

10. RF EXPOSURE TEST

10.1 Applied procedures / limit

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

10.1.1 MEASUREMENT INSTRUMENTS LIST

Iter	n Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Power Meter	Anritsu	ML2487A	6K00004714	Feb. 17, 2012
2	Power Meter Sensor	Anritsu	MA2491A	34138	Feb. 17, 2012

Remark: "N/A" denotes No Model Name, Serial No. or No Calibration specified.

10.1.2 MPE CALCULATION METHOD

E (V/m)
$$=\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) $=\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Report No.: NEI-FCCP-2-R1105001 Page 98 of 102

10.1.3 DEVIATION FROM STANDARD

No deviation.

10.1.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

10.1.5 EUT OPERATION CONDITIONS

The power is too low, so no RF calculations are needed.

Report No.: NEI-FCCP-2-R1105001 Page 99 of 102