

<u>Date(s) of Evaluation</u> November 16, 21-23, 27, 2006

Test Report Issue Date
December 22, 2006

<u>Test Report Serial No.</u> 111406Q3Q-T788-S15W

<u>Description of Test(s)</u> Specific Absorption Rate Report Revision No.
Revision 1.0

RF Exposure Category
General Population

APPENDIX F - SYSTEM VALIDATION

Company:	Motio	on Com	puting Inc.	FCC	D:	Q3QAWM7519ABG	IC ID:	4587A-A7519ABG	Motion
Model(s):	LE1	700	00 DUT Description:		T	Tablet PC with 802.11abg WLAN and co-located Bluetooth			Computing
2006 Celltech La	2006 Celltech Labs Inc. This document is not to be reproduced in whole or in part without the prior written permission of Celltech Labs Inc.			Page 104 of 106					

Document Serial No.:

Validation Dipole:

SV2450B-042406-R1 2450 MHz Body

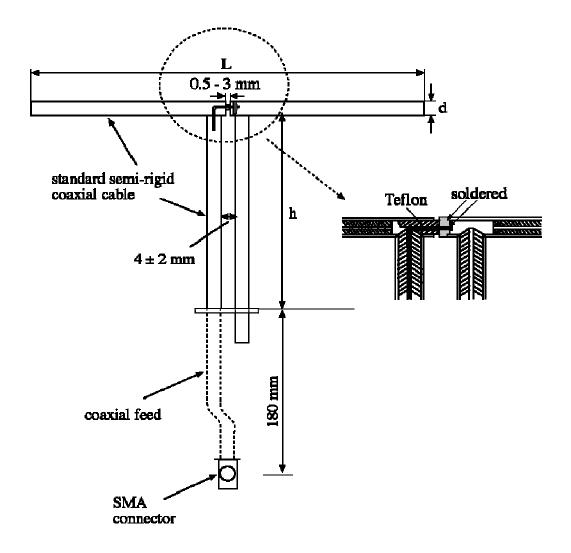
2450 MHz SYSTEM VALIDATION DIPOLE

Type:	2450 MHz Validation Dipole
Asset Number:	00025
Serial Number:	150
Place of Validation:	Celltech Labs Inc.
Date of Validation:	April 24, 2006

Celltech Labs Inc. hereby certifies that the 2450 MHz System Validation (Body) was performed on the date indicated above.

Performed by:	Sean Johnston		
Approved by:	Spencer Watson		

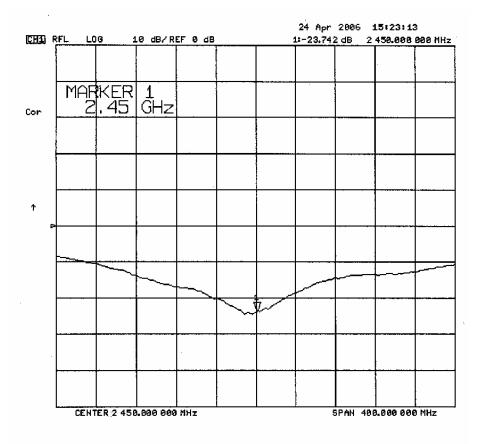
Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1	
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

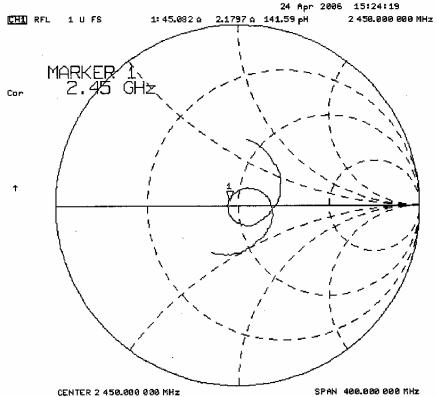

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 2450 MHz $Re{Z} = 45.082\Omega$

 $Im{Z} = 2.1797\Omega$


Return Loss at 2450 MHz -23.742dB



Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1		
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body	

2. Validation Dipole VSWR Data

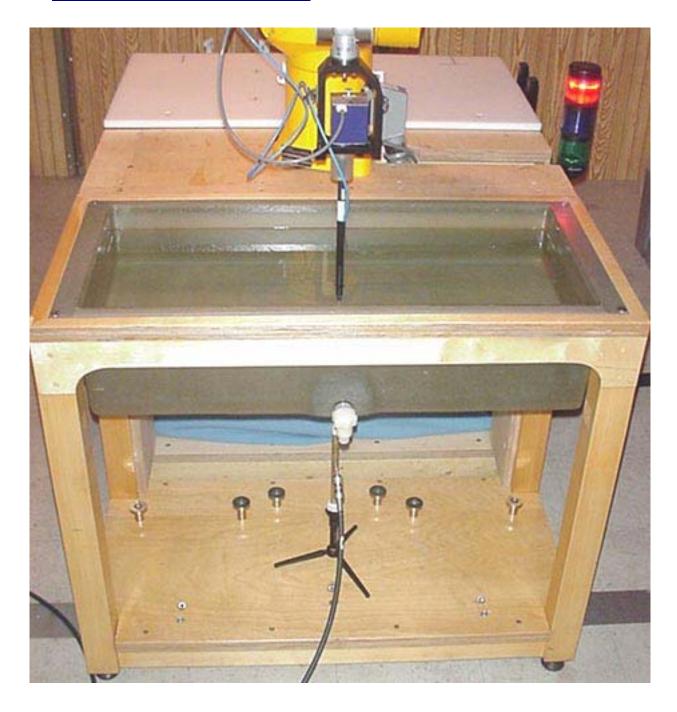
Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1	
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

3. Validation Dipole Dimensions

Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6

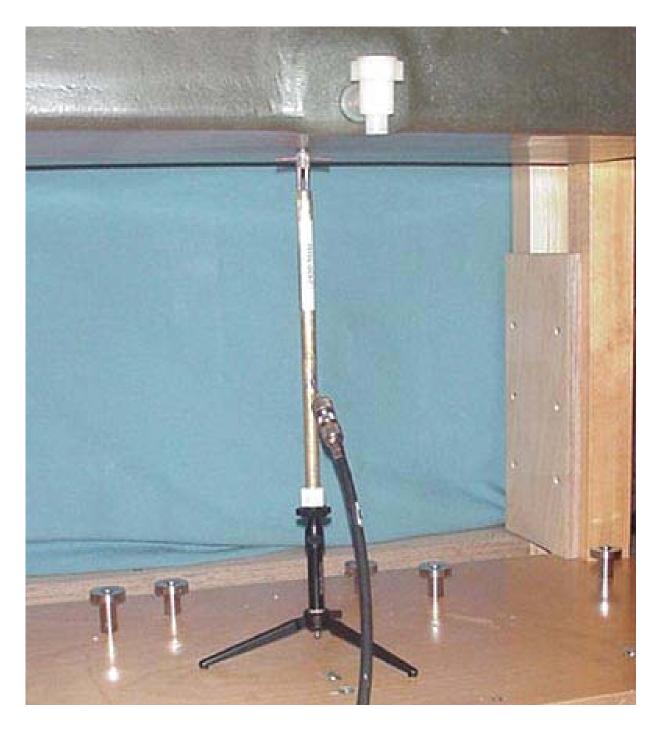
4. Validation Phantom

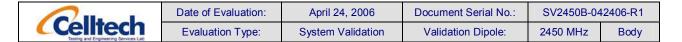
The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.


Shell Thickness: $2.0 \pm 0.2 \text{ mm}$ Filling Volume: Approx. 72 liters

Dimensions: L) 94 cm x (W) 44 cm x (H) 22 cm

Date of Evaluation:April 24, 2006Document Serial No.:SV2450B-042406-R1Evaluation Type:System ValidationValidation Dipole:2450 MHzBody


5. 2450 MHz System Validation Setup



Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1	
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

6. 2450 MHz Dipole Setup

7. Measurement Conditions

The planar phantom was filled with 2450 MHz Body tissue simulant:

Relative Permittivity: 51.2 (-2.8% deviation from target)

Conductivity: 1.89 mho/m (-3% deviation from target)

Fluid Temperature: 23.9 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 24.9 °C Humidity: 30 % Barometric Pressure: 101.1 kPa

The 2450 MHz Body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	69.98%
Glycol Monobutyl	30.00%
Salt	0.02%
Target Dielectric Parameters at 22°C	$\varepsilon_{\rm r}$ = 52.7 (+/-5%) σ = 1.95 S/m (+/-5%)

Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1		
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body	

8. SAR Measurement

Measurements were made at the planar section of the SAM phantom using a dosimetric E-field probe ET3DV6 (S/N: 1590, conversion factor 4.22). The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-042406-R1	
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

9. Validation Dipole SAR Test Results

Ten SAR measurements were performed in order to achieve repeatability and to establish an average target value.

Validation Measurement	SAR @ 0.25W Input averaged over 1g	SAR @ 1W Input averaged over 1g	SAR @ 0.25W Input averaged over 10g	SAR @ 1W Input averaged over 10g	Peak SAR @ 0.25W Input
Test 1	12.7	50.80	5.87	23.48	14.40
Test 2	12.8	51.20	5.88	23.52	14.40
Test 3	12.6	50.40	5.81	23.24	14.10
Test 4	13.1	52.40	6.05	24.20	14.70
Test 5	12.7	50.80	5.84	23.36	14.20
Test 6	12.6	50.40	5.79	23.16	14.10
Test 7	12.9	51.60	6.00	24.00	14.50
Test 8	12.9	51.60	5.99	23.96	14.50
Test 9	13.1	52.40	6.09	24.36	14.80
Test10	13.2	52.80	6.09	24.36	14.90
Average Value	12.86	51.44	5.94	23.76	14.46

The results have been normalized to 1W (forward power) into the dipole.

@ 1 W averag	et SAR att Input ged over n (W/kg)	Measured SAR @ 1 Watt Input averaged over 1 gram (W/kg)	Deviation from Target (%)	Target SAR @ 1 Watt Input averaged over 10 grams (W/kg)		Measured SAR @ 1 Watt Input averaged over 10 grams (W/kg)	Deviation from Target (%)
51.2	+/- 10%	51.44	+0.47%	23.7	+/- 10%	23.76	+0.27%

Dipole	Distance	Frequency	SAR (1g)	SAR (10g)	SAR (peak)
Type	[mm]	[MHz]	[W/kg]	[W/kg]	[W/kg]
D300V2	15	300	3.02	2.06	4.36
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1500V2	10	1500	30.8	17.1	52.1
D1640V2	10	1640	34.4	18.7	59.4
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6
D3000V2	10	3000	61.9	24.8	136.7

Table 32.1: Numerical reference SAR values for SPEAG dipoles and flat phantom filled with body-tissue simulating liquid. Note: All SAR values normalized to 1 W forward power.

Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-04	12406-R1
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

2450 MHz Dipole - System Validation (Body) - April 24, 2006

DUT: Dipole 2450 MHz; Model: D2450V2; Serial: 150; Validated: 04/24/2006

Ambient Temp: 24.9 °C; Fluid Temp: 23.9 °C; Barometric Pressure: 101.1 kPa; Humidity: 30%

Communication System: CW

Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: M2450 (σ = 1.89 mho/m; ε_r = 51.2; ρ = 1000 kg/m³)

- Probe: ET3DV6 SN1590; ConvF(4.22, 4.22, 4.22); Calibrated: 20/05/2005
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 15/06/2005
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

2450 MHz System Validation/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

2450 MHz System Validation/Zoom Scan 1 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.0 V/m; Power Drift = -0.104 dB SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.87 mW/g

Maximum value of SAR (measured) = 14.4 mW/g

2450 MHz System Validation/Zoom Scan 2 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.9 V/m; Power Drift = -0.070 dB

SAR(1 g) = 12.8 mW/g; SAR(10 g) = 5.88 mW/g

Maximum value of SAR (measured) = 14.4 mW/g

2450 MHz System Validation/Zoom Scan 3 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.1 V/m; Power Drift = -0.039 dB

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.81 mW/g

Maximum value of SAR (measured) = 14.1 mW/g

2450 MHz System Validation/Zoom Scan 4 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 86.2 V/m; Power Drift = -0.026 dB

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.05 mW/g

Maximum value of SAR (measured) = 14.7 mW/g

2450 MHz System Validation/Zoom Scan 5 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 83.3 V/m; Power Drift = 0.014 dB

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.84 mW/g

Maximum value of SAR (measured) = 14.2 mW/g

2450 MHz System Validation/Zoom Scan 6 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.5 V/m; Power Drift = -0.037 dB

SAR(1 g) = 12.6 mW/g; SAR(10 g) = 5.79 mW/g

Maximum value of SAR (measured) = 14.1 mW/g

2450 MHz System Validation/Zoom Scan 7 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.0 V/m; Power Drift = -0.078 dB

SAR(1 g) = 12.9 mW/g; SAR(10 g) = 6 mW/g

Maximum value of SAR (measured) = 14.5 mW/g

2450 MHz System Validation/Zoom Scan 8 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.1 V/m; Power Drift = -0.069 dB

SAR(1 g) = 12.9 mW/g; SAR(10 g) = 5.99 mW/g

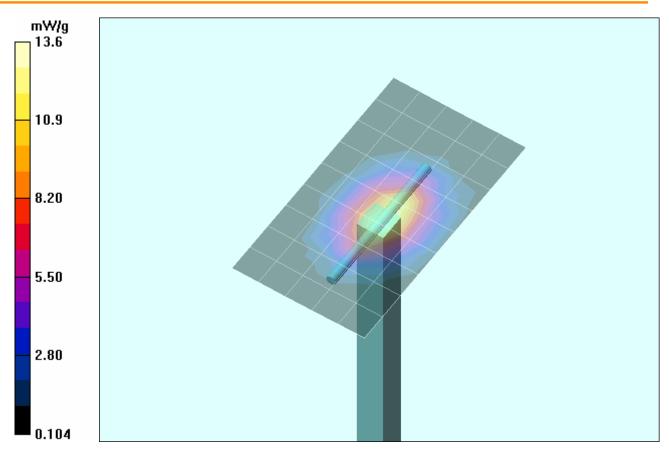
Maximum value of SAR (measured) = 14.5 mW/g

2450 MHz System Validation/Zoom Scan 9 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

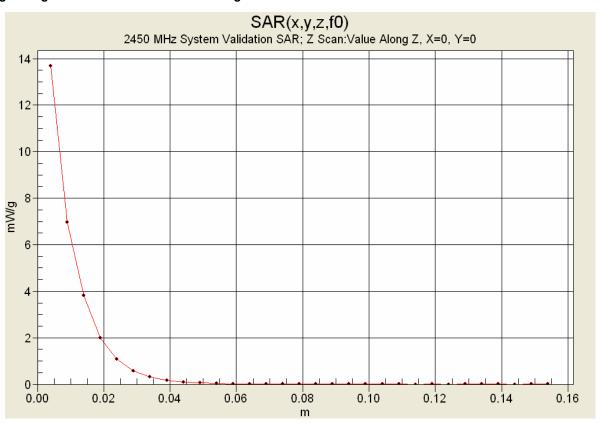
Reference Value = 89.8 V/m; Power Drift = -0.076 dB

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.09 mW/g

Maximum value of SAR (measured) = 14.8 mW/g


2450 MHz System Validation/Zoom Scan 10 (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 89.8 V/m; Power Drift = -0.013 dB


SAR(1 g) = 13.2 mW/g; SAR(10 g) = 6.09 mW/g

Maximum value of SAR (measured) = 14.9 mW/g

1 g average of 10 measurements: 12.86 mW/g 10 g average of 10 measurements: 5.94 mW/g

Date of Evaluation:	April 24, 2006	Document Serial No.:	SV2450B-04	12406-R1
Evaluation Type:	System Validation	Validation Dipole:	2450 MHz	Body

10. Measured Fluid Dielectric Parameters

2450 MHz System Validation (Body)

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Mon 24/Apr/2006

Frequency(GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM Test_s Sigma of UIM

*******	*****	******	******	*****
Freq	FCC_eB	FCC_sB	Test_e	Test_s
2.3500	52.83	1.85	51.24	1.76
2.3600	52.82	1.86	51.30	1.78
2.3700	52.81	1.87	51.30	1.79
2.3800	52.79	1.88	51.28	1.81
2.3900	52.78	1.89	51.28	1.82
2.4000	52.77	1.90	51.22	1.81
2.4100	52.75	1.91	51.26	1.85
2.4200	52.74	1.92	51.13	1.85
2.4300	52.73	1.93	51.03	1.86
2.4400	52.71	1.94	51.10	1.86
2.4500	52.70	1.95	51.17	1.89
2.4600	52.69	1.96	51.07	1.92
2.4700	52.67	1.98	51.03	1.92
2.4800	52.66	1.99	51.04	1.92
2.4900	52.65	2.01	51.04	1.93
2.5000	52.64	2.02	51.04	1.93
2.5100	52.62	2.04	50.96	1.95
2.5200	52.61	2.05	50.94	1.97
2.5300	52.60	2.06	51.02	1.97
2.5400	52.59	2.08	50.97	1.99
2.5500	52.57	2.09	50.85	1.98

5200 MHz

Validation Dipole:

Fluid Type:

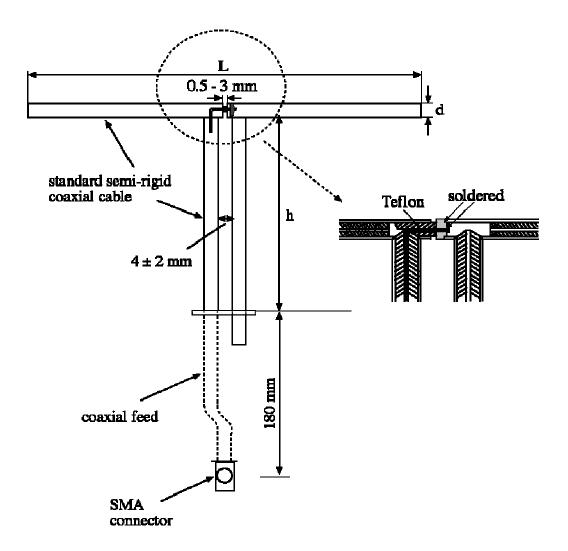
5200 MHz SYSTEM VALIDATION

Type:	5200 MHz Validation Dipole
Asset Number:	00126
Serial Number:	1031
Place of Validation:	Celltech Labs Inc.
Date of Validation:	July 18, 2006

Celltech Labs Inc. hereby certifies that the 5200 MHz System Validation was performed on the date indicated above.

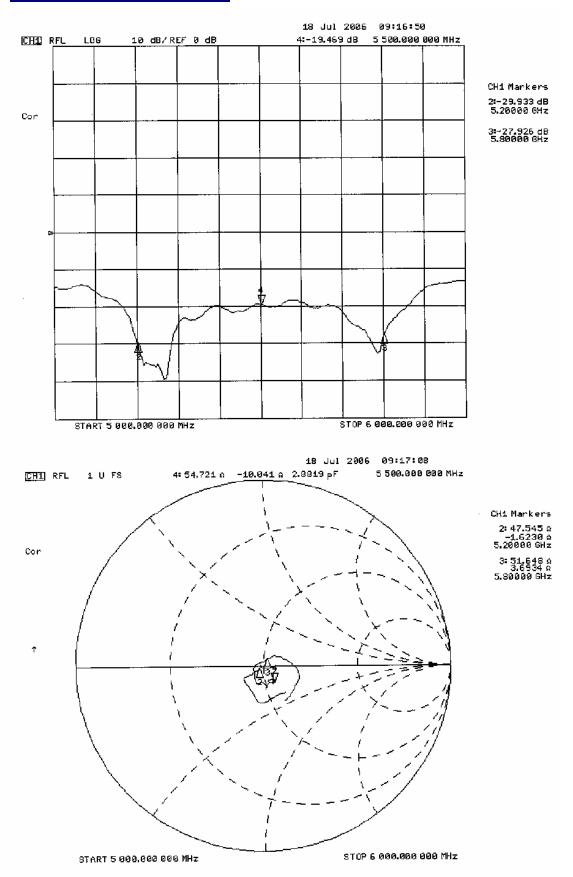
Performed by: **Sean Johnston**

Spencer Watson Approved by:


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753ET Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032E Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

Feed point impedance at 5200 MHz Re{Z} = 54.721Ω


 $Im{Z} = -10.041\Omega$

Return Loss at 5200 MHz -19.469 dB

2006 Celltech Labs Inc. Page 2 of 10

2. Validation Dipole VSWR Data

2006 Celltech Labs Inc. Page 3 of 10

3. Validation Dipole Dimensions

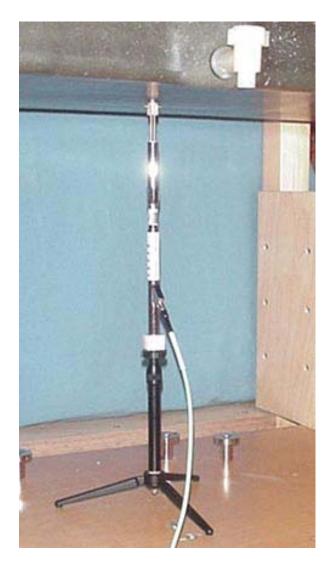
Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6
5200 - 5800	20.6	40.65	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 55 liters

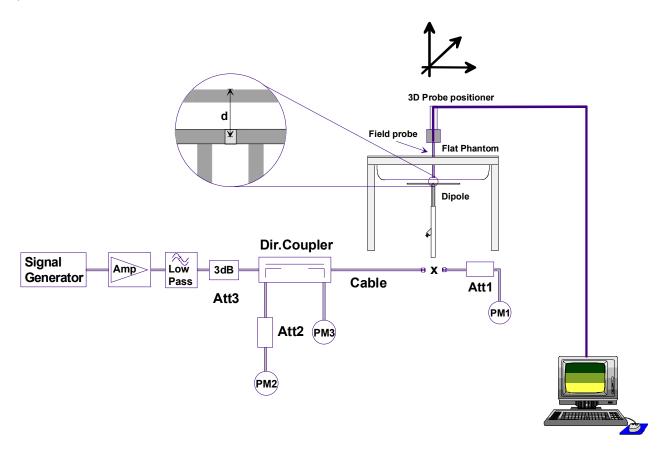
Dimensions: 44 cm (W) x 94 cm (L) x 22 cm (H)


2006 Celltech Labs Inc. Page 4 of 10

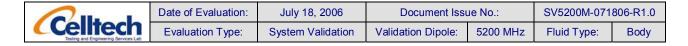
5. 5200 MHz System Validation Setup

2006 Celltech Labs Inc. Page 5 of 10

6. 5200 MHz Dipole Setup



2006 Celltech Labs Inc. Page 6 of 10


7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

2006 Celltech Labs Inc. Page 7 of 10

8. Measurement Conditions

The planar phantom was filled with 5200 MHz body tissue simulant.

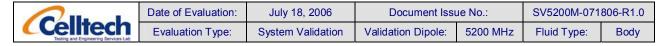
Relative Permittivity: 47.5 (-3.2% deviation from target)

Conductivity: 5.24 mho/m (-1.1% deviation from target)

Fluid Temperature: 22.3 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:

Ambient Temperature: 21.8°C Humidity: 32% Barometric Pressure: 101.8kPa


The 5200 MHz body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight	
Water	64 - 78%	
Mineral Oil	11 - 18%	
Emulsifiers	9 - 15%	
Additives and Salt	2 - 3%	
Target Dielectric Parameters at 22°C	$\varepsilon_{\rm r}$ = 49.0 (+/-5%) σ = 5.30 S/m (+/-5%)	

9. 5200 MHz System Validation SAR Results

SAR @ 0.25W Input averaged over 1g				SAR @ 1W Input averaged over 1g			
Manufacturer's Target		Measured	Deviation	Manufacture	Manufacturer's Target Measured Devi		
18.0	+/- 10%	19.2	+6.7%	71.8	+/- 10%	76.8	+7.0%
SAR @ 0.25W Input averaged over 10g			SAR @ 1W Input averaged over 10g				
Manufacture	er's Target	Measured	Deviation	Manufacturer's Target Measured Deviati			Deviation
5.03	+/- 10%	5.33	+6.0%	20.1	+/- 10%	21.3	+6.1%
The results ha	The results have been normalized to 1W (forward power) into the dipole.						

2006 Celltech Labs Inc. Page 8 of 10

System Validation - 5200 MHz Dipole - Body Fluid - July 18, 2006

DUT: Dipole 5GHz; Model: D5GHzV2; Serial: 1031; Asset: 00126; Manufacturer: SPEAG

Ambient Temp: 21.8°C; Fluid Temp: 22.3°C; Barometric Pressure: 101.8 kPa; Humidity: 32%

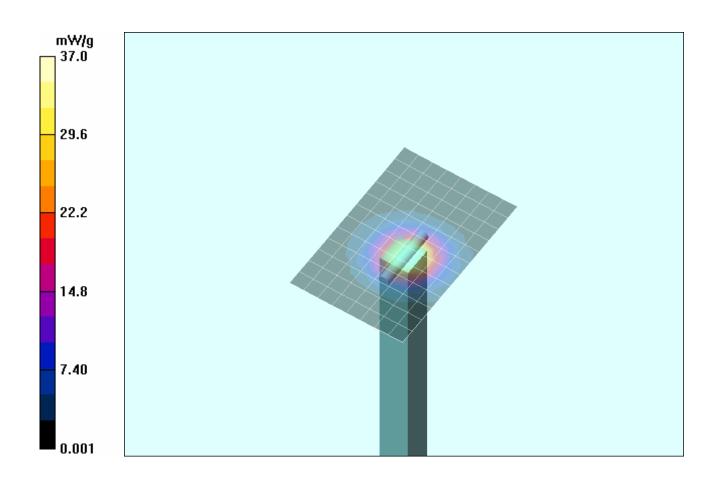
Communication System: CW Forward Conducted Power: 250 mW Frequency: 5200 MHz; Duty Cycle: 1:1

Medium: M5200-5800 Medium parameters used: f = 5200 MHz; σ = 5.24 mho/m; ϵ_r = 47.5; ρ = 1000 kg/m³

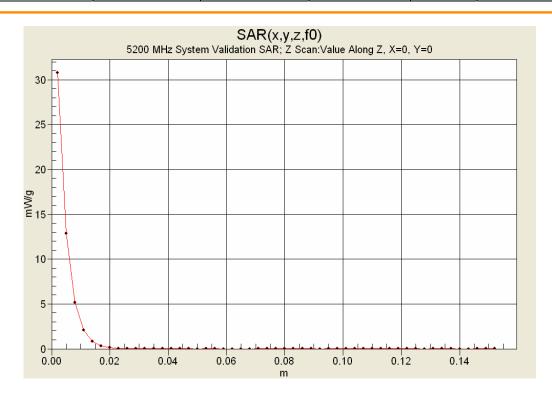
- Probe: EX3DV4 SN3547; ConvF(4.87, 4.87, 4.87); Calibrated: 14/02/2006
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

5200 MHz Dipole - System Validation/Area Scan (9x13x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of SAR (measured) = 38.3 mW/g

5200 MHz Dipole - System Validation/Zoom Scan (8x8x8)/Cube 0:


Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 80.9 V/m; Power Drift = -0.0291 dB

Peak SAR (extrapolated) = 76.1 W/kg

SAR(1 g) = 19.2 mW/g; SAR(10 g) = 5.33 mW/g Maximum value of SAR (measured) = 37.0 mW/g

2006 Celltech Labs Inc. Page 9 of 10

10. Measured Fluid Dielectric Parameters

System Validation (Body) - 5200 MHz Dipole

Celltech Labs Inc.

Celltech

Test Result for UIM Dielectric Parameter

Tue 18/Jul/2006

Frequency (GHz)

FCC_eHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon

FCC_sHFCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq	FCC_eB	FCC_sB	Test_e	Test_s		
5.1600	49.07	5.25	47.40	5.20		
5.1700	49.06	5.26	47.54	5.21		
5.1800	49.04	5.28	47.44	5.22		
5.1900	49.03	5.29	47.49	5.22		
5.2000	49.01	5.30	47.50	5.24		
5.2100	49.00	5.31	47.34	5.24		
5.2200	48.99	5.32	47.45	5.22		
5.2300	48.97	5.33	47.38	5.24		
5.2400	48.96	5.35	47.36	5.28		
5.2500	48.95	5.36	47.38	5.31		
5.2600	48.93	5.37	47.37	5.28		
5.2700	48.92	5.38	47.50	5.26		
5.2800	48.91	5.39	47.31	5.30		
5.2900	48.89	5.40	47.30	5.31		
5.3000	48.88	5.42	47.19	5.29		
5.3100	48.87	5.43	47.47	5.29		
5.3200	48.85	5.44	47.19	5.42		
5.3300	48.84	5.45	47.20	5.39		
5.3400	48.82	5.46	47.34	5.33		
5.3500	48.81	5.47	47.34	5.39		
5.3600	48.80	5.49	47.49	5.45		

2006 Celltech Labs Inc. Page 10 of 10

Date of Evaluation: November 14, 2006 Evaluation Type: System Validation

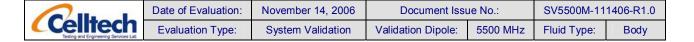
Document Issue No.: Validation Dipole:

SV5500M-111406-R1.0

Fluid Type:

5500 MHz

Body

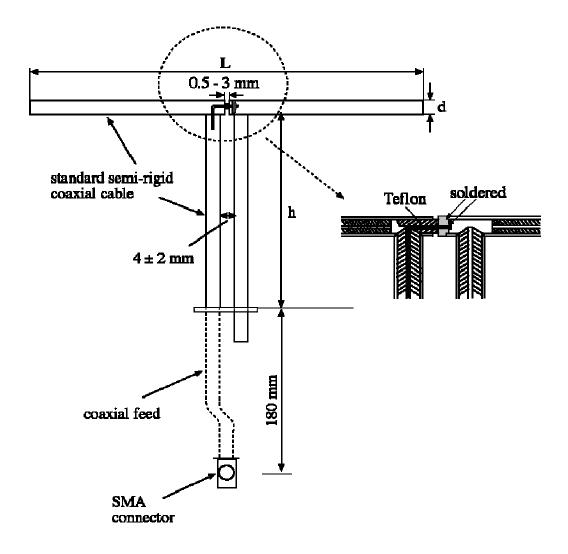

5500 MHz SYSTEM VALIDATION

Type:	5500 MHz Validation Dipole
Asset Number:	00126
Serial Number:	1031
Place of Validation:	Celltech Labs Inc.
Date of Validation:	November 14, 2006

Celltech Labs Inc. hereby certifies that the 5500 MHz System Validation was performed on the date indicated above.

Performed by: **Sean Johnston**

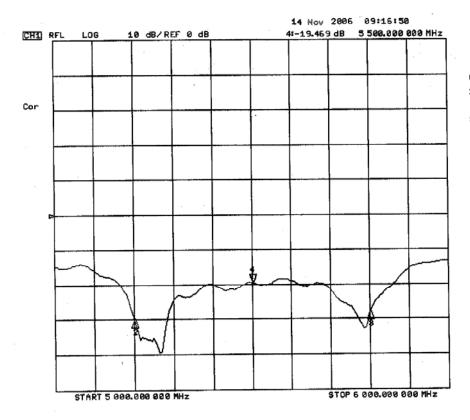
Spencer Watson Approved by:

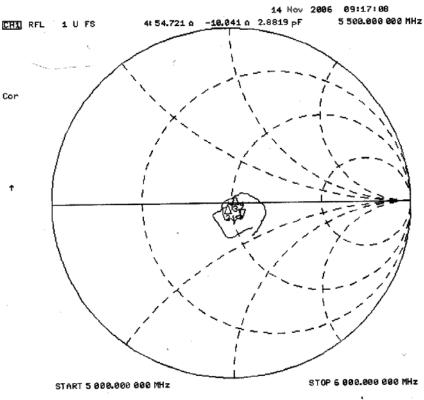

1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032ET Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

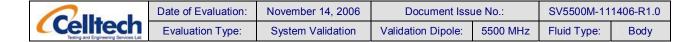
Feed point impedance at 5500 MHz Re{Z} = 54.721Ω

 $Im{Z} = -10.041\Omega$


Return Loss at 5500 MHz -19.469 dB



Date of Evaluation:November 14, 2006Document Issue No.:SV5500M-111406-R1.0Evaluation Type:System ValidationValidation Dipole:5500 MHzFluid Type:Body


2. Validation Dipole VSWR Data

CH1 Markers 2:-29.933 dB 5.20000 GHz 3:-27.926 dB 5.80000 GHz

CH1 Markers
2: 47.545 \(\alpha \)
-1.6230 \(\alpha \)
5.20000 GHz
3: 51.648 \(\alpha \)
5.80000 GHz

3. Validation Dipole Dimensions

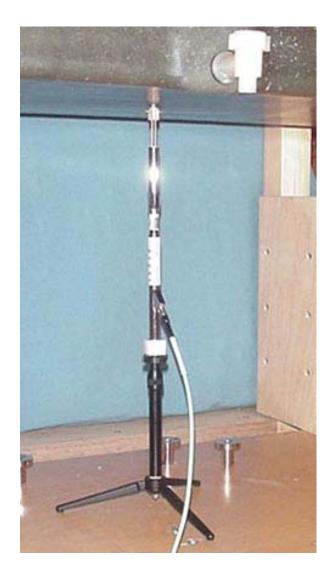
Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6
5200 - 5800	20.6	40.65	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 55 liters

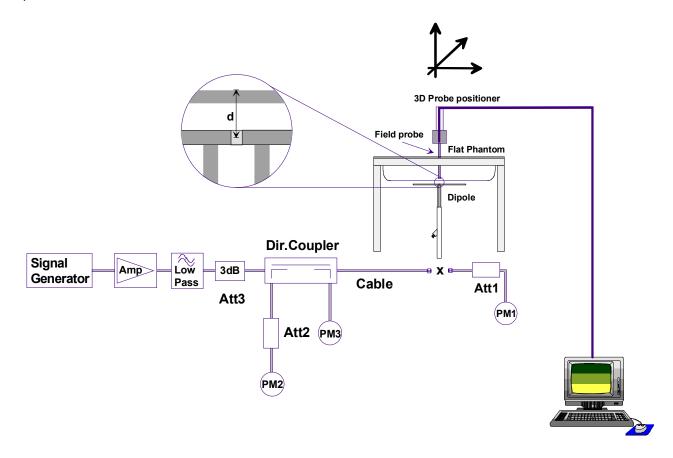
Dimensions: 44 cm (W) x 94 cm (L) x 22 cm (H)

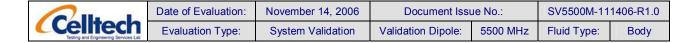

	Date of Evaluation:	November 14, 2006	Document Issue No.:		SV5500M-111406-R1.0	
Celltech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	5500 MHz	Fluid Type:	Body

5. 5500 MHz System Validation Setup

C III I	Date of Evaluation:	November 14, 2006	Document Issue No.:		SV5500M-111406-R1.0	
Celltech Testing and Engineering Services Lat	Evaluation Type:	System Validation	Validation Dipole:	5500 MHz	Fluid Type:	Body

6. 5500 MHz Dipole Setup




Date of Evaluation:November 14, 2006Document Issue No.:SV5500M-111406-R1.0Evaluation Type:System ValidationValidation Dipole:5500 MHzFluid Type:Body

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Measurement Conditions

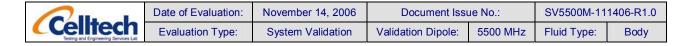
The planar phantom was filled with 5500 MHz body tissue simulant.

Relative Permittivity: 46.2 (-4.9% deviation from target)

Conductivity: 5.38 mho/m (-4.8% deviation from target)

Fluid Temperature: 22.3 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:


Ambient Temperature: 21.8°C Humidity: 32% Barometric Pressure: 101.8kPa

The 5500 MHz body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	64 - 78%
Mineral Oil	11 - 18%
Emulsifiers	9 - 15%
Additives and Salt	2 - 3%
Target Dielectric Parameters at 22°C	$\varepsilon_{\rm r}$ = 48.6 (+/-5%) σ = 5.65 S/m (+/-5%)

9. 5500 MHz System Validation SAR Results

SAR @ 0.25W Input averaged over 1g				SAR @ 1W Input averaged over 1g			
Manufact	turer's Target	Measured	Deviation	Manufacturer's Target		Measured	Deviation
19.8	+/- 10%	21.1	+6.6%	79.1	+/- 10%	84.4	+6.7%
SAR	@ 0.25W Input	averaged ov	ver 10g	SAR @ 1W Input averaged over 10g			
Manufact	turer's Target	Measured	Deviation	Manufacturer's Target Measu		Measured	Deviation
5.50	+/- 10%	5.79	+5.3%	22.0	+/- 10%	23.16	+5.3%
The result	The results have been normalized to 1W (forward power) into the dipole.						

System Validation - 5500 MHz Dipole - Body Fluid - November 14, 2006

DUT: Dipole 5GHz; Model: D5GHzV2; Serial: 1031; Asset: 00126; Manufacturer: SPEAG

Ambient Temp: 21.8°C; Fluid Temp: 22.3°C; Barometric Pressure: 101.8 kPa; Humidity: 32%

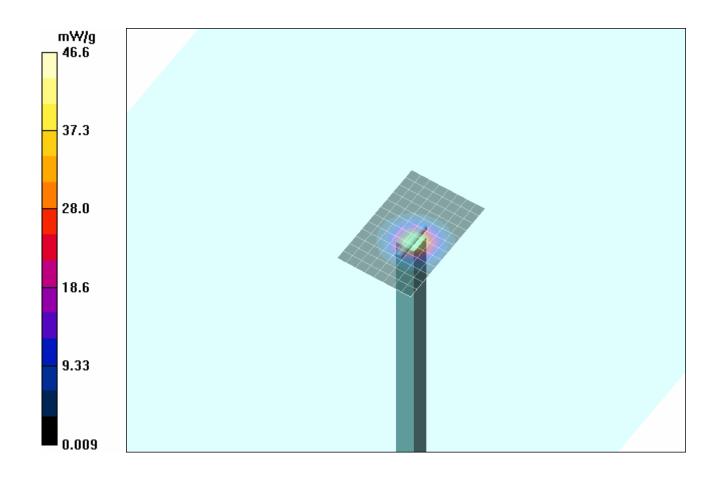
Communication System: CW Forward Conducted Power: 250 mW Frequency: 5500 MHz; Duty Cycle: 1:1

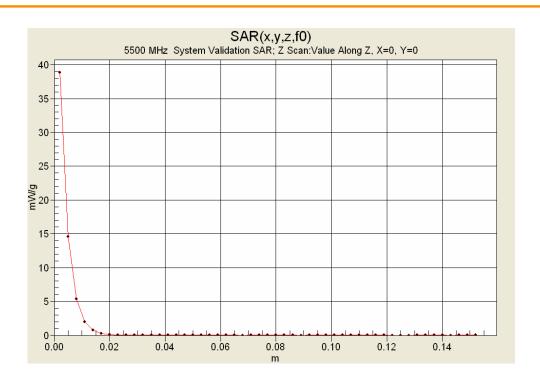
Medium: M5200-5800 Medium parameters used: f = 5500 MHz; σ = 5.38 mho/m; ε_r = 46.2; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3547; ConvF(4.57, 4.57, 4.57); Calibrated: 14/02/2006
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

5500 MHz Dipole - System Validation/Area Scan (9x13x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of SAR (measured) = 43.8 mW/g


5500 MHz Dipole - System Validation/Zoom Scan (7x7x9)/Cube 0:

Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 78.7 V/m; Power Drift = 0.090 dB

Peak SAR (extrapolated) = 97.3 W/kg

SAR(1 g) = 21.1 mW/g; SAR(10 g) = 5.79 mW/g Maximum value of SAR (measured) = 46.6 mW/g

10. Measured Fluid Dielectric Parameters

System Validation (Body) - 5500 MHz Dipole

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Tue 14/Nov/2006

Frequency (GHz)

FCC_eH FCC_sH FCC_eB FCC_sB FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC Limits for Body Epsilon FCC Limits for Body Sigma

Epsilon of UIM Test e Sigma of UIM Test_s

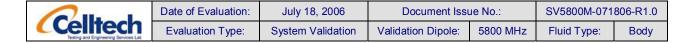
******	******	*******	****
FCC_eB	FCC_sB	Test_e	Test_s
48.74	5.53	45.99	5.23
48.73	5.54	45.87	5.23
48.72	5.56	45.89	5.29
48.70	5.57	45.69	5.26
48.69	5.58	45.50	5.28
48.67	5.59	45.79	5.46
48.66	5.60	45.89	5.48
48.65	5.61	46.07	5.48
48.63	5.63	46.19	5.45
48.62	5.64	46.07	5.38
48.61	5.65	46.18	5.38
48.59	5.66	46.11	5.31
48.58	5.67	46.08	5.42
48.57	5.68	45.95	5.45
48.55	5.70	45.86	5.52
48.54	5.71	45.71	5.51
48.53	5.72	45.92	5.68
48.51	5.73	45.96	5.63
48.50	5.74	45.99	5.54
48.48	5.75	46.04	5.49
48.47	5.77	46.20	5.50
	FCC_eE 48.74 48.73 48.72 48.70 48.69 48.67 48.65 48.63 48.62 48.61 48.59 48.58 48.57 48.55 48.54 48.53 48.51 48.50 48.48	FCC_eB FCC_sB 48.74 5.53 48.73 5.54 48.72 5.56 48.70 5.57 48.69 5.58 48.67 5.59 48.66 5.60 48.65 5.61 48.63 5.63 48.62 5.64 48.61 5.65 48.59 5.66 48.58 5.67 48.57 5.68 48.57 5.68 48.55 5.70 48.54 5.71 48.53 5.72 48.51 5.73 48.50 5.74 48.48 5.75	48.73 5.54 45.87 48.72 5.56 45.89 48.70 5.57 45.69 48.69 5.58 45.50 48.67 5.59 45.79 48.66 5.60 45.89 48.63 5.63 46.19 48.62 5.64 46.07 48.61 5.65 46.18 48.59 5.66 46.11 48.58 5.67 46.08 48.57 5.68 45.95 48.54 5.71 45.71 48.53 5.72 45.92 48.51 5.73 45.96 48.50 5.74 45.99 48.48 5.75 46.04

ate of Evaluation:	July 18, 2006
Evaluation Type:	System Validation

Document Issue No.: Validation Dipole: 5800 MHz SV5800M-071806-R1.0

Body

Fluid Type:

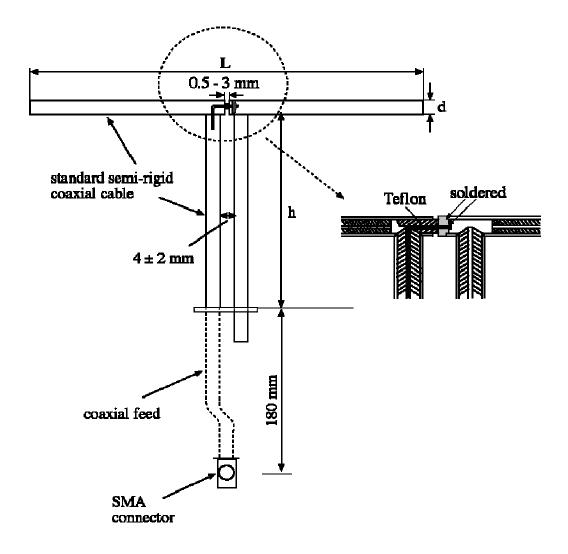

5800 MHz SYSTEM VALIDATION

Type:	5800 MHz Validation Dipole
Asset Number:	00126
Serial Number:	1031
Place of Validation:	Celltech Labs Inc.
Date of Validation:	July 18, 2006

Celltech Labs Inc. hereby certifies that the 5800 MHz System Validation was performed on the date indicated above.

Performed by: **Sean Johnston**

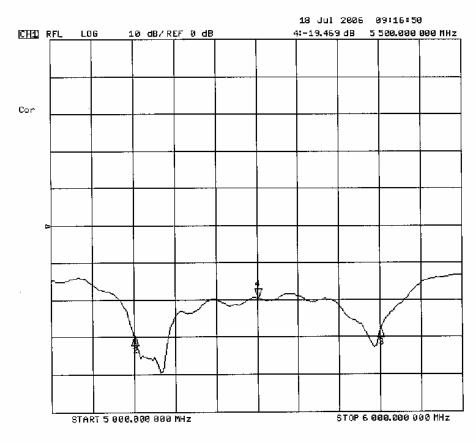
Spencer Watson Approved by:


1. Dipole Construction & Electrical Characteristics

The validation dipole was constructed in accordance with the IEEE Std "Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques". The electrical properties were measured using an HP 8753E Network Analyzer. The network analyzer was calibrated to the validation dipole N-type connector feed point using an HP85032ET Type N calibration kit. The dipole was placed parallel to a planar phantom at a separation distance of 10.0mm from the simulating fluid using a loss-less dielectric spacer. The measured input impedance is:

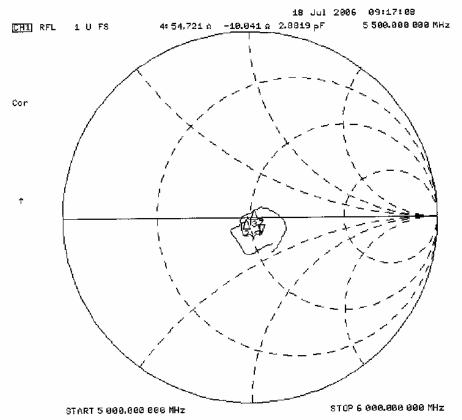
Feed point impedance at 5800 MHz $Re{Z} = 54.721\Omega$

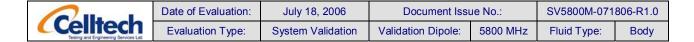
 $Im{Z} = -10.041\Omega$


Return Loss at 5800 MHz -19.469 dB

Date of Evaluation:July 18, 2006Document Issue No.:SV5800M-071806-R1.0Evaluation Type:System ValidationValidation Dipole:5800 MHzFluid Type:Body

2. Validation Dipole VSWR Data




CH1 Markers 2:-29.933 dB 5.20000 GHz

3:-27.926 dB 5.80000 GHz

CH1 Mankers 2: 47.545 Ω -1.6230 Ω 5.20000 GHz

3: 51.648 Ω 3.6934 Ω 5.80000 GHz

3. Validation Dipole Dimensions

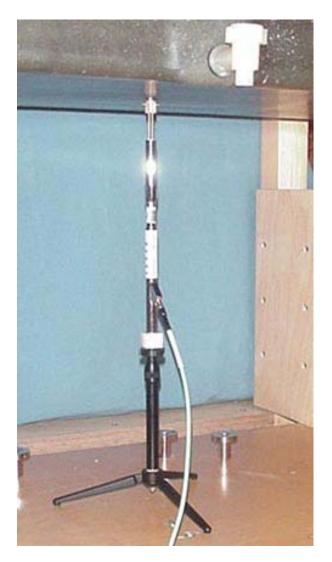
Frequency (MHz)	L (mm)	H (mm)	D (mm)
300	420.0	250.0	6.2
450	288.0	167.0	6.2
835	161.0	89.8	3.6
900	149.0	83.3	3.6
1450	89.1	51.7	3.6
1800	72.0	41.7	3.6
1900	68.0	39.5	3.6
2000	64.5	37.5	3.6
2450	51.8	30.6	3.6
3000	41.5	25.0	3.6
5200 - 5800	20.6	40.65	3.6

4. Validation Phantom

The validation phantom is a Fiberglass shell planar phantom manufactured by Barski Industries Ltd. The phantom is in conformance with the requirements defined by IEEE SCC34-SC2 for the dosimetric evaluations of body-worn and lap-held operating configurations. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids.

Shell Thickness: $2.0 \pm 0.1 \text{ mm}$ Filling Volume: Approx. 55 liters

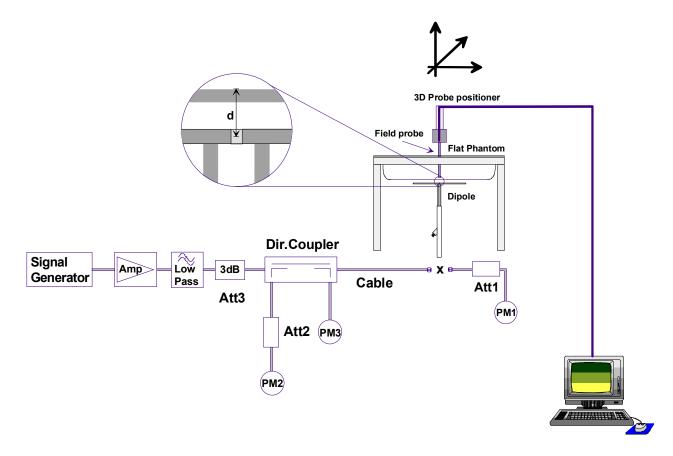
Dimensions: 44 cm (W) x 94 cm (L) x 22 cm (H)

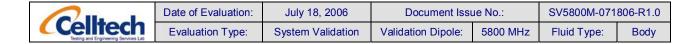

	Date of Evaluation:	July 18, 2006	Document Issue No.:		SV5800M-071806-R1.0	
Celltech Testing and Engineering Services Lab	Evaluation Type:	System Validation	Validation Dipole:	5800 MHz	Fluid Type:	Body

5. 5800 MHz System Validation Setup

	Date of Evaluation:	July 18, 2006	Document Issue No.:		SV5800M-071806-R1.0	
Celltech Testing and Engineering Services Lab	Evaluation Type:	System Validation	Validation Dipole:	5800 MHz	Fluid Type:	Body

6. 5800 MHz Dipole Setup




Date of Evaluation:July 18, 2006Document Issue No.:SV5800M-071806-R1.0Evaluation Type:System ValidationValidation Dipole:5800 MHzFluid Type:Body

7. SAR Measurement

The SAR measurement was performed with the E-field probe in mechanical detection mode only. The setup and determination of the forward power into the dipole was performed using the following procedures.

First the power meter PM1 (including attenuator Att1) is connected to the cable to measure the forward power at the location of the dipole connector (X). The signal generator is adjusted for the desired forward power at the dipole connector (taking into account the attenuation of Att1) as read by power meter PM2. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter PM2. If the signal generator does not allow adjustment in 0.01dB steps, the remaining difference at PM2 must be taken into consideration. PM3 records the reflected power from the dipole to ensure that the value is not changed from the previous value. The reflected power should be 20dB below the forward power.

8. Measurement Conditions

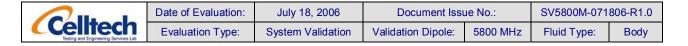
The planar phantom was filled with 5800 MHz body tissue simulant.

Relative Permittivity: 46.4 (-3.7% deviation from target)

Conductivity: 6.25 mho/m (+4.2% deviation from target)

Fluid Temperature: 22.3 °C Fluid Depth: \geq 15.0 cm

Environmental Conditions:


Ambient Temperature: 21.8°C Humidity: 32% Barometric Pressure: 101.8kPa

The 5800 MHz body tissue simulant consisted of the following ingredients:

Ingredient	Percentage by weight
Water	64 - 78%
Mineral Oil	11 - 18%
Emulsifiers	9 - 15%
Additives and Salt	2 - 3%
Target Dielectric Parameters at 22°C	$\varepsilon_{\rm r}$ = 48.2 (+/-5%) σ = 6.00 S/m (+/-5%)

9. 5800 MHz System Validation SAR Results

SAR @ 0.25W Input averaged over 1g				SAR @ 1W Input averaged over 1g			
Manufact	turer's Target	Measured	Deviation	Manufacturer's Target		Measured	Deviation
18.5	+/- 10%	17.0	-8.1%	74.1	+/- 10%	68.0	-8.2%
SAR	SAR @ 0.25W Input averaged over 10g			SAR @ 1W Input averaged over 10g			
Manufact	turer's Target	Measured	Deviation	Manufactu	ırer's Target	Measured	Deviation
5.13	+/- 10%	4.65	-9.4%	20.5	+/- 10%	18.6	-9.3%
The result	The results have been normalized to 1W (forward power) into the dipole.						

System Validation - 5800 MHz Dipole - Body Fluid - July 18, 2006

DUT: Dipole 5GHz; Model: D5GHzV2; Serial: 1031; Asset: 00126; Manufacturer: SPEAG

Ambient Temp: 21.8°C; Fluid Temp: 22.3°C; Barometric Pressure: 101.8 kPa; Humidity: 32%

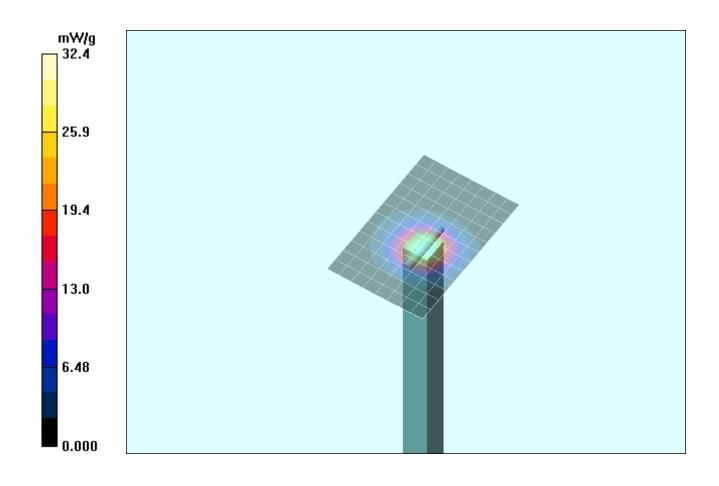
Communication System: CW Forward Conducted Power: 250 mW Frequency: 5800 MHz; Duty Cycle: 1:1

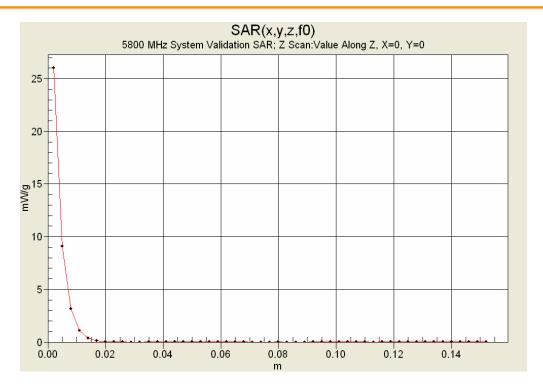
Medium: M5200-5800 Medium parameters used: f = 5800 MHz; σ = 6.25 mho/m; ε_r = 46.4; ρ = 1000 kg/m³

- Probe: EX3DV4 SN3547; ConvF(4.69, 4.69, 4.69); Calibrated: 14/02/2006
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn353; Calibrated: 21/06/2006
- Phantom: Barski Industries; Type: Fiberglas Planar; Serial: 03-01
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

5800 MHz Dipole - System Validation/Area Scan (9x13x1):

Measurement grid: dx=5mm, dy=5mm


Maximum value of SAR (measured) = 35.2 mW/g


5800 MHz Dipole - System Validation/Zoom Scan (8x8x8)/Cube 0:

Measurement grid: dx=4.3mm, dy=4.3mm, dz=3mm Reference Value = 66.8 V/m; Power Drift = -0.036 dB

Peak SAR (extrapolated) = 82.4 W/kg

SAR(1 g) = 17.0 mW/g; SAR(10 g) = 4.65 mW/g Maximum value of SAR (measured) = 32.4 mW/g

10. Measured Fluid Dielectric Parameters

System Validation (Body) - 5800 MHz Dipole

Celltech Labs Inc.

Test Result for UIM Dielectric Parameter

Tue 18/Jul/2006

Frequency (GHz)

FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma

FCC_eB FCC Limits for Body Epsilon

FCC_sB FCC Limits for Body Sigma
Test_e Epsilon of UIM

Test_s Sigma of UIM

Freq		BFCC_sE	_	Test_s
5.7000	48.34	5.88	46.39	6.00
5.7100	48.32	5.89	46.90	6.10
5.7200	48.31	5.91	46.87	6.09
5.7300	48.30	5.92	46.53	6.07
5.7400	48.28	5.93	46.63	6.11
5.7500	48.27	5.94	46.66	6.14
5.7600	48.25	5.95	46.47	6.20
5.7700	48.24	5.96	46.44	6.14
5.7800	48.23	5.98	46.15	6.13
5.7900	48.21	5.99	46.27	6.24
5.8000	48.20	6.00	46.35	6.25
5.8100	48.19	6.01	46.33	6.19
5.8200	48.17	6.02	46.13	6.27
5.8300	48.16	6.04	46.28	6.23
5.8400	48.15	6.05	46.02	6.23
5.8500	48.13	6.06	46.29	6.32
5.8600	48.12	6.07	46.02	6.31
5.8700	48.10	6.08	46.14	6.28
5.8800	48.09	6.09	46.42	6.30
5.8900	48.08	6.11	46.10	6.48
5.9000	48.06	6.12	46.32	6.39