

9. RF EXPOSURE COMPLIANCE

9.1 LIMIT

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)		Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)		Magnetic Field Strength (H) (A/m)	rower bensity (3)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

NOTE: f = frequency in MHz; *Plane-wave equivalent power density.

9.2 MEASUREMENT INSTRUMENTS LIST

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Power Meter	Anritsu	ML2495A	1128008	Feb,26,2014
2	Power Meter Sensor	Anritsu	MA2411B	1126001	Feb,26,2014

NOTE: N/A: denotes No Model Name, No Serial No. or No Calibration specified.

9.3 MPE CALCULATION METHOD

E (V/m)
$$=\frac{\sqrt{30\times P\times G}}{d}$$
 Power Density: Pd (W/m²) $=\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Report No.: NEI-FCCP-6-1310198 Page 51 of 55

9.4 TEST SETUP LAYOUT

FIIT	Power Meter
EUI	Fower Meter

9.5 DEVIATION FROM TEST STANDARD

No deviation

9.6 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 4.1.6 Unless otherwise a special operating condition is specified in the follows during the testing.

Report No.: NEI-FCCP-6-1310198 Page 52 of 55

9.7 TEST RESULTS

EUT	Mobile Computer	Model Name	8660
Temperature	26°C	Relative Humidity	60%
Test Voltage	AC 120V/60Hz		
Test Mode	CH00, CH19, CH39 -1 Mbps		

Frequency	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)	Result
2402 MHz	1.52	1.4191	1.8900	1.5453	0.000436	1	PASS
2440 MHz	1.52	1.4191	5.2200	3.3266	0.000940	1	PASS
2480 MHz	1.52	1.4191	5.3500	3.4277	0.000968	1	PASS

Report No.: NEI-FCCP-6-1310198 Page 53 of 55