

<u>Date(s) of Evaluation</u> February 02, 05-06, 2007

Test Report Issue Date
February 09, 2007

<u>Test Report Serial No.</u> 010307Q3Q-T803-S24C

Description of Test(s)
Specific Absorption Rate

Report Revision No.
Revision 1.1

RF Exposure Category

General Population

APPENDIX F - PROBE CALIBRATION

Company:	Mot	ion C	computing Inc.	FCC ID: Q3QHWNVWEX720 IC ID: 4587A-NVWEX		4587A-NVWEX720	Motion	
Model(s):	T00	6	Description:	Tablet PC	ablet PC with Dual-Band Cellular/PCS CDMA/EV-DO & Bluetooth		Computing	
2007 Celltech La	abs Inc.	Th	is document is not to be	e reproduced in	reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 57 of 58

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108

S

C

S

Client Celitech Labs

Certificate No: ET3-1387_Mar06

CALIBRATION CERTIFICATE

Object ET3DV6 - SN:1387

Calibration procedure(s) QA CAL-01.v5

Calibration procedure for dosimetric E-field probes

Calibration date: March 16, 2006

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41495277	3-May-05 (METAS, No. 251-00466)	May-06
Power sensor E4412A	MY41498087	3-May-05 (METAS, No. 251-00466)	May-06
Reference 3 dB Attenuator	SN: S5054 (3c)	11-Aug-05 (METAS, No. 251-00499)	Aug-06
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-05 (METAS, No. 251-00467)	May-06
Reference 30 dB Attenuator	SN: S5129 (30b)	11-Aug-05 (METAS, No. 251-00500)	Aug-06
Reference Probe ES3DV2	SN: 3013	2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Jan-07
DAE4	SN: 654	2-Feb-06 (SPEAG, No. DAE4-654_Feb06)	Feb-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-05)	In house check: Nov 06
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Mir llef
			1. 4
Approved by:	Niels Kuster	Quality Manager	1/2-

Issued: March 16, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space

ConF sensitivity in TSL / NORMx,y,z
DCP diode compression point
Polarization φ rotation around probe axis

Polarization ϑ ϑ rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ET3DV6

SN:1387

Manufactured:

September 21, 1999

Last calibrated:

March 18, 2005

Recalibrated:

March 16, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1387_Mar06

Page 3 of 9

DASY - Parameters of Probe: ET3DV6 SN:1387

Sensitivity in Free	Diode C	ompression ^B			
NormX	1.62 ± 10.1%	μ V/(V/m) ²	DCP X	92 mV	
NormV	4 72 + 40 40/	$11/I/(1/m)^2$	DCD V	00\/	

NormY 1.72 ± 10.1% $\mu V/(V/m)^2$ DCP Y 92 mV NormZ 1.72 ± 10.1% $\mu V/(V/m)^2$ DCP Z 92 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

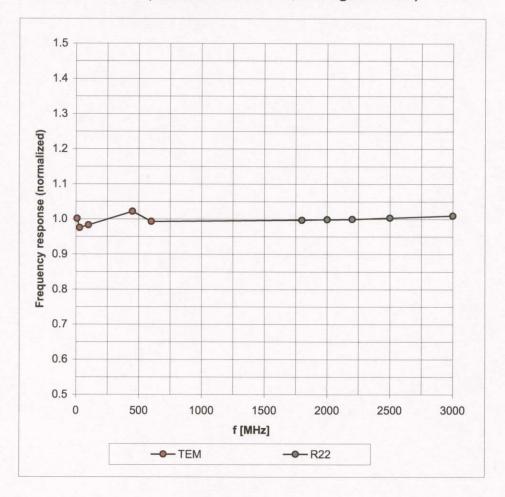
TSL 900 MHz Typical SAR gradient: 5 % per mm

Sensor Center to	o Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.3	5.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.2

Sensor Offset

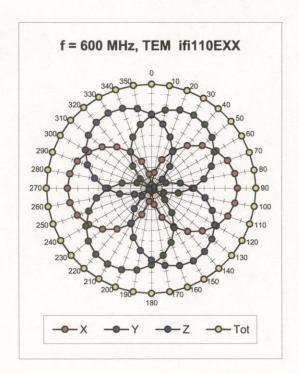
Probe Tip to Sensor Center

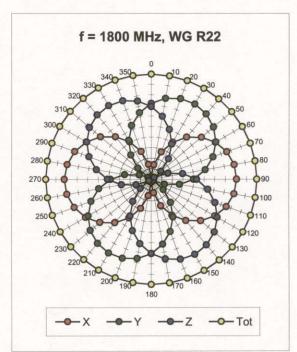
2.7 mm

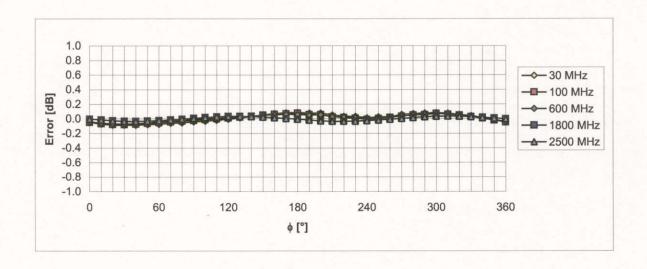

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

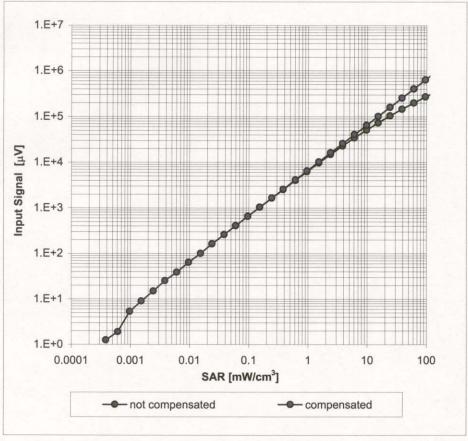

Frequency Response of E-Field

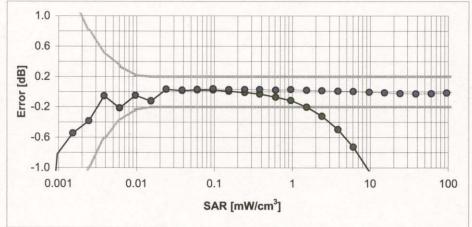

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

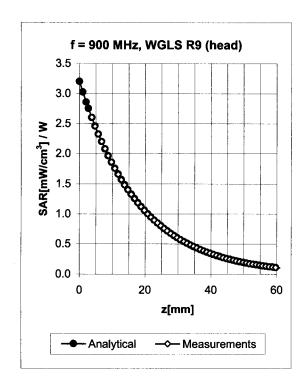
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

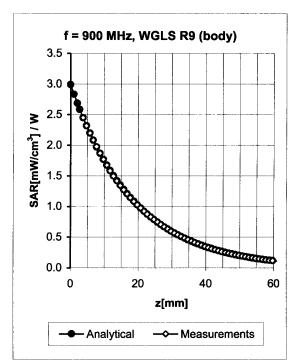




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

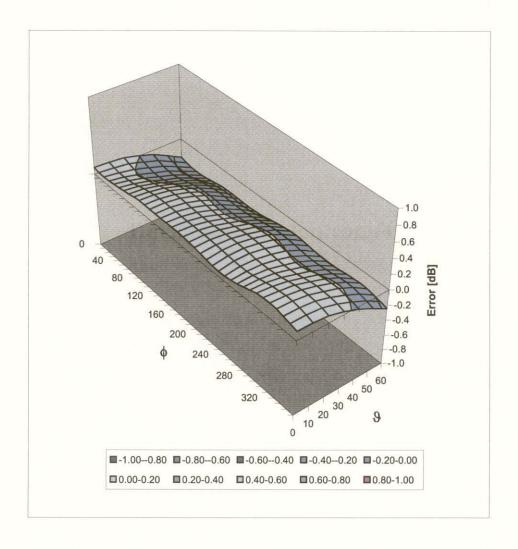
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^c	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.62	1.86	6.35 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.59	1.97	6.04 ± 11.0% (k=2)

^c The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Additional Conversion Factors

for Dosimetric E-Field Probe

Type:	ET3DV6
Serial Number:	1387
Place of Assessment:	Zurich
Date of Assessment:	March 18, 2006
Probe Calibration Date:	March 16, 2006

Schmid & Partner Engineering AG hereby certifies that conversion factor(s) of this probe have been evaluated on the date indicated above. The assessment was performed using the FDTD numerical code SEMCAD of Schmid & Partner Engineering AG. Since the evaluation is coupled with measured conversion factors, it has to be recalculated yearly, i.e., following the re-calibration schedule of the probe. The uncertainty of the numerical assessment is based on the extrapolation from measured value at 900 MHz or at 1800 MHz.

Assessed by:

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Dosimetric E-Field Probe ET3DV6 SN:1387

Conversion factor (± standard deviation)

	`	,	
$150 \pm 50 \text{ MHz}$	ConvF	$8.6 \pm 10\%$	$\varepsilon_r = 52.3 \pm 5\%$
			$\sigma = 0.76 \pm 5\% \text{ mho/m}$
			(head tissue)
$150 \pm 50 \text{ MHz}$	ConvF	$8.2 \pm 10\%$	$\varepsilon_r = 61.9 \pm 5\%$
			$\sigma = 0.80 \pm 5\% \text{ mho/m}$
			(body tissue)
$300 \pm 50 \text{ MHz}$	ConvF	$7.8 \pm 9\%$	$\varepsilon_r = 45.3 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
$450 \pm 50 \text{ MHz}$	ConvF	$7.4 \pm 8\%$	$\varepsilon_r = 43.5 \pm 5\%$
			$\sigma = 0.87 \pm 5\% \text{ mho/m}$
			(head tissue)
$450 \pm 50 \text{ MHz}$	ConvF	$7.3 \pm 8\%$	$\varepsilon_r = 56.7 \pm 5\%$
			$\sigma = 0.94 \pm 5\% \text{ mho/m}$
			(body tissue)
$750 \pm 50 \text{ MHz}$	ConvF	$6.6 \pm 7\%$	$\varepsilon_r = 41.8 \pm 5\%$
			$\sigma = 0.89 \pm 5\% \text{ mho/m}$
			(head tissue)
$750 \pm 50 \text{ MHz}$	ConvF	$6.4 \pm 7\%$	$\varepsilon_r = 55.4 \pm 5\%$
			$\sigma = 0.96 \pm 5\% \text{ mho/m}$
			(body tissue)
$1925 \pm 50 \text{ MHz}$	ConvF	$5.0 \pm 7\%$	$\varepsilon_r = 39.8 \pm 5\%$
			$\sigma = 1.48 \pm 5\% \text{ mho/m}$
			(head tissue)
$1925 \pm 50 \text{ MHz}$	ConvF	$4.7 \pm 7\%$	$\varepsilon_r = 53.2 \pm 5\%$
			$\sigma = 1.60 \pm 5\% \text{ mho/m}$
			(body tissue)

Important Note:

For numerically assessed probe conversion factors, parameters Alpha and Delta in the DASY software must have the following entries: Alpha = 0 and Delta = 1. Please see also Section 4.7 of the DASY4 Manual.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

S

C

S

Client

Celitech

Certificate No: EX3-3600 Jan07

CALIBRATION CERTIFICATE

Object EX3DV4 - SN:3600

Calibration procedure(s) QA CAL-01.v5 and QA CAL-14.v3

Calibration procedure for dosimetric E-field probes

Calibration date: January 24, 2007

Condition of the calibrated item In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41495277	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Power sensor E4412A	MY41498087	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Reference 3 dB Attenuator	SN: S5054 (3c)	10-Aug-06 (METAS, No. 217-00592)	Aug-07
Reference 20 dB Attenuator	SN: S5086 (20b)	4-Apr-06 (METAS, No. 251-00558)	Apr-07
Reference 30 dB Attenuator	SN: S5129 (30b)	10-Aug-06 (METAS, No. 217-00593)	Aug-07
Reference Probe ES3DV2	SN: 3013	4-Jan-07 (SPEAG, No. ES3-3013_Jan07)	Jan-08
DAE4	SN: 654	21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Jun-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Nov-05)	In house check: Nov-07
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-06)	In house check: Oct-07
	Name	Function	Signature
Calibrated by:	Katja Pokovic	Technical Manager	Hickory.
		. ************************************	Lacini Arena and American and a
Approved by:	Niels Kuster	Quality Manager	1 ACT

Issued: January 24, 2007

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: EX3-3600_Jan07

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid sensitivity in free space

NORMx,y,z ConF

sensitivity in TSL / NORMx,y,z

DCP

diode compression point

Polarization φ

φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., $\theta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

EX3DV4 SN:3600 January 24, 2007

Probe EX3DV4

SN:3600

Manufactured:

January 10, 2007

Calibrated:

January 24, 2007

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

EX3DV4 SN:3600 January 24, 2007

DASY - Parameters of Probe: EX3DV4 SN:3600

Sensitivity in Free Space ^A	Diode Compression ^B

NormX	0.460 ± 10.1%	$\mu V/(V/m)^2$	DCP X	90 mV
NormY	0.470 ± 10.1%	μV/(V/m) ²	DCP Y	88 mV
NormZ	0.380 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	89 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL 1810 MHz Typical SAR gradient: 10 % per mm

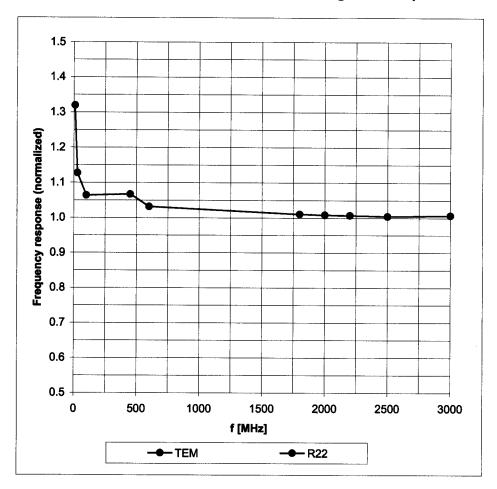
Sensor Center to	o Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	4.5	3.5
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

TSL 5800 MHz Typical SAR gradient: 30 % per mm

Sensor Cente	r to Phantom Surface Distance	2.0 mm	3.0 mm
SAR _{be} [%]	Without Correction Algorithm	3.5	2.0
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

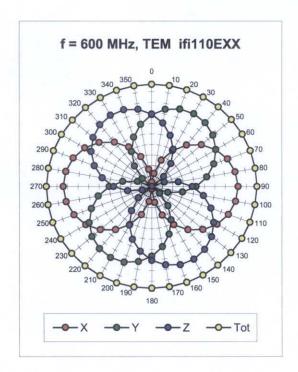
Sensor Offset

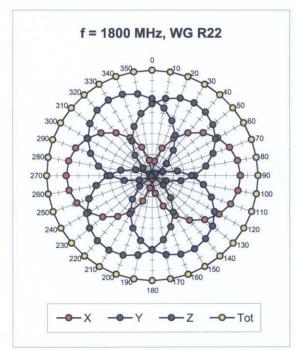
Probe Tip to Sensor Center 1.0 mm

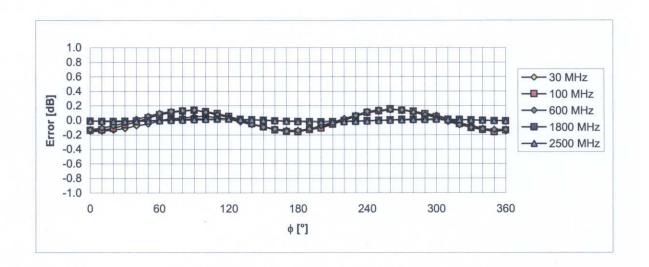

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8).

^B Numerical linearization parameter: uncertainty not required.

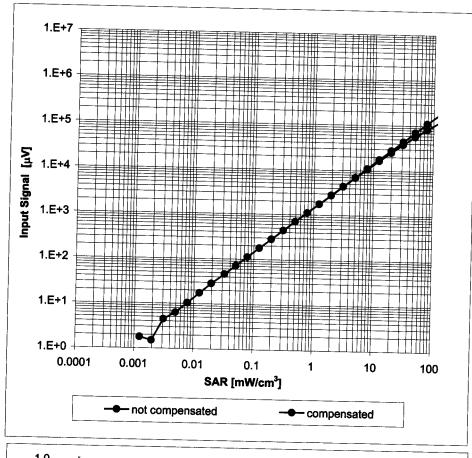

Frequency Response of E-Field

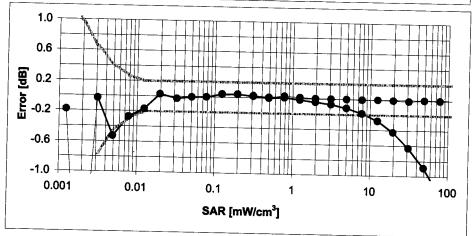

(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

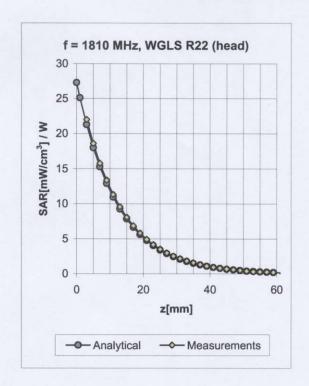
Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

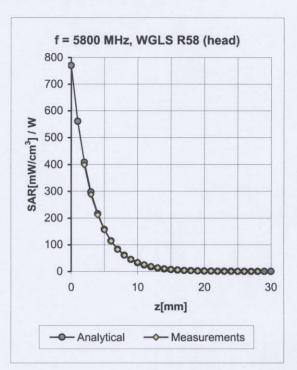




Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

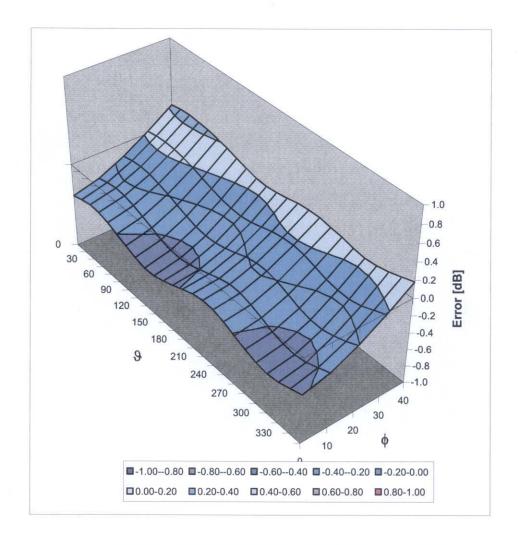
Dynamic Range f(SAR_{head})


(Waveguide R22, f = 1800 MHz)



Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
1810	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.20	1.01	7.02 ± 11.0% (k=2)
1950	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.26	1.05	6.59 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.44	1.00	6.37 ± 11.8% (k=2)
5800	± 50 / ± 100	Head	35.3 ± 5%	5.27 ± 5%	0.37	1.65	4.34 ± 13.1% (k=2)
1810	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.24	1.06	6.85 ± 11.0% (k=2)
1950	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.16	1.35	6.54 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.42	1.00	6.31 ± 11.8% (k=2)
5200	± 50 / ± 100	Body	49.0 ± 5%	5.30 ± 5%	0.35	1.70	4.10 ± 13.1% (k=2)
5500	± 50 / ± 100	Body	48.6 ± 5%	5.65 ± 5%	0.32	1.70	3.95 ± 13.1% (k=2)
5800	± 50 / ± 100	Body	48.2 ± 5%	6.00 ± 5%	0.33	1.70	4.14 ± 13.1% (k=2)

 $^{^{\}rm C}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (ϕ, ϑ) , f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)