Celltech	<u>Date(s) of Evaluation</u> February 02, 05-06, 2007	Test Report Serial No. 010307Q3Q-T803-S24C	Report Revision No. Revision 1.1	
	Test Report Issue Date February 09, 2007	Description of Test(s) Specific Absorption Rate	RF Exposure Category General Population	Certificate No. 2470.01

APPENDIX E - SYSTEM VALIDATION

Company:	Motion Computing Inc.		FCC ID:	Q3QHWNVWEX720 IC ID: 4587A-NVWE		4587A-NVWEX720	Motion
Model(s):	Model(s): T006		Tablet PC	Tablet PC with Dual-Band Cellular/PCS CDMA/EV-DO & Bluetooth			
2007 Celltech La	2007 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.						Page 56 of 58

Celltech	Date of Evaluation:	January 18, 2007	Document Serial No.:		SV835M-011807-R1.0		
	Evaluation Type:	System Validation	Validation Dipole: 835 MHz		Iz Fluid Type:	Body	

835 MHz SYSTEM VALIDATION

Celltech Labs Inc. hereby certifies that the 835 MHz System Validation (Body) was performed on the date indicated above.

Performed by:

Sean Johnston

Approved by:

Spencer Watson

Celltech Labs Inc. 1955 Moss Court, Kelowna, B.C. Canada V1Y 9L3 Tel. 250-448-7047 • Fax. 250-448-7046 • e-mail: info@celltechlabs.com www.celltechlabs.com

Celltech Tetra nd Engineering Services Lie	Date of Evaluation:	January 18, 2007	Document Serial No.:			SV835M-011807-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	835 Mł	Hz	Fluid Type:	Body	

1. Validation Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 15.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 835 MHz	Re{Z} = 54.730Ω
	lm{Z} = 1.7363Ω

Return Loss at 835 MHz

-26.387dB

Celltech	Date of Evaluation:	January 18, 2007	Document Serial No.:		SV835M-011807-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	835 MH	Ηz	Fluid Type:	Body

2. Validation Dipole VSWR Data

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 55 liters
Dimensions:	44 cm (W) x 94 cm (L)

5. 835 MHz System Validation Setup

6. 835 MHz Validation Dipole Setup

Celltech	Date of Evaluation:	January 18, 2007	Document Serial No.:		SV835M-011807-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	835 MH	z Fluid Type:	Body	

7. SAR Measurement

Measurements were made using a dosimetric E-field probe ET3DV6 (S/N: 1387, Conversion Factor 6.04). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Measurement Conditions

The planar phantom was filled with 835 MHz body tissue simulant.

57.3 (+3.8% from target)
0.99 mho/m (+2.1% from target)
22.8 °C
≥ 15.0 cm
ns:
24.1 °C
103.4 kPa
33 %

The 835 MHz body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	53.79%
Sugar	45.13%
Salt	0.98%
Dowicil 75	0.10%
Target Dielectric Parameters	ε _r = 55.2 (+/- 5%)
at 22 °C	σ = 0.97 S/m (+/- 5%)

9. Validation Dipole SAR Test Results

SAR @ 0.25W Input averaged over 1g				SAR @ 1W Input averaged over 1g							
SPEAG	Target	Measured	Deviation	SPEAG Target		SPEAG Target		SPEAG Target		Measured	Deviation
2.43	+/- 10%	2.63	+8.23%	9.71 +/- 10%		10.52	+8.34%				
SAR @ 0.25W Input averaged over 10g				SAR @ 1W Input averaged over 10g							
SPEAG	Target	Measured	Deviation	SPEAG Target Measure		Measured	Deviation				
1.60	+/- 10%	1.72	+7.50%	6.38	+/- 10%	6.88	+7.84%				
The results have been normalized to 1W (forward power) into the dipole.											

Dipole	Distance	Frequency	SAR (1g)	SAR $(10g)$	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

System Validation - 835 MHz Dipole - January 18, 2007

DUT: Dipole 835 MHz; Asset: 00022; Serial: 411

Ambient Temp: 24.1°C; Fluid Temp: 22.8°C; Barometric Pressure: 103.4 kPa; Humidity: 33%

Communication System: CW

Forward Conducted Power: 250 mW

Frequency: 835 MHz; Duty Cycle: 1:1

Medium: M835 Medium parameters used: f = 835 MHz; σ = 0.99 mho/m; ϵ_r = 57.3; ρ = 1000 kg/m³

- Probe: ET3DV6 SN1387; ConvF(6.04, 6.04, 6.04); Calibrated: 16/03/2006
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

835 MHz System Validation/Area Scan (6x10x1):

Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 2.86 mW/g

835 MHz System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.8 V/m; Power Drift = -0.039 dB Peak SAR (extrapolated) = 3.85 W/kg SAR(1 g) = 2.63 mW/g; SAR(10 g) = 1.72 mW/g Maximum value of SAR (measured) = 2.85 mW/g

10. Measured Fluid Dielectric Parameters

835 MHz System Validation (Body)

Celltech Labs Inc Test Result for UIM Dielectric Parameter Thu 18/Jan/2007 Frequency (GHz) FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s
0.7350	55.59	0.96	57.72	0.90
0.7450	55.55	0.96	57.59	0.91
0.7550	55.51	0.96	57.54	0.91
0.7650	55.47	0.96	57.45	0.93
0.7750	55.43	0.97	57.51	0.93
0.7850	55.39	0.97	57.53	0.94
0.7950	55.36	0.97	57.25	0.95
0.8050	55.32	0.97	57.28	0.96
0.8150	55.28	0.97	57.34	0.96
0.8250	55.24	0.97	57.17	0.97
0.8350	55.20	0.97	57.26	0.99
0.8450	55.17	0.98	57.06	0.99
0.8550	55.14	0.99	57.00	1.00
0.8650	55.11	1.01	56.99	1.01
0.8750	55.08	1.02	56.91	1.02
0.8850	55.05	1.03	56.96	1.02
0.8950	55.02	1.04	56.82	1.03
0.9050	55.00	1.05	56.97	1.04
0.9150	55.00	1.06	56.81	1.05
0.9250	54.98	1.06	56.77	1.06
0.9350	54.96	1.07	56.81	1.07

	Date of Evaluation:	February 02, 2007	Document Issue	No.: S	V1900M-020207	′-R1.0
Celifection Testing and Engineering Services Lat:	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Fluid Type:	Body

1900 MHz SYSTEM VALIDATION

Туре:	1900 MHz Validation Dipole
Asset Number:	00032
Serial Number:	151
Place of Validation:	Celltech Labs Inc.
Date of Validation:	February 2, 2007

Celltech Labs Inc. certifies that the 1900 MHz System Validation (Body) was performed on the date indicated above.

Performed by:

Sean Johnston

Approved by:

Spencer Watson

Celltech Labs Inc. 1955 Moss Court, Kelowna, B.C. Canada V1Y 9L3 Tel. 250-448-7047 • Fax. 250-448-7046 • e-mail: info@celltechlabs.com www.celltechlabs.com

	Date of Evaluation:	February 02, 2007	Document Issue	lo.:	SV1900M-020207	-R1.0
Celifech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MH	Hz Fluid Type:	Body

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Standard "Annex G (informative) Reference dipoles for use in system validation". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 1900 MHz	Re{Z} = 54.748Ω
	lm{Z} = 6.2266Ω

Return Loss at 1900 MHz

-22.541dB

2. Validation Dipole VSWR Data

	Date of Evaluation:	February 02, 2007	Document Issue	No.:	SV	1900M-020207	-R1.0
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 N	ЛНz	Fluid Type:	Body

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	h (mm)	d (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness:	2.0 ± 0.1 mm
Filling Volume:	Approx. 55 liters
Dimensions:	44 cm (W) x 94 cm (L)

	Date of Evaluation:	February 02, 2007	Document Issue	No.: S'	/1900M-020207	-R1.0
Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Fluid Type:	Body

5. 1900 MHz System Validation Setup

6. 1900 MHz Dipole Setup

	Date of Evaluation:	February 02, 2007	Document Issue	No.:	SV	1900M-020207	-R1.0
Testing and Engineering Services Lat:	Evaluation Type:	System Validation	Validation Dipole:	1900 MI	Hz	Fluid Type:	Body

7. SAR Measurement

Measurements were made using a dosimetric E-field probe EX3DV4 (S/N: 3600, Conversion Factor 6.85). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the procedures described below.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 50dB below the forward power.

8. Measurement Conditions

The planar phantom was filled with 1900 MHz Body tissue simulant.

Relative Permittivity:	51.6 (-3.2% deviation from target)
Conductivity:	1.53 mho/m (+0.7% deviation from target)
Fluid Temperature:	22.5 °C
Fluid Depth:	\geq 15.0 cm
Environmental Condition	ns:
Ambient Temperature:	23.4 °C
Barometric Pressure:	102.2 kPa
Humidity:	36%

The 1900 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	69.85%
Glycol	29.89%
Salt	0.26%
Target Dielectric Parameters	ε _r = 53.3 (+/-5%)
at 25 °C	σ = 1.52 S/m (+/-5%)

9. Validation Dipole SAR Test Results

SAR @ 0.25W Input averaged over 1g (W/kg)				SAR @ 1W Input averaged over 1g (W/kg)				
SPEAG	Target	Measured	Deviation	SPEAG Target		Measured	Deviation	
9.95	+/- 10%	10.1	+1.5%	39.8	+/- 10%	40.4	+1.5%	
SAR @) 0.25W Inp ւ	ut averaged ov	/er 10g	SAR @ 1W Input averaged over 10g				
SPEAG	Target	Measured	Deviation	on SPEAG Target Measured		Measured	Deviation	
5.20	+/- 10%	5.16	-0.77%	20.8	+/- 10%	20.64	-0.77%	
The results have been normalized to 1W (forward power) into the dipole.								

Dipole	Distance	Frequency	SAR (1g)	SAR $(10g)$	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Celltech Testing and Engineering Services Lat	Date of Evaluation:	February 02, 2007	Document Issue No.:		SV	SV1900M-020207-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	1900 M	IHz	Fluid Type:	Body	

System Validation - 1900 MHz Dipole - Feb 02, 2006

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 151; Asset: 00032

Ambient Temp: 23.4°C; Fluid Temp: 22.5°C; Barometric Pressure: 102.2 kPa; Humidity: 36%

Communication System: CW Forward Conducted Power: 250 mW Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: M1900 Medium parameters used: f = 1900 MHz; σ = 1.53 mho/m; ϵ_r = 51.6; ρ = 1000 kg/m³

- Probe: EX3DV4 - SN3600; ConvF(6.85, 6.85, 6.85); Calibrated: 24/01/2007

- Sensor-Surface: 4mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn353; Calibrated: 21/06/2006

- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01

- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

1900 MHz System Validation/Area Scan (5x8x1):

Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 11.2 mW/g

1900 MHz System Validation/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 88.0 V/m; Power Drift = -0.152 dB Peak SAR (extrapolated) = 18.8 W/kg SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.16 mW/g Maximum value of SAR (measured) = 11.3 mW/g

Celltech Team and Engineering Services Lat	Date of Evaluation:	February 02, 2007	Document Issue No.:		SV1900M-020207-R1.0		
	Evaluation Type:	System Validation	Validation Dipole:	1900 MHz	Fluid Type:	Body	

10. Measured Fluid Dielectric Parameters

1900 MHz Dipole System Validation (Body)

Celltech Labs Inc. Test Result for UIM Dielectric Parameter Fri 02/Feb/2007 Frequency (GHz) FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC sB FCC Limits for Body Sigma Test_e Epsilon of UIM Test s Sigma of UIM ***** Freq FCC_eBFCC_sBTest_e Test_s 1.8000 53.30 1.52 51.97 1.43 1.44 1.8100 53.30 1.52 51.94 1.45 1.8200 53.30 1.52 51.94 1.46 1.8300 53.30 1.52 51.85 1.8400 53.30 1.52 51.88 1.48 1.8500 53.30 1.52 51.81 1.49 1.8600 53.30 51.75 1.49 1.52 1.8700 53.30 1.52 51.72 1.50 1.8800 53.30 1.52 51.61 1.50 51.58 1.8900 53.30 1.52 1.52 1.9000 53.30 1.52 51.55 1.53 53.30 51.54 1.9100 1.52 1.55 1.9200 53.30 1.52 51.47 1.56 1.9300 51.38 53.30 1.52 1.56

51.41

51.32

51.26

51.33

51.35

51.31

51.17

1.58

1.59

1.59

1.60

1.63

1.63

1.64

1.9400

1.9500

1.9600

1.9700

1.9800

1.9900

2.0000

53.30

53.30

53.30

53.30

53.30

53.30

53.30

1.52

1.52

1.52

1.52

1.52

1.52

1.52