SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Kwei-Shan Hsiang, TaoYuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	CIPHERLAB CO.,LTD
Applicant Address	12F, 333, Dunhua S.Rd., Sec.2, Taipei, Taiwan
FCC ID	Q3N-8300WB
Manufacturer's company	CIPHERLAB CO.,LTD
Manufacturer Address	12F, 333, Dunhua S.Rd., Sec.2, Taipei, Taiwan

Product Name	Terminal
Brand Name	CIPHERLAB
Model Name	8300
Test Rule	47 CFR FCC Part 15 Subpart C § 15.247
Test Freq. Range	2412 ~ 2462MHz
Receive Date	Sep. 14, 2006
Test Date	Sep. 22, 2006
Submission Type	Original Equipment

Statement

Test result included is only for the 802.11b part of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full. The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.4-2003 and 47 CFR FCC Part 15 Subpart C.

The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Lab Code: 200079-0

Table of Contents

1. CE	ERTIFICATE OF COMPLIANCE	1
2. SU	IMMARY OF THE TEST RESULT	2
3. GE	ENERAL INFORMATION	3
3.1	1. Product Details	3
3.2	2. Accessories	3
3.3	3. Table for Filed Antenna	3
3.4	4. Table for Carrier Frequencies	3
3.5	5. Table for Test Modes	4
3.6	6. Table for Testing Locations	4
3.7	11 9	
3.8	3	
3.9	9. Test Configurations	5
4. TES	St result	8
4.1	AC Power Line Conducted Emissions Measurement	8
4.2	2. Maximum Peak Output Power Measurement	12
4.3	3. Power Spectral Density Measurement	14
4.4	4. 6dB Spectrum Bandwidth Measurement	18
4.5		
4.6	š	
4.7	7. Antenna Requirements	37
5. LIS	ST OF MEASURING EQUIPMENTS	38
6. TES	ST LOCATION	39
7. NV	VLAP CERTIFICATE OF ACCREDITATION	40
APPE	NDIX A. PHOTOGRAPHS OF EUT	A1 ~ A29
APPE	NDIX B. TEST PHOTOS	B1 ~ B10
APPF	NDIX C. MAXIMUM PERMISSIBLE EXPOSURE	C1 ~C3

Issued Date : Sep. 27, 2006

History of This Test Report

Original	Issue	Date:	Sep.	27,	2006
----------	-------	-------	------	-----	------

Report No.: FR691318AD

■ No additional attachment.

Additional attachment were issued as following record:

Attachment No.	Issue Date	Description

Report Format Version: RF-15.247-2006-2-17-d Page No. : ii of ii

FCC ID: Q3N-8300WB Issued Date : Sep. 27, 2006

1. CERTIFICATE OF COMPLIANCE

Product Name :

Terminal

Brand Name :

CIPHERLAB

Model Name :

8300

Applicant :

CIPHERLAB CO.,LTD

Test Rule Part(s) :

47 CFR FCC Part 15 Subpart C § 15.247

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Sep. 14, 2006 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Prepared By:

Tina Jao / Specialist

Carl Lee / Engineer

Reviewed By:

Roger Sheng / Manager

FCC ID: Q3N-8300WB

Page No.

: 1 of 40

Issued Date : Sep. 27, 2006

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart C					
Part	Rule Section	Description of Test	Result	Under Limit		
4.1	15.207	AC Power Line Conducted Emissions	Complies	12.67 dB		
4.2	15.247(b)(3)	Maximum Peak Conducted Output Power	Complies	15.41 dB		
4.3	15.247(e)	Power Spectral Density	Complies	10.75 dB		
4.4	15.247(a)(2)	6dB Spectrum Bandwidth	Complies	-		
4.5	15.247(d)	Radiated Emissions	Complies	2.87 dB		
4.6	15.247(d)	Band Edge Emissions	Complies	1.49 dB		
4.7	15.203	Antenna Requirements	Complies	-		

Test Items	Uncertainty	Remark
AC Power Line Conducted Emissions	±2.26dB	Confidence levels of 95%
Maximum Peak Conducted Output Power	±0.776dB	Confidence levels of 95%
Power Spectral Density	±0.506dB	Confidence levels of 95%
6dB Spectrum Bandwidth	±1.64×10 ⁻⁶	Confidence levels of 95%
Radiated Emissions (9kHz~30MHz)	±0.754dB	Confidence levels of 95%
Radiated Emissions (30MHz~1000MHz)	±1.89dB	Confidence levels of 95%
Radiated / Band Edge Emissions (1GHz~18GHz)	±1.89dB	Confidence levels of 95%
Radiated Emissions (18GHz~40GHz)	±1.86dB	Confidence levels of 95%
Temperature	± 0.7 ℃	Confidence levels of 95%
Humidity	±3.2%	Confidence levels of 95%
DC / AC Power Source	±0.04%	Confidence levels of 95%

 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 2 of 40

 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

3. GENERAL INFORMATION

3.1. Product Details

EUT is a Terminal with 802.11b and Bluetooth radio functions. Only the radio detail of WLAN is shown in the table below. For more detailed features description, please refer to the manufacturer's specifications or user's manual.

Items	Description
Power Type	5V DC from adapter ; 3.7V DC from battery
Modulation	DSSS for IEEE 802.11b
Data Modulation	DSSS (BPSK / QPSK / CCK)
Data Rate (Mbps)	DSSS (1/ 2/ 5.5/11)
Frequency Range	2412 ~ 2462MHz
Channel Number	11
Channel Band Width (99%)	11b: 15.60 MHz
Conducted Output Power	11b: 14.59dBm

3.2. Accessories

Power	Brand	Model	Rating	
Adapter 1	GLOBAL PMC	GPSA-0500255	INPUT: 100-240V AC	
			OUTPUT: 5V DC	
Li-ion Battery	-	-	3.7V DC	
Others				
Cradle / RS-232 cable / Power cord				

3.3. Table for Filed Antenna

Ant.	Model Name	Brand Name	Antenna Type	Connector	Gain (dBi)
1	ACX	AT9520 Series	Chip Antenna	IPX	3.0

3.4. Table for Carrier Frequencies

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
2400~2483.5MHz	1	2412 MHz	7	2442 MHz
	2	2417 MHz	8	2447 MHz
	3	2422 MHz	9	2452 MHz
	4	2427 MHz	10	2457 MHz
	5	2432 MHz	11	2462 MHz
	6	2437 MHz		

: 3 of 40 Page No. FCC ID: Q3N-8300WB Issued Date : Sep. 27, 2006

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	Antenna
AC Power Line Conducted Emissions	WLAN+BT+Scanner	11 Mbps	-	1
	Mode	1 Mbps		
Maximum Peak Conducted Output	11b/CCK	11 Mbps	1/6/11	NA
Power				
Power Spectral Density				
6dB Spectrum Bandwidth				
Radiated Emissions 9kHz~1GHz	Laser (24keys keypad)	11 Mbps	-	1
	WLAN+BT+Charging	1 Mbps		
	Mode			
Radiated Emissions 1GHz~10 th	Laser (24keys keypad)	11 Mbps	1/6/11	1
Harmonic	WLAN+BT+Mode	1 Mbps	10/35/60	
Band Edge Emissions	Laser (24keys keypad)	11 Mbps	1/11	1
	WLAN+BT+Mode	1 Mbps	10/78	

3.6. Table for Testing Locations

Test Site No.	Site Category	Location	FCC Reg. No.	IC File No.	VCCI Reg. No
03CH03-HY	SAC	Hwa Ya	101377	IC 4088	-
CO04-HY	Conduction	Hwa Ya	101377	IC 4088	-
TH01-HY	OVEN Room	Hwa Ya	-	-	-

Open Area Test Site (OATS); Semi Anechoic Chamber (SAC); Fully Anechoic Chamber (FAC).

Please refer section 6 for Test Site Address.

3.7. Table for Supporting Units

Support Unit	Brand	Model	FCC ID
Notebook	DELL	PPT	DoC
Notebook	DELL	PP01L	DoC
Mouse	Microsoft	1004	DoC

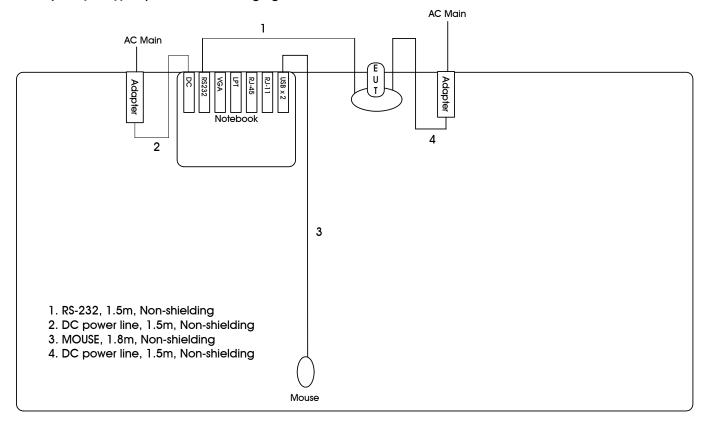
 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 4 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

3.8. Table for Parameters of Test Software Setting

During testing, Channel & Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Power Parameters of IEEE 802.11b/g

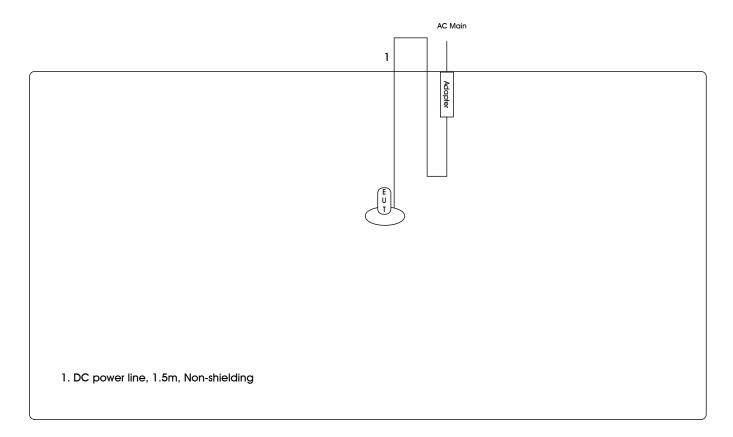

Test Software Version	Default			
Frequency	2412 MHz	2437 MHz	2462 MHz	
IEEE 802.11b	Default	Default	Default	

3.9. Test Configurations

3.9.1. Radiation Emissions Test Configuration

Below 1GHz

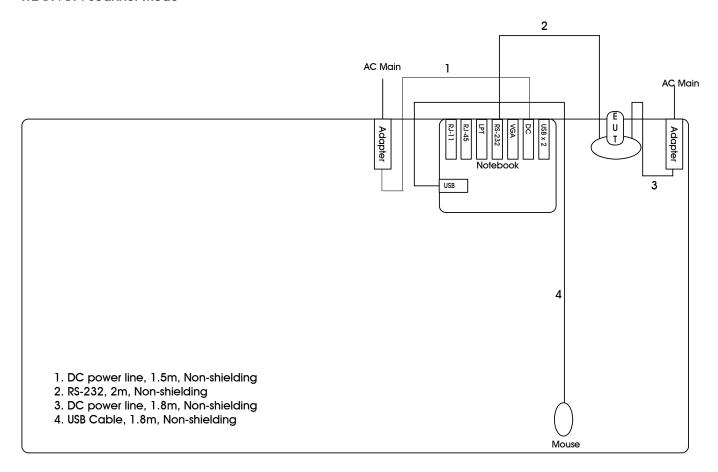
Laser (24keys keypad) WLAN+BT+Charging Mode



Page No. : 5 of 40 FCC ID: Q3N-8300WB Issued Date : Sep. 27, 2006

Above 1GHz

Laser (24keys keypad) WLAN+BT+Mode


Report Format Version: RF-15.247-2006-2-17-d Page No. : 6 of 40

FCC ID: Q3N-8300WB Issued Date : Sep. 27, 2006

3.9.2. AC Power Line Conduction Emissions Test Configuration

WLAN+BT+Scanner Mode

Report Format Version: RF-15.247-2006-2-17-d Page No. : 7 of 40

FCC ID: Q3N-8300WB Issued Date : Sep. 27, 2006

4. TEST RESULT

4.1. AC Power Line Conducted Emissions Measurement

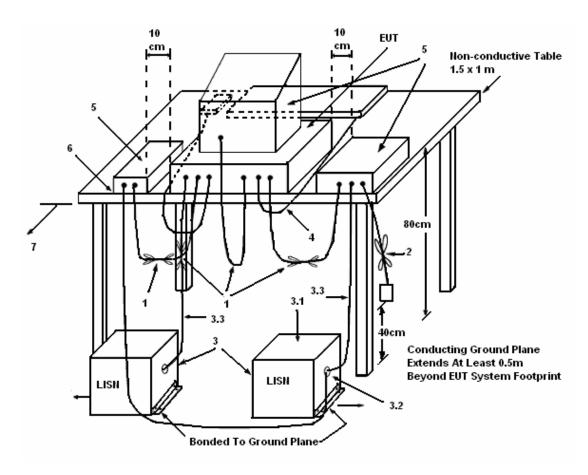
4.1.1. Limit

For this product which is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the receiver.


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.4. The EUT or host of EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT or host of EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 4. The frequency range from 150 KHz to 30 MHz was searched.
- 5. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. The measurement has to be done between each power line and ground at the power terminal.

: 8 of 40 Page No. FCC ID: Q3N-8300WB Issued Date: Sep. 27, 2006

4.1.4. Test Setup Layout

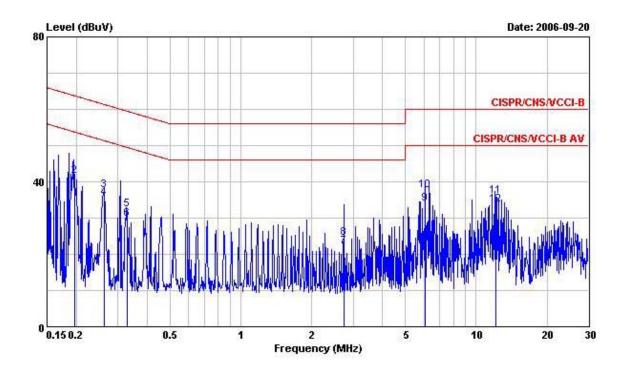
LEGEND:

- (1) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- (2) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- (3) EUT connected to one LISN. Unused LISN measuring port connectors shall be terminated in 50 $\,\Omega$. LISN can be placed on top of, or immediately beneath, reference ground plane.
- (3.1) All other equipment powered from additional LISN(s).
- (3.2) Multiple outlet strip can be used for multiple power cords of non-EUT equipment.
- (3.3) LISN at least 80 cm from nearest part of EUT chassis.
- (4) Cables of hand-operated devices, such as keyboards, mice, etc., shall be placed as for normal use.
- (5) Non-EUT components of EUT system being tested.
- (6) Rear of EUT, including peripherals, shall all be aligned and flush with rear of tabletop.
- (7) Rear of tabletop shall be 40 cm removed from a vertical conducting plane that is bonded to the ground plane.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 9 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

4.1.5. Test Deviation

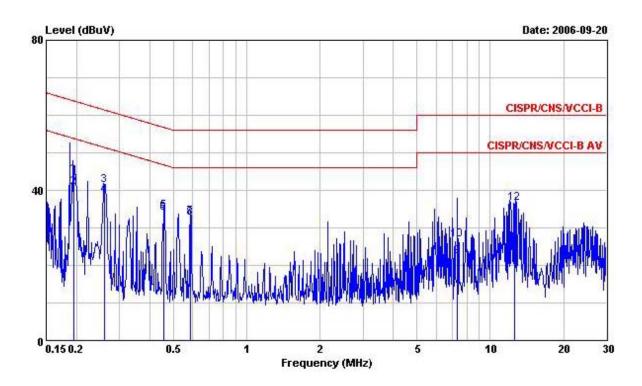

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was placed on the test table and programmed in normal function.

4.1.7. Results of AC Power Line Conducted Emissions Measurement

Temperature	27 ℃	Humidity	45%
Test Engineer	Ted Chiu	Phase	Line
Configuration	WLAN+BT+Scanner Mode		


	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	8
1	0.1967850	38.21	-15.54	53.75	38.07	0.10	0.04	Average
2	0.1967850	41.47	-22.28	63.75	41.33	0.10	0.04	QP
3	0.2616370	37.76	-23.62	61.38	37.59	0.10	0.07	QP
4	0.2616370	35.62	-15.76	51.38	35.45	0.10	0.07	Average
5	0.3273410	32.46	-27.06	59.52	32.27	0.10	0.09	QP
6	0.3273410	29.66	-19.86	49.52	29.47	0.10	0.09	Average
7	2.740	21.99	-24.01	46.00	21.60	0.10	0.29	Average
8	2.740	24.43	-31.57	56.00	24.04	0.10	0.29	QP
9	6.070	33.96	-16.04	50.00	33.32	0.15	0.49	Average
10	6.070	37.72	-22.28	60.00	37.08	0.15	0.49	QP
11	12.080	36.15	-23.85	60.00	35.17	0.38	0.60	QP
12	12.080	33.63	-16.37	50.00	32.65	0.38	0.60	Average

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 10 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

Temperature	27 ℃	Humidity	45%
Test Engineer	Ted Chiu	Phase	Neutral
Configuration	WLAN+BT+Scanner Mode		

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	- dB	dBuV	dBuV	dB	dB	-
1	0.1956350	44.26	-19.53	63.79	44.12	0.10	0.04	QP
2	0.1956350	40.72	-13.07	53.79	40.58	0.10	0.04	Average
3	0.2601590	41.38	-20.05	61.43	41.21	0.10	0.07	QP
4	0.2601590	38.76	-12.67	51.43	38.59	0.10	0.07	Average
5	0.4563600	34.45	-22.31	56.76	34.16	0.10	0.19	QP
6	0.4563600	33.97	-12.79	46.76	33.68	0.10	0.19	Average
7	0.5885140	32.80	-23.20	56.00	32.34	0.10	0.36	QP
8	0.5885140	32.63	-13.37	46.00	32.17	0.10	0.36	Average
9	7.318	22.37	-27.63	50.00	21.57	0.27	0.53	Average
10	7.318	26.85	-33.15	60.00	26.05	0.27	0.53	QP
11	12.608	34.07	-15.93	50.00	33.17	0.30	0.60	Average
12	12.608	36.47	-23.53	60.00	35.57	0.30	0.60	OP

Note:

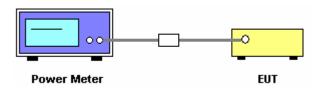
Level = Read Level + LISN Factor + Cable Loss.

4.2. Maximum Peak Output Power Measurement

4.2.1. Limit

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceed 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

4.2.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the power meter.

Power Meter Parameter	Setting
Filter No.	Auto
Measurement time	0.135 s ~ 26 s
Used Peak Sensor	NRV-Z32 (model 04)

4.2.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the power meter.
- 2. Turn on the EUT and power meter and then record the peak power value.
- 3. Repeat above procedures on all channels needed to be tested.

4.2.4. Test Setup Layout

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 12 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

4.2.7. Test Result of Maximum Peak Output Power

Temperature	25 ℃	Humidity	58%
Test Engineer	Sam Lee	Configurations	802.11b

Configuration IEEE 802.11b

Channel	Frequency	Conducted Power (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	14.37	30.00	Complies
6	2437 MHz	14.59	30.00	Complies
11	2462 MHz	14.50	30.00	Complies

 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 13 of 40

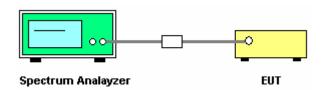
 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

4.3. Power Spectral Density Measurement

4.3.1. Limit

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

4.3.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	1.5MHz
RB	3 kHz
VB	30 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	500s

4.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser.
- 2. Set RBW of spectrum analyzer to 3kHz and VBW to 30kHz. Set Detector to Peak, Trace to Max Hold.
- 3. Mark the frequency with maximum peak power as the center of the display of the spectrum.
- 4. Set the span to 1.5MHz and the sweep time to 500s and record the maximum peak value.

4.3.4. Test Setup Layout

4.3.5. Test Deviation

There is no deviation with the original standard.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 14 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

4.3.6. EUT Operation during Test

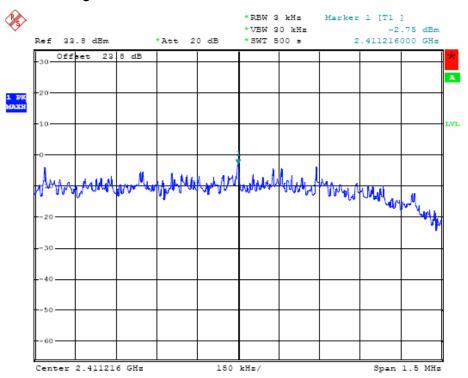
The EUT was programmed to be in continuously transmitting mode.

4.3.7. Test Result of Power Spectral Density

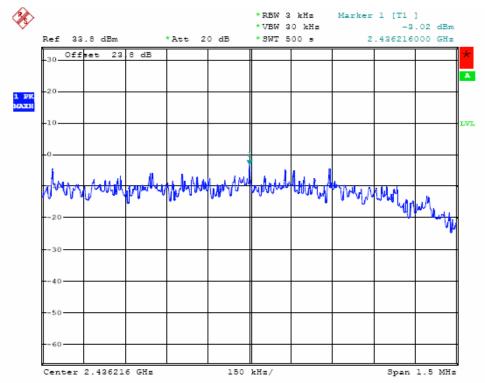
Temperature	25 ℃	Humidity	58%
Test Engineer	Sam Lee	Configurations	802.11b

Configuration IEEE 802.11b

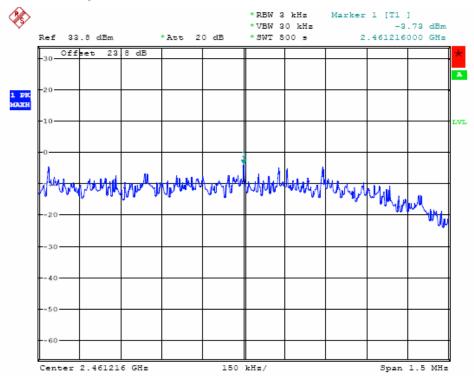
Channel	Frequency	Power Density (dBm)	Max. Limit (dBm)	Result
1	2412 MHz	-2.75	8.00	Complies
6	2437 MHz	-3.02	8.00	Complies
11	2462 MHz	-3.73	8.00	Complies


 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 15 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006



Power Density Plot on Configuration IEEE 802.11b / 2412 MHz


Power Density Plot on Configuration IEEE 802.11b / 2437 MHz

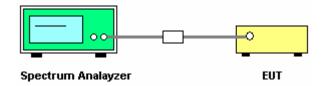
Power Density Plot on Configuration IEEE 802.11b / 2462 MHz

4.4. 6dB Spectrum Bandwidth Measurement

4.4.1. Limit

For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

4.4.2. Measuring Instruments and Setting


Please refer to section 5 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	> 6dB Bandwidth
RB	100 kHz
VB	100 kHz
Detector	Peak
Trace	Max Hold
Sweep Time	Auto

4.4.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- 2. The resolution bandwidth of 100 kHz and the video bandwidth of 100 kHz were used.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

4.4.4. Test Setup Layout

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 18 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

4.4.5. Test Deviation

There is no deviation with the original standard.

4.4.6. EUT Operation during Test

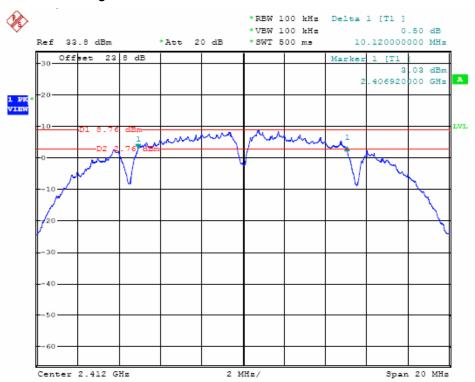
The EUT was programmed to be in continuously transmitting mode.

4.4.7. Test Result of 6dB Spectrum Bandwidth

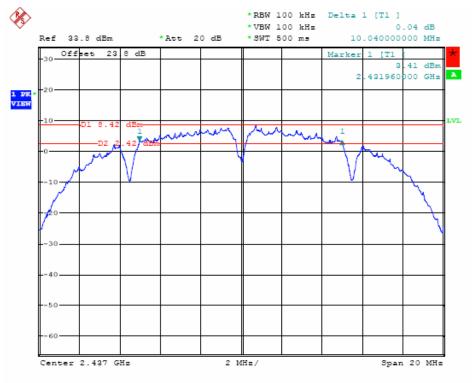
Temperature	25 ℃	Humidity	58%
Test Engineer	Sam Lee	Configurations	802.11b

Configuration IEEE 802.11b

Channel	Frequency	6dB Bandwidth (MHz)	99% Occupied Bandwidth (MHz)	Min. Limit (kHz)	Test Result
1	2412 MHz	10.12	15.60	500	Complies
6	2437 MHz	10.04	15.56	500	Complies
11	2462 MHz	10.04	15.60	500	Complies

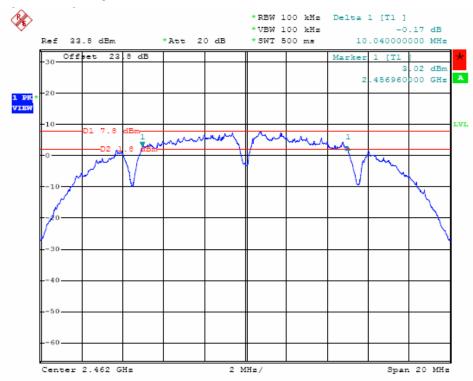

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 19 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006



6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2412 MHz

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2437 MHz


 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 20 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

6 dB Bandwidth Plot on Configuration IEEE 802.11b / 2462 MHz

4.5. Radiated Emissions Measurement

4.5.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.5.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100KHz / 100KHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

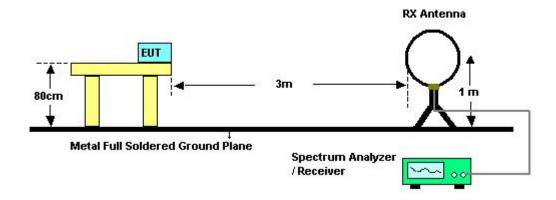
 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 22 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

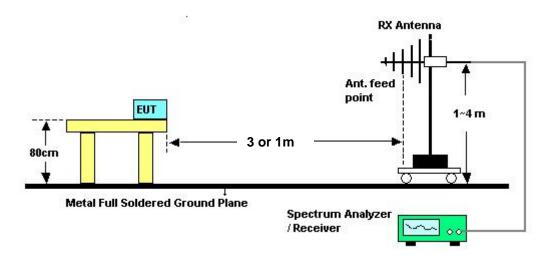
4.5.3. Test Procedures

Configure the EUT according to ANSI C63.4. The EUT was placed on the top of the turntable 0.8
meter above ground. The phase center of the receiving antenna mounted on the top of a
height-variable antenna tower was placed 3 meters far away from the turntable.

- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.


 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 23 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006



4.5.4. Test Setup Layout

For radiated emissions below 30MHz

For radiated emissions above 30MHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1m.

Distance extrapolation factor = 20 log (specific distance [3m] / test distance [1m]) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor [9.54 dB].

4.5.5. Test Deviation

There is no deviation with the original standard.

4.5.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 24 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

4.5.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	27 ℃	Humidity	51%
Test Engineer	Vic Hsiao		

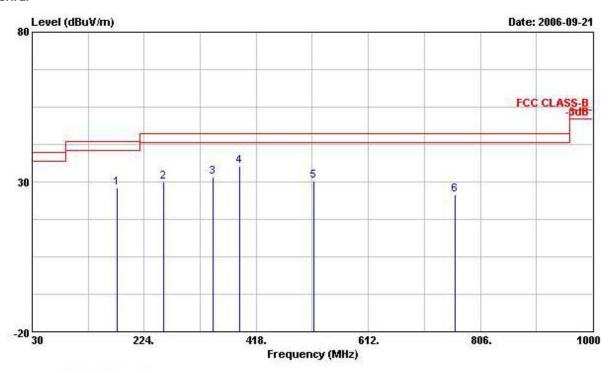
Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

 $\label{limit} \mbox{Limit line} = \mbox{specific limits (dBuV)} + \mbox{distance extrapolation factor}.$

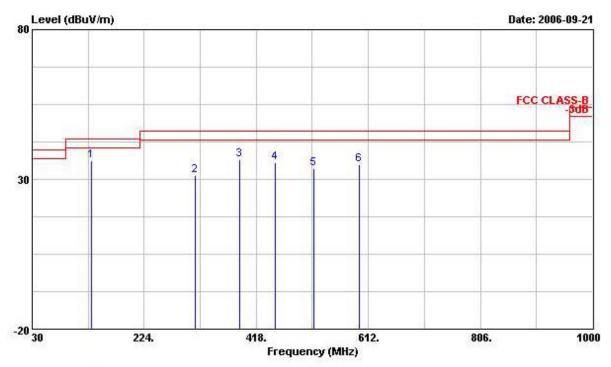

 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 25 of 40

 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

4.5.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	27 ℃	Humidity	51%
Test Engineer	Vic Hsiao	Configurations	Laser (24keys keypad)
lesi Engineei	VIC HSIGO		WLAN+BT+Charging Mode

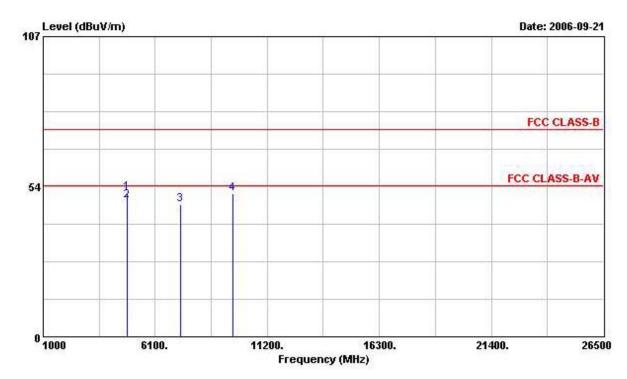
Horizontal


			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	176.470	28.07	-15.43	43.50	44.55	9.31	2.22	28.01	Peak
2	257.950	30.14	-15.86	46.00	42.71	13.48	2.33	28.38	Peak
3	343.310	31.57	-14.43	46.00	42.26	14.82	3.32	28.83	Peak
4 @	388.900	35.24	-10.76	46.00	44.89	16.08	3.35	29.08	Peak
5	517.910	30.22	-15.78	46.00	37.45	18.55	3.91	29.69	Peak
6	762.350	25.82	-20.18	46.00	29.93	20.73	4.92	29.76	Peak

 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 26 of 40

 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

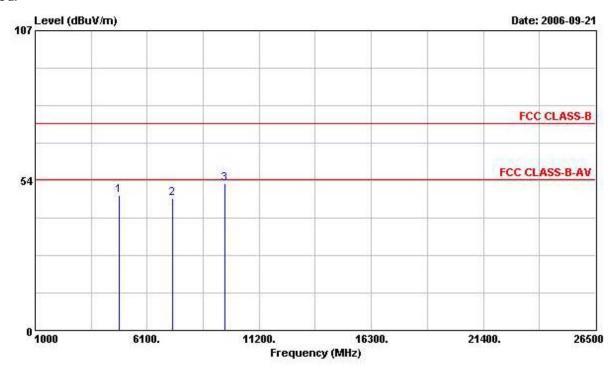
Vertical


				0ver	Limit	Readi	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	· ·
1	@	132.820	36.27	-7.23	43.50	50.44	12.10	1.80	28.07	Peak
2		312.270	31.34	-14.66	46.00	42.94	14.06	2.99	28.65	Peak
3	0	388.900	36.66	-9.34	46.00	46.31	16.08	3.35	29.08	Peak
4	0	450.980	35.63	-10.37	46.00	44.12	17.13	3.66	29.28	Peak
5		516.940	33.78	-12.22	46.00	41.04	18.52	3.91	29.69	Peak
6		595.510	34.88	-11.12	46.00	40.87	19.30	4.39	29.68	Peak

4.5.9. Results for Radiated Emissions (1GHz \sim 10th Harmonic)

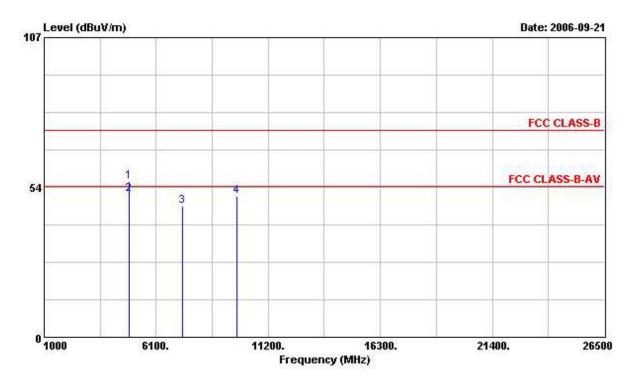
Temperature	27 ℃	Humidity	51%
			Laser (24keys keypad)
Test Engineer	Vic Hsiao Configuration:		WLAN+BT+Mode
			802.11b CH 01& BT CH 10

Horizontal


	Freq	Level	Over Limit	Limit Line				Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	4824.000	51.56	-22.44	74.00	47.65	33.09	3.15	32.32	PEAK
2 @	4824.000	48.55	-5.45	54.00	44.63	33.09	3.15	32.32	Average
3	7236.000	47.05	-26.95	74.00	39.49	35.98	4.15	32.57	PEAK
4	9648.000	50.95	-23.05	74.00	40.75	38.58	4.42	32.80	PEAK

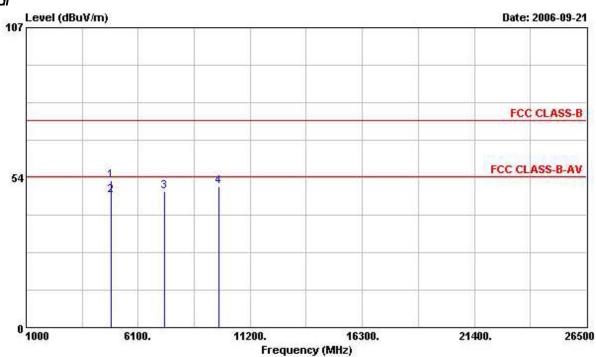
 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 28 of 40

 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

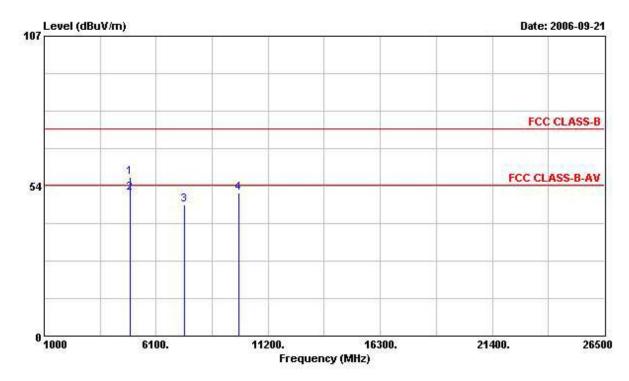

Vertical

				0ver	Limit	ReadAntenna		Cable Preamp			
		Freq	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	-	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB		
1	482	4.000	48.34	-25.66	74.00	44.42	33.09	3.15	32.32	Peak	
2	723	6.000	47.29	-26.71	74.00	39.73	35.98	4.15	32.57	PEAK	
3	964	8.000	52.40	-21.60	74.00	42.20	38.58	4.42	32.80	PEAK	

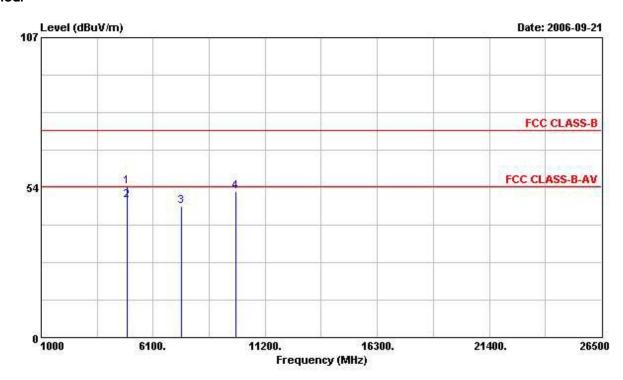
Temperature	27 ℃	Humidity	51%
			Laser (24keys keypad)
Test Engineer	Vic Hsiao	Configurations	WLAN+BT+Mode
			802.11b CH 06& BT CH 35


Horizontal

				0ver	Limit	Readi	Antenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	2
1		4876.000	55.79	-18.21	74.00	51.74	33.18	3.16	32.30	PEAK
2	@	4876.000	51.03	-2.97	54.00	46.98	33.18	3.16	32.30	Average
3		7311.000	46.84	-27.16	74.00	39.10	36.14	4.18	32.59	PEAK
4		9748.000	50.17	-23.83	74.00	39.75	38.77	4.44	32.80	PEAK


Vertical

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	
1	4876.000	52.58	-21.42	74.00	48.53	33.18	3.16	32,30	PEAK
2 0	4876.000	47.17	-6.83	54.00	43.12	33.18	3.16	32.30	Average
3	7311.000	48.50	-25.50	74.00	40.76	36.14	4.18	32.59	PEAK
4	9748.000	50.17	-23.83	74.00	39.76	38.77	4.44	32.80	PEAK


Temperature	27 ℃	Humidity	51%	
			Laser (24keys keypad)	
Test Engineer	Vic Hsiao	Configurations	WLAN+BT+Mode	
			802.11b CH 11& BT CH 60	

Horizontal

				0ver	Limit	Readi	Intenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	9 8
1		4924.000	56.73	-17.27	74.00	52.54	33.28	3.19	32.28	PEAK
2	@	4924.000	51.13	-2.87	54.00	46.94	33.28	3.19	32.28	Average
3		7386.000	46.84	-27.16	74.00	38.91	36.35	4.21	32.63	PEAK
4		9848.000	51.04	-22.96	74.00	40.43	38.92	4.48	32.79	PEAK

Vertical

			0ver	Limit	Readi	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	8
1	4924.000	53.79	-20.21	74.00	49.60	33.28	3.19	32.28	PEAK
2 @	4924.000	48.81	-5.19	54.00	44.62	33.28	3.19	32.28	Average
3	7386.000	46.67	-27.33	74.00	38.74	36.35	4.21	32.63	PEAK
4	9848.000	52.12	-21.88	74.00	41.51	38.92	4.48	32.79	PEAK

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Pol.: V is Vertical Polarization; H is Horizontal Polarization.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 33 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

4.6. Band Edge Emissions Measurement

4.6.1. Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Field Strength	Measurement Distance
(micorvolts/meter)	(meters)
2400/F(KHz)	300
24000/F(KHz)	30
30	30
100	3
150	3
200	3
500	3
	Field Strength (micorvolts/meter) 2400/F(KHz) 24000/F(KHz) 30 100 150 200

4.6.2. Measuring Instruments and Setting

Please refer to section 5 in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RB / VB (emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (other emission)	100 KHz /100 KHz for Peak

4.6.3. Test Procedures

- 1. The test procedure is the same as section 4.5.3, only the frequency range investigated is limited to 100MHz around bandedges.
- 2. In case the emission is fail due to the used RB/VB is too wide, marker-delta method of FCC Public Notice DA00-705 will be followed.

4.6.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.5.4.

4.6.5. Test Deviation

There is no deviation with the original standard.

4.6.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 34 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

4.6.7. Test Result of Band Edge and Fundamental Emissions

Temperature	27 ℃	Humidity	51%	
			Laser (24keys keypad)	
Test Engineer	Vic Hsiao	Configurations	WLAN+BT+Mode	
Test Engineer	VIC HSIGO	Configurations	802.11b CH 01& BT CH 10;	
			802.11b CH 11& BT CH 78	

WLAN CH 01& BT CH 10

			0ver	Limit	Read	Antenna	Cable	Preamp	
	Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
	MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	· · · · · · · · · · · · · · · · · · ·
1	2374.980	57.60	-16.40	74.00	27.49	28.26	1.85	0.00	Peak
2 0	2413.740	105.00				28.33	1.88	0.00	Peak
1 @	2374.980	48.15	-5.85	54.00	18.04	28.26	1.85		Average
2 @	2413.740	100.15				28.33	1.88	0.00	Average

WLAN CH 11& BT CH 78

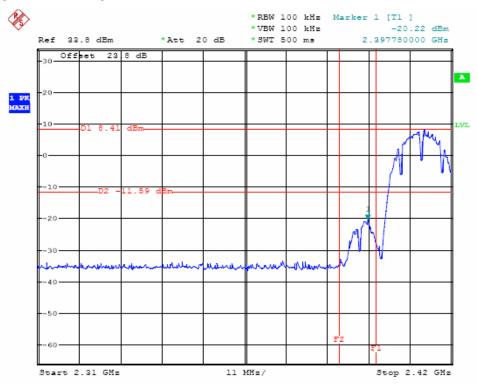
				0ver	Limit	Readi	Intenna	Cable	Preamp	
		Freq	Level	Limit	Line	Level	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV/m	dBuV	dB/m	dB	dB	-
1	@	2463.900	104.26				28.43	1.94	0.00	Peak
2	0	2483.500 2463.900		-11.71	74.00	31.89	28.47 28.43	1.94	CONTRACTOR OF STREET	Peak Average
2	0	2483.500	52.51	-1.49	54.00	22.11	28.47	1.94	0.00	Average

Note:

Emission level (dBuV/m) = $20 \log Emission$ level (uV/m).

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

Receiving maximum band edge emissions are Vertical Polarization /Horizontal Polarization.


 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 35 of 40

 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

For Emission not in Restricted Band Low Band Edge Plot on Configuration IEEE 802.11b / 2412 MHz

High Band Edge Plot on Configuration IEEE 802.11b / 2462 MHz

4.7. Antenna Requirements

4.7.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.7.2. Antenna Connector Construction

Please refer to section 3.3 in this test report, all antenna connectors comply with the requirements.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 37 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz - 2.75GHz	Feb. 22, 2006	Conduction (CO04-HY)
LISN	MessTec	NNB-2/16Z	99079	9kHz – 30MHz	Dec. 19, 2005	Conduction (CO04-HY)
LISN (Support Unit)	EMCO	3810/2NM	9708-1839	9kHz – 30MHz	Mar. 18, 2006	Conduction (CO04-HY)
RF Cable-CON	UTIFLEX	3102-26886-4	CB049	9kHz – 30MHz	Apr. 20, 2006	Conduction (CO04-HY)
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30 MHz - 1 GHz 3m	Jun. 15, 2006	Radiation (03CH03-HY)
Amplifier	SCHAFFNER	CPA9231A	18667	9 kHz - 2 GHz	Jan. 18, 2006	Radiation (03CH03-HY)
Amplifier	Agilent	8449B	3008A02120	1 GHz - 26.5 GHz	May 29, 2006	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP40	100004/040	9 kHZ - 40 GHz	Sep. 30, 2005	Radiation (03CH03-HY)
Bilog Antenna	SCHAFFNER	CBL 6112D	22237	30 MHz - 1 GHz	Jul. 24, 2006	Radiation (03CH03-HY)
Horn Antenna	EMCO	3115	6903	1GHz ~ 18GHz	Mar. 15, 2006	Radiation (03CH03-HY)
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15 GHz - 40 GHz	NCR	Radiation (03CH03-HY)
RF Cable-R03m	Jye Bao	RG142	CB021	30 MHz - 1 GHz	Dec.02, 2005	Radiation (03CH03-HY)
RF Cable-HIGH	SUHNER	SUCOFLEX 106	03CH03-HY	1 GHz - 40 GHz	Dec.02, 2005	Radiation (03CH03-HY)
Turn Table	HD	DS 420	420/650/00	0 - 360 degree	N/A	Radiation (03CH03-HY)
Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
Spectrum Analyzer	R&S	FSP30	100023	9kHz ~ 30GHz	Nov. 26, 2005	Conducted (TH01-HY)
Power Meter	R&S	NRVS	100764	DC ~ 40GHz	Jul, 20, 2006	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z51	100666	DC ~ 40GHz	Jul. 20, 2006	Conducted (TH01-HY)
Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun, 10, 2006	Conducted (TH01-HY)
DC Power Source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Dec. 28, 2005	Conducted (TH01-HY)
Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2005	Conducted (TH01-HY)
RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Dec. 30, 2005	Conducted (TH01-HY)
RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Dec. 30, 2005	Conducted (TH01-HY)
Oscilloscope	Tektronix	TD\$1012	CO38515	100MHz / 1GS/s	Jun. 20, 2006	Conducted (TH01-HY)
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Dec. 30, 2005	Conducted (TH01-HY)
Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz	Jun. 16, 2006	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is one year. NCR: Non-Calibration required.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Amplifier	MITEQ	AMF-6F-260400	923364	26.5 GHz - 40 GHz	Jan. 24, 2006*	Radiation (03CH03-HY)
Loop Antenna	R&S	HFH2-Z2	860004/001	9 kHz - 30 MHz	May 23, 2006*	Radiation (03CH03-HY)
AC Power Source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Apr. 21, 2005*	Conducted (TH01-HY)

Note: Calibration Interval of instruments listed above is two year.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 38 of 40

 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

6. TEST LOCATION

C.
C.
C.
C.
an, R.O.C.

 Report Format Version: RF-15.247-2006-2-17-d
 Page No. : 39 of 40

 FCC ID: Q3N-8300WB
 Issued Date : Sep. 27, 2006

7. NVLAP CERTIFICATE OF ACCREDITATION

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:1999

NVLAP LAB CODE: 200079-0

Sporton International, Inc. Hwa Ya EMC Laboratory

Tao Yuan Hsien 333 TAIWAN

is recognized by the National Voluntary Laboratory Accreditation Program for conformance with criteria set forth in NIST Handbook 150:2001 and all requirements of ISO/IEC 17025:1999.

Accreditation is granted for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

2006-01-01 through 2006-12-31

Effective dates

SOUTH TOF COMPLETE

For the National Institute of Standards and Technology

NVLAP-01C (REV. 2005-05-19)

 Report Format Version: RF-15.247-2006-2-17-d
 Page No.
 : 40 of 40

 FCC ID: Q3N-8300WB
 Issued Date
 : Sep. 27, 2006