - | - | - | - | - | | | | CH 161 | 5805 MHz | 16.15 | - | - | - | - | - | - | - | | | | CH 165 | 5825 MHz | 16.45 | - | - | D | -
 | - | - | - | | | | | Eroguenov | Average Power (dBm) Ant B | | | | | | | | | | Mode | Channel | Frequency
(MHz) | | | | | ite (bps) | | | | | | | | (141712) | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | CH 036 | 5180 MHz | 15.83 | 15.70 | 15.73 | 15.80 | 15.76 | 15.74 | 15.82 | 15.82 | | | | CH 040 | 5200 MHZ | 14.44 | - | - | - | - | - | - | - | | | | CH 044 | 5220 MHz | 15.74 | - | _ | _ | _ | _ | - | - | | | | CH 048 | 5240 MHz | 15.63 | - | - | - | - | - | - | - | | | | CH 052 | 5260 MHz | 15.27 | - | - | - | - | - | - | - | | | | CH 056 | 5280 MHz | 15.52 | - | - | - | - | - | - | - | | | | CH 060 | 5300 MHz | 15.17 | - | - | - | - | - | - | - | | | | CH 064 | 5320 MHz | 15.54 | - | - | - | - | 1 | - | - | | | | CH 100 | 5500 MHz | 15.27 | - | - | - | - | - | - | - | | | | CH 104 | 5520 MHz | 15.56 | - | - | - | - | - | - | - | | | | CH 108 | 5540 MHz | 15.47 | - | - | - | - | - | - | - | | | 802.11n | CH 112 | 5560 MHz | 15.56 | | - | - | - | | <u> </u> | - | | | 20M | CH 116 | 5580 MHz | 15.56 | 15.49 | 15.37 | 15.38 | 15.49 | 15.55 | 15.51 | 15.52 | | | | CH 120 | 5600 MHz | 15.56 | - | - | - | - | - | - | - | | | | CH 124 | 5620 MHz | 15.52 | - | - | - | - | - | - | - | | | | CH 128
CH 132 | 5640 MHz
5660 MHz | 15.53
15.55 | - | - | - | - | - | - | - | | | | CH 132 | 5680 MHz | 15.44 | - | - | - | - | - | - | - | | | | CH 140 | 5700 MHz | 15.48 | - | - | - | - | - | - | - | | | | CH 149 | 5745 MHz | 16.68 | 16.55 | 16.57 | 16.41 | 16.53 | 16.44 | 16.41 | 16.36 | | | | CH 153 | 5765 MHz | 16.08 | - | - | - | - | - | - | - | | | | CH 157 | 5785 MHz | 16.58 | - | - | - | - | - | - | - | | | | CH 161 | 5805 MHz | 15.24 | - | - | - | - | - | - | - | | | | CH 165 | 5825 MHz | 16.52 | - | - | - | - | - | - | - | | | | | | | | | Average Po | ower (dBm) | | | | | | Mode | Channel | Frequency | | | | | t B | | | | | | Widde | Chamilei | (MHz) | | | | | ite (bps) | | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | CH 038 | 5190 MHz | 12.63 | - | - | - | - | - | - | - | | | | CH 046 | 5230 MHZ | 15.78 | 15.69 | 15.64 | 15.61 | 15.73 | 15.70 | 15.66 | 15.74 | | | | CH 054 | 5270 MHz | 14.99 | - | - | - | - | - | - | - | | | 802.11n | CH 062 | 5310 MHz | 12.35 | - | - | - | - | - | - | - | | | 40M | CH 102 | 5510 MHz | 14.76 | - | - | - | - | - | - | - | | | | CH 118 | 5590 MHz | 15.55 | - | - | - | - | - | - | - | | | | CH 134 | 5670 MHz | 15.54 | 16.32 | | - 16.03 | | | | | | | | CH 151
CH 159 | 5755 MHz
5795 MHz | 16.46
16.35 | 16.32 | 16.31 | 16.03 | 15.89
- | 15.94
- | 16.01 | 15.45
- | | | | UI 109 | OI 30 IVIDZ | 10.33 | | | | | _ | | _ | | #### Note: - 1. Per 2010/10 TCB workshop and KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. Per KDB 248227, 11g and 11n output power is less than 1/4 dB higher than 11b mode, thus the SAR can be excluded. #### SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 35 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 | | | Frequency
(MHz) | Average Power (dBm) Ant A+B Data Rate (bps) | | | | | | | | | |---------|----------|--------------------|---|-------|-------|-------|------------|-------|-------|-------|--| | | | | | | | | | | | | | | Mode | Channel | | | | | | | | | | | | | | (, | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | CH 036 | 5180 MHz | 16.23 | 16.20 | 16.17 | 16.21 | 16.19 | 16.18 | 16.20 | 16.13 | | | | CH 040 | 5200 MHZ | 15.75 | - | - | - | - | - | - | - | | | | CH 044 | 5220 MHz | 16.13 | - | - | - | - | - | - | - | | | | CH 048 | 5240 MHz | 15.92 | - | - | - | - | - | - | - | | | | CH 052 | 5260 MHz | 15.53 | - | - | - | - | - | - | - | | | | CH 056 | 5280 MHz | 15.86 | - | - | - | - | - | - | - | | | | CH 060 | 5300 MHz | 15.89 | - | - | - | - | - | - | - | | | | CH 064 | 5320 MHz | 15.92 | - | - | - | - | - | - | - | | | | CH 100 | 5500 MHz | 15.78 | - | - | - | - | - | - | - | | | | CH 104 | 5520 MHz | 15.85 | - | - | - | - | - | - | - | | | | CH 108 | 5540 MHz | 15.74 | - | - | - | - | - | - | - | | | 802.11n | CH 112 | 5560 MHz | 15.84 | - | - | - | - | - | - | - | | | 20M | CH 116 | 5580 MHz | 15.88 | 15.71 | 15.76 | 15.84 | 15.71 | 15.87 | 15.86 | 15.77 | | | | CH 120 | 5600 MHz | 15.64 | - | - | - | - | - | - | - | | | | CH 124 | 5620 MHz | 15.82 | - | - | - | - | - | - | - | | | | CH 128 | 5640 MHz | 15.86 | - | - | - | - | - | - | - | | | | CH 132 | 5660 MHz | 15.78 | - | - | - | - | - | - | - | | | | CH 136 | 5680 MHz | 15.80 | - | - | - | - | - | - | - | | | | CH 140 | 5700 MHz | 15.21 | - | - | - | - | - | - | - | | | | CH 149 | 5745 MHz | 13.19 | 12.78 | 12.61 | 12.32 | 12.25 | 12.10 | 12.20 | 12.12 | | | | CH 153 | 5765 MHz | 12.85 | - | - | - | - | - | - | - | | | | CH 157 | 5785 MHz | 12.90 | - | - | - | - | - | - | - | | | | CH 161 | 5805 MHz | 12.41 | - | - | - | - | - | - | - | | | | CH 165 | 5825 MHz | 13.00 | - | - | - | - | - | - | - | | | | | | | | | | ower (dBm) | | | | | | Mode | Channel | Frequency | | | | | A+B | | | | | | Wiode | Chamilei | (MHz) | | | | | ite (bps) | | | | | | | | | MCS0 | MCS1 | MCS2 | MCS3 | MCS4 | MCS5 | MCS6 | MCS7 | | | | CH 038 | 5190 MHz | 13.26 | - | - | - | - | - | - | - | | | | CH 046 | 5230 MHZ | 16.20 | 16.17 | 16.17 | 16.15 | 16.06 | 16.11 | 16.19 | 16.16 | | | | CH 054 | 5270 MHz | 15.52 | - | - | - | - | - | - | - | | | 802.11n | CH 062 | 5310 MHz | 15.06 | - | - | - | - | - | - | - | | | 40M | CH 102 | 5510 MHz | 15.82 | - | - | - | - | - | - | - | | | 10.00 | CH 118 | 5590 MHz | 15.66 | - | - | - | - | - | - | - | | | | CH 134 | 5670 MHz | 15.51 | - | - | - | - | - | - | - | | | | CH 151 | 5755 MHz | 13.31 | 12.70 | 12.56 | 12.23 | 12.06 | 12.17 | 12.22 | 11.99 | | | | CH 159 | 5795 MHz | 12.93 | - | - | - | - | - | - | - | | #### Note: - 1. Per 2010/10 TCB workshop and KDB 248227, choose the highest output power channel to test SAR and determine further SAR exclusion - 2. 802.11n can simultaneously transmit via antenna A and antenna B in this mode. | | Observati | Frequency | Average power (dBm) | | | | |-----------|-----------|-----------|---------------------|--|--|--| | Mode | Channel | (MHz) | Data Rate (bps) | | | | | | | (1411-12) | DH5 | | | | | | CH 00 | 2402 MHz | 5.99 | | | | | Bluetooth | CH 39 | 2441 MHz | 6.01 | | | | | | CH 78 | 2480 MHz | 5.77 | | | | Note: Bluetooth standalone SAR is not required because the Bluetooth highest average power (6.01 dBm) is less than 60/f. SPORTON INTERNATIONAL INC. FAX : 886-3-328-4978 FCC ID : Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 36 of 39 Report Issued Date : Jan. 20, 2012 Report No.: FA1N0901 ### 12.2 Test Records for Body SAR Test | Diet Con Aug CA | | | | | | | | | |-----------------|---------|------|---------------------|-------------|-----|--------------|-----------------------------|--| | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Ant.
mode | SAR _{1g}
(W/kg) | | | 1 | 802.11b | - | Bottom Face | 0 | 11 | Α | 0.1 | | | 2 | 802.11b | - | Secondary Landscape | 0 | 11 | Α | 0.543 | | | 9 | 802.11b | - | Secondary Portrait | 0 | 11 | Α | 0.044 | | | 3 | 802.11b | - | Bottom Face | 0 | 1 | В | 0.213 | | | 4 | 802.11b | - | Secondary Landscape | 0 | 1 | В | 1.16 | | | 5 | 802.11b | - |
Secondary Landscape | 0 | 6 | В | 0.829 | | | 6 | 802.11b | - | Secondary Landscape | 0 | 11 | В | <mark>1.39</mark> | | | 19 | 802.11n | 20M | Bottom Face | 0 | 6 | A+B | 0.137 | | | 20 | 802.11n | 20M | Secondary Landscape | 0 | 6 | A+B | 0.844 | | | 21 | 802.11n | 20M | Secondary Portrait | 0 | 6 | A+B | 0.034 | | | 22 | 802.11n | 20M | Secondary Landscape | 0 | 1 | A+B | 0.324 | | | 23 | 802.11n | 20M | Secondary Landscape | 0 | 11 | A+B | 0.613 | | | 10 | 802.11a | - | Bottom Face | 0 | 36 | Α | 0.098 | | | 11 | 802.11a | - | Secondary Landscape | 0 | 36 | Α | 0.95 | | | 12 | 802.11a | - | Secondary Portrait | 0 | 36 | Α | 0.026 | | | 14 | 802.11a | - | Secondary Landscape | 0 | 48 | Α | 1.02 | | | 40 | 802.11a | - | Bottom Face | 0 | 36 | В | 0.313 | | | 41 | 802.11a | - | Secondary Landscape | 0 | 36 | В | 0.812 | | | 42 | 802.11a | - | Secondary Landscape | 0 | 48 | В | 0.884 | | | 52 | 802.11n | 20M | Bottom Face | 0 | 36 | A+B | 0.194 | | | 53 | 802.11n | 20M | Secondary Landscape | 0 | 36 | A+B | 0.476 | | | 54 | 802.11n | 20M | Secondary Portrait | 0 | 36 | A+B | 0.012 | | | 24 | 802.11a | - | Bottom Face | 0 | 64 | Α | 0.194 | | | 25 | 802.11a | - | Secondary Landscape | 0 | 64 | Α | 1.4 | | | 26 | 802.11a | - | Secondary Portrait | 0 | 64 | Α | 0.03 | | | 27 | 802.11a | - | Secondary Landscape | 0 | 52 | Α | 1.1 | | | 43 | 802.11a | - | Bottom Face | 0 | 64 | В | 0.273 | | | 44 | 802.11a | - | Secondary Landscape | 0 | 64 | В | 0.776 | | | 55 | 802.11n | 20M | Bottom Face | 0 | 64 | A+B | 0.141 | | | 56 | 802.11n | 20M | Secondary Landscape | 0 | 64 | A+B | 0.525 | | | 57 | 802.11n | 20M | Secondary Portrait | 0 | 64 | A+B | 0.015 | | | 28 | 802.11a | - | Bottom Face | 0 | 116 | Α | 0.21 | | | 29 | 802.11a | - | Secondary Landscape | 0 | 116 | Α | 1.38 | | | 30 | 802.11a | - | Secondary Portrait | 0 | 116 | Α | 0.042 | | | 31 | 802.11a | - | Secondary Landscape | 0 | 104 | Α | <mark>1.42</mark> | | | 32 | 802.11a | - | Secondary Landscape | 0 | 124 | Α | 1.4 | | | 33 | 802.11a | - | Secondary Landscape | 0 | 136 | Α | 1.34 | | | 45 | 802.11a | - | Bottom Face | 0 | 116 | В | 0.354 | | | 46 | 802.11a | - | Secondary Landscape | 0 | 116 | В | 0.891 | | | 47 | 802.11a | - | Secondary Landscape | 0 | 104 | В | 0.861 | | | 48 | 802.11a | - | Secondary Landscape | 0 | 124 | В | 0.903 | | | 49 | 802.11a | - | Secondary Landscape | 0 | 136 | В | 0.819 | | | 58 | 802.11n | 20M | Bottom Face | 0 | 116 | A+B | 0.159 | | | 59 | 802.11n | 20M | Secondary Landscape | 0 | 116 | A+B | 0.661 | | SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : 37 of 39 Report Issued Date: Jan. 20, 2012 Report Version : Rev. 01 | Plot
No. | Band | Mode | Test
Position | Gap
(cm) | Ch. | Ant. | SAR _{1g}
(W/kg) | |-------------|---------|------|---------------------|-------------|-----|------|-----------------------------| | 60 | 802.11n | 20M | Secondary Portrait | 0 | 116 | A+B | 0.014 | | 34 | 802.11a | - | Bottom Face | 0 | 149 | Α | 0.155 | | 35 | 802.11a | - | Secondary Landscape | 0 | 149 | Α | 0.831 | | 36 | 802.11a | - | Secondary Portrait | 0 | 149 | Α | 0.024 | | 37 | 802.11a | - | Secondary Landscape | 0 | 157 | Α | 0.809 | | 38 | 802.11a | - | Secondary Landscape | 0 | 161 | Α | 0.801 | | 39 | 802.11a | - | Secondary Landscape | 0 | 165 | Α | 0.818 | | 50 | 802.11a | - | Bottom Face | 0 | 149 | В | 0.284 | | 51 | 802.11a | - | Secondary Landscape | 0 | 149 | В | 0.426 | | 61 | 802.11n | 20M | Bottom Face | 0 | 149 | A+B | 0.036 | | 62 | 802.11n | 20M | Secondary Landscape | 0 | 149 | A+B | 0.138 | | 63 | 802.11n | 20M | Secondary Portrait | 0 | 149 | A+B | 0.00976 | #### Note: 1. Per KDB447498, if the highest output channel SAR for each exposure position ≤ 0.8 W/kg other channels SAR tests are not necessary. Test Engineer: Ken Li, Jack Wu, Michael Yang, Bevis Chang, Vic Yang, Niels Ouyang and San Lin SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 38 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 ### 13. References - [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations" - [2] IEEE Std. C95.1-1991, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1991 - [3] IEEE Std. 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - [4] FCC OET Bulletin 65 (Edition 97-01) Supplement C (Edition 01-01), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", June 2001 - [5] SPEAG DASY System Handbook - [6] FCC KDB 248227 D01 v01r02, "SAR Measurement Procedures for 802.11 a/b/g Transmitters", May 2007 - [7] FCC KDB 447498 D01 v04, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", November 2009 - [8] FCC KDB 616217 D03 v01, "SAR Evaluation Considerations for Laptop/Notebook/Netbook and Tablet Computers", November 2009 - [9] FCC KDB 941225 D03 v01, "Recommended SAR Test Reduction Procedures for GSM / GPRS / EDGE", December 2008 - [10] FCC KDB 941225 D07 01, "SAR Evaluation Procedure for UMPC Mini-Tablet Devices", April 2011 SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : 39 of 39 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 #### Appendix A. Plots of System Performance Check The plots are shown as follows. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 : A1 of A1 Page Number Report Issued Date: Jan. 20, 2012 Report No.: FA1N0901 # Appendix B. Plots of SAR Measurement The plots are shown as follows. SPORTON INTERNATIONAL INC. FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH TEL: 886-3-327-3456 Page Number : B1 of B1 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01 # Appendix C. DASY Calibration Certificate The DASY calibration certificates are shown as follows. SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX: 886-3-328-4978 FCC ID: Q3QIHW62230ANH Page Number : C1 of C1 Report Issued Date : Jan. 20, 2012 Report Version : Rev. 01