

FCC&IC Radio Test Report				
FCC ID: Q3N-2564				
IC: 5121A-2564				
This report concerns (check one): ⊠Original Grant □Class I Change □Class II Change				
Project No.: 1612074Equipment: BT ScannerTest Model: 2564Series Model: N/AApplicant: CIPHERLAB CO., LTD.Address: 12F, 333, Dunhua S. Rd., Sec. 2, Taipei, Taiwan				
Date of Receipt : Jan. 13, 2017 Date of Test : Jan. 13, 2017 ~ Feb. 02, 2017 Issued Date : Feb. 09, 2017 Tested by : BTL Inc.				
Testing Engineer : Rush Kao (Rush Kao)				
Technical Manager :				
Authorized Signatory :(Andy Chiu)				
BTL INC. B1, No. 37, Lane 365, Yang-Guang St., Nei-Hu District, Taipei City 114, Taiwan. TEL: +886-2-2657-3299 FAX: +886-2-2657-3331				

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

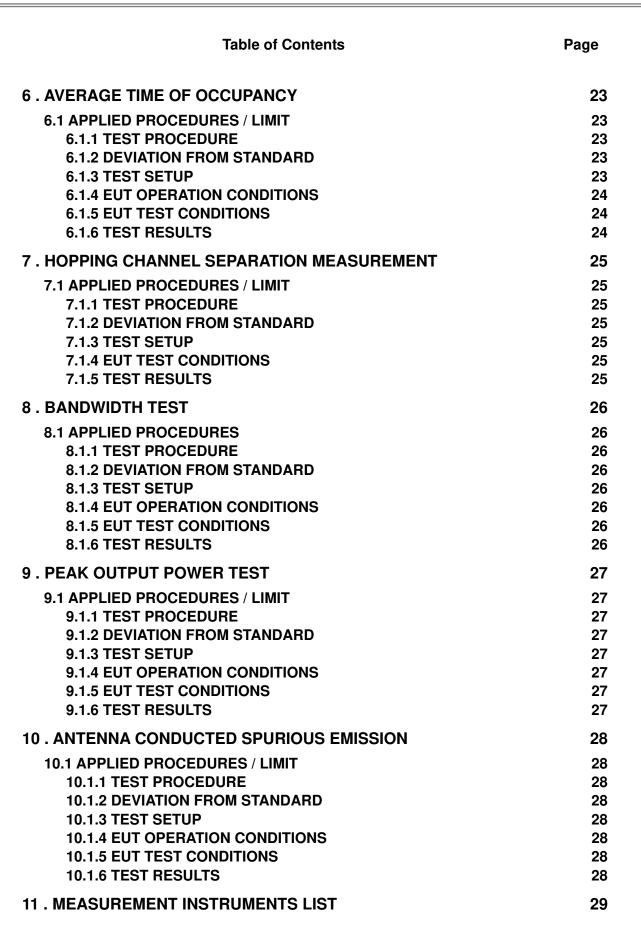

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents	Page
1. CERTIFICATION	7
2 . SUMMARY OF TEST RESULTS	8
2.1 TEST FACILITY	9
2.2 MEASUREMENT UNCERTAINTY	9
3 . GENERAL INFORMATION	11
3.1 GENERAL DESCRIPTION OF EUT	11
3.2 DESCRIPTION OF TEST MODES	13
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	13
3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTE	D 14
3.5 DESCRIPTION OF SUPPORT UNITS	14
4. EMC EMISSION TEST	15
4.1 CONDUCTED EMISSION MEASUREMENT	15
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS	15
4.1.2 TEST PROCEDURE 4.1.3 DEVIATION FROM TEST STANDARD	15 15
4.1.4 TEST SETUP	16
4.1.5 EUT OPERATING CONDITIONS	16
4.1.6 EUT TEST CONDITIONS 4.1.7 TEST RESULTS	16 16
4.1.7 TEST RESULTS 4.2 RADIATED EMISSION MEASUREMENT	10
4.2 RADIATED EMISSION MEASUREMENT 4.2.1 RADIATED EMISSION LIMITS	17
4.2.2 TEST PROCEDURE	18
4.2.3 DEVIATION FROM TEST STANDARD	18
4.2.4 TEST SETUP 4.2.5 EUT OPERATING CONDITIONS	19 21
4.2.6 EUT TEST CONDITIONS	21
4.2.7 TEST RESULTS (9KHZ TO 30MHZ)	21
4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ)	21 21
4.2.9 TEST RESULTS (ABOVE 1000 MHZ)	
5 . NUMBER OF HOPPING CHANNEL	22
5.1 APPLIED PROCEDURES 5.1.1 TEST PROCEDURE	22 22
5.1.2 DEVIATION FROM STANDARD	22
5.1.3 TEST SETUP	22
5.1.4 EUT OPERATION CONDITIONS	22
5.1.5 EUT TEST CONDITIONS 5.1.6 TEST RESULTS	22 22
	<u> </u>

事業 探理330 手

Table of Contents	Page
12 . EUT TEST PHOTO	31
ATTACHMENT A - CONDUCTED EMISSION	37
ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)	40
ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)	50
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)	55
ATTACHMENT E - NUMBER OF HOPPING CHANNEL	80
ATTACHMENT F - AVERAGE TIME OF OCCUPANCY	82
ATTACHMENT G - HOPPING CHANNEL SEPARATION MEASUREMENT	95
ATTACHMENT H - BANDWIDTH	100
ATTACHMENT I - PEAK OUTPUT POWER	105
ATTACHMENT J - ANTENNA CONDUCTED SPURIOUS EMISSION	110

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICP-1-1612074	Original Issue.	Feb. 09, 2017

1. CERTIFICATION

Equipment : Brand Name : Test Model :	CIPHERLAB
Series Model :	N/A
Applicant :	CIPHERLAB CO., LTD.
Manufacturer :	CIPHERLAB CO., LTD.
	12F, 333, Dunhua S. Rd., Sec. 2, Taipei, Taiwan
· · · · ,	CIPHERLAB CO., LTD. 2nd
Address :	7 F., No. 198 and 7F., No. 196, Sec. 3, Da Tong Rd., Shiji Dist., New Taipei City 221, Taiwan.
Date of Test :	Jan. 13, 2017 ~ Feb. 02, 2017
Test Sample :	Engineering Sample
Standard(s) :	FCC Part15, Subpart C (15.247)/ ANSI C63.10-2013 RSS-247 Issue 1, May 2015 RSS-GEN Issue 4, Nov 2014

The above equipment has been tested and found in compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICP-1-1612074) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test results included in this report is only for the Bluetooth EDR part.

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

Applied Standard(s): FCC Part15, Subpart C (15.247) ; RSS-247 Issue 1, May 2015; RSS-GEN Issue 4, Nov				
Standa	rd(s) Section	Test Item	ludamont	Remark
FCC	IC		Judgment	Remark
15.207	RSS-GEN 8.8	Conducted Emission	PASS	
15.247(d)	RSS-247 5.5	Antenna conducted Spurious Emission	PASS	
15.247 (a)(1)	RSS-247 5.1 (2)	Hopping Channel Separation	PASS	
15.247(a)(1)	RSS-247 5.1 (1)	Bandwidth	PASS	
15.247 (b)(1)	RSS-247 5.4 (2)	Peak Output Power	PASS	
15.247(d) 15.209	RSS-247 5.5	Radiated Spurious Emission	PASS	
15.247 (a)(1)(iii)	RSS-247 5.1 (4)	Number of Hopping Frequency	PASS	
15.247 (a)(1)(iii)	RSS-247 5.1 (4)	Dwell Time	PASS	
15.205	RSS-GEN 8.10	Restricted Bands	PASS	
15.203	-	Antenna Requirement	PASS	

Note:

(1)" N/A" denotes test is not applicable in this test report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report:

Conducted emission Test:

C05: (VCCI RN: C-4742; FCC RN:965108; FCC DN:TW1082) No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Radiated emission Test (Below 1 GHz):

CB15: (FCC RN:674415; FCC DN:TW0659) No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

Radiated emission Test (Above 1 GHz):

CB15: (FCC RN:674415; FCC DN:TW0659)

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

A. Conducted emission test:

Test Site	Method	Measurement Frequency Range	U,(dB)
C05	CISPR	150 kHz ~ 30MHz	3.06

B. Radiated emission test:

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	9kHz ~ 150kHz	2.96
(3m)	CISPR	150kHz ~ 30MHz	2.74

Test Site	Method	Measurement Frequency Range	Ant.	U,(dB)
		30MHz ~ 200MHz	V	4.76
CB15	CISPR	30MHz ~ 200MHz	Н	4.28
(3m)	CISPR	200MHz ~ 1,000MHz	V	5.08
		200MHz ~ 1,000MHz	Н	4.50

Test Site	Method	Measurement Frequency Range		U,(dB)
		1GHz ~ 6GHz	V	4.48
CB15	CISPR	1GHz ~ 6GHz	Н	4.50
(3m)	CIOPK	6GHz ~ 18GHz	V	4.30
		6GHz ~ 18GHz	Н	4.14

Test Site	Method	Measurement Frequency Range	U,(dB)
CB15	CISPR	18 ~ 26.5 GHz	4.72
(1m)	CIOFK	26.5 ~ 40 GHz	5.20

Our calculated Measurement Instrumentation Uncertainty is shown in the tables above. These are our U_{lab} values in CISPR 16-4-2 terminology.

Since Table 1 of CISPR 16-4-2 has values of measurement instrumentation uncertainty, called U_{CISPR} , as follows:

Conducted Disturbance (mains port) - 150 kHz - 30 MHz: 3.6 dB Radiated Disturbance (electric field strength on an open area test site or alternative test site) - 30 MHz - 1000 MHz: 5.2 dB

It can be seen that our U_{lab} values are smaller than U_{CISPR} .

Note: unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	BT Scanner		
Brand Name	CIPHERLAB		
Test Model	2564		
Series Model	N/A		
Model Difference	N/A		
	Operation Frequency	2402~2480 MHz	
	Modulation Technology	GFSK(1Mbps) π /4-DQPSK(2Mbps)	
Output Power (Max.)	Bit Rate of Transmitter	8-DPSK(3Mbps)	
	Output Power Max.	5.82 dBm(1Mbps) 4.45 dBm(3Mbps)	
Power Source	Battery supplied.(Li-ion Battery Pack: BA-010800)		
Power Rating	3.7V 800 mAh 2.96Wh		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

2. Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	27	2429	54	2456
01	2402	28	2430	55	2457
02	2403	29	2430	56	2458
03	2404	30	2432	57	2459
03	2405	31	2433	58	2460
05	2400	32	2434	59	2461
06	2407	33	2435	60	2462
07	2409	34	2436	61	2463
08	2409	35	2430	62	2463
09	2411	36	2438	63	2465
10	2412	37	2439	64	2466
11	2413	38	2435	65	2467
12	2414	39	2441	66	2468
13	2415	40	2442	67	2469
14	2416	41	2443	68	2400
15	2417	42	2444	69	2471
16	2418	43	2445	70	2472
17	2419	44	2446	71	2473
18	2420	45	2447	72	2474
19	2421	46	2448	73	2475
20	2422	47	2449	74	2476
21	2423	48	2450	75	2477
22	2424	49	2451	76	2478
23	2425	50	2452	77	2479
24	2426	51	2453	78	2480
25	2427	52	2454		
26	2428	53	2455		

3 Table for Filed Antenna

.

Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)
1	QuieTek 2560MB_20150 830A		Printed	N/A	3.54

3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Pretest Mode	Description
Mode 1	TX Mode Note (1)

The EUT system operated these modes were found to be the worst case during the pre-scanning test as following:

For Conducted Emission				
Final Test Mode Description				
Mode 1 TX Mode				

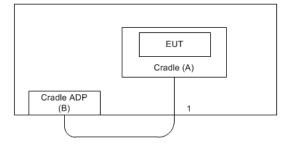
For Radiated Emission				
Final Test Mode Description				
Mode 1 TX Mode Note (1)				

Note:

- (1) The measurements are performed at the high, middle, low available channels.
- (2) The measurements for Hopping Channel Separation, Bandwidth and Peak Output Power were tested during 1Mbps, 2Mbps and 3Mbps, the worst case are 1Mbps and 3Mbps, only worst case was documented.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of FHSS


Test Software Version	CSR				
Frequency	2402 MHz	2441 MHz	2480 MHz		
Parameters(1Mbps)	DEF	DEF	DEF		
Parameters(3Mbps)	DEF	DEF	DEF		

3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

3.5 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
A	Bluetooth Scanner Cradle	CIPHER LAB	2560 BT BASE	N/A	BSFDV00001 054	
В	Cradle Adapter	I.T.E	AU1100506U	DOC	N/A	

ltem	Shielded Type	Ferrite Core	Length	Note
1	Yes	No	1m	Power Cable

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 POWER LINE CONDUCTED EMISSION LIMITS (Frequency Range 150KHz-30MHz)

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
Frequency of Emission (Minz)	Quasi-peak	Average	
0.15 -0.50	66 to 56*	56 to 46*	
0.50 -5.0	56	46	
5.0 -30.0	60	50	

Note:

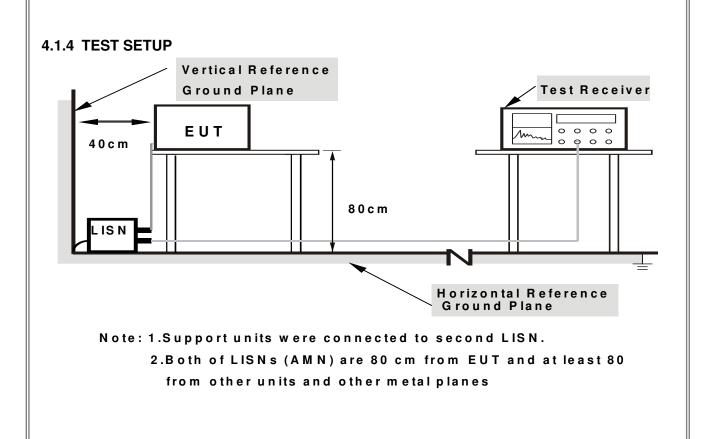
(1) The limit of " * " decreases with the logarithm of the frequency

 (2) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 KHz	

4.1.2 TEST PROCEDURE


- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical function (as a customer would normally use it), EUT was programmed to be in continuously transmitting/receiving data or hopping on mode.

4.1.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: AC 120V/60Hz

4.1.7 TEST RESULTS

Please refer to the Attachment A.

Remark:

- (1) All readings are QP Mode value unless otherwise stated AVG in column of Note ... If the QP Mode Measured value compliance with the QP Limits and lower than AVG Limits, the EUT shall be deemed to meet both QP & AVG Limits and then only QP Mode was measured, but AVG Mode didn't perform in this case, a "*" marked in AVG Mode column of Interference Voltage Measured.
- (2) Measuring frequency range from 150KHz to 30MHz.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 RADIATED EMISSION LIMITS (Frequency Range 9KHz -1000MHz)

In case the emission fall within the restricted band specified on 15.205(a) & RSS-247 5.5, then the 15.209(a) & RSS-Gen limit in the table below has to be followed.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009~0.490	2400/F(KHz)	300	
0.490~1.705	24000/F(KHz)	30	
1.705~30.0	30	30	
30~88	100	3	
88~216	150	3	
216~960	200	3	
960~1000	500	3	

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

Frequency (MHz)	Band edge at 3m (dBµV/m)		Harmonic at 1.5m (dBµV/m)	
	Peak	Average	Peak	Average
Above 1000	74	54	80 (Note 5)	60(Note 5)

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C/RSS-247.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value
- (5)

$$FS_{\text{limit}} = FS_{\text{max}} - 20\log\left(\frac{d_{\text{limit}}}{d_{\text{measure}}}\right)$$

20log d limit/d measure=20log 3/1.5=6dB. LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

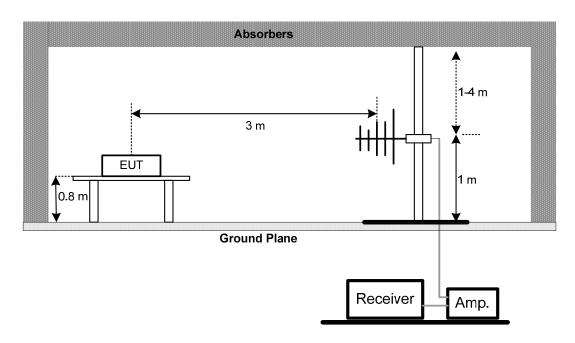
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RBW / VBW	
(emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

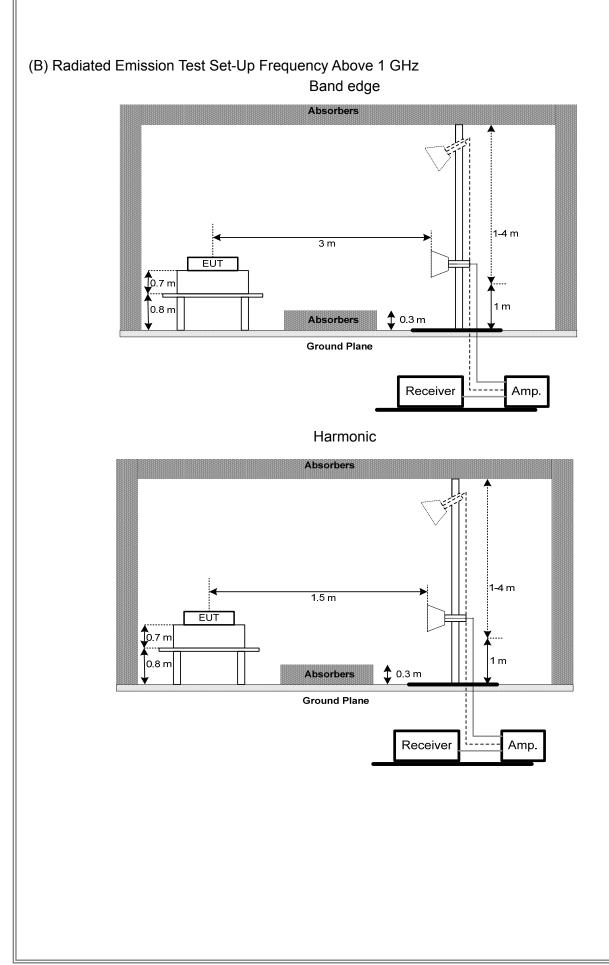
Spectrum Receiver Parameter	Setting	
Attenuation	Auto	
Start ~ Stop Frequency	9KHz ~90KHz for PK/AVG detector	
Start ~ Stop Frequency	90KHz ~110KHz for QP detector	
Start ~ Stop Frequency	110KHz ~490KHz for PK/AVG detector	
Start ~ Stop Frequency	490KHz ~30MHz for QP detector	
Start ~ Stop Frequency	ncy 30MHz~1000MHz for QP detector	

4.2.2 TEST PROCEDURE

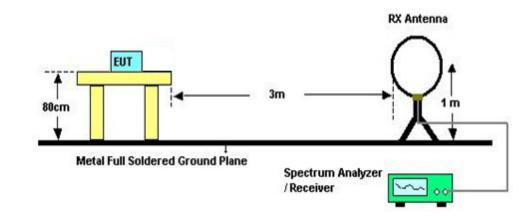
- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1GHz)
- b. The measuring distance of 3 m or 1.5m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.2.3 DEVIATION FROM TEST STANDARD


No deviation


4.2.4 TEST SETUP

(A) Radiated Emission Test Set-Up Frequency Below 1 GHz



Report No.:BTL-FICP-1-1612074

(C) For Radiated Emissions Below 30MHz

4.2.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

4.2.6 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

4.2.7 TEST RESULTS (9KHZ TO 30MHZ)

Please refer to the Attachment B

Remark:

- (1) The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.
- (2) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (3) Limit line = specific limits (dBuV) + distance extrapolation factor.

4.2.8 TEST RESULTS (30MHZ TO 1000 MHZ)

Please refer to the Attachment C.

4.2.9 TEST RESULTS (ABOVE 1000 MHZ)

Please refer to the Attachment D.

Remark:

(1) No limit: This is fundamental signal, the judgment is not applicable. For fundamental signal judgment was referred to Peak output test.

5. NUMBER OF HOPPING CHANNEL

5.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-247			
Section Test Item Frequency Range (MHz) Result			
15.247(a)(1)(iii) RSS-247 5.1 (4)	Number of Hopping Channel	2400-2483.5	PASS

Spectrum Parameters	Setting	
Attenuation	Auto	
Span Frequency	> Operating Frequency Range	
RBW	100 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

5.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW=100KHz, VBW=100KHz, Sweep time = Auto.

5.1.2 DEVIATION FROM STANDARD

No deviation.

5.1.3 TEST SETUP

EUT	SPECTRUM	
	ANALYZER	

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

5.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

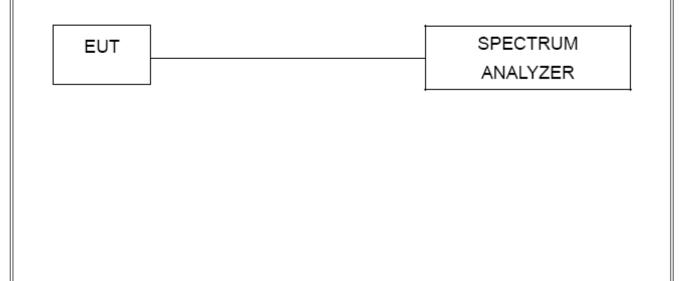
5.1.6 TEST RESULTS

Please refer to the Attachment E

6. AVERAGE TIME OF OCCUPANCY

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-247				
Section Test Item Limit Frequency Range (MHz) Resu				
15.247(a)(1)(iii) RSS-247 5.1 (4)	Average Time of Occupancy	0.4sec	2400-2483.5	PASS


6.1.1 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer
- b. Set RBW of spectrum analyzer to 1MHz and VBW to 1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- \tilde{h} . Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- k. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

6.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

6.1.6 TEST RESULTS

Please refer to the Attachment F

7. HOPPING CHANNEL SEPARATION MEASUREMENT

7.1 APPLIED PROCEDURES / LIMIT

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 KHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

Spectrum Parameter	Setting	
Attenuation	Auto	
Span Frequency	> Measurement Bandwidth or Channel Separation	
RBW	30 KHz	
VBW	100 KHz	
Detector	Peak	
Trace	Max Hold	
Sweep Time	Auto	

7.1.1 TEST PROCEDURE

- a. The EUT must have its hopping function enabled
- b. Span = wide enough to capture the peaks of two adjacent channels Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span Video (or Average) Bandwidth (VBW) ≥ RBW Sweep = Auto Detector function = Peak Trace = Max Hold

7.1.2 DEVIATION FROM STANDARD

No deviation.

7.1.3 TEST SETUP

Spectrum Analayzer

EUT

7.1.4 EUT TEST CONDITIONS Temperature: 25°C

Relative Humidity: 55% Test Voltage: DC 3.7V

7.1.5 TEST RESULTS

Please refer to the Attachment G

8. BANDWIDTH TEST

8.1 APPLIED PROCEDURES

FCC Part15 (15.247), Subpart C/ RSS-GEN and RSS-247				
Section Test Item Frequency Range (MHz)				
15.247(a)(2) RSS-GEN 6.6 RSS-247 5.1 (1)	Bandwidth	2400-2483.5		

Spectrum Parameter	Setting		
Attenuation	Auto		
Span Frequency	> Measurement Bandwidth or Channel Separation		
RBW	30 KHz (20dB Bandwidth) / 30 KHz (Channel Separation)		
VBW	100 KHz (20dB Bandwidth) / 100 KHz (Channel Separation)		
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

8.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 30KHz, VBW=100KHz, Sweep Time = Auto.

8.1.2 DEVIATION FROM STANDARD

No deviation.

8.1.3 TEST SETUP

8.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

8.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

8.1.6 TEST RESULTS

Please refer to the Attachment H

9. PEAK OUTPUT POWER TEST

9.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C/ RSS-247				
Section Test Item Limit			Frequency Range (MHz)	Result
15.247(b)(1) RSS-247 5.4 (2)	Peak Output Power	1 Watt or 30dBm (hopping channel >75) 0.125Watt or 21dBm (hopping channel <75	2400-2483.5	PASS

9.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 1MHz/3MHz, VBW= 1MHz/3MHz, Sweep time = Auto.

9.1.2 DEVIATION FROM STANDARD

No deviation.

9.1.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

9.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

9.1.6 TEST RESULTS

Please refer to the Attachment I

10. ANTENNA CONDUCTED SPURIOUS EMISSION

10.1 APPLIED PROCEDURES / LIMIT

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits.

10.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,
- b. Spectrum Setting: RBW= 100KHz, VBW=100KHz, Sweep time = Auto.
- c. Offset=antenna gain+cable loss

10.1.2 DEVIATION FROM STANDARD

No deviation.

10.1.3 TEST SETUP

10.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 4.1.5 unless otherwise a special operating condition is specified in the follows during the testing.

10.1.5 EUT TEST CONDITIONS

Temperature: 25°C Relative Humidity: 55% Test Voltage: DC 3.7V

10.1.6 TEST RESULTS

Please refer to the Attachment J

11. MEASUREMENT INSTRUMENTS LIST

	Conducted Emission Measurement						
Item	Kind of Equipment	nd of Equipment Manufacturer		Serial No.	Calibrated until		
1	LISN	EMCO	3816/2	0052765	Mar. 27, 2017		
2	LISN	R&S	ENV216	101447	Mar. 27, 2017		
3	Test Cable	emci	RG223(9KHz-30 MHz)	C_17	Mar. 10, 2017		
4	EMI Test Receiver	R&S	ESCI	100382	Mar. 27, 2017		
5	50Ω Terminator	SHX	TF2-3G-A	08122901	Mar. 27, 2017		
6 Measurement Farad ,		EZ-EMC Ver.NB-03A1-01	N/A	N/A			

	Radiated Emission Measurement									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until					
1	Preamplifier	EMCI	012645B	980267	Mar. 01, 2017					
2	Preamplifier	EMCI	EMC02325	980217	Dec. 29, 2017					
3	Test Cable	EMCI	EMC104-SM-S M-8000	8m	Jan. 04, 2018					
4	Test Cable	st Cable EMCI		150207	Jan. 04, 2018					
5	5 Test Cable EMCI		EEMC104-SM-S M-3000	151205	Jan. 04, 2018					
6	MXE EMI Receiver	MXE EMI Receiver Agilent		MY55420127	Jan. 09, 2018					
7	Signal Analyzer	Agilent	N9010A MY52220990		Feb. 23, 2017					
8	Loop Ant	EMCO	6502	42960	Nov. 24, 2017					
9	Horm Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	Mar. 01, 2017					
10) Trilog-Broadband Schwarzbeck		VULB 9168	9168-548	Jan. 16, 2018					
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0623	Jan. 16, 2018					
12	Horm Ant	SCHWARZBECK	BBHA 9170	187	May 12,2017					

Number of Hopping Channel								
	Item	Kind of Equipment	Manufacturer Type No.		Serial No.	Calibrated until		
	1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017		

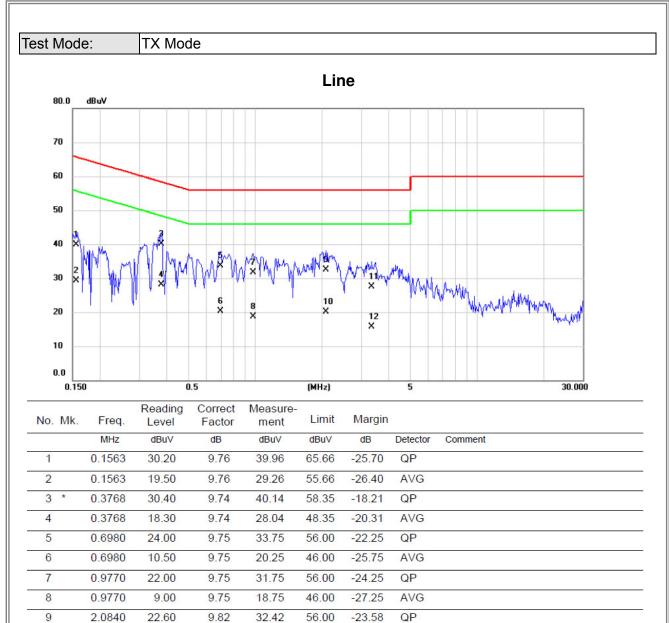
Average Time of Occupancy								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1 Spectrum Analyz		Agilent	N9020A	MY51160196	Jul. 27, 2017			

Hopping Channel Separation Measurement								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017			

Bandwidth								
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
	2	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017		

Peak Output Power								
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until			
2	2 Spectrum Analyzer Agilent		N9020A	MY51160196	Jul. 27, 2017			

Antenna Conducted Spurious Emission								
	Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until		
ſ	1	Spectrum Analyzer	Agilent	N9020A	MY51160196	Jul. 27, 2017		


Remark: "N/A" denotes no model name, serial no. or calibration specified. All calibration period of equipment list is one year.

ATTACHMENT A - CONDUCTED EMISSION

10

11

12

2.0840

3.3530

3.3530

10.30

17.70

5.80

9.82

9.85

9.85

20.12

27.55

15.65

46.00

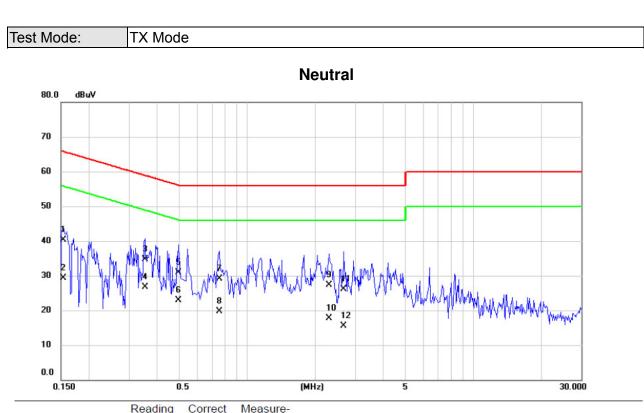
56.00

46.00

-25.88

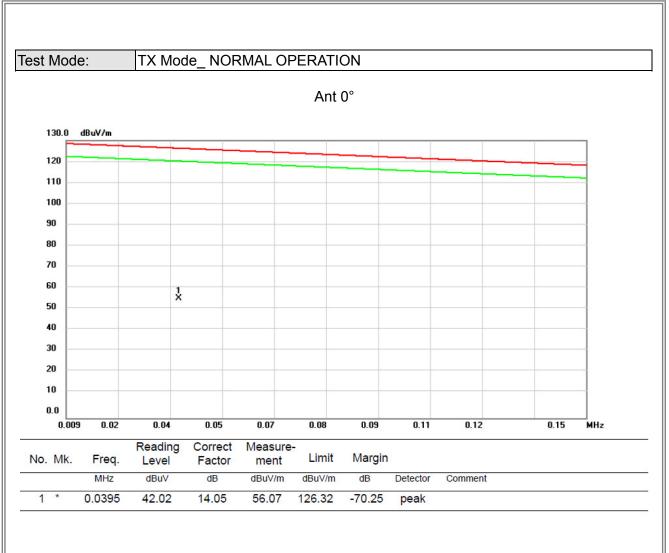
-28.45

-30.35

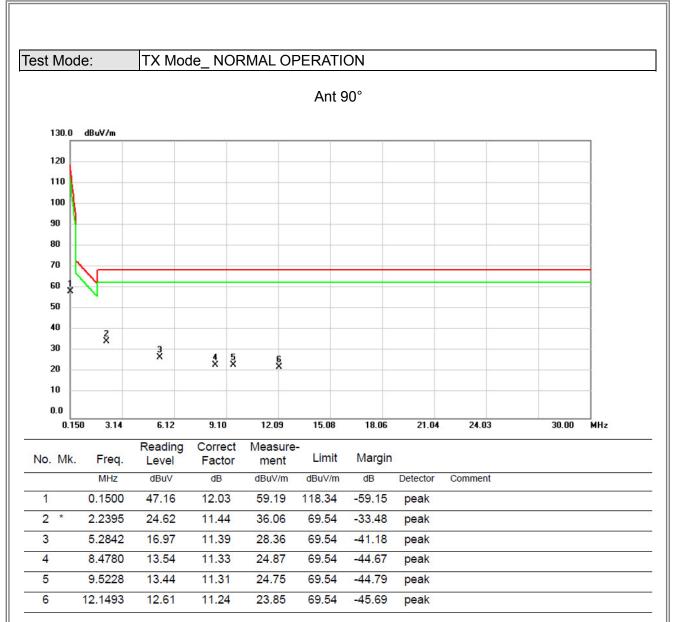

AVG

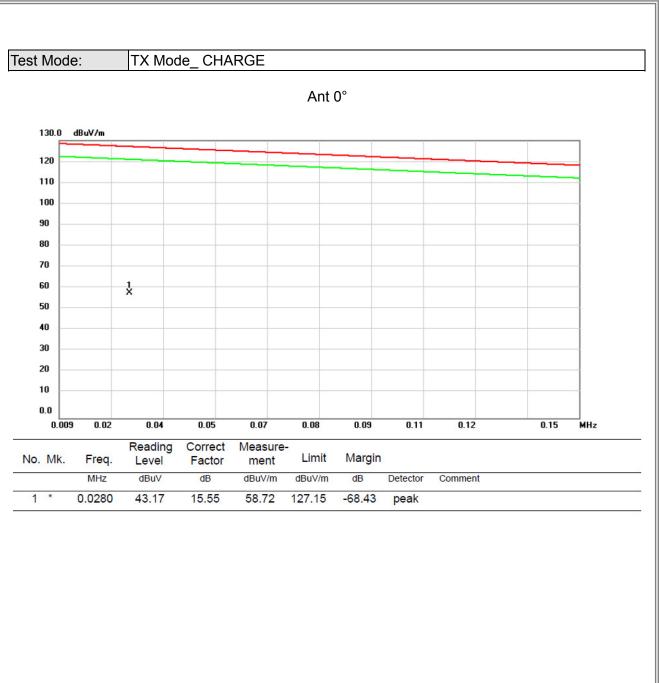
QP

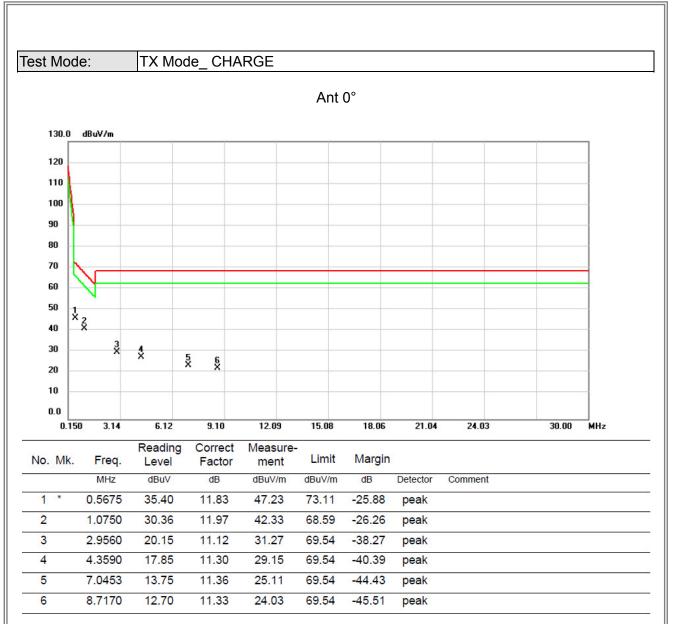
AVG

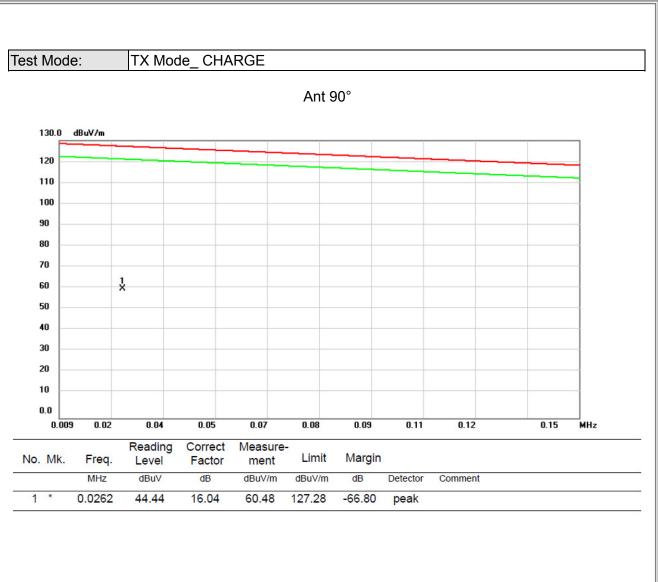

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1535	30.60	9.68	40.28	65.81	-25.53	QP	
2		0.1535	19.60	9.68	29.28	55.81	-26.53	AVG	
3		0.3530	25.10	9.68	34.78	58.89	-24.11	QP	
4	*	0.3530	17.10	9.68	26.78	48.89	-22.11	AVG	
5		0.4965	21.20	9.69	30.89	56.06	-25.17	QP	
6		0.4965	13.20	9.69	22.89	46.06	-23.17	AVG	
7		0.7520	19.50	9.70	29.20	56.00	-26.80	QP	
8		0.7520	10.10	9.70	19.80	46.00	-26.20	AVG	
9		2.3000	17.60	9.77	27.37	56.00	-28.63	QP	
10		2.3000	8.00	9.77	17.77	46.00	-28.23	AVG	
11		2.6780	16.30	9.78	26.08	56.00	-29.92	QP	
12		2.6780	5.70	9.78	15.48	46.00	-30.52	AVG	

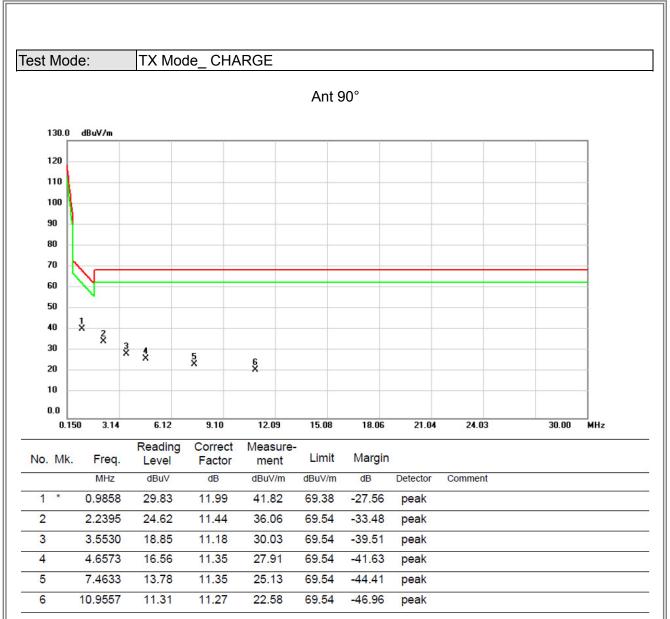
ATTACHMENT B - RADIATED EMISSION (9KHZ-30MHZ)

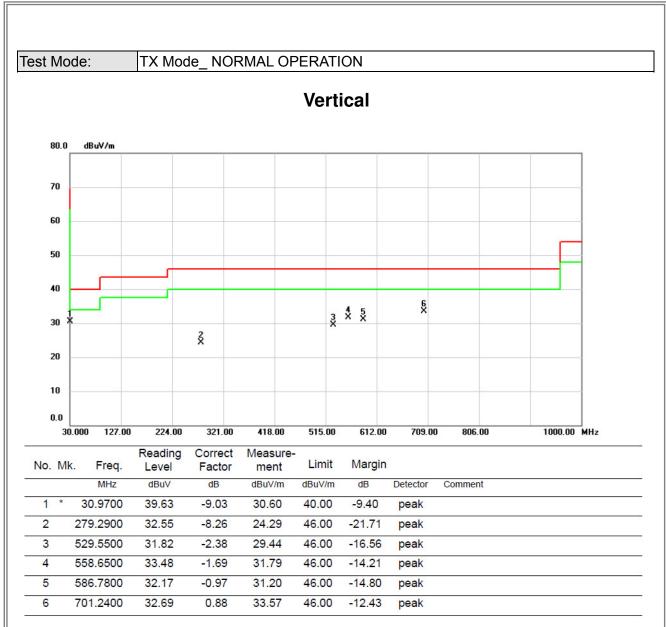












ATTACHMENT C - RADIATED EMISSION (30MHZ TO 1000MHZ)

3

4

5

6

96.9300

138.6400

216.2400

240.4900

34.27

31.39

31.84

31.09

-13.14

-8.98

-11.13

-9.68

21.13

22.41

20.71

21.41

43.50

43.50

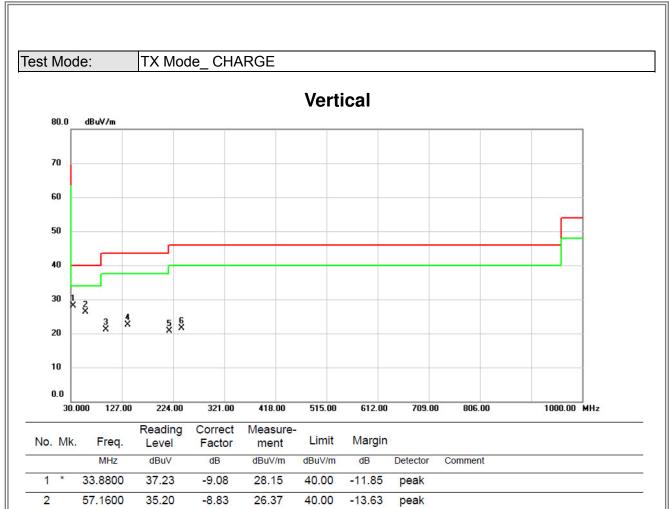
46.00

46.00

-22.37

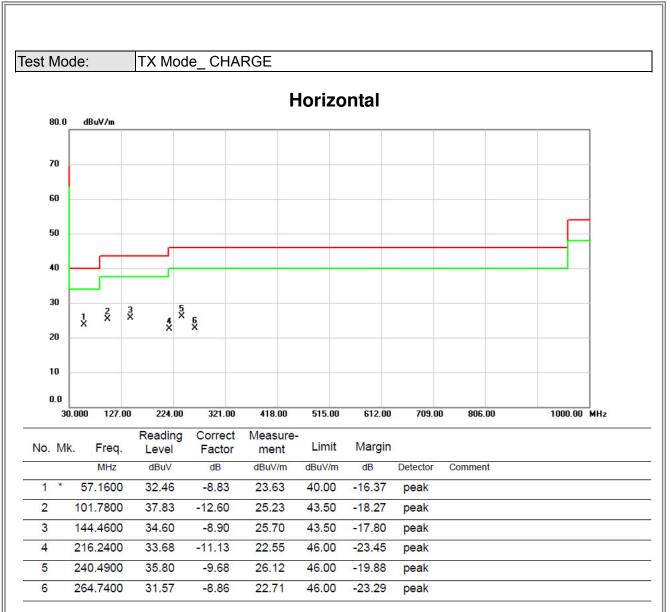
-21.09

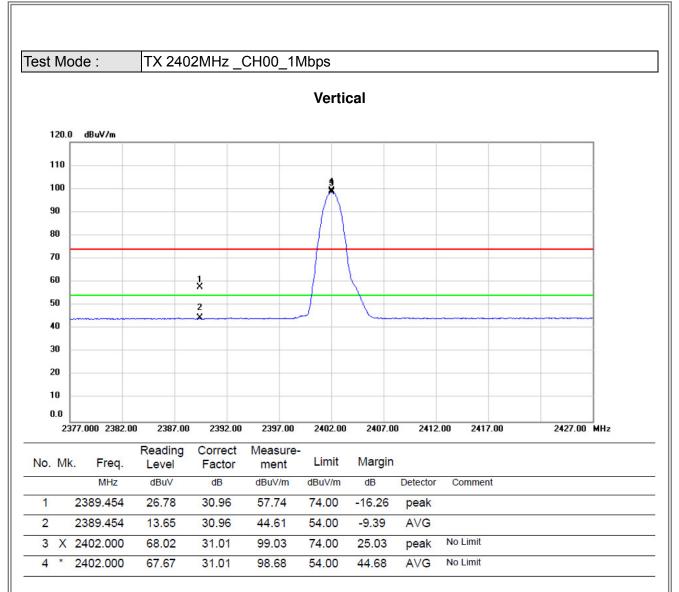
-25.29


-24.59

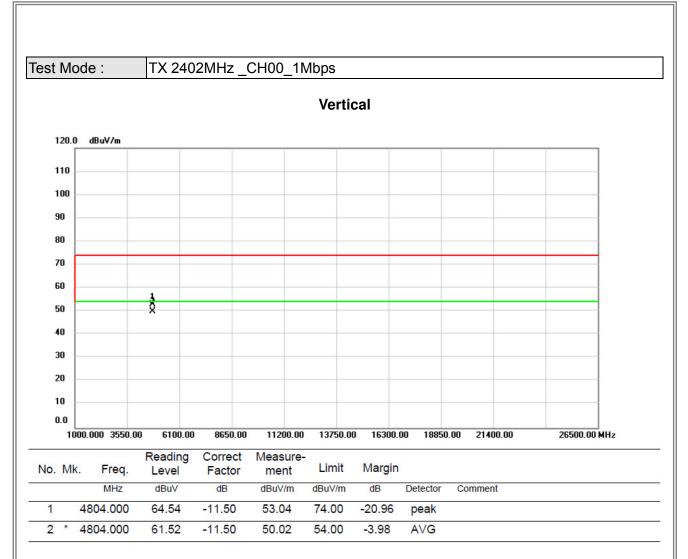
peak

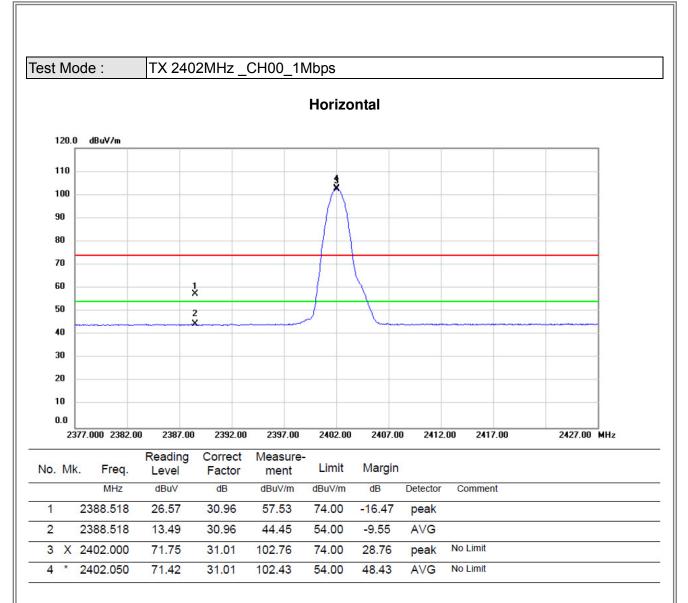
peak

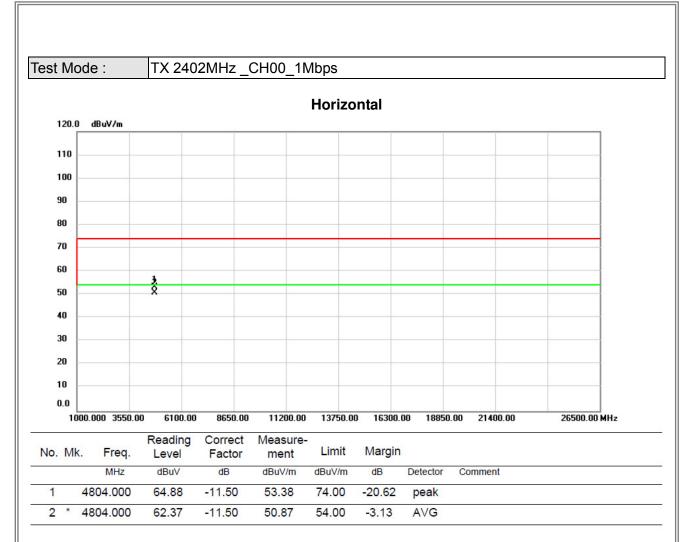

peak peak

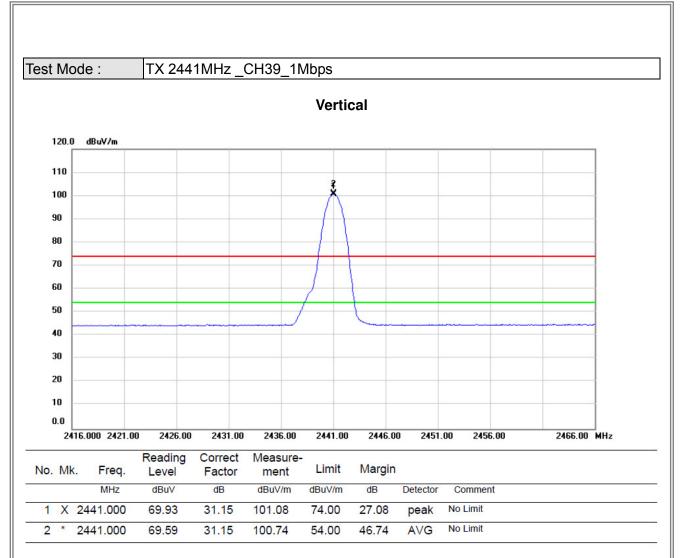


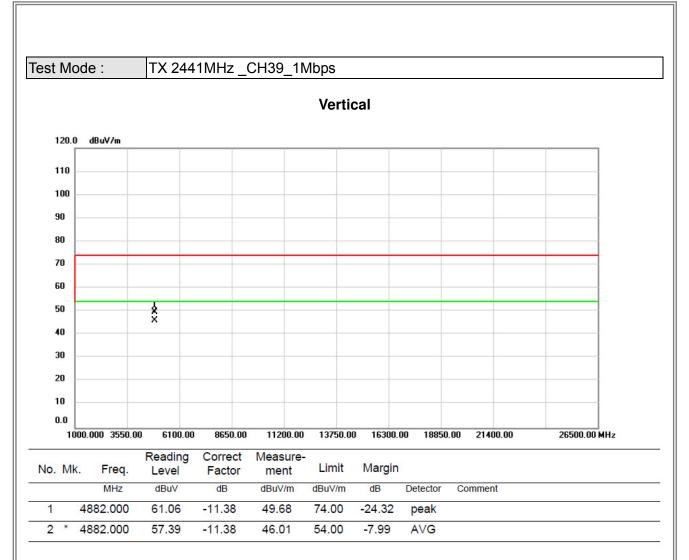
ATTACHMENT D - RADIATED EMISSION (ABOVE 1000MHZ)

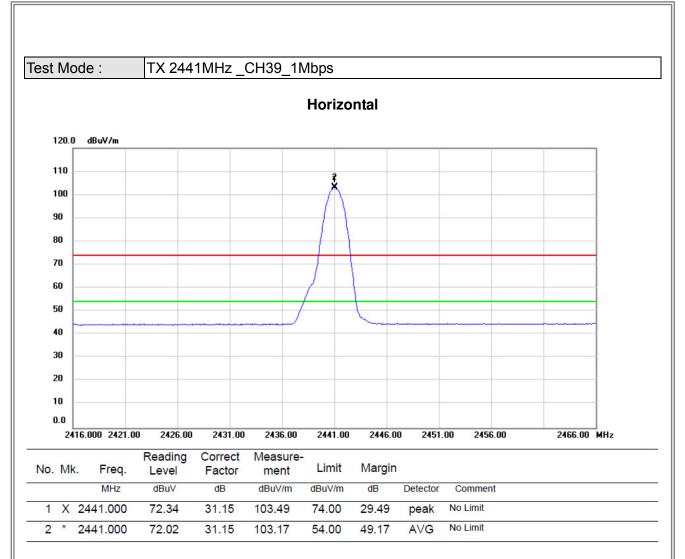


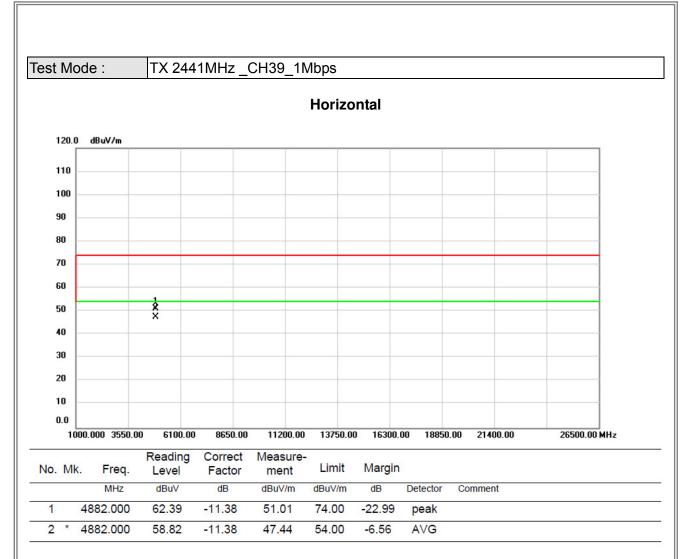


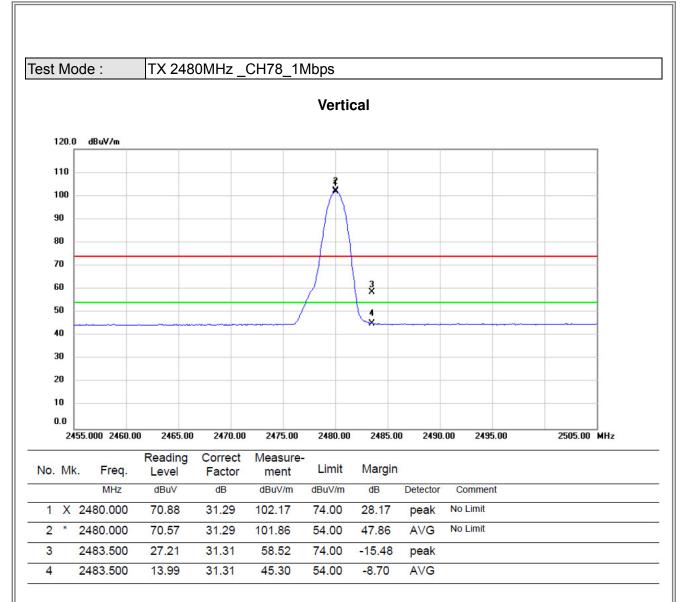


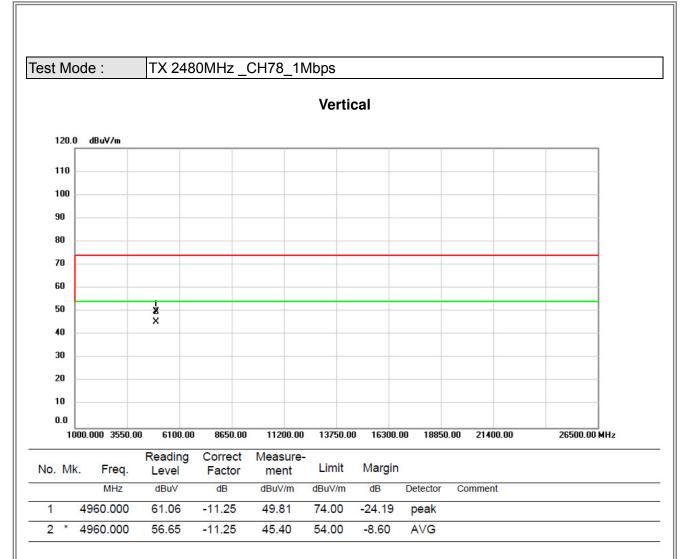


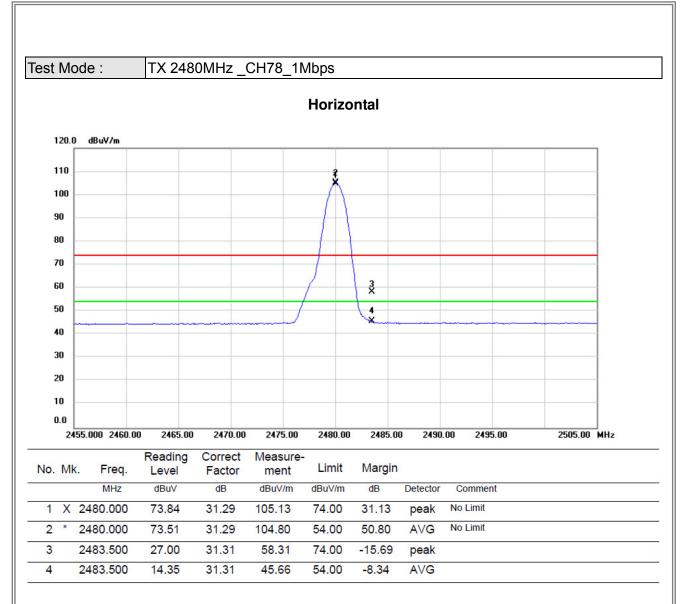


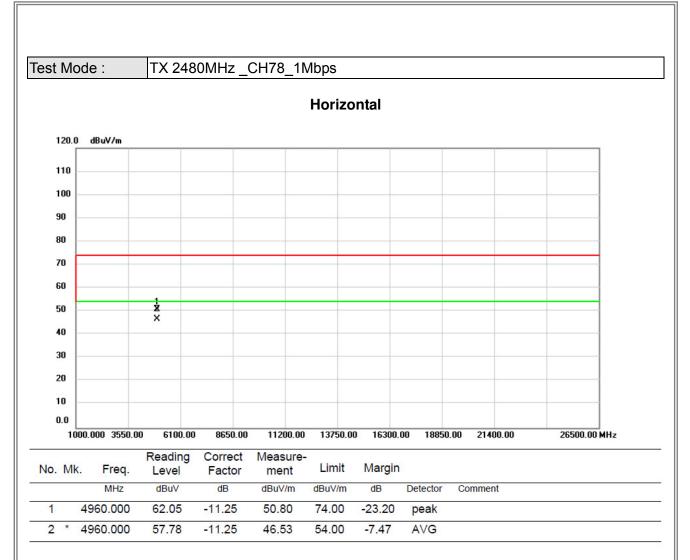


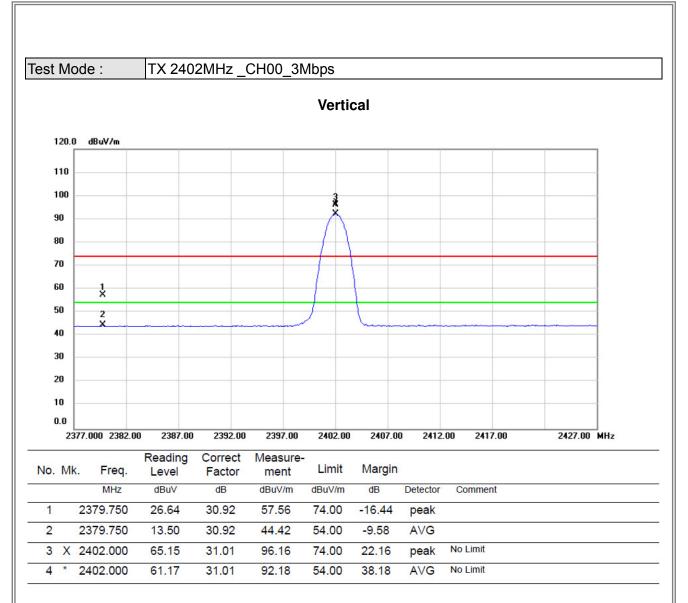


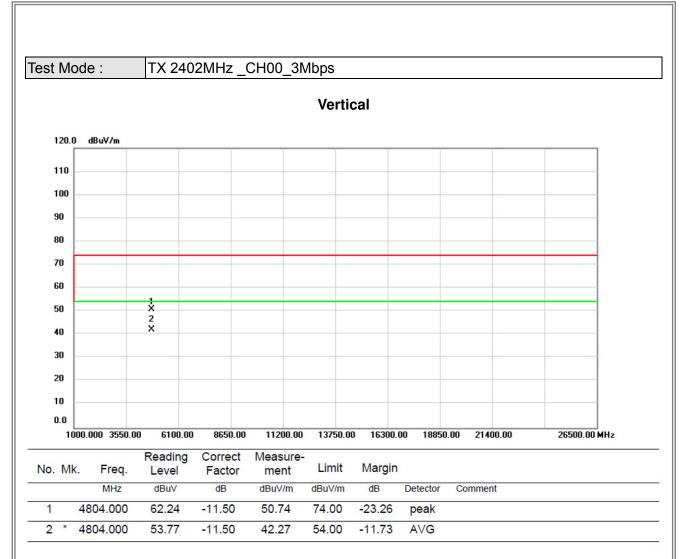


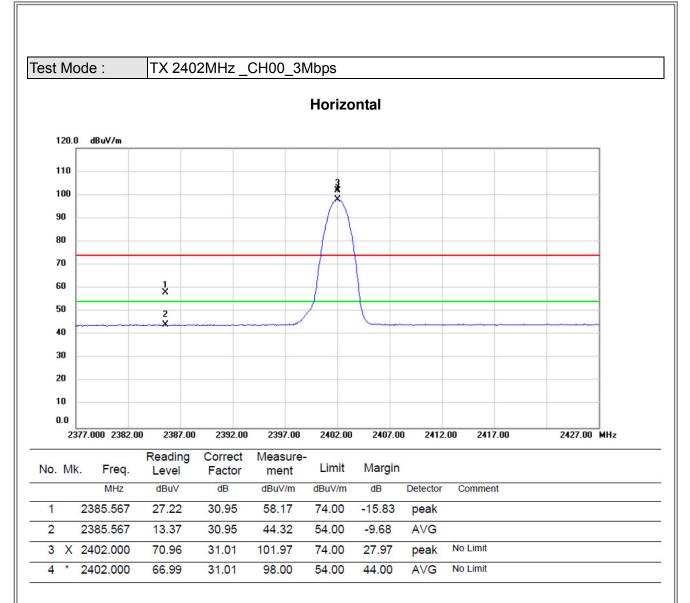


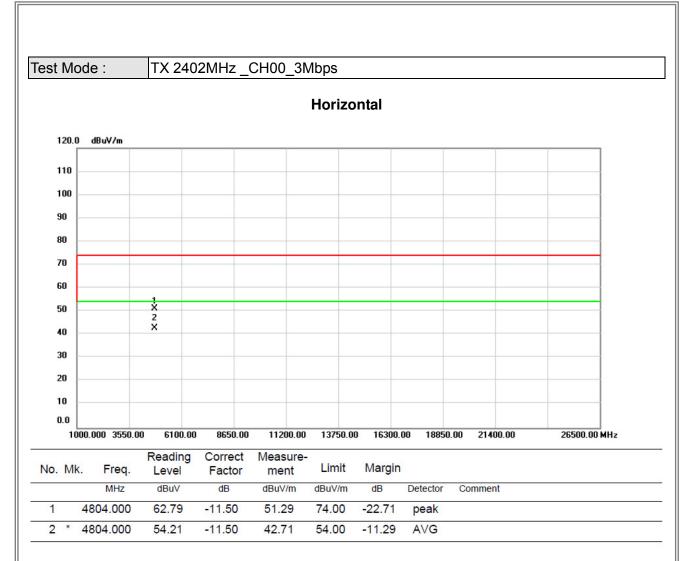


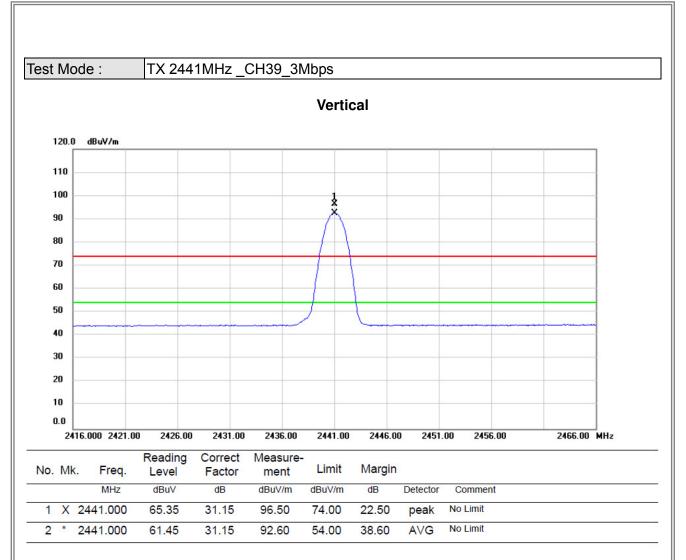


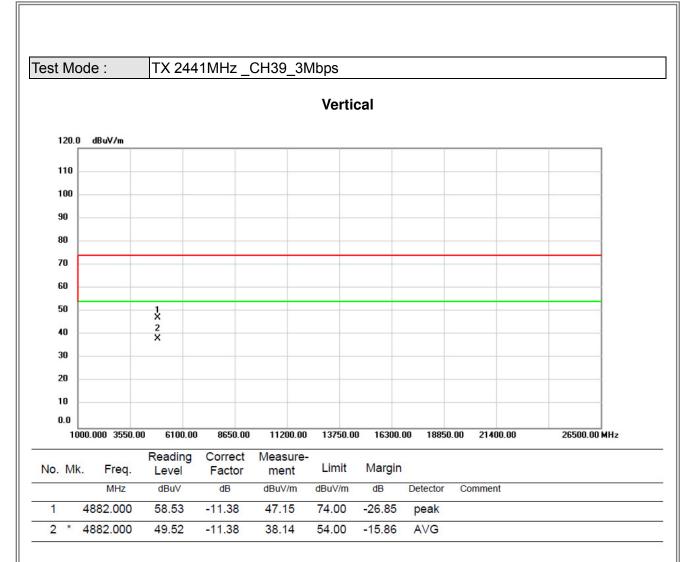


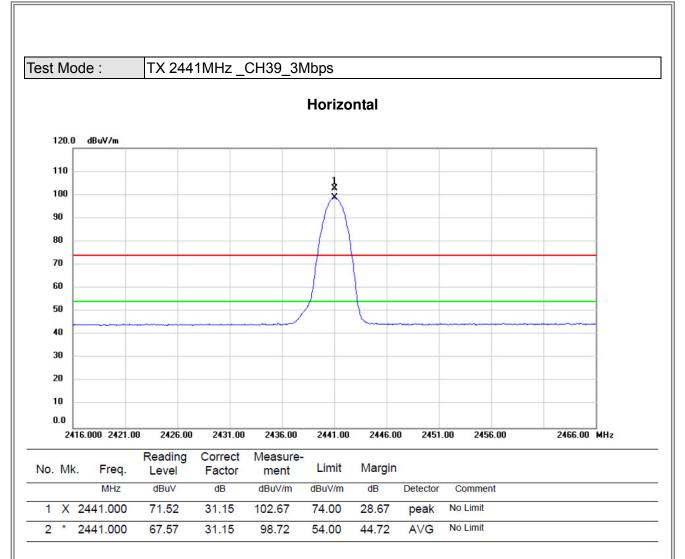


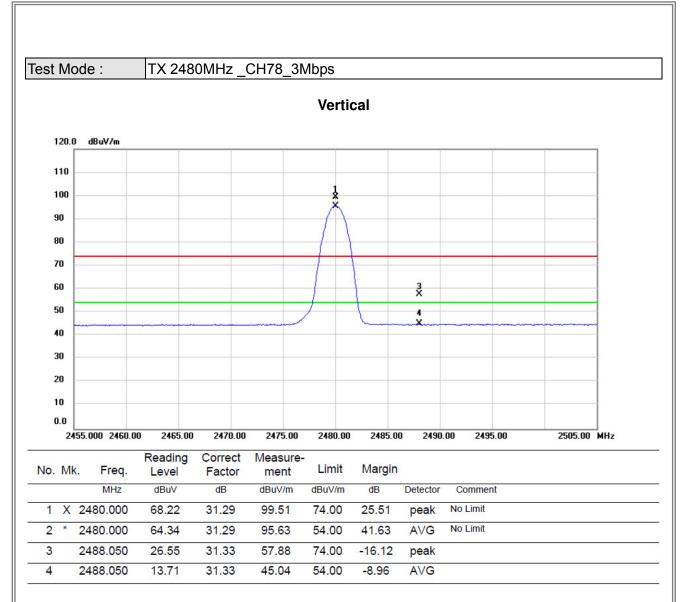


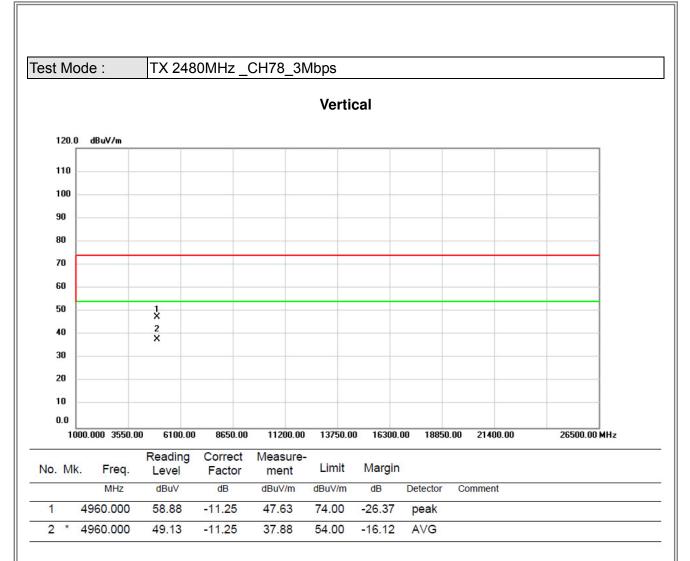


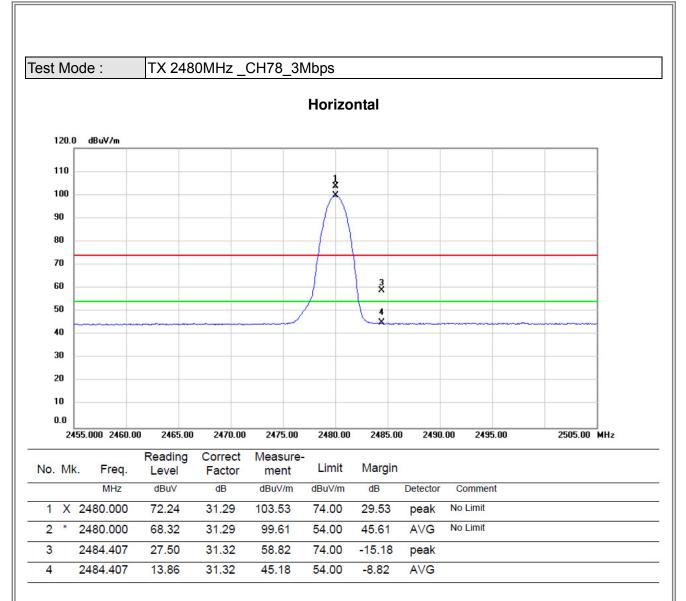


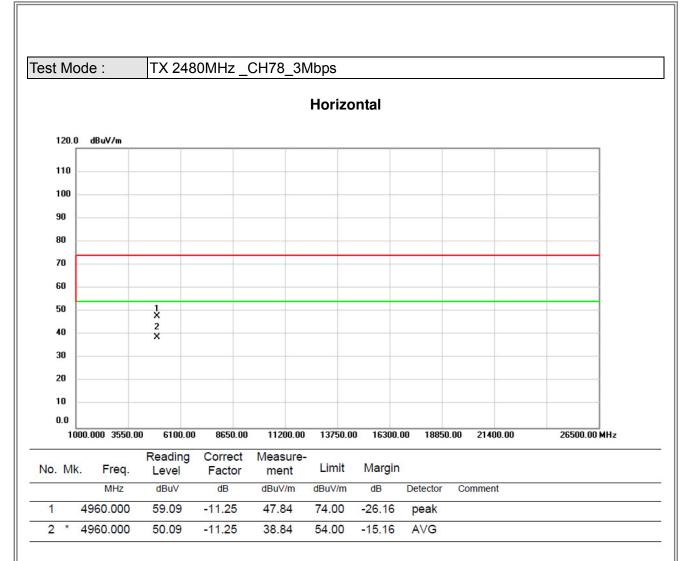


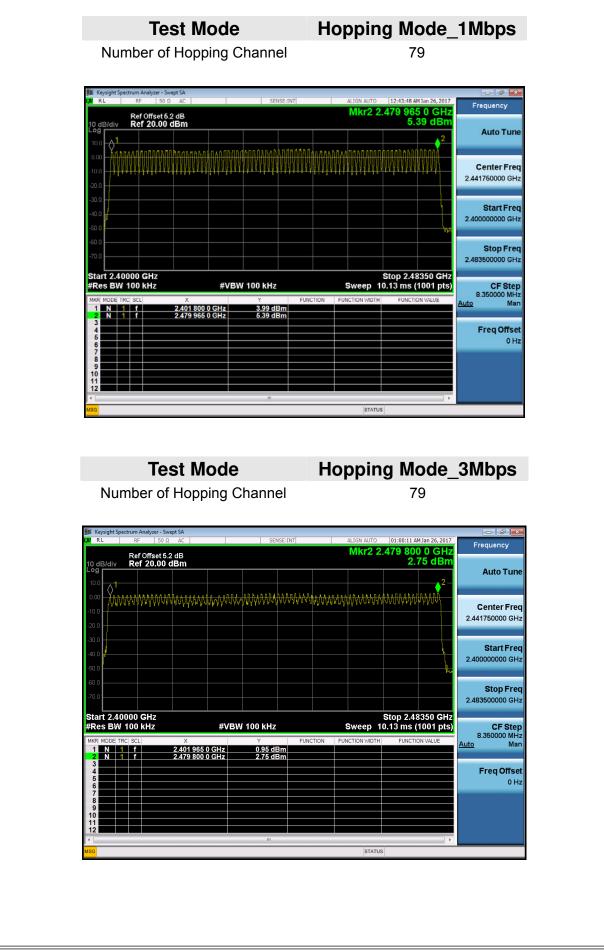






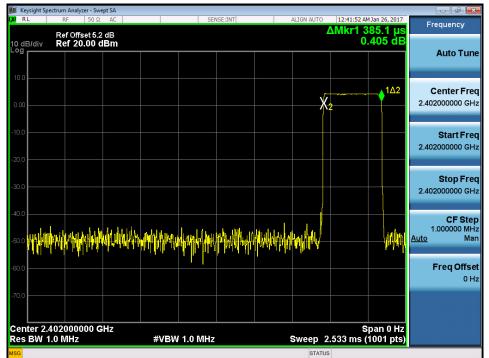






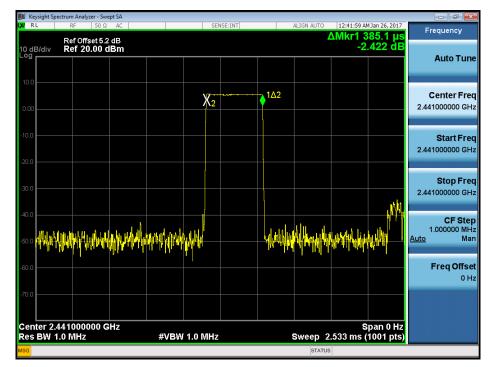
ATTACHMENT E - NUMBER OF HOPPING CHANNEL

ATTACHMENT F - AVERAGE TIME OF OCCUPANCY

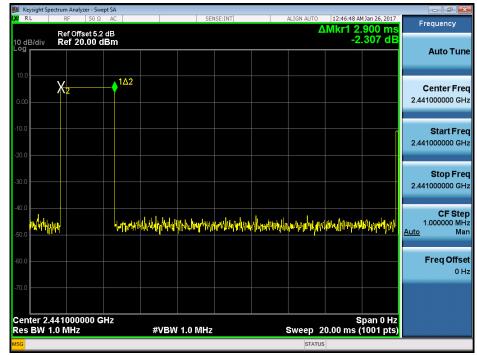


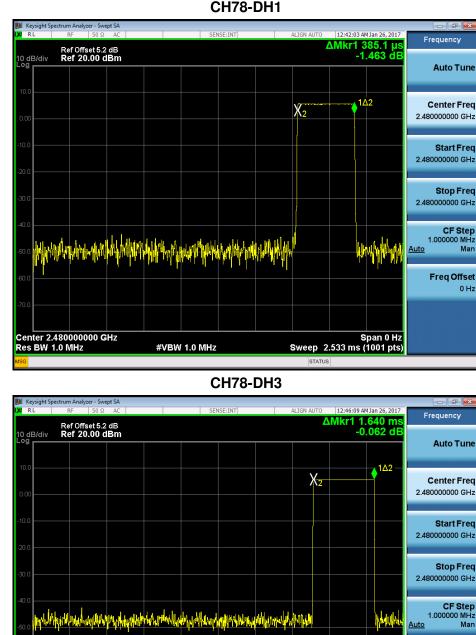
Test Mode :	TX Mode_1Mbps				
Data Packet	Frequency (MHz)	Pulse Duration (ms)	Dwell Time (s)	Limits (s)	Test Result
DH5	2402	2.9000	0.3093	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.3851	0.1232	0.4000	Pass
DH5	2441	2.9000	0.3093	0.4000	Pass
DH3	2441	1.6400	0.2624	0.4000	Pass
DH1	2441	0.3851	0.1232	0.4000	Pass
DH5	2480	2.9000	0.3093	0.4000	Pass
DH3	2480	1.6400	0.2624	0.4000	Pass
DH1	2480	0.3851	0.1232	0.4000	Pass

CH00-DH3


		m Analyzer - Sw									
LXIRL		RF 50 Ω			SEI	NSE:INT		ALIGN AUTO		MJan 26, 2017	Frequency
10 dB/c Log	R div R	ef Offset 5.2 ef 20.00 c	dB IBM						-0	.044 dB	Auto Tune
40.0											Auto Tune
10.0							X . 2		1∆2		Center Free 2.402000000 GH:
-10.0 —											Start Free 2.402000000 GH
-20.0 -											Stop Fre 2.402000000 GH
-40.0	inuthal pot	hymyydd yw yw	whitenwhere	rul ulul	Mak, Minyaday	4.e4H=Kuidtylv	W.W		h _a ntwikin	Melon yr M	CF St e 1.000000 MH <u>Auto</u> Ma
-60.0											Freq Offse 0 H
-70.0											
	er 2.402 SW 1.0 I	000000 G MHz	Hz	#VBW	1.0 MHz			Sweep 1	s 10.00 ms	pan 0 Hz (1001 pts)	
MSG								STATU			

CH39-DH1





CH39-DH5

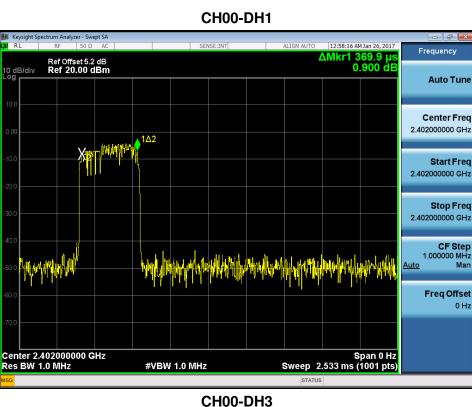
CH78-DH1

Center 2.480000000 GHz Res BW 1.0 MHz

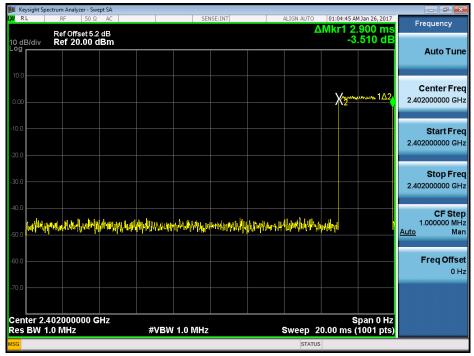
#VBW 1.0 MHz

Freq Offset 0 Hz

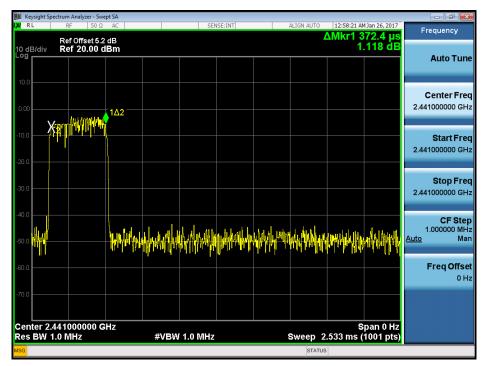
Span 0 Hz Sweep 10.00 ms (1001 pts)

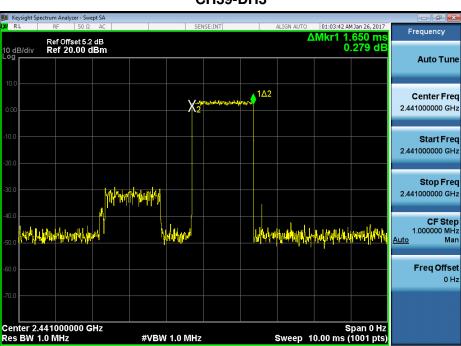


Test Mode :	TX Mode_3Mbps				
	· - ·				
Data Daakat	Frequency	Pulse	Dwell	Limito(a)	Teet Desult
Data Packet	Frequency	Duration(ms)	Time(s)	Limits(s)	Test Result
DH5	2402	2.9000	0.3093	0.4000	Pass
DH3	2402	1.6400	0.2624	0.4000	Pass
DH1	2402	0.3699	0.1184	0.4000	Pass
DH5	2441	2.9000	0.3093	0.4000	Pass
DH3	2441	1.6500	0.2640	0.4000	Pass
DH1	2441	0.3724	0.1192	0.4000	Pass
DH5	2480	2.9000	0.3093	0.4000	Pass
DH3	2480	1.6500	0.2640	0.4000	Pass
DH1	2480	0.3977	0.1273	0.4000	Pass

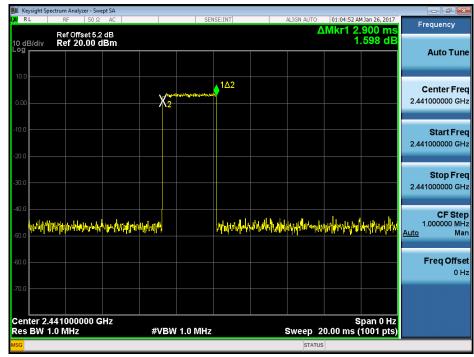


CH00-DH3


	trum Analyzer - Swe	and the second								
LXU RL	RF 50 Ω	AC		SEN	ISE:INT		ALIGN AUTO		1 Jan 26, 2017	Frequency
10 dB/div Log	Ref Offset 5.2 Ref 20.00 d	dB IBm						-0	640 ms .024 dB	Auto Tune
10.0										
0.00						>	K - germanikanik		2	Center Freq 2.402000000 GHz
-10.0										Start Freq 2.402000000 GHz
-30.0										Stop Freq 2.402000000 GHz
-40.0 -50.0	hunder	W.W.MM	un de la compañsia de la compañs La compañsia de la compañsia de	hntuurphi	myyhh	nhalla an		MM	nto production of the second	CF Step 1.000000 MHz <u>Auto</u> Man
-60.0										Freq Offset 0 Hz
	02000000 G	iHz						s	pan 0 Hz	
Res BW 1.			#VBW	1.0 MHz			Sweep 1	0.00 ms (1001 pts)	
MSG							STATUS	5		



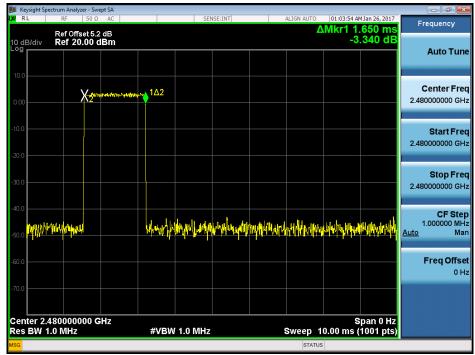
CH39-DH1

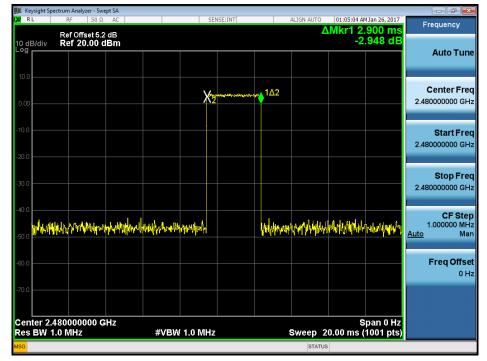


CH39-DH3


CH39-DH5

STATUS




CH78-DH3

CH78-DH5

ATTACHMENT G - HOPPING CHANNEL SEPARATION MEASUREMENT

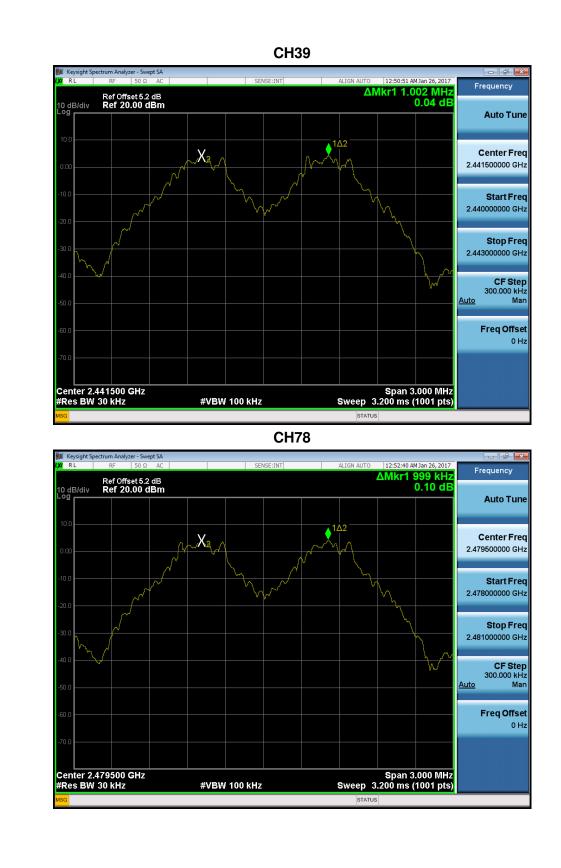
Test Mode : H	lopping on _1Mbps		
Frequency	Channel Separation	2/3 of 20dB Bandwidth	Toot Dooult
(MHz)	(MHz)	(MHz)	Test Result
2402	0.996	0.634	Pass
2441	1.002	0.648	Pass
2480	0.999	0.633	Pass
	c	CH00	
💓 Keysight Spect	trum Analyzer - Swept SA RF 50 Ω AC SENSE:IN		Frequency
10 dB/div	Ref Offset 5.2 dB Ref 20.00 dBm	ΔMkr1 996 kHz 0.02 dB	
Log			Auto Tune
10.0	v		Center Freq
0.00	X_2		2.402500000 GHz
-10.0			Start Freq 2.401000000 GHz

Stop Freq 2.404000000 GHz

> **CF Step** 300.000 kHz Man

Freq Offset 0 Hz

Auto


Span 3.000 MHz Sweep 3.200 ms (1001 pts)

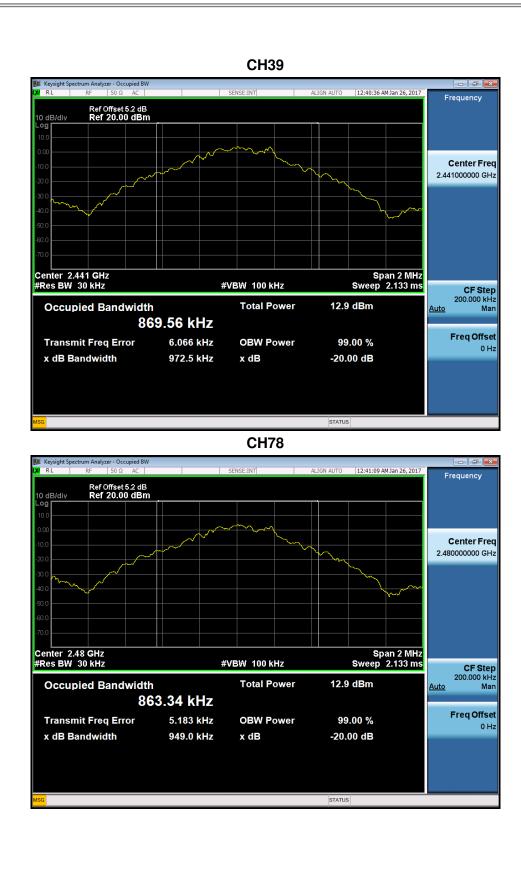
STATUS

Center 2.402500 GHz #Res BW 30 kHz

#VBW 100 kHz

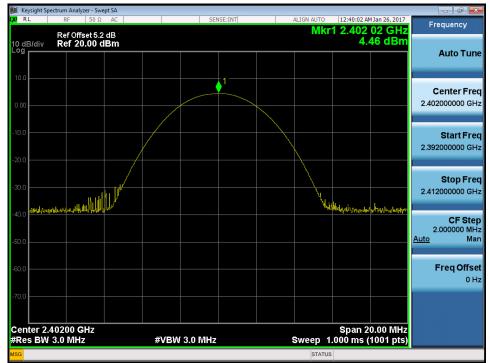
Frequency	Channel Separation	2/3 of 20dB Bandwidth	
(MHz)	(MHz)	(MHz)	Test Result
2402	1.002	0.853	Pass
2441	1.002	0.851	Pass
2480	1.002	0.867	Pass
		100	

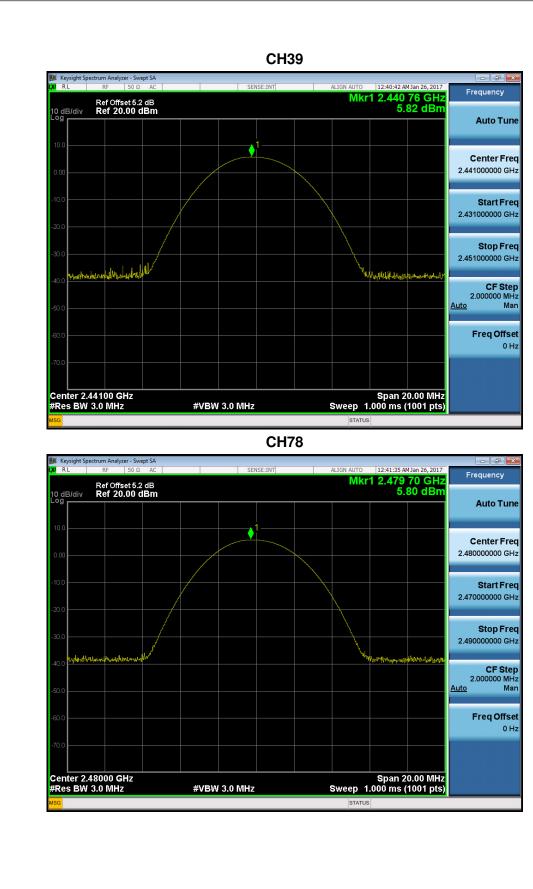
ATTACHMENT H - BANDWIDTH

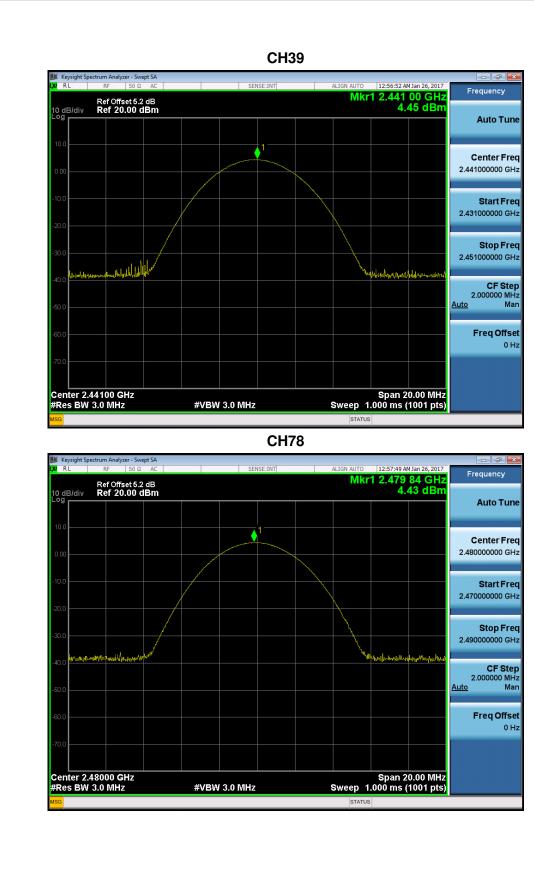


Test Mode	: 1	X Mode _1Mbps		
Frequ	ency	20dB Bandwidth	99% Occupied BW	Test Result
(MF	lz)	(MHz)	(MHz)	Test Result
240)2	0.951	0.871	Pass
244	1	0.973	0.870	Pass
248	30	0.949	0.863	Pass

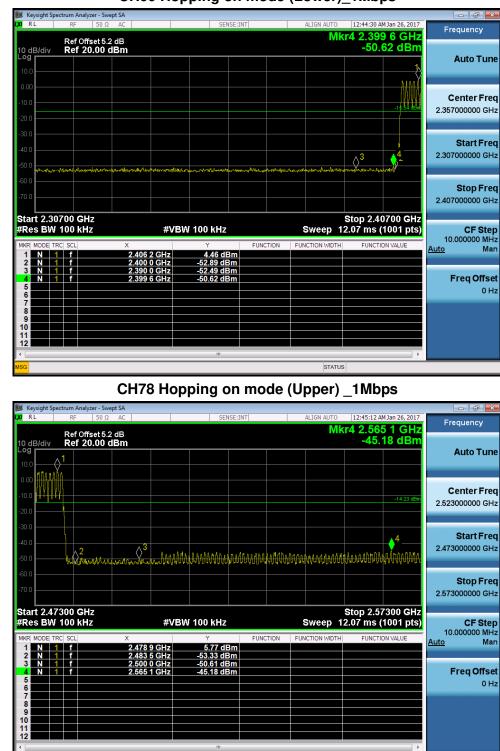
T (N A 1			
Test Mode :	TX Mode _3Mbps		
Frequency	20dB Bandwidth	99% Occupied BW	Test Desult
(MHz)	(MHz)	(MHz)	Test Result
2402	1.279	1.166	Pass
2441	1.277	1.169	Pass
2480	1.300	1.176	Pass


ATTACHMENT I - PEAK OUTPUT POWER


Test Mode :	TX Mode 1Mb	OS			
Frequency	Conducted Power	Conducted Power	Max. Limit	Max. Limit	Test Desult
(MHz)	(dBm)	(W)	(dBm)	(W)	Test Result
2402	4.46	0.0028	30.00	1.00	Pass
2441	5.82	0.0038	30.00	1.00	Pass
2480	5.80	0.0038	30.00	1.00	Pass


Test Mode :	TX Mode _3Mb	os			
Frequency	Conducted Power	Conducted Power	Max. Limit	Max. Limit	
(MHz)	(dBm)	(W)	(dBm)	(W)	Test Result
2402	3.08	0.0020	30.00	1.00	Pass
2441	4.45	0.0028	30.00	1.00	Pass
2480	4.43	0.0028	30.00	1.00	Pass

ATTACHMENT J - ANTENNA CONDUCTED SPURIOUS EMISSION



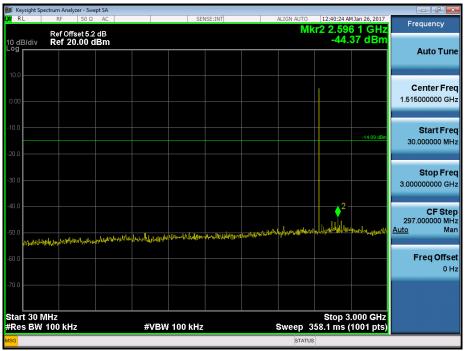
m Analyzer - Swept SA Keysight Spe RL 12:39:34 AM Jan 26, 2017 Frequency Mkr4 2.400 0 GHz -50.07 dBm Ref Offset 5.2 dB Ref 20.00 dBm 10 dB/div Loa Auto Tune 1 **Center Freq** 6.92 d 2.357000000 GHz Start Freq Ø 2.307000000 GHz _**⊘**³____ al and the second Stop Freq 2.407000000 GHz Start 2.30700 GHz #Res BW 100 kHz Stop 2.40700 GHz Sweep 12.07 ms (1001 pts) #VBW 100 kHz CF Step 10.000000 MHz EUNCTION Man Auto 4.08 dBm -50.07 dBm -53.60 dBm -50.07 dBm f f N 2.400 0 GH Freq Offset 0 Hz 11 12 STATUS CH78 (Upper) _1Mbps Keysight Sp RL - F 12:41:06 AM Jan 26, 2017 IGN AUTO Frequency Mkr4 2.558 0 GHz -48.80 dBm Ref Offset 5.2 dB Ref 20.00 dBm 10 dB/di[,] -og **r** Auto Tune **Center Freq** -14.79 2.523000000 GHz Start Freq ⁴ 2.473000000 GHz \Diamond^3 Stop Freq 2.573000000 GHz Start 2.47300 GHz #Res BW 100 kHz Stop 2.57300 GHz Sweep 12.07 ms (1001 pts) **CF Step** 10.000000 MHz <u>o</u> Man #VBW 100 kHz <u>Auto</u> 5.21 dBm -53.40 dBm -53.29 dBm -48.80 dBm Freq Offset 0 Hz STATUS

CH00 (Lower)_1Mbps

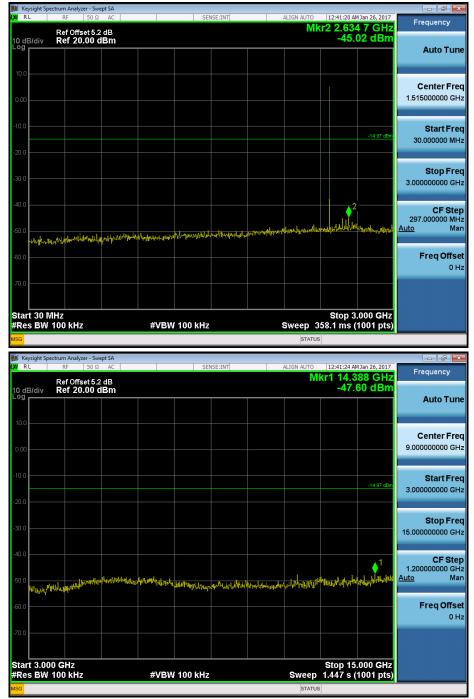


STATUS

CH00 Hopping on mode (Lower)_1Mbps

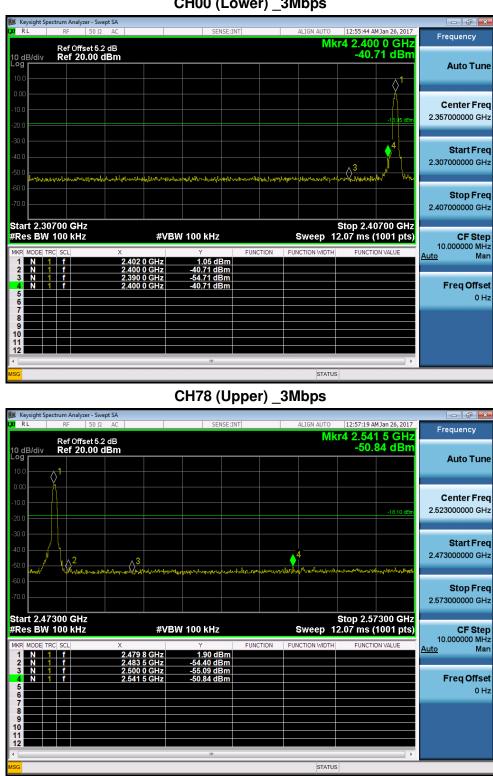


CH00 (10 Harmonic of the frequency) _1Mbps

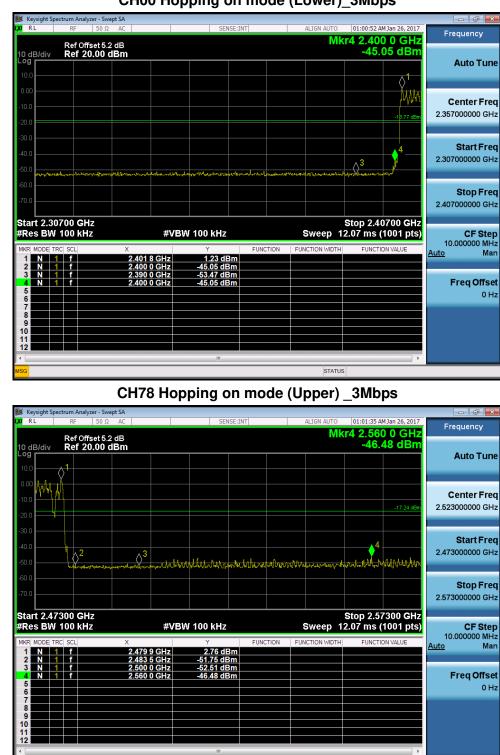

Keysight Sp	RF 50 Ω AC		ISE:INT	ALIGN AUTO	12:39:57 AM Jan 26, 2017	
0 dB/div	Ref Offset 5.2 dB Ref 20.00 dBm				kr1 24.890 GHz -35.43 dBm	Frequency
-og						Auto Tur
10.0 D.00 						Center Fr 20.750000000 GI
0.0					-16.77 dBm	Start Fr 15.00000000 G
30.0					↓1	Stop Fr 26.50000000 G
10.0 10.0 10.0	have not the terms of the	abharathraphanalaicheathat	WANNEL Larter front of the standing of the	Andrewall	personal result of statements and	CF Sto 1.150000000 G <u>Auto</u> M
0.0						Freq Offs 0
70.0						
	000 GHz 100 kHz	#VBW 100 kHz		Sweep	Stop 26.500 GHz 1.387 s (1001 pts)	
SG				STATUS		

CH39 (10 Harmonic of the frequency) _1Mbps

	ectrum Analyzer - Sw		1		ion murt			12:10:20 4		
N KL	RF 50 Ω			SEN	ISE:INT		ALIGN AUTO		MJan 26, 2017	Frequency
10 dB/div Log	Ref Offset 5.2 Ref 20.00 (dB dBm							50 dBm	
										Auto Tu
10.0										
										Center Fr
0.00										9.000000000 G
-10.0										Start Fr
									-14.89 dBm	3.000000000 G
-20.0										
										Stop Fr
-30.0										15.00000000 G
-40.0										
								1		CF St 1.200000000 G
-50.0		united and the	hill when when the day	u Million Arros	uto a la ba	de slateres tils	and the second second second	Manafaranti	monorphis	Auto M
Notion of the second second	wither with a state of the stat			and aldrey field	ika, mikaka anti	A NOT A DISTORT	Authors - Leaves	and the second		
-60.0										Freq Offs
										0
-70.0										
								Stop 15	.000 GHz	
Start 3.00										
#Res BW ^{/sg}		ept SA	#VBW	100 kHz			Sweep Status		(1001 pts)	
#Res BW ^{/sg}	100 kHz ectrum Analyzer - Sw RF 50 Ω	AC	#VBW		ISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) MJan 26, 2017	Fraguanay
#Res BW /ISG // Keysight Sp X/ RL	100 kHz ectrum Analyzer - Sw	AC 2 dB	#VBW		ISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts)	Frequency
#Res BW ^{ISG} I Keysight Sp	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		ISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) MJan 26, 2017 982 GHz	Fraguanay
#Res BW /ISG // Keysight Sp X/ RL	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		ISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) MJan 26, 2017 982 GHz	Frequency
#Res BW /SG // Keysight Sp // RL 10 dB/div	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		ISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) MJan 26, 2017 982 GHz	Frequency
#Res BW /SG // Keysight Sp // RL 10 dB/div	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		ISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) MJan 26, 2017 982 GHz	Frequency Auto Tu
#Res BW ISG Keysight Sp X/ RL 10 dB/div 10.0	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		NSE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) MJan 26, 2017 982 GHz	Frequency Auto Tu Center Fr
#Res BW ISG Keysight Sp X/ RL 10 dB/div 10.0	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		ASE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr
#Res BW Asa Keysight Sp Keysight Sp R T C C C C C C C C C C C C	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		KSE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) MJan 26, 2017 982 GHz	Frequency Auto Tu Center Fr 20.750000000 G
#Res BW ASG W Keysight Sp X RL 10 dB/div 0 00 0 00	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		KSE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr
#Res BW #sg	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		KISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr
#Res BW Asa Keysight Sp Keysight Sp R T C C C C C C C C C C C C	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW		KISE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G
#Res BW #sg	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC 2 dB	#VBW				ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.500000000 G
#Res BW 456 50 10 10 10 10 20 -20.0 -30.0	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2 Ref 20.00 d	AC			NSE:INT		STATUS ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr
#Res BW 456 50 10 10 10 10 20 -20.0 -30.0	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2	AC					ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.75000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G
#Res BW 456 10 20 10 00 00 00 000 -100 -2000 -3000 -4000 -4000	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2 Ref 20.00 d	AC					ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF St 1.150000000 G Auto M
#Res BW 456 10 20 10 00 00 00 000 -100 -2000 -3000 -4000 -4000	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2 Ref 20.00 d	AC					ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G L15000000 G Auto Tu CF St 1.15000000 G Auto Tu CF St L15000000 G Auto Tu Creating Auto Tu Auto Tu CF St Lato Market Auto Tu Treq Offs
#Res BW 456 10 10 10 10 20 10 -00 <	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2 Ref 20.00 d	AC					ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G CF St 1.150000000 G Auto M
#Res BW 456 10 10 10 10 20 10 -00 -00 -100 -200 -300 -40.0 -50.0 -50.0	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2 Ref 20.00 d	AC					ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G L15000000 G Auto Tu CF St 1.15000000 G Auto Tu CF St L15000000 G Auto Tu Creating Auto Tu Auto Tu CF St Lato Market Auto Tu Treq Offs
#Res BW 456 10 10 10 10 20 10 -00 <	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset 5.2 Ref 20.00 d	AC					ALIGN AUTO	12:40:34 A	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G L15000000 G Auto Tu CF St 1.15000000 G Auto Tu CF St L15000000 G Auto Tu Creating Auto Tu Auto Tu CF St Lato Market Auto Tu Treq Offs
#Res BW 456 10 10 10 10 10 -00 <	100 kHz ectrum Analyzer - Sw RF 50 Ω Ref Offset5.2 Ref 20.00 G	AC						12:40:34 A kr1 24.5 -35.	(1001 pts) Mian 26, 2017 182 GHz 87 dBm	Frequency Auto Tu Center Fr 20.750000000 G Start Fr 15.00000000 G Stop Fr 26.50000000 G L15000000 G Auto Tu CF St 1.15000000 G Auto Tu CF St L15000000 G Auto Tu Creating Auto Tu Auto Tu CF St Lato Market Auto Tu Treq Offs


CH78 (10 Harmonic of the frequency) _1Mbps

Keysight Sp RL	RF 50 Ω	ept SA AC		SEI	NSE:INT		ALIGN AUTO	12:41:29 A	4 Jan 26, 2017	
0 dB/div	Ref Offset 5.2 Ref 20.00 (2 dB						kr1 25.5	46 GHz 00 dBm	
og										Auto Tui
).00										Center Fr 20.750000000 G
0.0									-14.97 dBm	Start Fr 15.000000000 G
80.0									↓1	Stop Fr 26.50000000 G
10.0 m ^{hm4} 74	whenter	houldenserve	almi-hangel-hat	white	yMhanaa hala	ur ya	MANAMAN'N'N'	pm and the	a logi a la l	CF St e 1.150000000 G <u>Auto</u> M
0.0										Freq Offs 0
'0.0 										
	000 GHz 100 kHz	1	#VBW	100 kHz		1	Sweep	Stop 26 1.387 s (.500 GHz 1001 pts)	
20							STATUS	-		



STATUS

CH00 Hopping on mode (Lower)_3Mbps

Report No.:BTL-FICP-1-1612074

CH00 (10 Harmonic of the frequency) _3Mbps

C RL	RF	lyzer - Swep 50 Ω			SEI	NSE:INT		ALIGN AUTO		4 Jan 26, 2017	Fraguanay
0 dB/div		fset 5.2 0.00 dl						M		25 GHz 79 dBm	Frequency
	Kel 2	0.00 u	5111								Auto Tu
0.00											Center Fr 20.750000000 G
20.0										-19.03 dBm	Start Fr 15.000000000 G
30.0									ال	1	Stop Fr 26.50000000 G
40.0 50.0	un an	undurahy	howwww.ald	a nakayi walil	n Hunnen haft	rmananthin	hantin ng pan	Workhallow	-Marwell ^{Mard} it	<u>41 - Marina M</u>	CF St 1.15000000 G Auto M
50.0											Freq Offs 0
70.0											
tart 15.	000 GHz 100 kH				100 kHz				Stop 26	.500 GHz 1001 pts)	

CH39 (10 Harmonic of the frequency) _3Mbps

	ectrum Analyzer - Swe									
L <mark>XI</mark> RL	RF 50 Ω	AC		SEN	ISE:INT		ALIGN AUTO		M Jan 26, 2017	Frequency
10 dB/div Log	Ref Offset 5.2 Ref 20.00 c	dB IBm						-46.	2 3 GHz 62 dBm	Auto Tune
0.00										Center Freq 1.515000000 GHz
-10.0									-18.02 dBm	Start Freq 30.000000 MHz
-30.0										Stop Freq 3.000000000 GHz
-40.0	hadenbelliocards	and the second	and the product of the second second	R/Madata		for with the state	all minerform	an approximation	hallertheoperate	CF Step 297.000000 MHz <u>Auto</u> Man
-60.0										Freq Offset 0 Hz
Start 30 M #Res BW			#\/B\A(100 kHz			Sween 3	Stop 3	.000 GHz 1001 pts)	
MSG	TVV KHZ			TOO KI12			STATU		roor pts)	

	rum Analyzer - Swep									- F
RL	RF 50 Ω	AC		SEI	NSE:INT		ALIGN AUTO		M Jan 26, 2017	Frequency
	Ref Offset 5.2						IVII		64 GHz 15 dBm	
0 dB/div	Ref 20.00 dE	∃m						-47.	TO UDIII	Auto Ti
10.0										
.0.0										Center F
										9.000000000
D.00										9.000000000
0.0										Start F
									-18.02 dBm	3.000000000
20.0									10.02 4011	
30.0										Stop F
										15.000000000
10.0									<u>1</u>	CF S
									, ? .	1.200000000
0.0	n'e bet the state	* Mary Malaph	Heden wetter	11 million	Millel	the state war had	ANT MANDA	anter and the parties	Hand Balage VINA	<u>Auto</u> I
MALAN DW	WINNY "			i nitoway	ų, iyw. ir	անցերին հանդերին հանդերին։				
0.0										Freq Off
										(
0.0										
0.0										
								Stop 15	.000 GHz	
uuu 5.000	GHz									
			#VBW	100 kHz			Sweep	1.447 s (1001 pts)	
tart 3.000 Res BW 10 ^{SG}			#VBW	100 kHz			Sweep STATUS	1.447 s (1001 pts)	
Res BW 10 sc	00 kHz	4.54	#VBW	100 kHz				1.447 s (1001 pts)	
Res BW 11 G Keysight Spectr			#VBW		NSE:INT			1.447 s (1001 pts) MJan 26, 2017	
Res BW 11 G Keysight Spectr RL	00 kHz rum Analyzer - Swep RF 50 Ω	AC	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Erequency
Res BW 11 G Keysight Spectr RL	00 KHZ	AC B	#VBW			,	STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) MJan 26, 2017	Frequency
Res BW 11 G Keysight Spectr RL	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW			,	STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Erequency
Res BW 11 G Keysight Spectr RL	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency
Res BW 11	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency
Res BW 11	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency
Res BW 11 Res BW 11 RL 0 dB/div	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency Auto Ti
Res BW 11 Res BW 11 RL 0 dB/div	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency Auto Tr Center F
Res BW 10 sq Keysight Spectr RL 0 dB/div 0	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency Auto Tr Center F 20.750000000
Res BW 10 sq Keysight Spectr RL 0 dB/div 0	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency Auto Tr Center F 20.75000000 Start F
Res BW 11 G Keyight Spectr RL D dB/div 0.0 0.0	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{M Jan 26, 2017}	Frequency Auto Tr Center F 20.750000000
Res BW 10	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.75000000 Start F
Res BW 10	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000
Res BW 11 G Keysight Spectr RL D dB/div D dB/div 0.0 0.0 0.0	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000
Res BW 10 60 Keysight Spectra RL D dB/div 00 000 000 000 000	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW				STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000
Res BW 10 Keysight Spectre RL O dE/div 00 0.00 0.00 0.00	00 kHz rum Analyzer - Swep RF 50 Ω Ref Offset 5.2 c	AC B	#VBW		NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000 Stop F 26.500000000
Res BW 10 Keysight Spectre RL O dE/div 00 0.00 0.00 0.00	00 kHz	AC dB Bm		SEP			STATUS	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.0000000000 Stop F 26.5000000000
Res BW 10 Keysight Spectre RL O dE/div 00 0.00 0.00 0.00	00 kHz	AC B			NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000 Stop F 26.5000000000000000000000000000000000000
Res BW 10 G Keysight Spectre RL D dB/div 0 0 0.0 0.0 0.0 0.0	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.0000000000 Stop F 26.5000000000
Res BW 10 Image: Second sec	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000 Stop F 26.5000000000 CF S 1.1500000000
Res BW 10 Image: Second sec	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Start F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Tr Freq Off
Res BW 11	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Frequency Auto Tr Center F 20.750000000 Start F 15.000000000 Stop F 26.5000000000 CF S 1.1500000000
Res BW 10 0 Keysight Spectr RL O dE/div 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Start F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Tr Freq Off
Res BW 10 0 Keysight Spectr RL O dE/div 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Start F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Tr Freq Off
Res BW 10 0 Keysight Spectr RL O dE/div 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	1.447 s (12:56:44 A kr1 24.9	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Start F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Tr Freq Off
Res BW 11 G G G Keysight Spectr G RL G O dB/div G O 0.0 G	00 kHz	AC dB Bm		SEP	NSE:INT		ALIGN AUTO	12:56:44 AA kr1 24.9 -35.	1001 pts) ^{4]an 26, 2017} 59 GHz 18 dBm	Start F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Tr Freq Off
Res BW 11 So It keysight Spectre	00 kHz	AC dB Bm	en al la	SEP				1.447 s (12:56:44 Al (r1 24.9 -35.	1001 pts)	Start F 20.750000000 Start F 15.000000000 Stop F 26.500000000 CF S 1.1500000000 Auto Tr Freq Off

CH78 (10 Harmonic of the frequency) _3Mbps

RL	ectrum Analyzer - RF 5	0Ω AC		SE	NSE:INT		ALIGN AUTO	12:57:43 AM	1 Jan 26, 2017	
	Ref Offset	5.2 dB						kr1 26.1	09 GHz 44 dBm	Frequency
0 dB/div	Ref 20.0	U dBm						-00.	++ ubiii	Auto Tui
10.0 D.00										Center Fr 20.750000000 G
0.0									-20.39 dBm	Start Fr 15.000000000 G
80.0									1 Jb s. lbr. a	Stop Fr 26.50000000 G
0.0 инжну/н ю.0	NAN AND AND AND AND AND AND AND AND AND	nach Wakay kanyanga	in on put million	apolitica de norma	lun vitan naln	Widogetantythe	allylynatere	to a state of the	<u>, 14 14.00 - 14.000 - 14.000</u>	CF St 1.150000000 G <u>Auto</u> M
0.0										Freq Offs 0
70.0										
	000 GHz 100 kHz		#VBW	100 kHz			Sweep	Stop 26	.500 GHz 1001 pts)	