Test of: RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

To: FCC 47 CFR Part 15.407

Test Report Serial No.: RDWN33-U3 Rev A

Test of: RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

to

To FCC 47 CFR Part 15.407

Test Report Serial No.: RDWN33-U3 Rev A

This report supersedes None

Applicant: RADWIN Ltd 27 Habarzel Street Tel Aviv, 6971039 Israel

Product Function: 5 GHz 2x2 MIMO RF Module

Copy No: pdf Issue Date: 2nd February 2015

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:3 of 179

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:4 of 179

TABLE OF CONTENTS

AC	CRE	DITATION, LISTINGS & RECOGNITION	. 5
	TES		. 5
		OGNITION	
		DUCT CERTIFICATION	
1.	TES	T RESULT CERTIFICATE	.9
2.	REF	ERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1.	Normative References	10
	2.2.	Test and Uncertainty Procedures	
3.	PRC	DUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1.	Technical Details	
	3.2.	Scope of Test Program	
	3.3.	Equipment Model(s) and Serial Number(s)	
	3.4.	Antenna Details	
	3.5.	Cabling and I/O Ports	19
	3.6.	Test Configurations	19
	3.7.	Equipment Modifications	
	3.8.	Deviations from the Test Standard	
	3.9.	Subcontracted Testing or Third Party Data	
4.	TES	TING EQUIPMENT CONFIGURATION(S)	21
	4.1.	Conducted RF Emission Test Set-up	21
	4.2.	Radiated Spurious Emission Test Set-up > 1 GHz	24
	4.3.	Digital Emissions Test Set-up (0.03 – 1 GHz)	
	4.4.		
5.	TES		28
6.	TES	T RESULTS	30
	6.1.	Device Characteristics	30
		6.1.1. Conducted Testing	
		6.1.2. Radiated Emission Testing	68
		6.1.3. Digital Emissions (30M-1 GHz)1	
		6.1.4. AC Wireline Conducted Emissions (150 kHz – 30 MHz) 1	
7.	PHC	TOGRAPHS1	10
	7.1.	Conducted Test Setup 1	10
	7.2.	Test Setup - Digital Emissions above 1 GHz 1	11
	7.3.	Digital Emissions Test Setup below 1 GHz 1	20
	7.4.	ac Wireline Emissions 1	
AP	PEND	DIX1	23
Α.	SUP	PORTING INFORMATION12	23
	A.1.	CONDUCTED TEST PLOTS 1	23
		A.1.1. 26 dB & 99% Bandwidth	
		A.1.2. Peak Power Spectral Density	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:5 of 179

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:6 of 179

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA Federal Communications Commission (FCC)		ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:7 of 179

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

USA Telecommunication Certification Body (TCB) - TCB Identifier - US0159

Industry Canada Certification Body - CAB Identifier – US0159

European Notified Body - Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB) - RCB Identifier - 210

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:8 of 179

DOCUMENT HISTORY

	Document History				
Revision Date		Comments			
Draft					
Rev A	2 nd February 2015	Initial release			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:9 of 179

1. TEST RESULT CERTIFICATE

Applicant:	RADWIN Ltd	Tested By:	MiCOM Labs, Inc.	
	27 Habarzel Street		575 Boulder Court	
	Tel Aviv, 6971039		Pleasanton	
	Israel		California, 94566, USA	
EUT:	RF Module operating in the	Tel:	+1 925 462 0304	
	5.15– 5.25 GHz bands.			
Model:	AP0127730, AP0134760	Fax:	+1 925 462 0306	
S/N:	2000000037			
Test Date(s):	2nd - 12th December 2014	Website:	www.micomlabs.com	
		Website:	www.micomlab	

STANDARD(S)

FCC 47 CFR Part 15.407 & IC RSS-210

TEST RESULTS

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: 925.462.0304, Fax: 925.462.0306, www.micomlabs.com

TESTING CERT #2381.01

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:10 of 179

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.407	18 th December 2014	Code of Federal Regulations
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order
(iii)	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
(iv)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(v)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(vi)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vii)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(viii)	ETSI TR 100	2001	Parts 1 and 2
	028		Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(ix)	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy
(x)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:11 of 179

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:12 of 179

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details	
Details	Description
Purpose:	Test of the RADWIN Ltd. AP0127730, AP0134760
	Wireless Modules in the frequency ranges 5,150 to
	5,250 MHz to FCC Part 15.407 regulations.
Applicant:	RADWIN Ltd
	27 Habarzel Street
	Tel Aviv, 6971039
	Israel
Manufacturer:	As applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	RDWN33-U3 Rev A
Date EUT received:	1 st December 2014
Standard(s) applied:	FCC 47 CFR Part 15.407
Dates of test (from - to):	2nd - 12th December 2014
No of Units Tested:	One
Type of Equipment:	5 GHz 2x2 MIMO RF module.
Applicants Trade Name:	RADWIN
Model(s):	AP0127730, AP0134760
Location for use:	Outdoor
Declared Frequency Range(s):	5,150 – 5,250 MHz
Hardware Rev	Prototype
Software Rev	Radwin Art GUI
Type of Modulation:	Per 802.11n – BPSK, QPSK, 16QAM, 64QAM, OFDM
Declared Nominal Output Power:	5 MHz: 23.5 dBm
(Average Power)	10 MHz: 27.4 dBm
	20 MHz: 28.3 dBm
	40 MHz: 23.00 dBm
EUT Modes of Operation:	5, 10, 20, 40 MHz
Transmit/Receive Operation:	Time Division Duplex
System Beam Forming:	AP0127730, AP0134760 has no capability for
	beam-forming
Rated Input Voltage and Current:	POE 55 Vdc 1 A
Operating Temperature Range:	Declared range -35° to +60°C
ITU Emission Designator:	5 MHz 5M00W7W
	10 MHz 10M0W7W
	20 MHz 20M0W7W
	40 MHz 40M0W7W
Equipment Dimensions:	1.9" x 2.0" x 0.3" inches
Weight:	0.042 lb (19 g)
Primary function of equipment:	5 GHz 2x2 MIMO RF module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

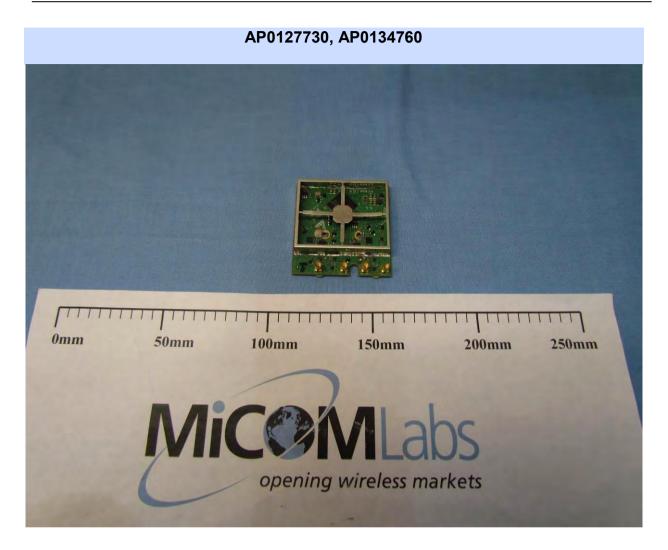
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:13 of 179

3.2. Scope of Test Program

AP0127730, AP0134760 RF Testing

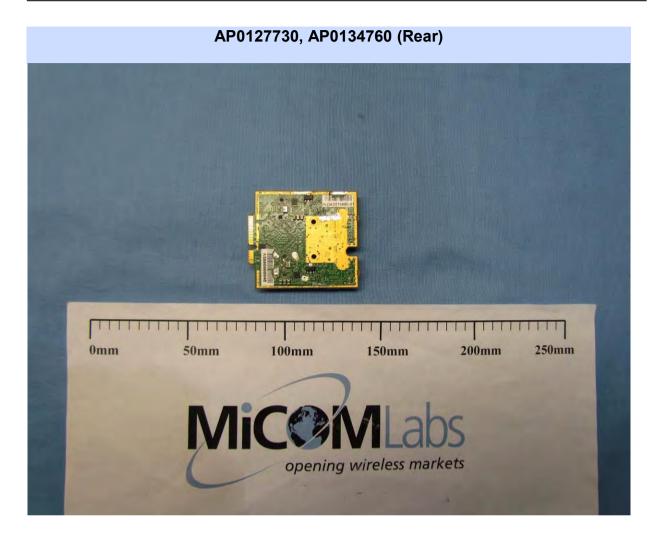
The scope of the test program was to test the AP0127730, AP0134760 5 GHz 2x2 MIMO RF module configurations in the frequency range 5150 to 5250 MHz for compliance against FCC 47 CFR Part 15.407.

FCC OET KDB Implementation


This test program implements the following FCC KDB – 662911 4/4/2011; *Emissions Testing of Transmitters with Multiple Outputs in the Same Band*

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.


Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:14 of 179

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:15 of 179

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:16 of 179

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:17 of 179

3.3. Equipment Model(s) and Serial Number(s)

Equipment Type	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	RF module operating in the 4.9-5.8 GHz bands	RADWIN Ltd	AP0127730, AP0134760	None
Support	Laptop PC	DELL	LATITUDE D530	None

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:18 of 179

3.4. Antenna Details

Radiated emissions testing were performed in the mode with the highest spectral density to verify compliance. Radiated emissions were performed on the highest gain of each type of antenna as identified in the table below;-

Radiated Emission Results (Antenna #)	Antenna Type	Manufacturer	Model Number	Antenna Gain(dBi) 5150-5250 MHz
1	Sector Dual Pole Integrated 120 Deg	RADWIN Ltd.	MT0128930	11
Not Tested	Sector Dual Pole 120 Deg	RADWIN Ltd.	RW-9061-5004	11
2	Sector Dual Pole Integrated 95 Deg	RADWIN Ltd.	AM0135060	12
Not Tested	Sector Dual Pole 90 Deg	RADWIN Ltd.	RW-9061-5001	14
3	Sector Dual Pole 60 Deg	RADWIN Ltd.	RW-9061-5002	15.5
Not Tested	Sector Dual Pole Integrated 90 Deg	RADWIN Ltd.	MT0125250	13
Not Tested	Flat Panel Dual Pole Integrated	RADWIN Ltd.	AM0119960	16
4	Flat Panel Dual Pole Integrated	RADWIN Ltd.	AM0111760	16
Not Tested	Flat Panel Dual Pole External	RADWIN Ltd.	RW-9612-5001	23
5	Flat Panel Dual Pole Integrated	RADWIN Ltd.	MT0070760	23.5
6	Flat Panel Dual Pole External	RADWIN Ltd.	RW-9622-5001	29
Not Tested	Dual Pole Dish	RADWIN Ltd.	RW-9721-5158	28
7	Dual Pole Dish	RADWIN Ltd.	RW-9732-4958	32
8	Shark Fin Monopole	RADWIN Ltd	RW-9401-5002	11.5

The "Not Tested" antennas were covered by testing higher gain antennas of the same family

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 1 x 10/100/1000 Ethernet (includes POE +55 Vdc)

3.6. <u>Test Configurations</u>

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

Channel Bandwidth	Data Rates with Highest Power	Frequencies (MHz)
5 MHz	15 MCS	5157 / 5200 / 5245
10 MHz	15 MCS	5162 / 5200 / 5245
20 MHz	15 MCS	5165 / 5200 / 5240
40 MHz	15 MCS	5172 / 5230

Antenna Test Configurations for Radiated Emissions and Band-Edge

The following measurements were performed on all antenna configurations identified in Section 3.4 Antenna Details.

Spurious Emission and Band-Edge Test Strategy

5 MHz
SE 5157
SE 5200
SE 5245
BE 5150 (5, 10, 20, 40 MHz)

KEY:-
SE – Spurious Emissions
BE – Band-Edge

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:20 of 179

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. Band-Edge Power Reduction

The power settings required for each antenna to comply with the requirements are detailed in Section 6.1.1.2 "Maximum Conducted Output Power"

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

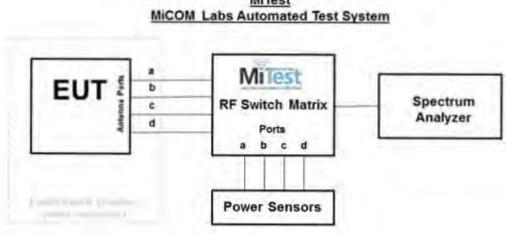
1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

Title: RADWIN Ltd. AP0127730, AP0134760 Wireless Modules **To:** FCC 47 CFR Part 15,407 Serial #: RDWN33-U3 Rev A Issue Date: 2nd February 2015 Page: 21 of 179

4. TESTING EQUIPMENT CONFIGURATION(S)


4.1. **Conducted RF Emission Test Set-up**

The following tests were performed using the conducted test set-up shown in the diagram below.

The following tests were performed using the conducted test set-up shown in the diagram below

- 1. Section 6.1.1.1. 26 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Maximum Conducted Output Power
- 3. Section 6.1.1.3. Peak Power Spectral Density

Conducted Test Set-Up Pictorial Representation

MiTest

Conducted Test Measurement Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:22 of 179

Traceability of Test Equipment Utilized for Conducted Testing

Asset#	Description	Manufacturer	Model #	Serial #	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	14 Jan 2015
249	Resistance Thermometer	Thermotronics	GR2105-02	9340 #2	30 Oct 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
361	Desktop for RF#1, Labview Software installed	Dell	Vostro 220	WS RF#1	Not Required
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	17 Jul 2015
380	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC001	20 Jan 2015
390	USB Power Head 50MHz - 24GHz -60 to +20dBm	Agilent	U2002A	MY50000103	17 Oct 2015
398	Test Software	MiCOM	MiTest ATS	Version 1.9	Not Required
405	DC Power Supply 0-60V	Agilent	6654A	MY4001826	Cal when used
408	USB to GPIB interface	National Instruments	GPIB-USB HS	14C0DE9	Not Required
440	USB Wideband Power Sensor	Boonton	55006	9178	25 Sep 2015
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Sep 2015
442	USB Wideband Power Sensor	Boonton	55006	9181	25 Sep 2015
445	PoE Injector	D-Link	DPE-101GL	QTAH1E2000625	Not Required
75	Environmental Chamber	Thermatron	SE-300-2-2	27946	28 Nov 2015
RF#1 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#1 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Jan 2015
RF#1 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	20 Jan 2015
RF#1 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	20 Jan 2015
RF#1 SMA#4	EUT to Mitest box port 4	Flexco	SMA Cable port4	None	20 Jan 2015
RF#1 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	20 Jan 2015
RF#1 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:23 of 179

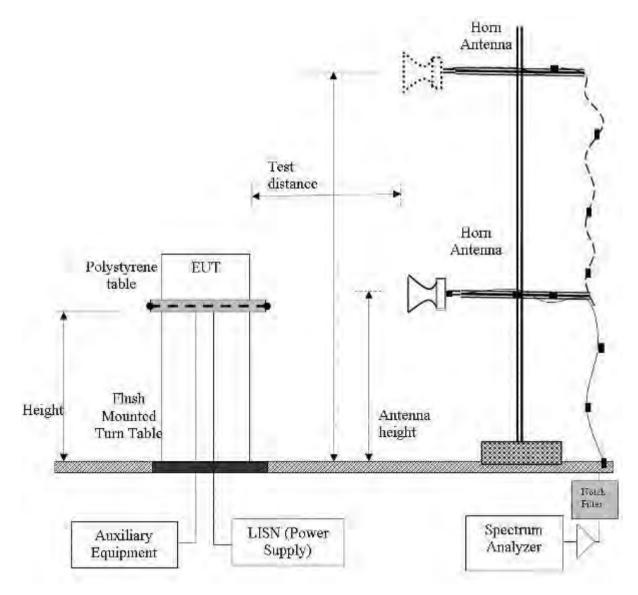
Measurement and Presentation of Test Data

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "*MiTest*" Automated Test System" (Patent Pending)


Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:24 of 179

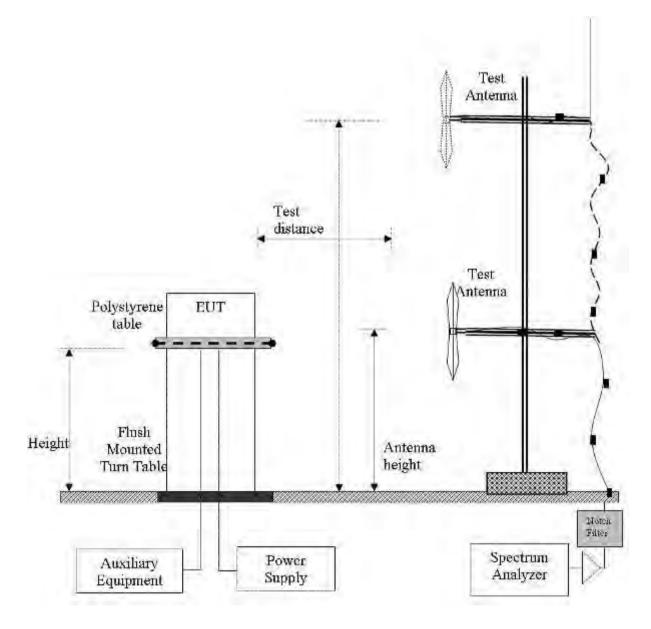
4.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:25 of 179

4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.4. Digital Emissions

Digital Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:26 of 179

Traceability of Test Equipment Utilized for Radiated Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
301	5470 to 5725 MHz Notch Filter	Microtronics	RBC50704	001	08 Oct 2015
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	08 Oct 2015
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	08 Oct 2015
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2015
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	08 Oct 2015
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	08 Oct 2015
344	5.35 GHz Notch Filter	EWT	EWT-14-0201	H1	08 Oct 2015
345	5.46 GHz Notch Filter	EWT	EWT-14-0202	H1	08 Oct 2015
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	08 Oct 2015
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	07 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	30 May 2015
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:27 of 179

4.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.3 ac Wireline Conducted Emissions

Conducted Test Set-Up Pictorial Representation

Measurement set up for ac Wireline Conducted Emissions Test

Traceability of Test Equipment Utilized for ac Wireline Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	Cal when used
190	LISN (two-line V- network)	Rhode & Schwarz	ESH3Z5	836679/006	12 Sep 2015
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	14 Jan 2015
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	Cal when used
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:28 of 179

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a)	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	6.1.1.1 A.1.1
15.407(a)	Maximum Conducted Output Power	Power Measurement	Conducted	Complies	6.1.1.2
15.407(a)	Peak Power Spectral Density	PPSD	Conducted	Complies	6.1.1.3 A.1.2
15.407(g) 15.31	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	6.1.1.5
15.407(f)	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Conducted	See MPE attachment	6.1.1.6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:29 of 179

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a)	Radiated Emissions		Radiated		6.1.2
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	6.1.2
	Radiated Band Edge	Band edge results		Complies	6.1.2
15.407(b)(6) 15.205(a) 15.209(a)	Digital Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	6.1.4
15.407(b)(6) 15.207	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	Complies EUT is POE powered - not shipped with equipment	6.1.5

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:30 of 179

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Conducted Testing

6.1.1.1. 26 dB and 99 % Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001			
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. KDB 789033 Section 5.1 Emission Bandwidth was used in order to prove compliance. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:31 of 179

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	5 MHz	Duty Cycle (%):	99.0				
Data Rate:	Rate 8	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

Test	Measured 26 dB Bandwidth (MHz)						
Frequency		Port(s)			26 dB Bandwidth (MHz)		
MHz	а	b	с	d	Highest	Lowest	
5157.0	<u>6.563</u>	<u>5.987</u>			6.563	5.987	
5200.0	<u>5.912</u>	<u>6.187</u>			6.187	5.912	
5245.0	<u>6.363</u>	<u>6.237</u>			6.363	6.237	

Test Frequency	Measured 99% Bandwidth (MHz) Port(s)			99% Bandwidth (vidth (MHz)	
MHz	а	b	С	d	Highest	Lowest	
5157.0	<u>4.659</u>	<u>4.659</u>			4.659	4.659	
5200.0	<u>4.659</u>	<u>4.659</u>			4.659	4.659	
5245.0	<u>4.659</u>	<u>4.659</u>			4.659	4.659	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:32 of 179

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	10 MHz	Duty Cycle (%):	98.0				
Data Rate:	Rate 8	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

ment Results							
Me	easured 26 dB	Bandwidth (M	Hz)	26 dB Bond			
	Por	rt(s)					
а	b	С	d	Highest	Lowest		
<u>10.170</u>	<u>10.120</u>			10.170	10.120		
<u>10.721</u>	<u>10.571</u>			10.721	10.571		
<u>10.371</u>	<u>10.170</u>			10.371	10.170		
		•					•
М	easured 99% E	Bandwidth (MH	łz)	00% Dand			
	Por	rt(s)		99% Bandy	wiath (WHZ)		
а	b	с	d	Highest	Lowest		
<u>8.918</u>	<u>8.918</u>			8.918	8.918		
<u>8.968</u>	<u>8.968</u>			8.968	8.968		
8.918	8.918			8.918	8.918		
	Me a <u>10.170</u> <u>10.721</u> <u>10.371</u> M <u>a</u> <u>8.918</u> <u>8.968</u>	Measured 26 dB Por a b 10.170 10.120 10.721 10.571 10.371 10.170 Weasured 99% B Por a b 8.918 8.918 8.968 8.968	Measured 26 dB Bandwidth (M Port(s) a b c 10.170 10.120 10.721 10.571 10.371 10.170 10.371 10.170 10.371 10.170 Measured 99% Bandwidth (MH Port(s) a b c 8.918 8.918 8.968 8.968	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 10.170 10.120 10.721 10.571 10.371 10.170 Weasured 99% Bandwidth (MHz) Port(s) Port(s) a b c d 8.918 8.918 8.968 8.968	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) a b c d Highest 10.170 10.120 10.170 10.721 10.571 10.721 10.371 10.170 10.371 10.371 10.170 10.371 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) 8.918 C d Highest 8.918 8.918 8.918 8.968 8.968 8.968	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) Highest Lowest 10.170 10.120 10.170 10.120 10.721 10.571 10.721 10.571 10.371 10.170 10.371 10.170 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Newsured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Segment State Segment State Segment State Segment State 8.918 8.918 8.918 8.918 8.968 8.968 8.968 8.968 8.968	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 10.170 10.120 10.170 10.120 10.721 10.571 10.721 10.571 10.371 10.170 10.371 10.170 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) interval interval interval interval interval interv

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:33 of 179

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	20 MHz	Duty Cycle (%):	96.0				
Data Rate:	Rate 8	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

Test	Ме	asured 26 dB	Bandwidth (M				
Frequency		Por	t(s)		26 dB Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5165.0	<u>22.545</u>	<u>22.044</u>			22.545	22.044	
5200.0	<u>21.844</u>	<u>21.543</u>			21.844	21.543	
5240.0	<u>22.946</u>	<u>22.044</u>			22.946	22.044	
Test	M	easured 99% E	•	łz)	99% Bandy	vidth (MHz)	
Test Frequency	M	easured 99% E Por	•	łz)	99% Bandy	vidth (MHz)	
	M(•	lz) d	99% Bandy Highest	vidth (MHz) Lowest	
Frequency		Por	t(s)			、 <i>,</i>	
Frequency MHz	а	Por b	t(s) c	d	Highest	Lowest	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:34 of 179

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	40 MHz	Duty Cycle (%):	92.0				
Data Rate:	Rate 9	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							
	•						

est measure	ment Results							
Test	Me	easured 26 dB	Bandwidth (M	Hz)	26 dB Bond	26 dB Bandwidth (MHz)		
Frequency		Ро	rt(s)					
MHz	а	b	с	d	Highest	Lowest		
5172.0	<u>41.683</u>	<u>41.483</u>			41.683	41.483		
5230.0	42.485	41.884			42.485	41.884		
Test	Μ	easured 99% I	Bandwidth (MF	łz)		/		
Frequency		Ро	rt(s)		99% Bandwidth (MHz)			
MHz	а	b	с	d	Highest	Lowest		
5172.0	<u>36.273</u>	<u>36.273</u>			36.273	36.273		
		36.273	1		36.273	36.273		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:35 of 179

6.1.1.2. Maximum Conducted Output Power

Conducted Test Conditions for Maximum Conducted Output Power						
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001			
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for Maximum Conducted Output Power Measurement

<u>Method PM (Measurement using an RF average power meter)</u>. Section C) 4) of KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate centre frequency. All cable losses and offsets were taken into consideration in the measured result. All operational modes and frequency bands were measured independently and the resultant \Box calculated. For multiple outputs, the measurements were made simultaneously on each output port and summed in a linear fashion. This technique was used in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:36 of 179

Antenna Power Levels

(a) Power limits:

(1) For the band 5.15-5.25 GHz

Outdoor Access Point

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

Fixed Point-to-Point

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:37 of 179

Operating Frequency Band 5150 - 5250 MHz

Limit: +30 dBm

Anten	na	Gain	Maximum Po	ower Calculation
Model Number	Туре	(dBi)	dBm/EIRP	Conducted Power
MT0125250	Outdoor	13.0	36.0	23.0
RW-9061-5002	Outdoor	14.5*	36.0	21.5
RW-9061-5001	Outdoor	13.0*	36.0	23.0
RW-9061-5004	Outdoor	10.0*	36.0	26.0
MT0128930	Outdoor	11.0	36.0	25.0
AM0135060	Outdoor	12.0	36.0	24.0
RW-9401-5002	Outdoor	11.5	36.0	24.5
RW-9732-4958	Point - Point	31.0*	53.0	22.0
RW-9721-5158	Point - Point	27.0*	53.0	26.0
RW-9622-5001	Point - Point	28.0*	53.0	25.0
RW-9612-5001	Point - Point	22.0*	52.0	30.0
MT0070760	Point - Point	23.5	53.0	28.5
AM0111760	Point - Point	16.0	46.0	30.0

* The gain includes 1 dB feeder cable loss for external antennas

The AP0127730, AP0134760 has no beam-forming capability. The EUT operates in four different bandwidth modes;- 5 MHz; 10 MHz; 20 MHz; and 40 MHz. The 30 dBm limits are calculated for each mode along with the conducted power measurements for each antenna presented in this section of the test report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Consolidated Power Results

The EUT was tested for radiated spurious emissions and radiated band-edge emissions and the following tables define the worst case compliant results defined for each parameter

Antenna Type - Outdoor

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	0.5	0.5	0.5
		5	5200	15.5		15.5
			5245	15.5		15.5
			5162		2.5	2.5
		10	5200			
RW-9061-5002	14.5		5245			
RVV-9001-5002	14.5		5165		0.5	0.5
		20	5200			
			5240			
			5172		-1.5	-1.5
		40	5200			
			5230			

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	7.5	1.5	1.5
		5	5200	18		18.0
			5245	18		18.0
			5162		4.0	4.0
		10	5200			
MT0128930	11		5245			
10120930	11		5165		2.0	2.0
		20	5200			
			5240			
			5172		-1.0	-1.0
		40	5200			
			5230			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:39 of 179

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	4.5	3.0	4.0
		5	5200	18.0		18.0
			5245	18.0		18.0
			5162		6.0	6.0
		10	5200			
AM0135060	12		5245			
AIVI0155000	12		5165		4.0	4.0
		20	5200			
			5240			
			5172		0.0	0.0
		40	5200			
			5230			

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	4.5	4.5	4.5
		5	5200	18.0		18.0
			5245	18.0		18.0
			5162		6.0	6.0
		10	5200			
RW-9401-5002	12.5		5245			
RVV-9401-5002	12.0		5165		4.0	4.0
		20	5200			
			5240			
			5172		9.5	9.5
		40	5200			
			5230			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:40 of 179

Antenna Type – Point - Point

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	-11.0	-11.0	-11.0
		5	5200	14.0		14.0
			5245	18.0		18.0
			5162		-10.0	-10.0
		10	5200			
RW-9732-4958	21		5245			
RVV-9/32-4930	31		5165		-12.0	-12.0
		20	5200			
			5240			
			5172		-13.0	-13.0
		40	5200			
			5230			

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	-10.0	-10.0	-10.0
		5	5200	17.5		17.5
		-	5245	19.0		19.0
			5162		-9.0	-9.0
		10	5200			
RW-9622-5001	28		5245			
RW-9022-5001	20		5165		-12.0	-12.0
		20	5200			
			5240			
			5172		-14.0	-14.0
		40	5200			
			5230			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:41 of 179

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	0.5	-7.0	-7.0
		5	5200	19.0		19.0
			5245	18.5		18.5
			5162		-5.0	-5.0
		10	5200			
MT0070760	23.5		5245			
WI 10070760	23.5		5165		-8.0	-8.0
		20	5200			
			5240			
			5172		-11.0	-11.0
		40	5200			
			5230			

Antenna	Gain	Operational Mode	Channel	Radi	ated Power Se	tting
Model Number	dBi	MHz	MHz	Spurious Emissions	Band-Edge	Final Setting
			5157	0.5	0.5	0.5
		5	5200	23.0		23.0
			5245	23.0		23.0
			5162		2.5	2.5
		10	5200			
AM0111760	16		5245			
AM0111760	10		5165		0.5	0.5
		20	5200			
			5240			
			5172		-3.0	-3.0
		40	5200			
			5230			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: RADWIN Ltd. AP0127730, AP0134760 Wireless Modules **To:** FCC 47 CFR Part 15.407 Serial #: RDWN33-U3 Rev A Issue Date: 2nd February 2015 Page: 42 of 179

Measurement Results for Maximum Conducted Output Power

The following tables used the lowest gain antenna (11 dBi) to calculate the maximum conducted power from the EUT. The output power was corrected for duty cycle. The output power on the channel closest to the 5150 MHz restricted band was reduced in order to comply with the band-edge limits.

Equipment Configuration for Peak Transmit Power

Variant:	5 MHz	Duty Cycle (%):	99.0		
Data Rate:	Rate 8	Antenna Gain (dBi):	11		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable Tested By: SB				
Engineering Test Notes:	The data contained in this matrix are measured values				

Test Measu	Test Measurement Results								
Test	Test Measured Conducted Output Power (dBm)					Minimum 26 dB	Limit	Margin	
Frequency		Por	t(s)		Total Power	Bandwidth	Linin	Margin	EUT Power Setting
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5157.0	5.62	4.82			8.29	N/A	30.00	-21.71	4.50
5200.0	18.70	19.33			22.08	N/A	30.00	-7.92	19.00
5245.0	21.42	19.22			23.51	N/A	30.00	-6.49	19.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0			
Data Rate:	Rate 8	Antenna Gain (dBi):				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	The data contained in this matrix are measured values					

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Total	Minimum 26 dB	Limit	Margin	
Frequency		Por	t(s)		Power Bandwidth			EUT Power	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5162.0	9.11	6.50			11.10	N/A	30.00	-18.90	6.00
5200.0	24.72	23.87			27.41	N/A	30.00	-2.59	22.00
5245.0	23.51	23.84			26.78	N/A	30.00	-3.22	22.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:43 of 179

Equipment Configuration for Peak Transmit Power						
		1				
Variant:	20 MHz	Duty Cycle (%):	96.0			
Data Rate:	Rate 8	Antenna Gain (dBi):	11			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	The data contained in this matrix are measured values					

Test Measur	Test Measurement Results								
Test Frequency	Measured Conducted Output Power (dBm) Port(s)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5165.0	4.14	5.62			8.13	N/A	30.00	-21.87	4.00
5200.0	20.45	20.83			23.83	N/A	30.00	-6.17	19.00
5240.0	25.26	24.90			28.27	N/A	30.00	-1.73	23.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0	
Data Rate:	Rate 9	Antenna Gain (dBi):	11	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable Tested By: SB			
Engineering Test Notes:	The data contained in this matrix are measured values			

Test Measur	Test Measurement Results								
Test Frequency	Measure	d Conducted Por	Output Pow t(s)	er (dBm)	Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power Setting
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5172.0	9.83	9.84			13.21	N/A	30.00	-16.79	9.50
5230.0	20.28	18.83			22.99	N/A	30.00	-7.01	19.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: RADWIN Ltd. AP0127730, AP0134760 Wireless Modules To: FCC 47 CFR Part 15.407 Serial #: RDWN33-U3 Rev A Issue Date: 2nd February 2015 Page: 44 of 179

The following Output Power tables define the maximum permissible power (EIRP) that can be transmitted per antenna. The following sections are split into two FCC equipment categories "Outdoor Equipment" +36 dBm EIRP limits and "Point – Point Equipment" +53 dBm EIRP limits. The output power specified in the following tables takes into account the power setting obtained from testing Radiated Spurious Emissions and Radiated Band-Edge

11 dBi Antenna – Outdoor Equipment

Equipment Configuration for Peak Transmit Power

Variant:	5 MHz	Duty Cycle (%):	99.0		
Data Rate:	Rate 8	Antenna Gain (dBi):	11		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable Tested By: SB				
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data				

Test Measur	Test Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum	1.1		
Frequency	Port(s)			Total Power	26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5157.0	9.11	6.5			11.01	N/A	36	22.01	-13.99
5200.0	22.31	21.46			24.92	N/A	36	35.92	-0.08
5245.0	21.73	22.06			24.91	N/A	36	35.91	-0.09

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0		
Data Rate:	Rate 8	Antenna Gain (dBi):	11		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable Tested By: SB				
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data				

Test Measur	Test Measurement Results								
Test Frequency	Measured Conducted Output Power (dBm) Port(s)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	EIRP	Margin
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5162.0	9.11	6.5			11.01	N/A	36	22.01	-13.99
5200.0	22.31	21.46			24.92	N/A	36	35.92	-0.08
5245.0	21.73	22.06			24.91	N/A	36	35.91	-0.09

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:45 of 179

Equipment Configuration for Peak Transmit Power							
Variant: 20 MHz Duty Cycle (%): 96.0							
Rate 8							
OFDM	. ,						
Not Applicable Tested By: SB							
The data contained in this matrix were calculated values based on measured data							
	20 MHz Rate 8 OFDM Not Applicable	20 MHz Duty Cycle (%): Rate 8 Antenna Gain (dBi): OFDM Beam Forming Gain (Y): Not Applicable Tested By:					

Test Measu	Test Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum		5155	. .
Frequency	Port(s)			Total Power	26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5165.0	4.14	5.62			7.95	N/A	36	18.95	-17.05
5200.0	20.45	20.83			23.65	N/A	36	34.65	-1.35
5240.0	21.99	21.63			24.82	N/A	36	35.82	-0.18

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0			
Data Rate:	Rate 9	Antenna Gain (dBi):	11			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data					

Test Measur	Test Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Total	Minimum 26 dB	Limit	EIRP	Margin
Frequency		Por	t(s)		Power	Bandwidth			
MHz	а	b	с	d	Σ Port(s) dBm	dB	dBm	dBm	dB
5172.0	9.83	9.84			12.85	N/A	36	23.85	-12.15
5230.0	20.28	18.83			22.63	N/A	36	33.63	-2.37

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:46 of 179

12 dBi Antenna – Outdoor Equipment

Equipment Configuration for Peak Transmit Power								
Variant:	5 MHz	Duty Cycle (%):	99.0					
Data Rate:	Rate 8	Antenna Gain (dBi):	11.5					
Modulation:	OFDM Beam Forming Gain (Y): Not Applicable							
TPC:	Not Applicable Tested By: SB							
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data							

Test Measurement Results									
Test Frequency	Measured Conducted Output Power (dBm) Port(s)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	EIRP	Margin
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5157.0	9.11	6.5			11.01	N/A	36	22.51	-13.49
5200.0	21.31	20.46			23.92	N/A	36	35.42	-0.58
5245.0	20.73	21.06			23.91	N/A	36	35.41	-0.59

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0	
Data Rate:	Rate 8	Antenna Gain (dBi):	11.5	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable Tested By: SB			
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measur	Test Measurement Results								
Test Frequency	Measured Conducted Output Power (dBm) Port(s)			Calculated Total Power	Minimum 26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5162.0	9.11	6.5			11.01	N/A	36	22.51	-13.49
5200.0	21.31	20.46			23.92	N/A	36	35.42	-0.58
5245.0	20.73	21.06	-		23.91	N/A	36	35.41	-0.59

Traceability to Industry Recognized Test Methodologies

······································	
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:47 of 179

Equipment Configuration for Peak Transmit Power					
<u> </u>	00 MU-	Dester Orester (0/)	00.0		
Variant:	20 MHz	Duty Cycle (%):	96.0		
Data Rate:	Rate 8	Antenna Gain (dBi):	11.5		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable Tested By: SB				
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data				

Test Measu	Test Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum		5100	
Frequency	Port(s)			Total Power	26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5165.0	4.14	5.62			7.95	N/A	36	19.45	-16.55
5200.0	20.45	20.83			23.65	N/A	36	35.15	-0.85
5240.0	20.99	20.63			23.82	N/A	36	35.32	-0.68

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0	
Data Rate:	Rate 9	Antenna Gain (dBi):	11.5	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable Tested By: SB			
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measur	Test Measurement Results								
Test	Measure	d Conducted	l Output Pow	er (dBm)	Calculated Total	Minimum 26 dB	Limit	Manain	Manain
Frequency		Port(s)			Power	Bandwidth	Linin	Margin	Margin
MHz	а	b	с	d	Σ Port(s) dBm	dB	dBm	dBm	dB
5172.0	9.83	9.84			12.85	N/A	36	24.35	-11.65
5230.0	20.28	18.83			22.63	N/A	36	34.13	-1.87

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:48 of 179

11.5 dBi Antenna – Outdoor Equipment

Equipment Configuration for Peak Transmit Power						
Variant:	5 MHz	Duty Cycle (%):	99.0			
Data Rate:	Rate 8	Antenna Gain (dBi):	11.5			
Modulation:	OFDM	OFDM Beam Forming Gain (Y): Not Applicable				
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data					

Test Measur	Test Measurement Results								
Test	Measured Conducted Output Power (dBm)				Calculated Total	Minimum 26 dB	Limit	EIRP	Margin
Frequency	/ Port(s)			Power	Bandwidth	-		5	
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5157.0	10.11	7.5			12.01	N/A	36	23.51	-12.49
5200.0	21.81	20.96			24.42	N/A	36	35.92	-0.08
5245.0	21.23	21.56			24.41	N/A	36	35.91	-0.09

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0			
Data Rate:	Rate 8	Antenna Gain (dBi):	11.5			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data					

Test Measurement Results									
Test Frequency	Measure	d Conducted Por	l Output Pow t(s)	er (dBm)	Calculated Total Power	Minimum 26 dB Bandwidth	Limit	EIRP	Margin
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5162.0	10.11	7.5			12.01	N/A	36	23.51	-12.49
5200.0	21.81	20.96			24.42	N/A	36	35.92	-0.08
5245.0	21.23	21.56			24.41	N/A	36	35.91	-0.09

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:49 of 179

Equipment Configuration for Peak Transmit Power							
Variant: 20 MHz Duty Cycle (%): 96.0							
Rate 8							
OFDM	Beam Forming Gain (Y):						
Not Applicable Tested By: SB							
The data contained in this matrix were calculated values based on measured data							
	20 MHz Rate 8 OFDM Not Applicable	20 MHz Duty Cycle (%): Rate 8 Antenna Gain (dBi): OFDM Beam Forming Gain (Y): Not Applicable Tested By:					

Test Measu	Test Measurement Results								
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			. .
Frequency	Port(s)			Total Power	26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5165.0	5.14	6.62			8.95	N/A	36	20.45	-15.55
5200.0	20.45	20.83			23.65	N/A	36	35.15	-0.85
5240.0	21.49	21.13			24.32	N/A	36	35.82	-0.18

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0			
Data Rate:	Rate 9	Antenna Gain (dBi):	11.5			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable Tested By: SB					
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data					

Test Measu	Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated Total	Minimum 26 dB	Limit	Manain	Manain	
Frequency		Por	t(s)		Power	Bandwidth		Margin	Margin	
MHz	а	b	c	d	Σ Port(s) dBm	dB	dBm	dBm	dB	
5172.0	10.83	10.84			13.85	N/A	36	25.35	-10.65	
5230.0	21.28	19.83			23.63	N/A	36	35.13	-0.87	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:50 of 179

15.5 dBi Antenna – Outdoor Equipment

Equipment Configuration for Peak Transmit Power							
Variant:	5 MHz	99.0					
Data Rate:	Rate 8	Antenna Gain (dBi):	15.5				
Modulation:	OFDM	OFDM Beam Forming Gain (Y): Not Applicable					
TPC:	Not Applicable Tested By: SB						
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data						

Test Measurement Results									
Test	Measure	d Conducted	•	er (dBm)	Calculated Total	Minimum 26 dB	Limit	EIRP	Margin
Frequency	Port(s)				Power	Bandwidth			5
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5157.0	10.11	7.5			12.01	N/A	36	26.51	-9.49
5200.0	18.81	17.96			21.42	N/A	36	35.92	-0.08
5245.0	18.23	18.56			21.41	N/A	36	35.91	-0.09

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0	
Data Rate:	Rate 8	Antenna Gain (dBi):	15.5	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measurement Results										
Test Frequency	Measured Conducted Output Power (dBm) Port(s)			Calculated Total Power	Minimum 26 dB	Limit	EIRP	Margin		
					Bandwidth					
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5162.0	10.11	7.5			12.01	N/A	36	26.51	-9.49	
5200.0	18.81	17.96	-		21.42	N/A	36	35.92	-0.08	
5245.0	18.23	18.56			21.41	N/A	36	35.91	-0.09	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:51 of 179

Duty Quele (0/)			
. ,			
Beam Forming Gain (Y)	Not Applicable		
Tested By	SB		
The data contained in this matrix were calculated values based on measured data			
	Duty Cycle (%): Antenna Gain (dBi): Beam Forming Gain (Y): Tested By: ained in this matrix were calculated values based of		

Test Measu	Test Measurement Results									
Test Frequency	Measured Conducted Output Power (dBm) Port(s)			Calculated	Minimum	Linelt		Margin		
				Total Power	26 dB Bandwidth	Limit	EIRP			
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5165.0	5.14	6.62			8.95	N/A	36	23.45	-12.55	
5200.0	17.45	17.83			20.65	N/A	36	35.15	-0.85	
5240.0	18.49	18.13			21.32	N/A	36	35.82	-0.18	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0	
Data Rate:	Rate 9	Antenna Gain (dBi):	15.5	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measurement Results									
Test Frequency	Measured Conducted Output Power (dBm) Port(s)			Calculated Total Power	Minimum	Limit	Margin	Margin	
					26 dB Bandwidth				
MHz	а	b	с	d	Σ Port(s) dBm	dB	dBm	dBm	dB
5172.0	10.83	10.84			13.85	N/A	36	28.35	-7.65
5230.0	18.79	17.34			21.14	N/A	36	35.64	-0.36

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Measurement Uncertainty:	±1.33 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:52 of 179

The following Output Power tables define the maximum permissible power (EIRP) that can be transmitted. The equipment falls under the FCC category of "Point - Point Equipment" +53 dBm EIRP limit.

16 dBi Antenna – Point - Point Equipment

Equipment Configuration	on for Peak Transmit Power	
		_

Variant:	5 MHz	Duty Cycle (%):	99.0	
Data Rate:	Rate 8	Antenna Gain (dBi):	16	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measurement Results									
Test	Measured Conducted Output Power (dBm) Port(s)			Calculated Total	Minimum 26 dB	Limit	EIRP	Margin	
Frequency				Power	Bandwidth	Linint	LIKP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5157.0	9.11	6.5			11.01	N/A	53	27.01	-25.99
5200.0	24.72	23.87			27.33	N/A	53	43.33	-9.67
5245.0	23.51	23.84			26.69	N/A	53	42.69	-10.31

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0	
Data Rate:	Rate 8	Antenna Gain (dBi):	16	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	SB		
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measur	Test Measurement Results									
Test	Test Measured Conducted Output Power (dBm)			Calculated Total	Minimum	1.1	FIDD	Manain		
Frequency		Por	Port(s) Po			26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5162.0	9.11	6.5			11.01	N/A	53	27.01	-25.99	
5200.0	24.72	23.87			27.33	N/A	53	43.33	-9.67	
5245.0	23.51	23.84			26.69	N/A	53	42.69	-10.31	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:53 of 179

Equipment Configuration for Peak Transmit Power							
20 MHz	Duty Cycle (%):	96.0					
Rate 8	Antenna Gain (dBi):	16					
OFDM	Beam Forming Gain (Y):	Not Applicable					
Not Applicable	Tested By:	SB					
The data contained in this matrix were calculated values based on measured data							
	20 MHz Rate 8 OFDM Not Applicable	20 MHz Duty Cycle (%): Rate 8 Antenna Gain (dBi): OFDM Beam Forming Gain (Y): Not Applicable Tested By:					

Test Measu	Test Measurement Results									
Test	Test Measured Conducted Output Power (dBm)			Calculated				. .		
Frequency		Por	t(s)		Total 26 dB Limit EIRF Power Bandwidth			EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5165.0	4.14	5.62			7.95	N/A	53	23.95	-29.05	
5200.0	20.45	20.83			23.65	N/A	53	39.65	-13.35	
5240.0	25.26	24.9			28.09	N/A	53	44.09	-8.91	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0	
Data Rate:	Rate 9	Antenna Gain (dBi):	16	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measur	Test Measurement Results									
Test Measured Conducted Output Power (dBm)				Calculated						
Frequency		Por	t(s)		Power	Total 26 dB Power Bandwidth	Limit	Margin	Margin	
MHz	а	b	c	d	Σ Port(s) dBm	dB	dBm	dBm	dB	
5172.0	9.83	9.84		-	12.85	N/A	53	28.85	-24.15	
5230.0	20.28	18.83			22.63	N/A	53	38.63	-14.37	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:54 of 179

23.5 dBi Antenna – Point - Point Equipment

Equipment Configuration for Peak Transmit Power							
Variant:	5 MHz	Duty Cycle (%):	99.0				
Data Rate:	Rate 8	Antenna Gain (dBi):	23.5				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data						

Test Measurement Results									
Test Frequency				Calculated Total	Minimum 26 dB	Limit	EIRP	Margin	
MHz	а	b	c	d	Power Σ Port(s) dBm	Bandwidth MHz	dBm	dBm	dB
5157.0	9.11	6.5			11.01	N/A	53	34.51	-18.49
5200.0	24.72	23.87			27.33	N/A	53	50.83	-2.17
5245.0	23.51	23.84			26.69	N/A	53	50.19	-2.81

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0		
Data Rate:	Rate 8	Antenna Gain (dBi):	23.5		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable Tested By: SB				
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data				

Test Measur	Test Measurement Results									
Test Frequency	Measured Conducted Output Power (dBm) hcy Port(s)			Calculated Total Power	Minimum 26 dB Bandwidth	Limit	EIRP	Margin		
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5162.0	9.11	6.5			11.01	N/A	53	34.51	-18.49	
5200.0	24.72	23.87			27.33	N/A	53	50.83	-2.17	
5245.0	23.51	23.84	-		26.69	N/A	53	50.19	-2.81	

Traceability to Industry Recognized Test Methodologies

Work Instruction: WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty: ±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:55 of 179

Equipment Configuration for Peak Transmit Power							
Variante	20 MUZ	Duty Cycle (%)	06.0				
	20 MHz	Duty Cycle (%):					
Data Rate:		Antenna Gain (dBi):					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data						

Test Measu	Test Measurement Results										
Test	st Measured Conducted Output Power (dBm)				Calculated	Minimum		EIRP	. .		
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin			
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB		
5165.0	4.14	5.62			7.95	N/A	53	31.45	-21.55		
5200.0	20.45	20.83			23.65	N/A	53	47.15	-5.85		
5240.0	25.26	24.9			28.09	N/A	53	51.59	-1.41		

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0	
Data Rate:	Rate 9	Antenna Gain (dBi):	23.5	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measur	Test Measurement Results									
Test Measured Conducted Output Power (dBm)			Calculated Total	Minimum 26 dB	Limit	Manala	Morain			
Frequency		Por	t(s)		Power	Bandwidth	Linin	Margin	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	dB	dBm	dBm	dB	
5172.0	9.83	9.84			12.85	N/A	53	36.35	-16.65	
5230.0	20.28	18.83			22.63	N/A	53	46.13	-6.87	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:56 of 179

29 dBi Antenna – Point - Point Equipment

Equipment Configuration for Peak Transmit Power							
Variant: 5 MHz Duty Cycle (%): 99.0							
Data Rate:	Rate 8	Antenna Gain (dBi):	28				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data						

Test Measurement Results									
Test				Calculated Total	Minimum 26 dB	Limit	EIRP	Margin	
Frequency					Power	Bandwidth			
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5157.0	10.11	7.5			12.01	N/A	53	40.01	-12.99
5200.0	22.31	21.46			24.92	N/A	53	52.92	-0.08
5245.0	21.73	22.06			24.91	N/A	53	52.91	-0.09

Traceability to Industry Recognized Test Methodologies						
Work Instruction: WI-01 MEASURING RF OUTPUT POWER						
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0	
Data Rate:	Rate 8	Antenna Gain (dBi):	28	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measur	Test Measurement Results									
Test Frequency				Total	Minimum 26 dB Bandwidth	Limit	EIRP	Margin		
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5162.0	10.11	7.5			12.01	N/A	53	40.01	-12.99	
5200.0	22.31	21.46			24.92	N/A	53	52.92	-0.08	
5245.0	21.73	22.06	-		24.91	N/A	53	52.91	-0.09	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:57 of 179

Equipment Configuration for Peak Transmit Power						
Variante	20 MUZ	Duty Cycle (9/)	06.0			
	20 MHz	Duty Cycle (%):				
Data Rate: Modulation:		Antenna Gain (dBi):				
		Beam Forming Gain (Y):				
	Not Applicable Tested By: SB					
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data					

Test Measu	Test Measurement Results									
Test	Test Measured Conducted Output Power (dBm)			Calculated	Minimum		EIRP			
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin		
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5165.0	5.14	6.62			8.95	N/A	53	36.95	-16.05	
5200.0	21.45	21.83			24.65	N/A	53	52.65	-0.35	
5240.0	21.99	21.63			24.82	N/A	53	52.82	-0.18	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0	
Data Rate:	Rate 9	Antenna Gain (dBi):	28	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measur	Test Measurement Results									
Test Measured Conducted Output Power (dBm)			Calculated Total	Minimum 26 dB	Limit	Morgin	Morain			
Frequency		Por	t(s)	Power		Bandwidth	Linin	Margin	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	dB	dBm	dBm	dB	
5172.0	10.83	10.84			13.85	N/A	53	41.85	-11.15	
5230.0	21.28	19.83			23.63	N/A	53	51.63	-1.37	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:58 of 179

32 dBi Antenna – Point - Point Equipment

Equipment Configuration for Peak Transmit Power						
Variant:	Variant: 5 MHz Duty Cycle (%): 99.0					
Data Rate:	Rate 8	Antenna Gain (dBi):	31			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data					

Test Measurement Results									
Test				Calculated	Minimum		5100		
Frequency				Total Power	26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5157.0	10.11	7.5		-	12.01	N/A	53	43.01	-9.99
5200.0	19.31	18.46		-	21.92	N/A	53	52.92	-0.08
5245.0	18.73	19.06			21.91	N/A	53	52.91	-0.09

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Equipment Configuration for Peak Transmit Power

Variant:	10 MHz	Duty Cycle (%):	98.0	
Data Rate:	Rate 8	Antenna Gain (dBi):	31	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable Tested By: SB			
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measurement Results									
Test Frequency					Calculated Total	Minimum 26 dB	Limit	EIRP	Margin
Trequency		Por	(S)			Power Bandwidth			
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB
5162.0	10.11	7.5	-		12.01	N/A	53	43.01	-9.99
5200.0	19.31	18.46	-		21.92	N/A	53	52.92	-0.08
5245.0	18.73	19.06	-		21.91	N/A	53	52.91	-0.09

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:59 of 179

Equipment Configuration for Peak Transmit Power							
Variant: 20 MHz Duty Cycle (%): 96.0							
Data Rate:		Antenna Gain (dBi):					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable Tested By: SB						
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data						
Modulation: OFDM Beam Forming Gain (Y): Not Applicable							

Test Measur	Test Measurement Results									
Test Frequency	Measured Conducted Output Power (dBm) Port(s)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	EIRP	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	dB	
5165.0	5.14	6.62			8.95	N/A	53	39.95	-13.05	
5200.0	18.62	19.00			21.82	N/A	53	52.82	-0.18	
5240.0	18.99	18.63			21.82	N/A	53	52.82	-0.18	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

Equipment Configuration for Peak Transmit Power

Variant:	40 MHz	Duty Cycle (%):	92.0	
Data Rate:	Rate 9	Antenna Gain (dBi):	31	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable Tested By: SB			
Engineering Test Notes:	The data contained in this matrix were calculated values based on measured data			

Test Measurement Results									
Test	Test Measured Conducted Output Power (dBm) Calcula Tota						Limit	Margin	Margin
Frequency		Por	t(s)		Total 26 dB Power Bandwidth		Linin	Margin	wargin
MHz	а	b	с	d	Σ Port(s) dBm	dB	dBm	dBm	dB
5172.0	10.83	10.84			13.85	N/A	53	44.85	-8.15
5230.0	19.29	17.84			21.64	N/A	53	52.64	-0.36

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Measurement Uncertainty:	±1.33 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:60 of 179

Specification Limits

FCC, Part 15 §15.407 (a)(1), (a)(2)

(a)(1)(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(1)(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:61 of 179

6.1.1.3. Peak Power Spectral Density

Conducted Test Conditions for Power Spectral Density						
Standard:	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45			
Standard Section(s):	15.247 (a) Pressure (mBars): 999 - 1001					
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for Power Spectral Density

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)

<u>Measure and sum the spectra across the outputs</u>. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density.

Calculated Power = $A + 10 \log (1/x) dBm$

A = Total Power Spectral Density [10 Log10 (10a/10 + 10 b/10 + 10c/10 + 10d/10)]

x = Duty Cycle

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:62 of 179

Using the lowest gain antenna (11 dBi) the measured Power Spectral Density values were the highest values that the equipment can transmit. As can be observed in the Maximum Conducted Output Power as the antenna gain increases the power is reduced according to the regulations, as a result the Power Spectral Density follows and will comply with the regulations.

Equipment Configuration for Peak Power Spectral Density						
Variant:	5 MHz	Duty Cycle (%):	99.0			
Data Rate:	Rate 8	Antenna Gain (dBi):	11			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						

Test Measurement Results										
Test	N	leasured Power	Amplitude	1.1						
Frequency		Port(s) (d	Summation + DCCF (+0.04 dB)	Limit	Margin					
MHz	а	b	b c d		dBm/MHz	dBm/MHz	dB			
5157.0	<u>0.387</u>	<u>-0.846</u>			<u>2.619</u>	17.0	-14.4			
5200.0	<u>13.915</u>	<u>13.328</u>			<u>16.232</u>	17.0	-0.8			
5245.0	<u>14.131</u>	<u>13.850</u>			<u>16.382</u>	17.0	-0.6			

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK						
Measurement Uncertainty:	±2.81 dB						

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:63 of 179

Equipment Configuration for Peak Power Spectral Density									
Variant:	10 MHz	Duty Cycle (%):	98.0						
Data Rate:	Rate 8	Antenna Gain (dBi):	11						
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable						
TPC:	Not Applicable	Tested By:	SB						
Engineering Test Notes:									

Test Measurement Results										
Test	Test Measured Power Spectral Density					Limit	Margin			
Frequency		Port(s) (d	lBm/MHz)		Summation + DCCF (+0.09 dB)	Linin	Margin			
MHz	а	b c d		dBm/MHz	dBm/MHz	dB				
5162.0	<u>-2.576</u>	<u>-1.726</u>			<u>0.924</u>	17.0	-16.1			
5200.0	<u>13.739</u>	<u>13.751</u>			<u>16.348</u>	17.0	-0.7			
5245.0	<u>13.631</u>	<u>13.753</u>			<u>16.270</u>	17.0	-0.7			

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK						
Measurement Uncertainty:	±2.81 dB						

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:64 of 179

Equipment Configuration for Peak Power Spectral Density									
Variant:	20 MHz	Duty Cycle (%):	96.0						
Data Rate:	Rate 8	Antenna Gain (dBi):	11						
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable						
TPC:	Not Applicable	Tested By:	SB						
Engineering Test Notes:									

Test Measurement Results										
Test	N	leasured Power	Amplitude Summation +	Limit	Margin					
Frequency		Port(s) (d		DCCF (+0.18 dB)		Margin				
MHz	а	b c d		dBm/MHz	dBm/MHz	dB				
5165.0	<u>-6.264</u>	<u>-6.852</u>			<u>-3.503</u>	17.0	-20.5			
5200.0	<u>8.156</u>	<u>8.257</u>			<u>11.303</u>	17.0	-5.7			
5240.0	<u>12.415</u>	<u>11.946</u>			<u>15.271</u>	17.0	-1.7			

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK						
Measurement Uncertainty:	±2.81 dB						

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:65 of 179

Equipment Configuration for Peak Power Spectral Density									
Variant: 40 MHz Duty Cycle (%): 92.0									
Data Rate:	Rate 9	Antenna Gain (dBi):	11						
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable						
TPC:	Not Applicable	Tested By:	SB						
Engineering Test Notes:									

Test Measurement Results										
Test	N	leasured Power	Spectral Densit	у	Amplitude Summation +	Limit	Manain			
Frequency		Port(s) (d	lBm/MHz)	DCCF (+0.36 dB)	Limit	Margin				
MHz	а	b c d		d	dBm/MHz	dBm/MHz	dB			
5172.0	<u>-4.134</u>	<u>-4.033</u>			<u>-0.829</u>	17.0	-17.8			
5230.0	<u>5.238</u>	<u>5.228</u>			<u>8.601</u>	17.0	-8.4			

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:66 of 179

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)

(a)(1)(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(1)(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.1.1.4. Frequency Stability

FCC, Part 15 Subpart C §15.407(g)

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

 \pm 20ppm at 5.250 GHz translates to a maximum frequency shift of \pm 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, \pm 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:68 of 179

6.1.2. Radiated Emission Testing

FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a)

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBµV/m

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:69 of 179

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ($dB\mu V/m$);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m}$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m

Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:70 of 179

6.1.2.1. Outdoor Equipment Antenna

11 dBi Antenna MT0128930 Outdoor Equipment

Test	Freq.	5157 N	1Hz					E	ngineer	JMH		
	· ·	802.11; 5 MHz						Temp (°C) 17.5				
Freg. F		1-18 G							Hum.(%)	67		
Power Se	•	7.5					P		(m Bars)	800		
		11 dBi							, ,			
TestNo	otes 1	AP012 [.]	7730 AI	-0134760	CIII SN# EUT has	s no s	erial nu	Imber				
TestNo	otes 2	11dBi S	Sector, I	MT012893	0							
Formally												
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5156.31263	62.7	5.9	-11.6	57.0	Peak [Scan]	V						FUND
16058.116	39.5	11.9	0.8	52.3	Peak [Scan]	V	200	0	54	-1.7	Pass	Noise
6859.719	52.3	6.9	-7.7	51.5	Peak [Scan]	Н	150					NRB
Legend:	TX = T	ransmit	ter Emis	sions; DIC	G = Digital Emissi	ons; F	UND =	Funda	mental Fre	equency		
	ETSI V	id Avg	Туре =	100 kHz F	BW, 100 kHz VE	BW, Pe	eak De	tector,	Video Av	erage, 10	0 Swee	eps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:71 of 179

Test Fr	eq. 5200 M	.5200 MHz						Engineer	JMH			
Variant802.11; 5 MHz						Temp (°C)						
Freq. Rar	u ge 1-18 G					Rel. Hum.(%)67						
Power Sett	ing18					Press. (mBars)800						
Anter	na 11 dBi	11 dBi										
Test Note	s 1 <mark>AP012</mark>	AP0127730 AP0134760 CIII SN# EUT has no serial number										
Test Note	s 2 11dBi S	Sector, N	/IT012893	0								
MICOMLabs	dBuV/m	1		Vasona by E	MiSo	ft			03 Dec	14 11:4	2	
	70.0		-		Ĩ				-PK -	1 Horiz 2 Vertic		
	60.0									Pk Lmt Av Lmt Debug		
	50.0					1		in the	AV			
	40.0			mademan	1	Alm	anno	And the second s	141			
	30.0 x	~	Sarara						Spec	Dist 3n Dist 3m ncy: MH	1	
Formally me		diated En ename: k		adwin\rdwn33 - ap0 ks	Ten 127730	nplate: F ap0134		00.0 : 1-18GHz po\u3 - foo	18000.0 : 15.407\da	ata\se\11	db	
Frequency Ra MHz dBu		AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5190.381 82.	8 5.9	-11.5	77.2	Peak [Scan]							FUND	
6927.85571 53.	3 7.0	-7.5	52.8	Peak [Scan]	Н						NRB	
16466.934 38.	2 12.0	1.7	51.9	Peak [Scan]	Н	100	0	54	-2.1	Pass	Noise	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:72 of 179

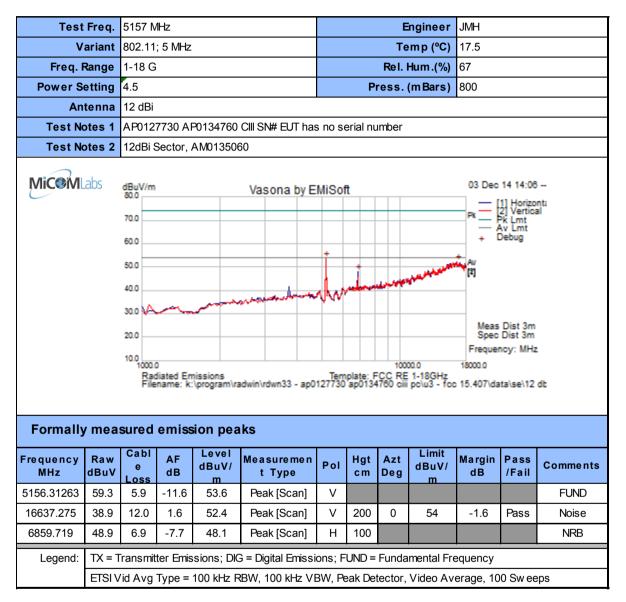
Test	Freq.	5245 N	/Hz					E	ngineer	JMH			
Vá	ariant	802.11; 5 MHz					Temp (°C)				17.5		
Freq. R	Range	1-18 G					Rel. Hum.(%)				67		
Power Se	etting	18					Press.(mBars) 8						
Ant	tenna	11 dBi											
TestNo	otes 1	AP0127730 AP0134760 CIII SN# EUT has no serial number											
TestNo	otes 2	2 11dBi Sector, MT0128930											
Formally		dBU/m03 De 14 11:9 -000 <t< th=""></t<>											
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments	
5224.4489	85.6	5.9	-11.4	80.2	Peak [Scan]							FUND	
6995.992	53.5	7.0	-7.5	53.1	Peak [Scan]	Н						NRB	
15683.367	40.4	11.6	0.2	52.2	Peak [Scan]	V	100	0	54	-1.8	Pass	Noise	
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental Frequency												
	ETSI V	ETSI Vid Avg Type = 100 kHz RBW, 100 kHz VBW, Peak Detector, Video Average, 100 Sw eeps											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:73 of 179

11 dBi Antenna MT0128930 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m


	5150 MH	Iz Restricte	ed Band-Edge
	dBµ'	V/m	Dower Cotting
Operational Mode (MHz)	Peak	Average	Power Setting
5	73.07	45.45	1.5
10	73.66	51.00	4.0
20	73.92	53.95	2.0
40	73.54	52.33	-1.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:74 of 179

12 dBi Antenna - AM0135060 Outdoor Equipment

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:75 of 179

st Freq.	5200 MH	Z						Engineer	JMH		
Variant	802.11; 5	5 MHz					Т	emp (°C)	17.5		
Range	1-18 G						Rel.	Hum.(%)	67		
Setting	18						Press	(mBars)	800		
ntenna	12 dBi										
Notes 1	AP01277	'30 AP01	34760 CIII	SN# EUT has no	serial	numbe	er				
Notes 2	12dBi Se	ctor, AM	0135060								
abs	dBuV/m		V	asona by EMiS	off			03	Dec 14 14:2	24	
	80.0			t		TT					
	70.0		_					Pk_	- Pk Lmt - Av Lmt		
	60.0		_		-			- +	Debug		
	50.0		-		+			AU			
	40.0		_		Male	-	and the second second				
	30.0	m	mandon	- and and and all	Y			_			
neasur	1000.0 Radia Filena			nirdwn33 - ap01277	emplate 30 ap01					2 dt	
Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
81.2	5.9	-11.5	75.6	Peak [Scan]							FUND
38.2	12.0	1.7	51.9	Peak [Scan]	Н	100	0	54.0	-2.1	Pass	Noise
49.7	7.0	-7.5	49.2	Peak [Scan]	V						NRB
				igital Emissions;							
	Range Setting Intenna Notes 1 Notes 2 Notes 2 Notes 2 Notes 2 Notes 2 Notes 2 Notes 2 Notes 2 Notes 1 Notes 1 Notes 1 Notes 1 Notes 2 Notes 2 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 1 Notes 1 Notes 1 Notes 2 Notes 1 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 1 Notes 1 Notes 2 Notes 1 Notes 1 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 2 Notes 1 Notes 1 Notes 2 Notes 2 Notes 2 Notes 2 Notes 1 Notes 2 Notes 2	Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP01277 Notes 2 12dBi Setting Notes 2 12dBi Setting Bos 600 Bos 700 Bos 700	Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP0127730 AP01 Notes 2 12dBi Sector, AMI Notes 2 12dBi Sector, AMI B05 600 600 500 600 500 600 500 600 500 600 500 600 500 700 600 700 600 700 600 700 600 700 600 700 600 700 600 700 600 700 600 700 600 700 600 700 600 700 600 700 700 800 600 700 700 840 81.2 700 1.1.7	Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP0127730 AP0134760 CIII Notes 2 12dBi Sector, AM0135060 Obs dBuV/m V Radiated Emissions Filename: k:'program\radwing Raw dBuV Cable Loss AF dBuV/m Level dBuV/m Raw dBuV Cable Loss AF dB Level dBuV/m 81.2 5.9 -11.5 75.6 38.2 12.0 1.7 51.9	Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP0127730 AP0134760 CIII SN# EUT has not state Notes 2 12dBi Sector, AM0135060 Obs Vasona by EMIS Optimized BuV/m Vasona by EMIS Business Vasona by EMIS Optimized BuV/m Vasona by EMIS Business Emissions Filename: K. program/radwin/rdwn33 - ap01277 Business <th< td=""><td>Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial Notes 2 12dBi Sector, AM0135060 Notes 2 12dBi Sector, AM0135060 Notes 3 dBuV/m Vasona by EMiSoft 700 700 700 600 700 700 700 600 700 700 700 600 700 700 700 700 700 700 700 600 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6</td></th<> <td>Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number Notes 2 12 dBi Sector, AM0135060 Setting Vasona by EMiSoft Total Vasona by EMiSoft Total Total AP0127730 AP0134760 CIII SN# EUT has no serial number Notes 2 12 dBi Sector, AM0135060</td> <td>Range 1-18 G Rel. Setting 18 Press. Internal 12 dBi Press. Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number Notes 2 12dBi Sector, AM0135060 DS dBuV/m Vasona by EMISoft Notes 3 0 000 0</td> <td>Range 1-18 G Rel. Hum.(%) Setting 18 Press. (mBars) Intenna 12 dBi Image: Cable of the set of the se</td> <td>Range 1-18 G Rel. Hum.(%) 67 Setting 18 Press. (mBars) 800 Interna 12 dBi AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 2 12dBi Sector, AM0135060 03 Dec 14 14:2 Bit Vasona by EMiSoft 03 Dec 14 14:2 Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit</td> <td>Range 1-18 G Rel. Hum.(%) 67 Setting 18 Press. (mBars) 800 Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 1 2dBi 800 Notes 1 2dBi Sector, AM0135060 03 Dec 14 14:24 - Notes 1 2dBi Sector, AM0135060 03 Dec 14 14:24 - Notes 1 2dBi Sector, AM0135060 03 Dec 14 14:24 - Notes 1 Setting 03 Dec 14 14:24 - Notes 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td>	Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial Notes 2 12dBi Sector, AM0135060 Notes 2 12dBi Sector, AM0135060 Notes 3 dBuV/m Vasona by EMiSoft 700 700 700 600 700 700 700 600 700 700 700 600 700 700 700 700 700 700 700 600 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 700 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6	Range 1-18 G Setting 18 Intenna 12 dBi Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number Notes 2 12 dBi Sector, AM0135060 Setting Vasona by EMiSoft Total Vasona by EMiSoft Total Total AP0127730 AP0134760 CIII SN# EUT has no serial number Notes 2 12 dBi Sector, AM0135060	Range 1-18 G Rel. Setting 18 Press. Internal 12 dBi Press. Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number Notes 2 12dBi Sector, AM0135060 DS dBuV/m Vasona by EMISoft Notes 3 0 000 0	Range 1-18 G Rel. Hum.(%) Setting 18 Press. (mBars) Intenna 12 dBi Image: Cable of the set of the se	Range 1-18 G Rel. Hum.(%) 67 Setting 18 Press. (mBars) 800 Interna 12 dBi AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 2 12dBi Sector, AM0135060 03 Dec 14 14:2 Bit Vasona by EMiSoft 03 Dec 14 14:2 Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit Bit	Range 1-18 G Rel. Hum.(%) 67 Setting 18 Press. (mBars) 800 Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 1 AP0127730 AP0134760 CIII SN# EUT has no serial number 800 Notes 1 2dBi 800 Notes 1 2dBi Sector, AM0135060 03 Dec 14 14:24 - Notes 1 2dBi Sector, AM0135060 03 Dec 14 14:24 - Notes 1 2dBi Sector, AM0135060 03 Dec 14 14:24 - Notes 1 Setting 03 Dec 14 14:24 - Notes 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:76 of 179

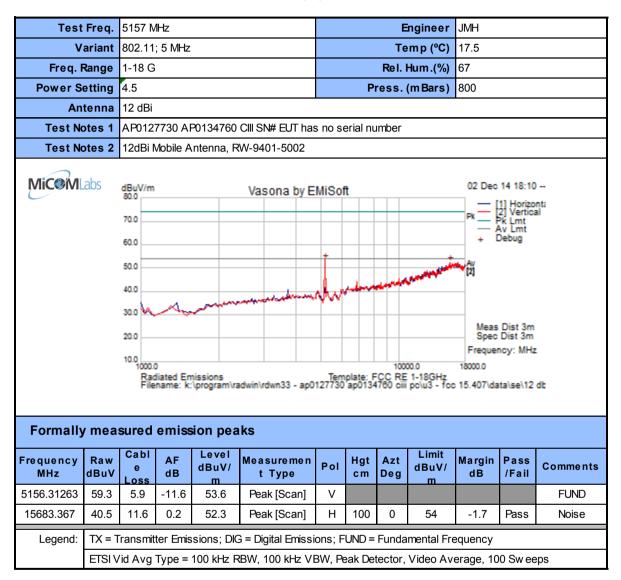
Test I Va	rreq.	5245 N							naineer	JMH		
Va									ngineer	-		
			; 5 MHz						mp (°C)	17.5		
Freq. R	· J·	1-18 G							Hum.(%)	67		
Power Se	etting	18					P	ress.	(m Bars)	800		
Ant	enna	12 dBi										
TestNo	tes 1	AP012	7730 AF	20134760	CIII SN# EUT ha	s no se	erial nu	ımber				
TestNo	tes 2	12dBi S	Sector, <i>I</i>	AM013506	60							
MiCem	abs	dBuV/m 80.0 70.0 50.0 40.0 20.0 10.0 7000 File		nissions program\ra	Vasona by E	r w		1000 CCC RE 1760 cili		Pk + (2) Av (2) Meas Spec Frequer 18000.0	14 14:38 1] Horizo 2] Vertics k Lmt v Lmt Debug Dist 3m Dist 3m noy: MHz ta\se\12	nt: al
Formally	meas	sured	emiss	ion pea	ks							
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5224.4489	85.0	5.9	-11.4	79.5	Peak [Scan]							FUND
16466.934	38.7	12.0	1.7	52.4	Peak [Scan]	Н	100	0	54	-1.6	Pass	Noise
Legend:	TX = T	ransmit	ter Emis	sions; DIC	G = Digital Emiss	ons; F	UND =	Funda	mental Fre	equency		
	ETSI V	id Avg	Type =	100 kHz F	- BW, 100 kHz V	BW, Pe	eak De	tector,	Video Av	erage, 10	0 Sw ee	eps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:77 of 179

12 dBi Antenna - AM0135060 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m


	5150 MH	Iz Restricte	ed Band-Edge
	dBµ'	V/m	Dower Cotting
Operational Mode (MHz)	Peak	Average	Power Setting
5	73.83	44.03	3.0
10	73.49	50.22	6.0
20	73.07	53.87	4.0
40	72.83	51.58	0.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:78 of 179

12 dBi Antenna - RW-9401-5002 Outdoor Equipment

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:79 of 179

Test	Freq.	5200 N	/IHz					E	ngineer	JMH		
V	ariant	802.11	; 5 MHz					Те	mp (°C)	17.5		
Freq. I	Range	1-18 G	i					Rel.	Hum.(%)	67		
Power S	etting	18					Р	ress.	(m Bars)	800		
An	tenna	12 dBi										
Test No	otes 1	AP012	7730 AI	P0134760	CIII SN# EUT has	s no se	erial nu	ımber				
Test No	otes 2	12dBi I	Vobile A	ntenna, R	W-9401-5002							
Formally		File	0 diated En name: k:	:\program\ra	Vasona by E	+ A	plate: F	100 CC RE	1-18GHz	Pk Av + 1 Meas Spec Frequer 18000.0	14 18:26 1] Horizo 2] Vertic: Xy Lmt Vertic Vertic 2] Vertic 2] Vertic	nt: al
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5190.381	81.6	5.9	-11.5	76.0	Peak [Scan]							FUND
16569.138	38.7	11.9	1.6	52.3	Peak [Scan]	V	150	0	54.0	-1.7	Pass	Noise
6927.856	52.2	7.0	-7.5	51.6	Peak [Scan]	V						NRB
0927.000												
Legend:	TX = T	ransmit	ter Emis	sions; DIC	G = Digital Emissi	ons; F	UND =	Funda	mental Fre	equency		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:80 of 179

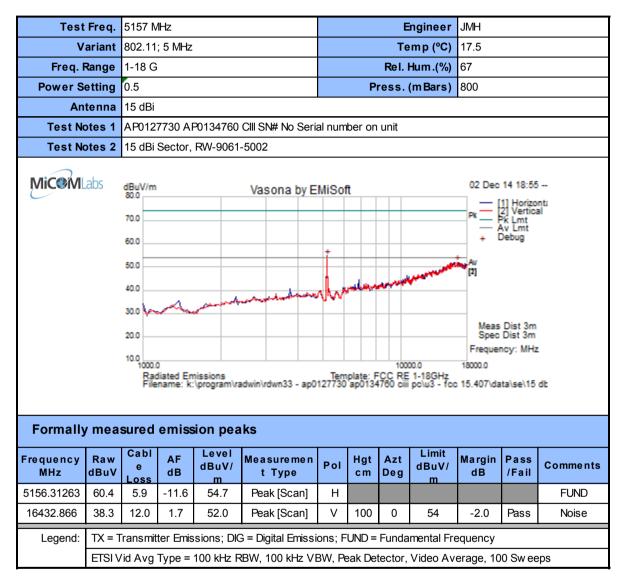
Test	Freq.	5245 N	/Hz					E	ngineer	JMH		
V	ariant	802.11	; 5 MHz					Те	mp (°C)	17.5		
Freq. F	Range	1-18 G	i					Rel.	Hum.(%)	67		
Power Se	etting	18					P	ress.	(m Bars)	800		
An	tenna	12 dBi										
Test No	otes 1	AP012	7730 AI	-0134760	CIII SN# EUT has	s no se	erial nu	ımber				
TestNo	otes 2	12dBi N	Mobile A	ntenna, R	W-9401-5002							
Formally		File	0 diated En name: k:	\program\ra	Vasona by E	Tem	plate: F	100 CC RE	1-18GHz	Pk Av + (1) Meas Spec Frequer 18000.0	14 18:36 1] Horizo 2] Vertica % Lmt Debug Dist 3m hoy: MHz ita\se\12	nt: al
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5224.4489	85.4	5.9	-11.4	80.0	Peak [Scan]							Fund
16058.116	39.3	11.9	0.8	52.1	Peak [Scan]	V	200	0	54	-1.9	Pass	Noise
6995.992	51.6	7.0	-7.5	51.2	Peak [Scan]	V						NRB
Legend:	TX = T	ransmit	ter Emis	sions; DIC	G = Digital Emissi	ons; F	UND =	Funda	mental Fre	equency		
	ETSI V	′id Avg	Type =	100 kHz F	BW, 100 kHz VE	BW, Pe	eak Det	tector,	Video Av	erage, 10	0 Swee	eps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:81 of 179

12 dBi Antenna - RW-9401-5002 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m


	5150 MH	z Restricte	ed Band-Edge
	dBµ'	V/m	Dower Cotting
Operational Mode (MHz)	Peak	Average	Power Setting
5	73.96	45.84	4.5
10	73.84	49.52	6.0
20	73.30	53.61	4.0
40	72.05	48.67	9.5

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:82 of 179

15.5 dBi Antenna - RW-9061-5002 Outdoor Equipment

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:83 of 179

Test	Freq.	5200 N	1Hz					E	ngineer	JMH		
V	ariant	802.11	;5 MHz					Те	mp (°C)	17.5		
Freq. F	Range	1-18 G						Rel. I	Hum.(%)	67		
Power S	etting	15.5					P	ress.	(m Bars)	800		
An	tenna	15 dBi										
Test No	otes 1	AP012	7730 AI	-0134760	CIII SN# No Seria	al num	ber on	unit				
Test No	otes 2	15 dBi	Sector,	RW-9061	-5002							
MiCem			o diated En name: k:		Vasona by E		r r	1000		Pk Av Av Pk Av Pk Av Pk	14 19:14 1] Horizo 2] Vertic: % Lmt V Lmt Debug Dist 3m Dist 3m hoy: MH2 ta\se\15	nt: al
Formally	/ mea	sure	d em	ission	peaks							
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5190.381	80.5	5.9	-11.5	74.9	Peak [Scan]							Fund
16398.798	38.6	12.0	1.6	52.1	Peak [Scan]	V	100	0	54.0	-1.9	Pass	Noise
6927.856	51.2	7.0	-7.5	50.7	Peak [Scan]	Н						NRB
Legend:	TX = T	ransmit	ter Emis	sions; DIC	6 = Digital Emissi	ons; F	UND =	Funda	mental Fre	auency		
		I Vid Avg Type = 100 kHz RBW, 100 kHz VBW, Peak Detector, Video Average, 100 Sw eeps										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:84 of 179

Test	Freq.	5245 N	1Hz					E	ngineer	JMH		
		802.11							mp (°C)	17.5		
Freg. F		1-18 G							• • •	67		
Power Se	•	15.5					P			800		
	-	15 dBi										
Test No		AP012	7730 AI	20134760	CIII SN# No Seria	al num	ber on	unit				
Test No		-		RW-9061								
Formally			liated En name: k:		Vasona by E	, In	ci di man	1000 CCC RE 1760 cill		Pk 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2 4/2	14 19:15 1] Horizo 2] Vertica % Lmt X Lmt Debug Dist 3m Dist 3m ncy: MHz ta\se\15	nta al
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5224.449	82.7	5.9	-11.4	77.2	Peak [Scan]	V						FUND
15853.707	40.7	11.8	0	52.5	Peak [Scan]	V	100	0	54	-1.5	Pass	Noise
6995.992	48.8	7	-7.4	48.3	Peak [Scan]	Н	150					NRB
Legend:	TX = T	ransmit	ter Emis	sions; DIC	6 = Digital Emissi	ons; F	UND =	Funda	mental Fre	equency		
	ETRIV	Vid Avg Type = 100 kHz RBW, 100 kHz VBW, Peak Detector, Video Average, 100 Sw eeps										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

15.5 dBi Antenna - RW-9061-5002 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m

	5150 MH	z Restricte	ed Band-Edge
	dBµ'	V/m	Dower Cotting
Operational Mode (MHz)	Peak	Average	Power Setting
5	71.84	42.17	0.5
10	73.46	50.11	2.5
20	70.12	52.23	0.5
40	73.72	52.43	-1.5

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:86 of 179

6.1.2.2. Point - Point Equipment Antenna

16 dBi Antenna - AM0111760 Point - Point

Test	Freq.	5157 N	1Hz					F	ngineer	JMH		
	· ·	802.11							mp (°C)	17.5		
Freq. F		1-18 G	,						Hum.(%)	67		
Power Se		0.5					P		(m Bars)	800		
		15 dBi					•	033.	(III Dai 3)	000		
Test No			7720 41	20124760	CIII SN# No Sei		boron	unit				
Test No		-						unit				
Testing	otes 2	10 081	Panel, P	M011176	0							
MiC@ML	abs	dBuV/m 80.0 70.0 60.0 50.0 40.0 20.0 20.0 10000 Relie		nissions program\ra	Vasona by I	n.	,nd oo	100		Pk Av Av Meas Spec Frequent 18000.0	14 16:28 1] Horizo 2] Vertic: K Lmt Av Lmt Debug Dist 3m noy: MHz ta\se\15	nt: al
Formally	mea	sured	emiss	ion pea	iks							
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
17420.842	40.5	12.4	-0.3	52.5	Peak [Scan]	Н	100	0	54.0	-1.5	Pass	Noise
5156.313	57.3	5.9	-11.6	51.6	Peak [Scan]							FUND
Legend:	TX = T	ransmit	ter Emis	sions; DK	G = Digital Emiss	ions; F	UND =	Funda	mental Fre	equency		
	ETSI V	'id Avg	Type =	100 kHz F	BW, 100 kHz V	BW, P	eak De	tector,	Video Av	erage, 10	0 Swee	eps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:87 of 179

Test	Freq.	5200 N	/Hz					E	ngineer	JMH		
v	ariant	802.11	; 5 MHz					Te	mp (°C)	17.5		
Freq. F	Range	1-18 G	ì					Rel.	Hum.(%)	67		
Power S	etting	23					P	ress.	(m Bars)	800		
An	tenna	15 dBi										
Test No	otes 1	AP012	7730 AI	P0134760	CIII SN# No Seria	al num	ber on	unit				
Test No	otes 2	16 dBi	Panel, A	AM011176	0							
Formally			0 diated En name: k		Vasona by E	, Uw		100 CC RE 4760 cili		Pk +	14 17:38 1] Horizo 2] Vertic: % Lmt Vertic: % Lmt Debug Dist 3m Dist 3m ncy: MHz ta\se\15	z
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
WITTZ	87.7	5.9	-11.5	82.1	Peak [Scan]							FUND
5190.381	07.7			52.3	Peak [Scan]	Н	100	0	54.0	-1.7	Pass	Noise
	39.2	12.0	1.1	52.5								
5190.381	-	12.0 7.0	1.1 -7.5	50.0	Peak [Scan]	Н						NRB
5190.381 16160.321	39.2 50.5	7.0	-7.5	50.0			UND =	Funda	mental Fre	equency		NRB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:88 of 179

	Freq.	5245 N	/Hz					E	ngineer	JMH		
V	ariant	802.11	;5 MHz					Те	mp (⁰C)	17.5		
Freq. I	Range	1-18 G	i					Rel. I	Hum.(%)	67		
Power S	etting	23					Pi	ress.	(m Bars)	800		
An	tenna	15 dBi										
Test No	otes 1	AP012	7730 AI	20134760	CIII SN# No Seria	al num	ber on	unit				
Test No	otes 2	16 dBi	Panel, A	M011176	0							
MICOM	.abs	dBuV/m 90.0 70.0 60.0 40.0 30.0 20.0 1000. Rain File	0	nissions program/ra	Vasona by E	ţ.		1000 CC RE 1760 cili		Av (2) Meas Spec Frequer 1800.0	14 18:10 1] Horizo 2] Vertica % Lmt w Lmt bebug Dist 3m Dist 3m ta\se\15	nta al
Formally	y mea		emiss	-	ks				1 114			
	r mea Raw dBuV	Sured Cabl e Loss	emiss AF dB	ion pea Level dBuV/ m	ks Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
Frequency	Raw	Cabl e	AF	Level dBuV/	Measuremen	Pol	_		dBuV/			Comments FUND
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol H	_		dBuV/			
Frequency MHz 5224.4489	Raw dBuV 92.2	Cabl e Loss 5.9	AF dB -11.4	Level dBuV/ m 86.7	Measuremen t Type Peak [Scan]		_		dBuV/			FUND
Frequency MHz 5224.4489 10505.010	Raw dBuV 92.2 49.5	Cabl e Loss 5.9 9.0	AF dB -11.4 -4.3	Level dBuV/ m 86.7 54.2	Measuremen t Type Peak [Scan] Peak [Scan]	H	cm	Deg	dBuV/ m	dB	/Fail	FUND NRB
Frequency MHz 5224.4489 10505.010 15751.503	Raw dBuV 92.2 49.5 40.8 48.1	Cabl e Loss 5.9 9.0 11.7 7.0	AF dB -11.4 -4.3 0.2 -7.5	Level dBuV/ m 86.7 54.2 52.6 47.7	Measuremen t Type Peak [Scan] Peak [Scan] Peak [Scan]	H H H	cm 100	Deg 0	dBuV / m 54	dB -1.4	/Fail	FUND NRB Noise

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:89 of 179

16 dBi Antenna - AM0111760 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m

	5150 MH	Iz Restricte	ed Band-Edge
	dBµ'	V/m	Dower Cotting
Operational Mode (MHz)	Peak	Average	Power Setting
5	71.72	43.32	0.5
10	72.90	51.58	2.5
20	70.00	53.27	0.5
40	73.87	52.16	-3.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:90 of 179

23.5 dBi Antenna - MT0070760 Point - Point

Test	Freq.	5157 N	1Hz					E	ngineer	JMH		
Va	ariant	802.11	;5 MHz					Те	mp (°C)	17.5		
Freq. R	ange	1-18 G						Rel. I	Hum.(%)	67		
Power Se	etting	0.5					P	ress.	(m Bars)	800		
Ant	enna	23 dBi										
Test No	tes 1	AP012	7730 AF	90134760	CIII SN# No Seri	al num	ber on	unit				
TestNo	tes 2	23.5 dE	Bi Panel,	MT00707	760							
Formally	Test Notes 2 23.5 dBi Panel, MT0070760 MICENLabs dBuV/m Vasona by EMiSoft 03 Dec 14 19:59 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 000 18000 18000 Radiated Emissions Filename: k:\program\radwin\rdwn33 - ap0127730 ap0134780 cilii polu3 - foc 15.407\data\se\23 db											
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
16058.116	40.1	11.9	0.8	52.9	Peak [Scan]	V	100	0	54.0	-1.1	Pass	Noise
5156.313	56.4	5.9	-11.6	50.7	Peak [Scan]	Н						Fund
6859.719	50.9	6.9	-7.7	50.2	Peak [Scan]	Н	100					NRB
Legend:	TX = T	ransmit	ter Emis	sions; DIC	6 = Digital Emissi	ons; F	UND =	Funda	mental Fre	equency		
	ETSI V	′id Avg	Type =	100 kHz R	BW, 100 kHz VI	BW, P	eak De	tector,	Video Av	erage, 10	0 Swee	eps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:91 of 179

Test	Freq.	5200 N	/IHz					E	ingineer	JMH		
V	ariant	802.11	;5 MHz					Te	emp (°C)	17.5		
Freq. F	Range	1-18 G	;					Rel.	Hum.(%)	67		
Power Se	etting	19					P	ress.	(m Bars)	800		
An	tenna	23 dBi								•		
TestNo	otes 1	AP012	7730 A	-0134760	CIII SN# No Seria	al num	ber on	unit				
Test No	otes 2	23.5 dl	Bi Panel	, MT0070	760							
Formally			0 diated En		Vasona by E				00.0 1-18GHz polu3 - foc	Pk + D Meas Spec Frequer 18000.0	14 20:10 1] Horizo 2] Vertic: % Lmt % Lmt V Lmt Debug Dist 3m Dist 3m noy: MHz ta\se\23	nti al
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5190.381	92.6	5.9	-11.5	87.0	Peak [Scan]							FUND
6927.85571	57.6	7.0	-7.5	57.1	Peak [Scan]	Н						NRB
0927.0001	F7 0	6.6	-8.6	55.9	Peak [Scan]	V						NRB
6246.493	57.9			52.5	Peak [Scan]	V	100	0	54	-1.5	Pass	Noise
	57.9 41.1	11.5	-0.1	52.5	i ean [eean]							
6246.493		11.5 5.7	-0.1 -11.2	52.5 50.4	Peak [Scan]	Н	100	0	54	-3.6	Pass	BE RB
6246.493 15615.230	41.1 55.9	5.7	-11.2	50.4							Pass	BE RB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:92 of 179

Test	Freq.	5245 N	/Hz					E	ngineer	JMH		
v	ariant	802.11	;5 MHz					Те	mp (°C)	17.5		
Freq. F	Range	1-18 G	i					Rel.	Hum.(%)	67		
Power S	etting	18.5					P	ress.	(m Bars)	800		
An	tenna	23 dBi										
Test No	otes 1	AP012	7730 AF	-0134760	CIII SN# No Seria	al num	ber on	unit				
Test No	otes 2	23.5 dE	Bi Panel,	, MT0070	760							
MiCOM	abs	dBuV/m 90.0 80.0 70.0 60.0 50.0 40.0 20.0 10.0 10000 Rac File		nissions program\ra	Vasona by E		+ + Mulere	1000 CCC RE 760 cili		Pk + 1 Meas Spec Frequer 18000.0	14 20:20 1] Horizo 2] Vertic: 2 Vertic:	nt: I
Formally	/ mea	sured	emiss	ion pea	ks							
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
5224.4489	94.2	5.9	-11.4	88.7	Peak [Scan]							
15736.723	47.1	11.7	0.2	59.0	Peak	Н	100	0	74	-15.1	Pass	RB
15734.210	39.5	11.6	0.2	51.3	Average	Н	98	-3	54	-2.7	Pass	RB
10505.010	53.5	9.0	-4.3	58.2	Peak [Scan]	Н						NRB
6995.992	55.6	7.0	-7.5	55.1	Peak [Scan]	Н						NRB
6144.289	57.1	6.5	-9.2	54.3	Peak [Scan]	V						NRB
16977.956	39.4	12.4	0.8	52.6	Peak [Scan]	Н	200	0	54	-1.4	Pass	Noise
4781.563	54.8	5.6	-11.1	49.3	Peak [Scan]	V	100	0	54	-4.7	Pass	BE RB
Legend:					6 = Digital Emissi 2BW, 100 kHz VI					, ,	0 Swee	ps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

23.5 dBi Antenna - MT0070760 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m

	5150 MH	Iz Restricte	ed Band-Edge
	dBµ'	V/m	Dower Cotting
Operational Mode (MHz)	Peak	Average	Power Setting
5	72.05	47.64	-7.0
10	72.48	49.86	-5.0
20	69.61	53.24	-8.0
40	73.24	52.53	-11.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:94 of 179

29dBi Antenna - RW-9622-5001 Point - Point

Test	Freq.	5157 N	1Hz					E	ngineer	JMH		
Va	riant	802.11	;5 MHz					Те	mp (°C)	18		
Freq. R	ange	1-18 G						Rel. I	Hum.(%)	59		
Power Se	tting	-10					P	ress.	(m Bars)	848		
Ant	enna	29 dBi										
Test No	tes 1	AP012 ⁻	7730 AF	90134760	CIII SN# No Seria	al num	ber on	unit				
Test No	tes 2	29 dBi	Panel, F	RW-9622-5	5001							
Formally			liated Em name: k:		Vasona by E	Ĵ.vr	* //	1000 CCC RE 760 ciii		Pk Av [2] Meas Spec Frequent 18000.0	14 11:57 1] Horizo 2] Vertica ^{PK} Lmt Av Lmt Debug Dist 3m Dist 3m ncy: MHz ta\se\29	nt: al
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
6859.71944	57.0	6.9	-7.7	56.3	Peak [Scan]	V	100					NRB
16909.820	39.3	12.3	0.9	52.5	Peak [Scan]	Н	100	0	54	-1.5	Pass	Noise
5156.313	54.3	5.9	-11.6	48.6	Peak [Scan]	V						FUND
Legend:	TX = T	ransmit	ter Emis	sions; DIC	6 = Digital Emissi	ons; F	UND =	Funda	mental Fre	equency		
	ETSI V	id Avg	Type =	100 kHz R	BW, 100 kHz VE	3W, Pe	eak Det	tector,	Video Av	erage, 10	0 Swee	eps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:95 of 179

Test	Freq.	5200 N	/Hz					E	ngineer	JMH		
۷	ariant	802.11	; 5 MHz					Те	mp (°C)	18		
Freq.	Range	1-18 G	i					Rel. I	-l um.(%)	59		
Power S	etting	17.5					Pi	ress.	(m Bars)	848		
An	itenna	29 dBi										
Test N	otes 1	AP012	7730 AI	-0134760	CIII SN# No Seri	al num	ber on	unit				
Test N	otes 2	29 dBi	Panel, F	RW-9622-8	5001							
Micem	labs	dBuV/m 90.0 70.0 60.0 50.0 40.0 20.0 10.0 10.0 10.0 Rate File			Vasona by E	÷	ţ V	1000 CCC RE 760 ciii		Pk + C	14 12:08 1] Horizo 2] Vertic % Lntt % Lntt W Lmt Debug Dist 3m Dist 3m ncy: MH2 ta\se\29	nti al
Formally	y mea	sure	d em	ission	peaks							
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
	88.1	5.9	-11.5	82.5	Peak [Scan]							FUND
5190.381												
5190.381 6927.85571	65.4	7.0	-7.5	64.9	Peak [Scan]	V						NRB
		7.0 6.5	-7.5 -9.5	64.9 52.9	Peak [Scan] Peak [Scan]	V H						NRB NRB
6927.85571	65.4	-	-			-	100	0	54	-1.2	Pass	
6927.85571 6110.220	65.4 55.9	6.5	-9.5	52.9	Peak [Scan]	Н	100	0	54	-1.2	Pass	NRB
6927.85571 6110.220 15478.958	65.4 55.9 42.3	6.5 11.4	-9.5 -0.9	52.9 52.8	Peak [Scan] Peak [Scan]	H	100	0	54 54	-1.2 -3.3	Pass Pass	NRB Noise
6927.85571 6110.220 15478.958 10402.806	65.4 55.9 42.3 46.9 56.2	6.5 11.4 9.0 5.6	-9.5 -0.9 -5.0 -11.1	52.9 52.8 50.8 50.7	Peak [Scan] Peak [Scan] Peak [Scan]	H H V V	100	0	54	-3.3		NRB Noise NRB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:96 of 179

Test	Freq.	5245 N	/Hz					E	ngineer	JMH		
v	ariant	802.11	; 5 MHz					Те	mp (°C)	18		
Freq. I	Range	1-18 G	i					Rel.	Hum.(%)	59		
Power S	etting						P	ress.	(m Bars)	848		
An	tenna	29 dBi								•		
Test No	otes 1	AP012	7730 AI	-0134760	CIII SN# No Seri	al num	ber on	unit				
Test No	otes 2	29 dBi	Panel, F	RW-9622-	5001							
MiC@M Formally		dBuV/m Vasona by EMiSoft 08 Dec 14 12:40 11] Horizont: PK Lmt Av Lmt + Debug PK + Formal Meas Dist 3m Spec Dist 3m Spec Dist 3m Frequency: MHz Mainted Emissions Template: FCC RE 1-18GHz Filename: k:\program\radwin\rdwn33 - ap0127730 ap0134760 ciii pc\u3 - foc 15.407\data\se\29 db										nta al
Frequency MHz	Raw dBuV	Cabl e	AF dB	Level dBuV/	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/	Margin dB	Pass /Fail	Comments
5224.4489	95.8	Loss 5.9	-11.4	m 90.3	Peak [Scan]				m			FUND
6995.992	63.5	7.0	-7.5	63.0	Peak [Scan]	V						NRB
15735.586	40.5	11.6	0.2	52.4	Average.	V	106	351	54	-1.7	Pass	RB
15735.586	61.1	11.6	0.2	72.9	Peak.	V	106	351	74	-1.1	Pass	RB
10505.010	50.2	9.0	-4.3	55.0	Peak [Scan]	V						NRB
16160.321	40.3	12.0	1.1	53.3	Peak [Scan]	Н	200	0	54	-0.7	Pass	Noise
6144.289	55.1	6.5	-9.2	52.4	Peak [Scan]	Н						NRB
Legend:					6 = Digital Emissi 2BW, 100 kHz VI					. ,	0 Swee	eps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:97 of 179

29dBi Antenna - RW-9622-5001 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m

	5150 MH	z Restricte	ed Band-Edge
	dBµ'	V/m	Dewer Cetting
Operational Mode (MHz)	Peak	Average	Power Setting
5	73.65	50.18	-10.0
10	73.74	53.39	-9.0
20	69.44	53.34	-12.0
40	73.59	52.73	-14.0

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:98 of 179

32dBi Antenna - RW-9732-4958 Point - Point

Test F	Freq.	5157						E	ngineer	JMH		
Va	riant	802.11	; 5 MHz					Те	mp (°C)	18		
Freq. Ra	ange	1-18 G						Rel. I	Hum.(%)	59		
Power Se	tting	-11					P	ress.	(m Bars)	848		
Ante	enna	32 dBi										
TestNot	tes 1	AP012 ⁻	7730 AI	90134760	CIII SN# No Seria	al num	ber on	unit				
TestNot	tes 2	32 dBi	Dish, R\	N-9732-49	958							
Formally			liated En name: k:		Vasona by E	, Į.v	, 	100 CC RE 760 cili		Pk + C	14 16:13 1] Horizo 2] Vertics % Lmt X Lmt Debug Dist 3m noy: MHz ita\se\32	nt.
	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments
6859.719	63.2	6.9	-7.7	62.4	Peak [Scan]	V						NRB
16977.956	39.4	12.4	0.8	52.6	Peak [Scan]	Н	100	0	54	-1.4	Pass	Noise
5156.313	56.7	5.9	-11.6	51	Peak [Scan]							FUND
Legend:	TX = T	ransmit	ter Emis	sions; DIC	6 = Digital Emissi	ons; F	UND =	Funda	mental Fre	equency		
	ETSI V	id Avg	Type =	100 kHz F	BW, 100 kHz VE	BW, Pe	eak Det	tector,	Video Av	erage, 10	0 Swee	ps

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:99 of 179

Test	Freq.	5200 N	/Hz					E	ngineer	JMH		
v	ariant	802.11	; 5 MHz					Те	mp (°C)	18		
Freq. F	Range	1-18 G						Rel.	Hum.(%)	59		
Power S	etting	14					P	ress.	(m Bars)	848		
An	tenna	32 dBi										
Test No	otes 1	AP012	7730 AF	P0134760	CIII SN# No Seria	al num	ber on	unit				
Test No	otes 2	32 dBi	Dish, R\	N-9732-4	958							
Mice Mass dBu//m Vasona by EMISoft 08 Dec 14 16:47- 04 Dec 14 16:47- 05 Dec 14 16:47- 05 Dec 14 16:47- 06 Dec 14 16:47- 07 Dec 19 07 Dec									vnta al			
Frequency MHz	Raw dBuV	Cabl e	AF dB	Level dBuV/	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/	Margin dB	Pass /Fail	Comments
5190.381	92.3	Loss 5.9	-11.5	m 86.7	Peak [Scan]				m			FUND
6927.85571	69.4	7.0	-7.5	68.9	Peak [Scan]	V						NRB
15599.452	62.2	11.5	-0.2	73.5	Peak	V	99	3	74	-0.5	Pass	RB
15599.312	39.3	11.5	-0.2	50.6	Average	V	99	3	54	-3.4	Pass	RB
6212.425	59.1	6.6	-8.8	56.8	Peak [Scan]	Н						NRB
6083.111	59.4	6.5	-9.6	56.3	Peak [Scan]	Н						NRB
10402.806	52.6	9.0	-5.0	56.6	Peak [Scan]	Н						NRB
17216.433	39.8	12.4	0.4	52.5	Peak [Scan]	Н	200	0	54	-1.5	Pass	Noise
4781.563	56.5	5.6	-11.1	51.0	Peak [Scan]	V	100	0	54	-3.0	Pass	BE
4985.972	54.8	5.8	-11.5	49.0	Peak [Scan]	Н	100	0	54	-5.0	Pass	BE
Legend:					G = Digital Emissi RBW, 100 kHz VI						0 Sw ee	205

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:100 of 179

Test	Freq.	5245 MHz					Engineer				JMH			
v	ariant	802.11; 5 MHz					Temp (°C)				18			
Freq. I	Range	1-18 G					Rel. Hum.(%)							
Power S	etting						P	ress.	(m Bars)	848				
An	tenna	32 dBi												
TestNo	est Notes 1 AP0127730 AP0134760 CIII SN# No Seria							unit						
Test No	otes 2	32 dBi	Dish, R\	N-9732-4	958									
MiC@M	dBuV/m 90.0 70.0 60.0 50.0 20.0 10.0 10000 Relie		pissions \program\ra	Vasona by E	EMiSoft 08 Dec 14 17:20 11 Horizonta PK Lmt Av Lmt PK - Debug + Formal Meas Dist 3m Spec Dist 3m Frequency: MHz 1000.0 Template: FCC RE 1-18GHz p0127730 ap0134760 ciii pc\u3 - fcc 15.407\data\se\32 db					nti al				
Formally	/ mea	sured	emiss	ion pea	Iks									
Frequency MHz	Raw dBuV	Cabl e Loss	AF dB	Level dBuV/ m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/ m	Margin dB	Pass /Fail	Comments		
5224.4489	95.0	5.9	-11.4	89.5	Peak [Scan]							FUND		
6995.992	64.9	7.0	-7.5	64.5	Peak [Scan]	V						NRB		
10505.010	53.2	9.0	-4.3	58.0	Peak [Scan]	V						NRB		
15734.082	61.5	11.6	0.2	73.3	Peak.	V	100	3	74	-0.7	Pass	RB		
15734.082	41.6	11.6	0.2	53.4	Average.	V	100	3	54	-0.6	Pass	RB		
6212.425	57.1	6.6	-8.8	54.8	Peak [Scan]	Н						NRB		
16501.002	38.6	12.0	1.7	52.3	Peak [Scan]	V	150	0	54	-1.7	Pass	Noise		
4849.699	56.6	5.7	-11.2	51.1	Peak [Scan]	Н	100	0	54	-2.9	Pass	BE		
Legend:					G = Digital Emissi BW, 100 kHz VB	,				, ,	0 Swee	eps		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

32dBi Antenna - RW-9732-4958 - Radiated Band-Edge

Peak Limit 74.0 dBµV/m, Average Limit 54.0 dBµV/m

	5150 MHz Restricted Band-Edge							
	dBµ'	V/m	Downer Cotting					
Operational Mode (MHz)	Peak	Average	Power Setting					
5	72.80	49.40	-11.0					
10	71.94	50.46	-10.0					
20	70.82	53.89	-12.0					
40	66.93	51.09	-13.0					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

 Page:
 102 of 179

Specification

Radiated Spurious Emissions

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of - 27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:103 of 179

Table 1: FCC 15.209 & RSS-Gen Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:104 of 179

6.1.3. Digital Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

44.274

43.1

3.6

-20.5

26.2

Title: RADWIN Ltd. AP0127730, AP0134760 Wireless Modules To: FCC 47 CFR Part 15.407 Serial #: RDWN33-U3 Rev A Issue Date: 2nd February 2015 Page: 105 of 179

Test Freq.	NA					E	ngineer	JMH					
Variant	Digital Emissions				Temp (°C)			18					
Freq. Range	30-1000 MHz			Rel. H	lum.(%)	59							
Power Setting	NA				Рі	ress.((m Bars)	848					
Antenna	32 dBi												
TestNotes 1	AP0127730 AP0134760 CIII SN# No Serial number on unit												
Test Notes 2													
Mic@MLabs	dBuV/m 60.0 50.0 40.0 20.0 20.0 10.0 0.0 30.0 Radiated Em Filename: k:		Vasona by E		h la di h	CC 15.	209 RE 30- pc/u3 - fcc	Meas Spec Frequer 1000.0	14 18:13 1] Horizo 2] Vertica 2pk Lmt Dist 3m Dist 3m noy: MHz ta\se\32	nt: al			
Formally meas			ks										
ata: List of Debu	ig Frequencie	es			Hat		Limit	Margin	Pase				
			ks Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/	Margin dB	Pass /Fail	Comments			
ata: List of Debu	g Frequencie Cabl AF	es Level	Measuremen	Pol V	-			•		Comments			
ata: List of Debu Frequency Raw MHz dBuV	g Frequencie Cabl AF e dB	eS Level dBuV/	Measuremen t Type	-	cm	Dea	dBuV/	dB	/Fail	Comments			
Vata: List of Debu Frequency Raw MHz dBuV 65.49 55.3	g Frequencie Cabl AF e dB 3.8 -23.5	es Level dBuV/ 35.6	Measuremen t Type QuasiMax	V	cm 99	Deg 337	dBuV/ 40.0	dB -4.4	/ Fail Pass	Comments			
Vata : List of Debu Frequency Raw MHz dBuV 65.49 55.3 78.773 53.4	g Frequencie Cabl AF e dB 3.8 -23.5 3.9 -23.4	2S Level dBuV/ 35.6 33.8	Measuremen t Type QuasiMax QuasiMax	V V	cm 99 142	De a 337 353	dBuV / 40.0 40	dB -4.4 -6.2	/Fail Pass Pass	Comments			

109.989	50.9	4.1	-18.8	36.2	Peak [Scan]	V	177	82	43.5	-7.3	Pass	
Legend:	TX = T	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental Frequency										
	ETSI Vid Avg Type = 100 kHz RBW, 100 kHz VBW, Peak Detector, Video Average, 100 Sw eeps											

V

101

292

40

-13.8

Pass

Quasi Max

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:106 of 179

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:107 of 179

6.1.4. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:108 of 179

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions.

Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Test Freq. N/A Engineer GMH Variant 18 ac Wireline Emissions Temp (°C) Freq. Range 0.150 MHz - 30 MHz Rel. Hum.(%) 75.5 **Power Setting** NA Press. (mBars) 999 Antenna N/A Test Notes 1 Sinpro POE 55Vdc Test Notes 2 POE Model #: CPU55A2701; Serial #: c35474131322 11 Dec 14 14:19 --Vasona by EMiSoft Live Neutral 2) Neut Opk Lm Aw Lmt Lmt 60.0 Qp Debug + 50.0t10.0 30.0 20.0 Frequency: MHz 10.0 10.0 1.030.0 Power Line Conducted Emissions Template: CISPR22B ACMains Filename: c:/program files/emisoft - vasona/vesults/vdwn33\RDWN33 - ac/Wireline 115 Vac 60.e Formally measured emission peaks Cabl Factors Frequency Raw Level Measuremen Limit Margin Pass Line Comments е t Type MHz dBuV dB dBuV dBuV /Fail dB Loss Pass 0.150 33.0 0.1 43.0 Average Neutral 56 -13.0 9.9 Quasi Peak 0.150 9.9 0.1 51.7 Neutral 66 -14.3 417 Pass 0.154 28.9 9.9 0.1 38.9 Live 55.78 -16.9 Average Pass 0.154 39.8 9.9 0.1 49.7 Live -16.1 Pass Quasi Peak 65.78 43.0 0.442 33.0 9.9 0.1 57.03 -14.1 Pass Quasi Peak Neutral 0.442 23.2 0.1 33.2 47.03 -13.9 Pass 9.9 Neutral Average 0.1 56 Pass 0.901 35.5 9.9 45.6 Quasi Peak Neutral -10.5 36.7 -9.3 0.1 46 Pass 0.901 26.7 9.9 Neutral Average Quasi Peak Live 56 0.901 35.9 9.9 0.1 45.9 -10.1 Pass 36.9 46 -9.1 Pass 0.901 26.9 9.9 0.1 Live Average -10.5 0.901 35.5 9.9 0.1 45.5 Neutral 56 Quasi Peak Pass -9.5 46 Pass 0.901 26.5 9.9 0.1 36.5 Average Neutral Pass 7.029 37.2 10.2 0.3 47.7 Live 60 Quasi Peak -12.3 -9.9 7.029 29.6 10.2 0.3 40.1 50 Pass Average Live DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency Legend: NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:109 of 179

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)	
	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

 Page:
 110 of 179

7. PHOTOGRAPHS

7.1. Conducted Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

 To:
 FCC 47 CFR Part 15.407


 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

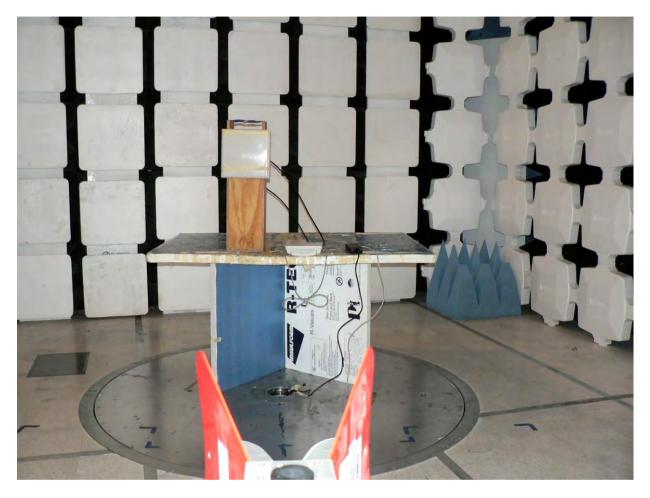
 Page:
 111 of 179

7.2. Test Setup - Digital Emissions above 1 GHz

11 dBi Sector Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules


 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

 Page:
 112 of 179

12 dBi Sector Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

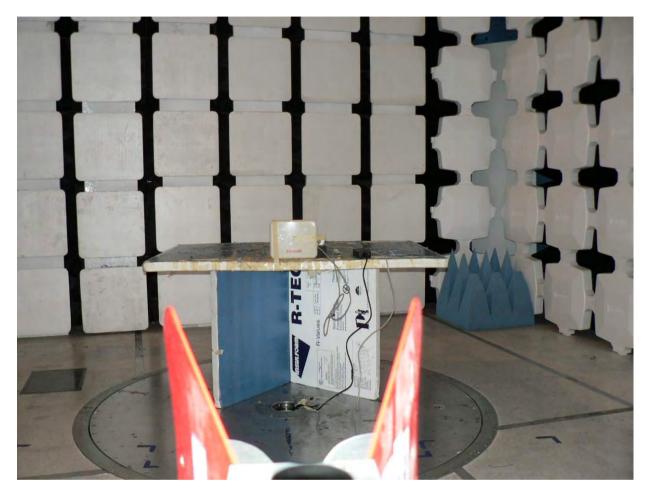
 Issue Date:
 2nd February 2015

 Page:
 113 of 179

11.5 dBi Shark Fin Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

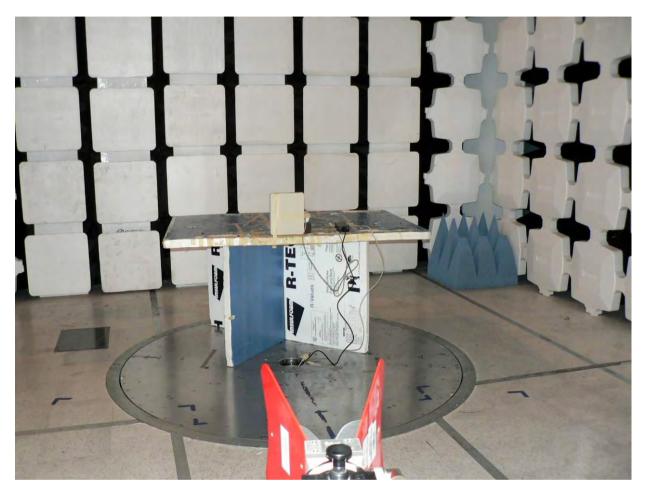

 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

 Page:
 114 of 179

15 dBi Sector Antenna



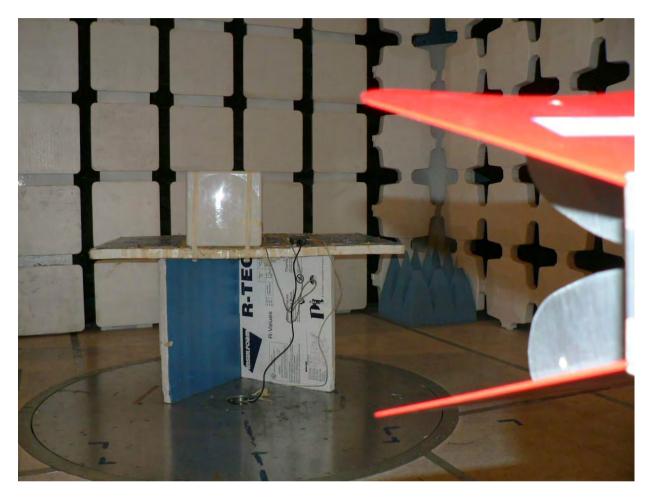
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:115 of 179

16 dBi Panel Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules

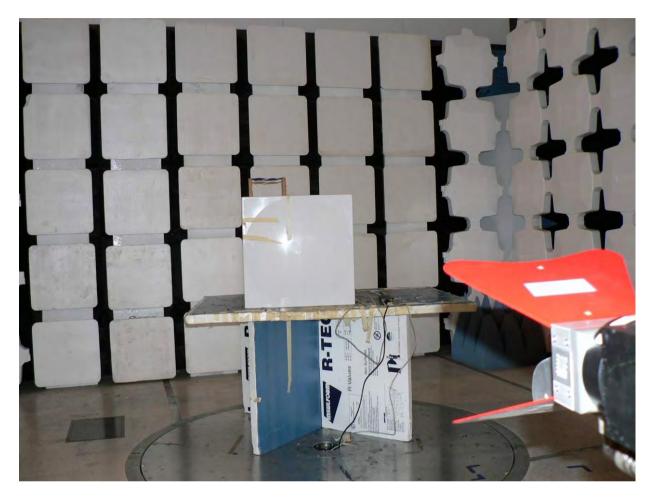

 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

 Page:
 116 of 179

23 dBi Panel Antenna



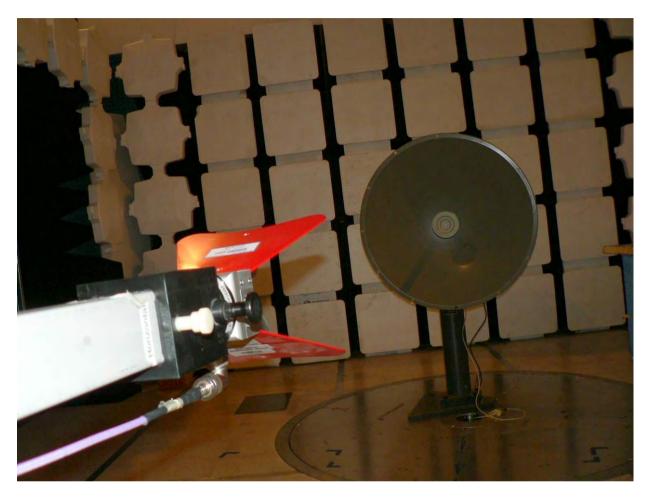
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:117 of 179

29 dBi Panel Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules


 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

 Page:
 118 of 179

32 dBi Dish Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:119 of 179

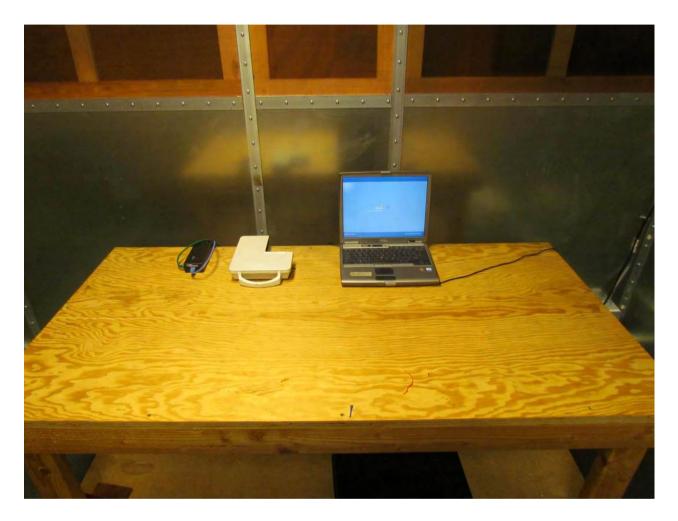
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:120 of 179

7.3. Digital Emissions Test Setup below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 RADWIN Ltd. AP0127730, AP0134760 Wireless Modules


 To:
 FCC 47 CFR Part 15.407

 Serial #:
 RDWN33-U3 Rev A

 Issue Date:
 2nd February 2015

 Page:
 121 of 179

7.4. ac Wireline Emissions

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

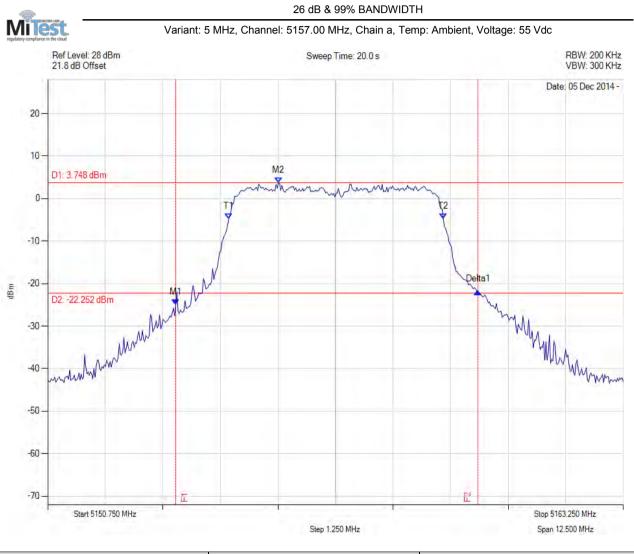
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:122 of 179

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:123 of 179

APPENDIX

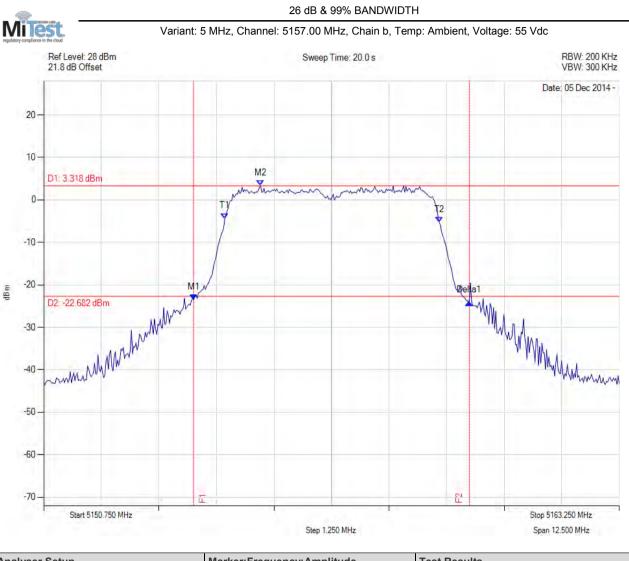
A. SUPPORTING INFORMATION


A.1. CONDUCTED TEST PLOTS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:124 of 179

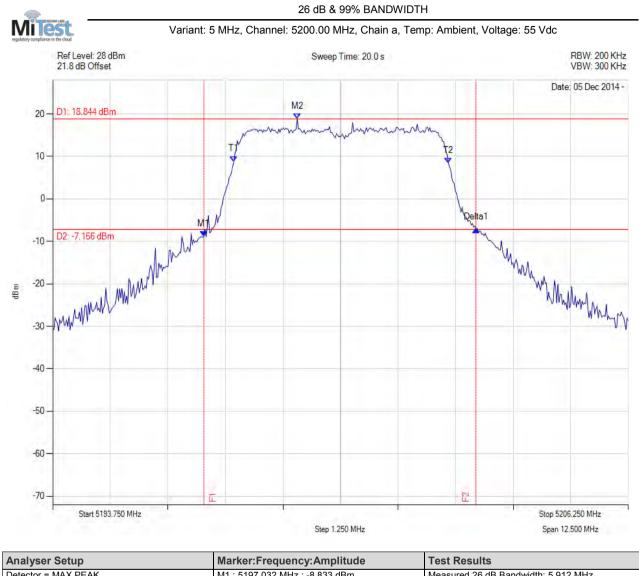
A.1.1. 26 dB & 99% Bandwidth


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 6.563 MHz Measured 99% Bandwidth: 4.659 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

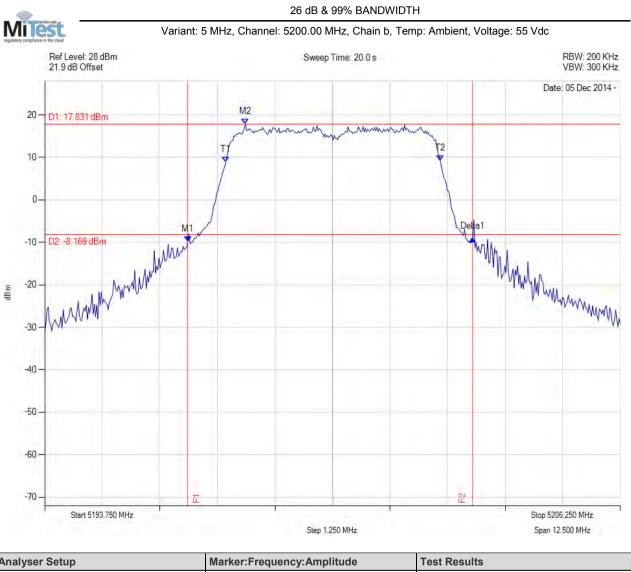
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:125 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 5.987 MHz Measured 99% Bandwidth: 4.659 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

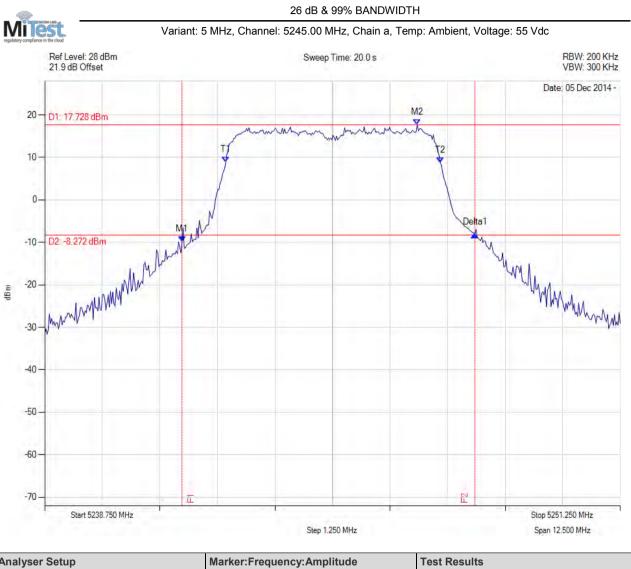
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:126 of 179


Analyser Setup	Marker:Frequency:Amplitude	lest Results
Detector = MAX PEAK	M1 : 5197.032 MHz : -8.833 dBm	Measured 26 dB Bandwidth: 5.912 MHz
Sweep Count = 0	M2 : 5199.061 MHz : 18.844 dBm	Measured 99% Bandwidth: 4.659 MHz
RF Atten (dB) = 20	Delta1 : 5.912 MHz : 1.580 dB	
Trace Mode = VIEW	T1 : 5197.683 MHz : 8.838 dBm	
	T2 : 5202.342 MHz : 8.478 dBm	
	OBW : 4.659 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

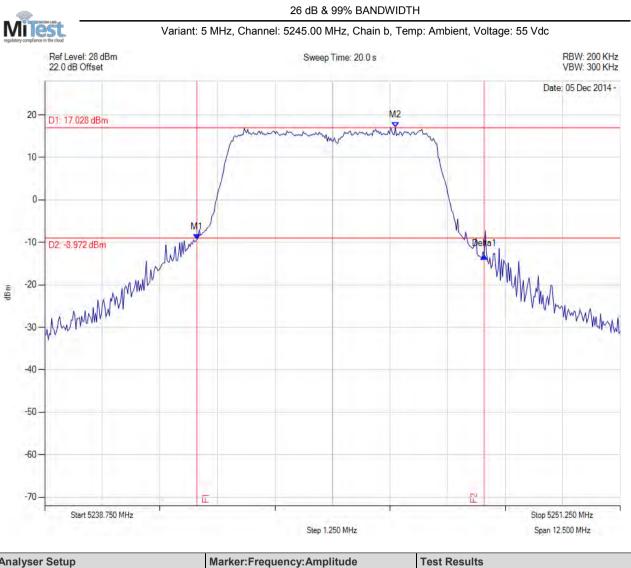
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:127 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5196.856 MHz : -9.811 dBm	Measured 26 dB Bandwidth: 6.187 MHz
Sweep Count = 0	M2 : 5198.109 MHz : 17.831 dBm	Measured 99% Bandwidth: 4.659 MHz
RF Atten (dB) = 20	Delta1 : 6.187 MHz : 0.663 dB	
Trace Mode = VIEW	T1 : 5197.683 MHz : 8.991 dBm	
	T2 : 5202.342 MHz : 9.229 dBm	
	OBW : 4.659 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

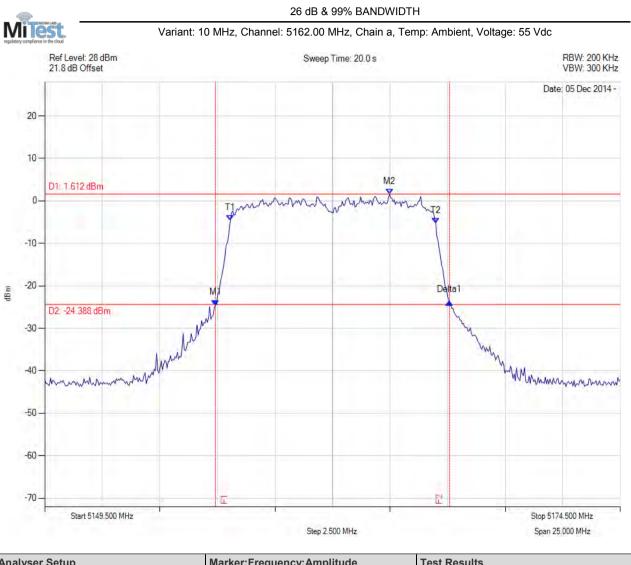
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:128 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
		Measured 26 dB Bandwidth: 6.363 MHz Measured 99% Bandwidth: 4.659 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

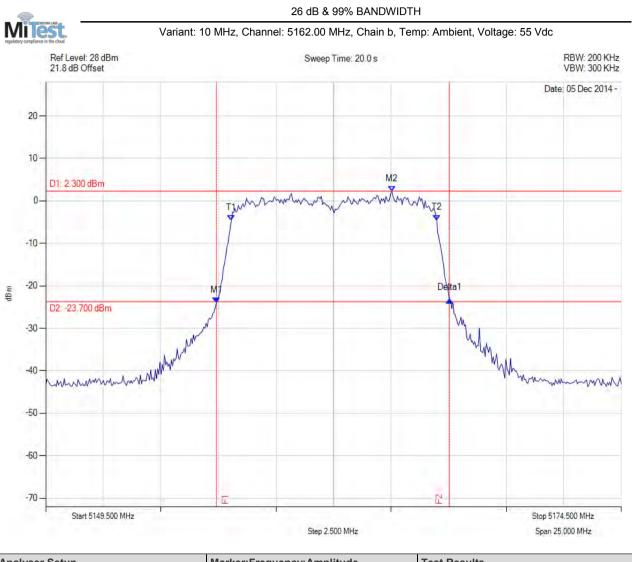
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:129 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5242.057 MHz : -9.299 dBm	Measured 26 dB Bandwidth: 6.237 MHz
Sweep Count = 0	M2 : 5246.365 MHz : 17.028 dBm	Measured 99% Bandwidth: 4.659 MHz
RF Atten (dB) = 20	Delta1 : 6.237 MHz : -3.895 dB	
Trace Mode = VIEW	T1 : 0 Hz : 500.000 dBm	
	T2 : 0 Hz : 500.000 dBm	
	OBW : 4.659 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

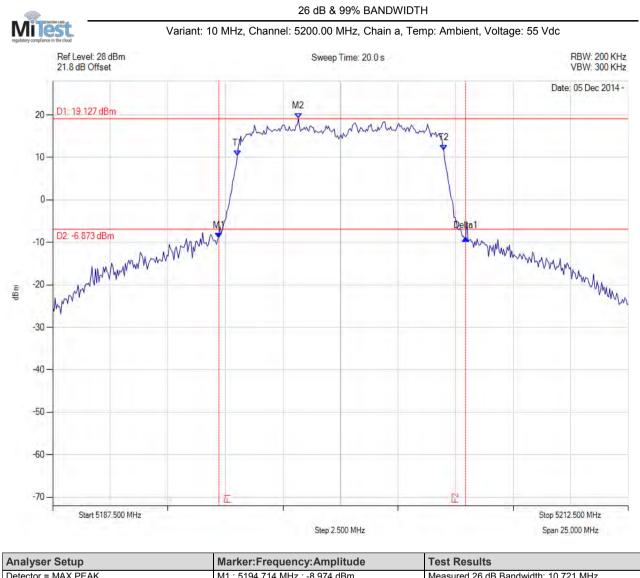
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:130 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 10.170 MHz Measured 99% Bandwidth: 8.918 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

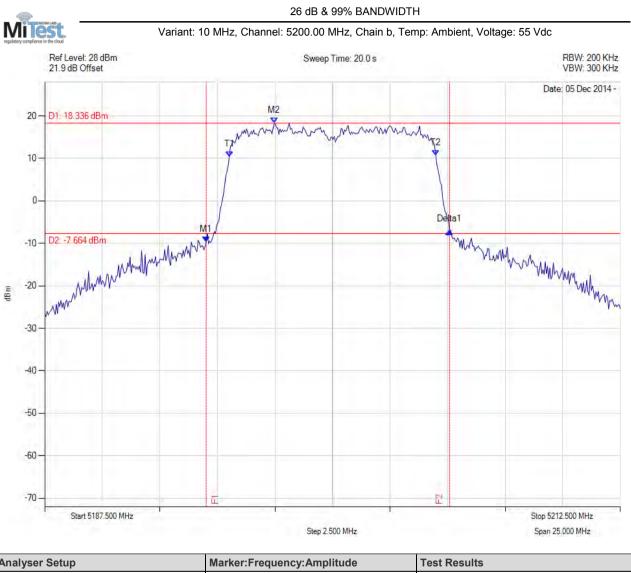
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:131 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5156.915 MHz : -23.989 dBm	Measured 26 dB Bandwidth: 10.120 MHz
Sweep Count = 0	M2 : 5164.530 MHz : 2.300 dBm	Measured 99% Bandwidth: 8.918 MHz
RF Atten (dB) = 20	Delta1 : 10.120 MHz : 0.677 dB	
Trace Mode = VIEW	T1 : 5157.566 MHz : -4.595 dBm	
	T2 : 5166.484 MHz : -4.526 dBm	
	OBW : 8.918 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

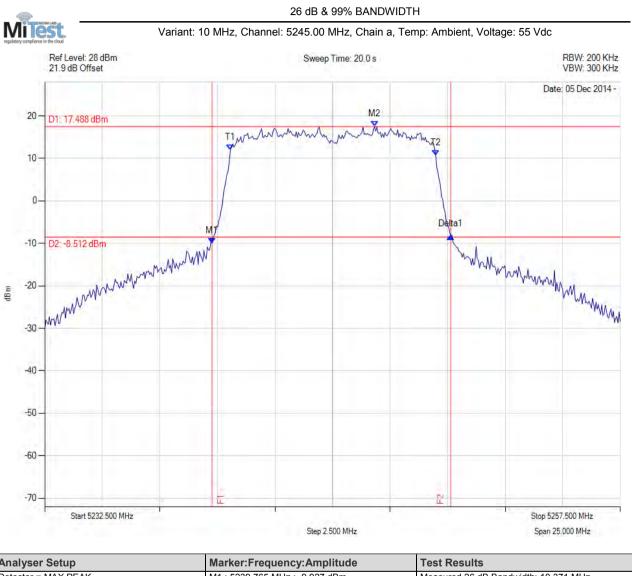
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:132 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5194.714 MHz : -8.974 dBm	Measured 26 dB Bandwidth: 10.721 MHz
Sweep Count = 0	M2 : 5198.171 MHz : 19.127 dBm	Measured 99% Bandwidth: 8.968 MHz
RF Atten (dB) = 20	Delta1 : 10.721 MHz : -0.094 dB	
Trace Mode = VIEW	T1 : 5195.516 MHz : 10.380 dBm	
	T2 : 5204.484 MHz : 11.722 dBm	
	OBW : 8.968 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

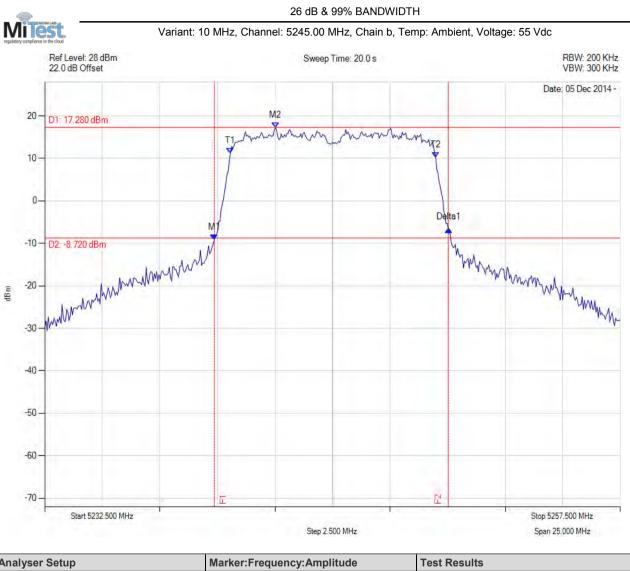
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:133 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5194.514 MHz : -9.647 dBm	Measured 26 dB Bandwidth: 10.571 MHz
Sweep Count = 0	M2 : 5197.470 MHz : 18.336 dBm	Measured 99% Bandwidth: 8.968 MHz
RF Atten (dB) = 20	Delta1 : 10.571 MHz : 2.398 dB	
Trace Mode = VIEW	T1 : 5195.516 MHz : 10.406 dBm	
	T2 : 5204.484 MHz : 10.762 dBm	
	OBW : 8.968 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:134 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5239.765 MHz : -9.927 dBm	Measured 26 dB Bandwidth: 10.371 MHz
Sweep Count = 0	M2 : 5246.829 MHz : 17.488 dBm	Measured 99% Bandwidth: 8.918 MHz
RF Atten (dB) = 20	Delta1 : 10.371 MHz : 1.548 dB	
Trace Mode = VIEW	T1 : 5240.566 MHz : 12.078 dBm	
	T2 : 5249.484 MHz : 10.662 dBm	
	OBW : 8.918 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

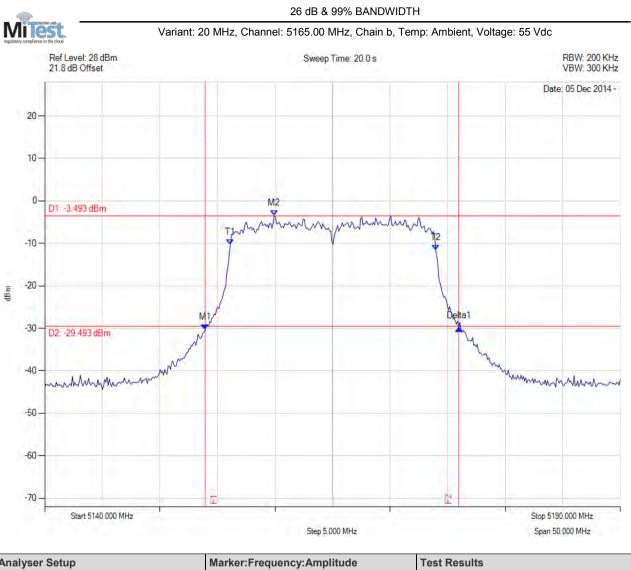
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:135 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
		Measured 26 dB Bandwidth: 10.170 MHz Measured 99% Bandwidth: 8.918 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

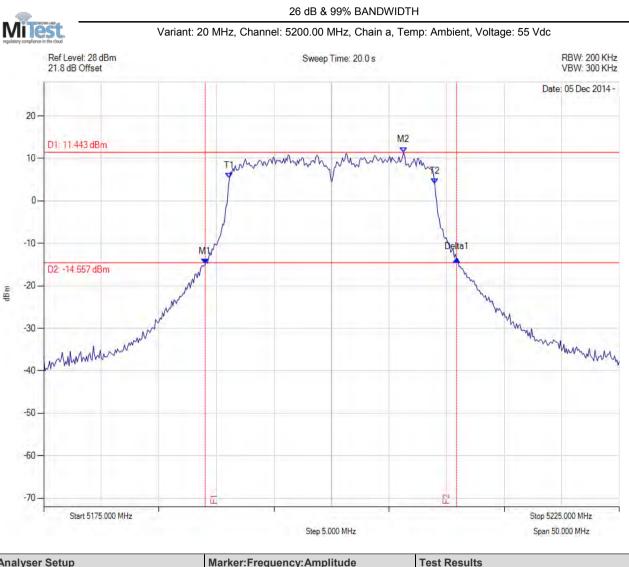
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:136 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5153.527 MHz : -30.899 dBm	Measured 26 dB Bandwidth: 22.545 MHz
Sweep Count = 0	M2 : 5166.253 MHz : -3.153 dBm	Measured 99% Bandwidth: 17.836 MHz
RF Atten (dB) = 20	Delta1 : 22.545 MHz : 1.424 dB	
Trace Mode = VIEW	T1 : 5156.132 MHz : -9.537 dBm	
	T2 : 5173.968 MHz : -10.845 dBm	
	OBW : 17.836 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

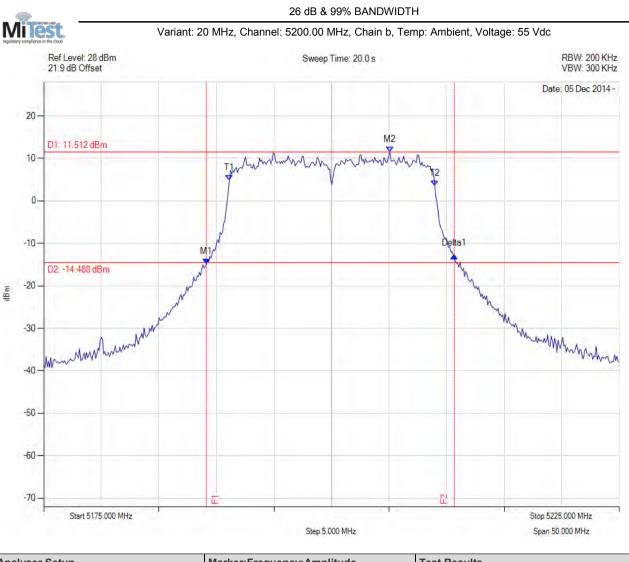
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:137 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 20		Measured 26 dB Bandwidth: 22.044 MHz Measured 99% Bandwidth: 17.836 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

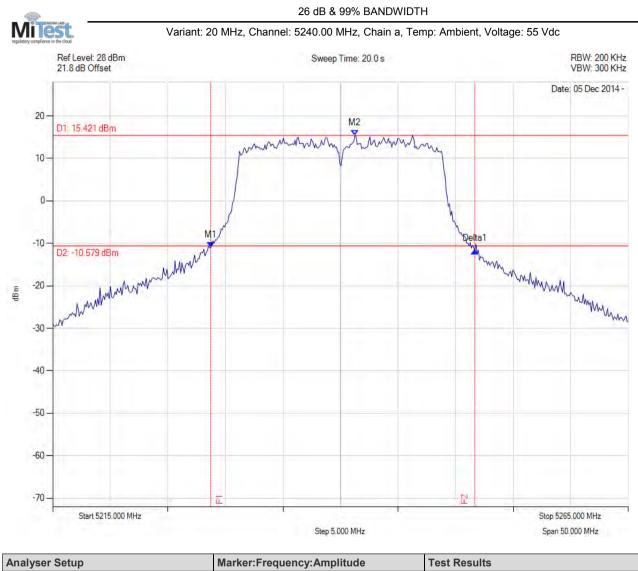
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:138 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5189.028 MHz : -14.930 dBm	Measured 26 dB Bandwidth: 21.844 MHz
Sweep Count = 0	M2 : 5206.263 MHz : 11.443 dBm	Measured 99% Bandwidth: 17.836 MHz
RF Atten (dB) = 20	Delta1 : 21.844 MHz : 1.218 dB	
Trace Mode = VIEW	T1 : 5191.132 MHz : 5.283 dBm	
	T2 : 5208.968 MHz : 3.994 dBm	
	OBW : 17.836 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

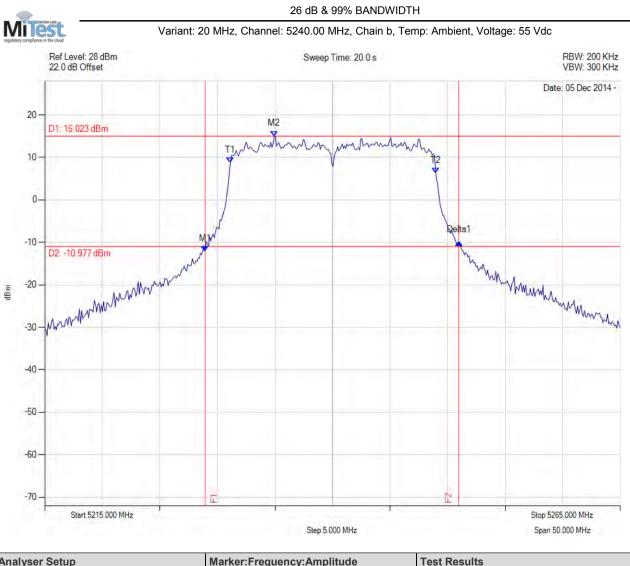
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:139 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 21.543 MHz Measured 99% Bandwidth: 17.836 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

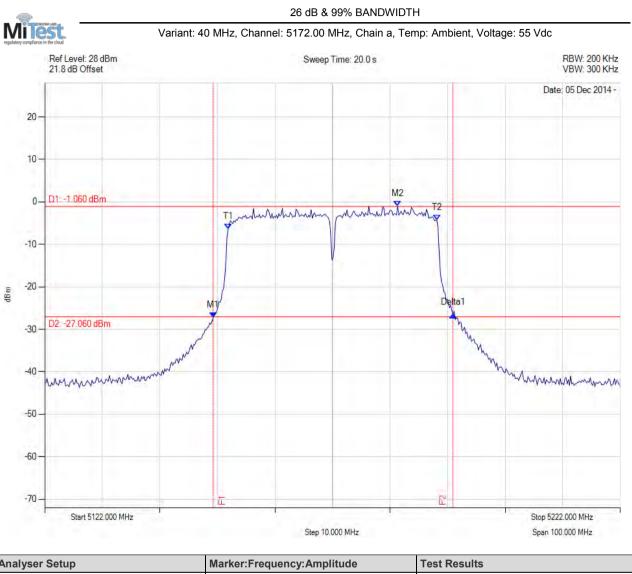
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:140 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5228.727 MHz : -10.967 dBm	Measured 26 dB Bandwidth: 22.946 MHz
Sweep Count = 0	M2 : 5241.253 MHz : 15.421 dBm	Measured 99% Bandwidth: 17.836 MHz
RF Atten (dB) = 20	Delta1 : 22.946 MHz : -0.777 dB	
Trace Mode = VIEW	T1 : 0 Hz : 500.000 dBm	
	T2 : 0 Hz : 500.000 dBm	
	OBW : 17.836 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

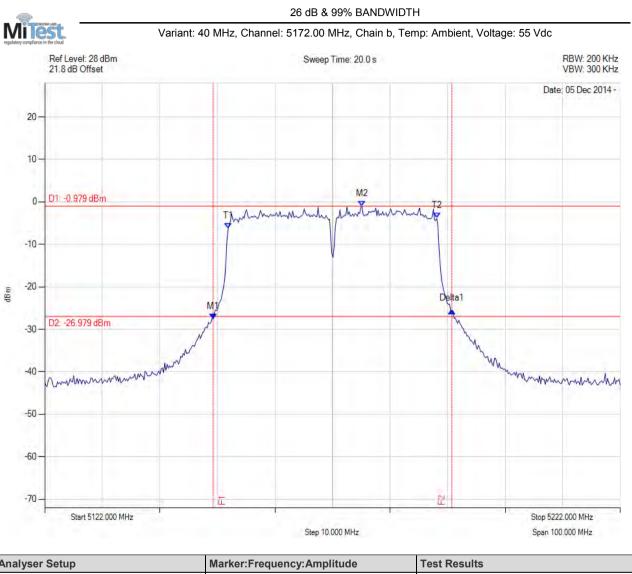
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:141 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 22.044 MHz Measured 99% Bandwidth: 17.836 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

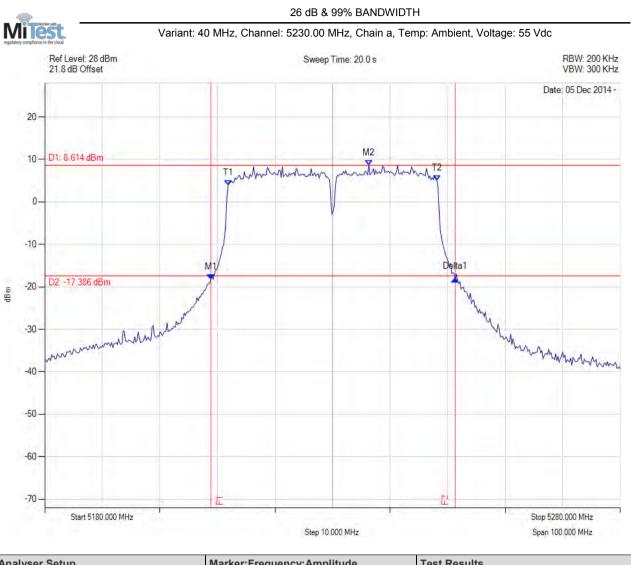
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:142 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 41.683 MHz Measured 99% Bandwidth: 36.273 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

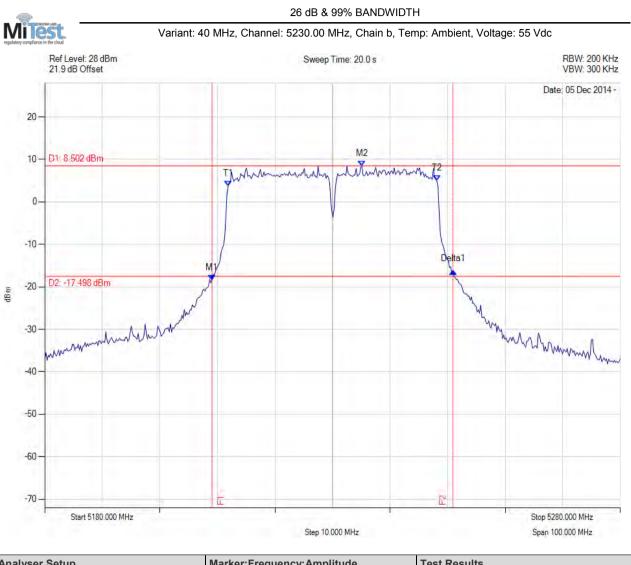
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:143 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 41.483 MHz Measured 99% Bandwidth: 36.273 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:144 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 5208.858 MHz : -18.262 dBm	Measured 26 dB Bandwidth: 42.485 MHz
Sweep Count = 0	M2 : 5236.313 MHz : 8.614 dBm	Measured 99% Bandwidth: 36.273 MHz
RF Atten (dB) = 20	Delta1 : 42.485 MHz : 0.177 dB	
Trace Mode = VIEW	T1 : 5211.864 MHz : 3.933 dBm	
	T2 : 5248.136 MHz : 5.015 dBm	
	OBW : 36.273 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:145 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		Measured 26 dB Bandwidth: 41.884 MHz Measured 99% Bandwidth: 36.273 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:146 of 179

A.1.2. Peak Power Spectral Density

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5156.311 MHz : 0.387 dBm	Limit: ≤ 13.990 dBm

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

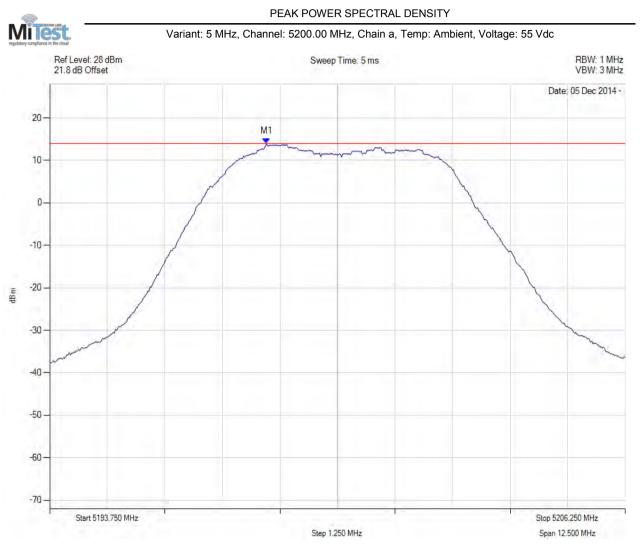
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:147 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5156.436 MHz : -0.846 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

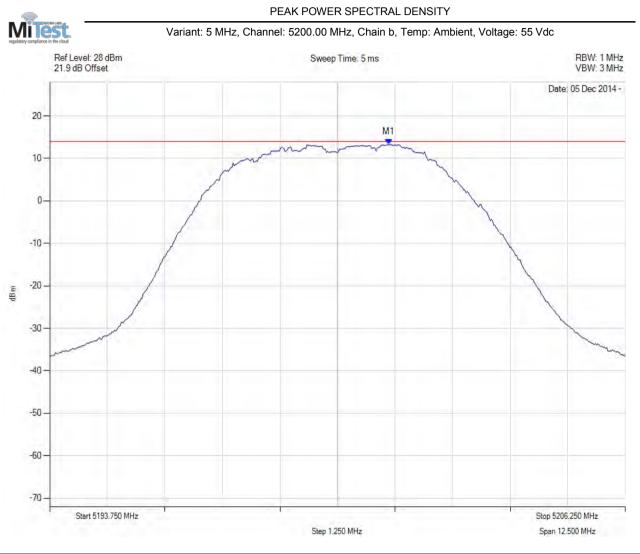
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:148 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5156 MHz : 3 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5156 MHz : 2.619 dBm	Margin: -14.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:149 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5198.459 MHz : 13.915 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:150 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5201.115 MHz : 13.328 dBm	Channel Frequency: 5200.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

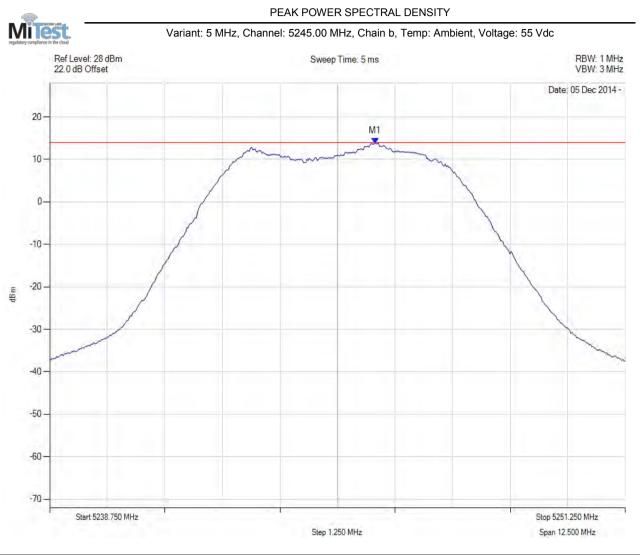
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:151 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5199 MHz : 16 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5199 MHz : 16.232 dBm	Margin: -0.8 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	-
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:152 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5243.910 MHz : 14.131 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

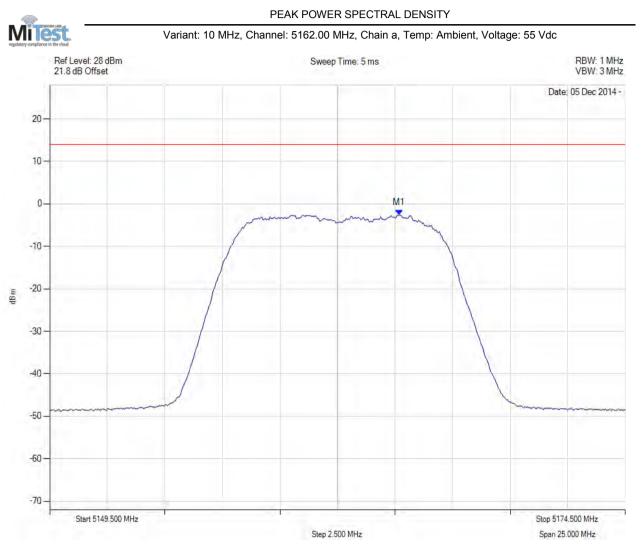
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:153 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5245.814 MHz : 13.850 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

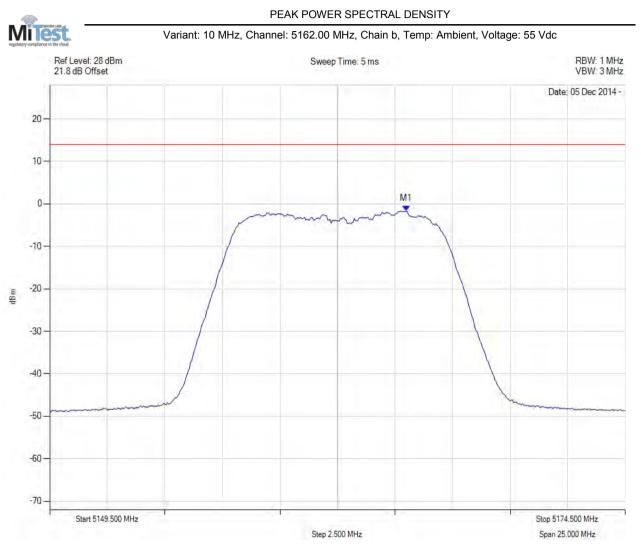
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:154 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5246 MHz : 16 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5246 MHz : 16.382 dBm	Margin: -0.6 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.04 dB	
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:155 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5164.680 MHz : -2.576 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

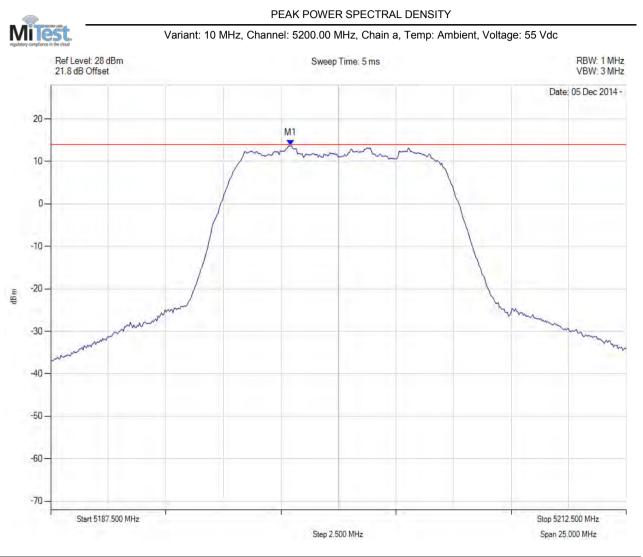
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:156 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5164.981 MHz : -1.726 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:157 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5165 MHz : 1 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5165 MHz : 0.924 dBm	Margin: -16.1 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	_
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:158 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5197.921 MHz : 13.739 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:159 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5201.829 MHz : 13.751 dBm	Channel Frequency: 5200.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:160 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = RMS	M1 : 5201 MHz : 16 dBm	Limit: ≤ 17.0 dBm	
Sweep Count = 100	M1 + DCCF : 5201 MHz : 16.348 dBm	Margin: -0.7 dB	
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-	
Trace Mode = VIEW			

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:161 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5246.528 MHz : 13.631 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

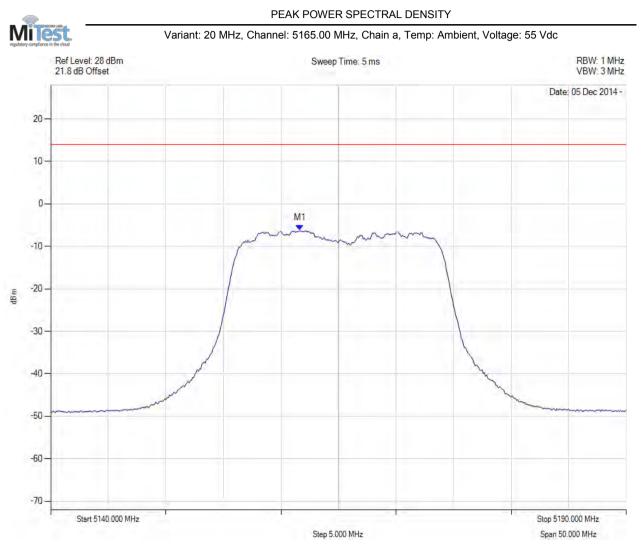
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:162 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5242.420 MHz : 13.753 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

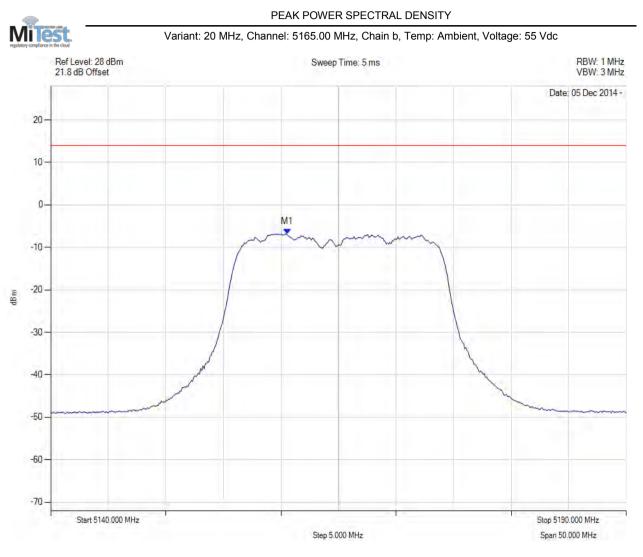
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:163 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5247 MHz : 16 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5247 MHz : 16.270 dBm	Margin: -0.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.09 dB	-
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

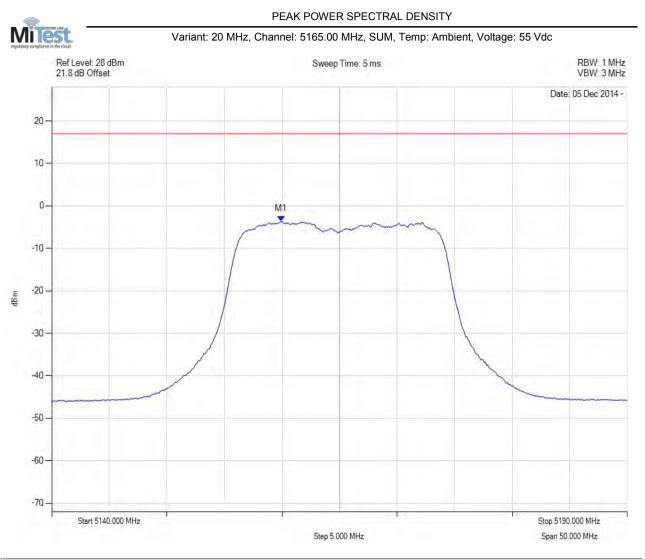
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:164 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5161.643 MHz : -6.264 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

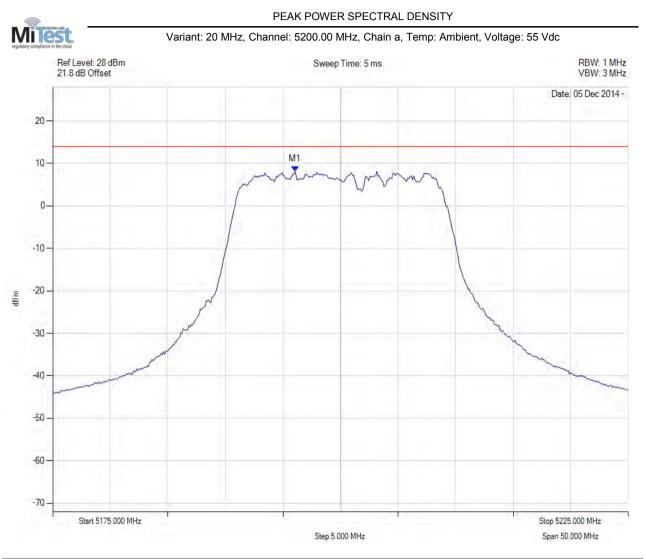
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:165 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5160.541 MHz : -6.852 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100 RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

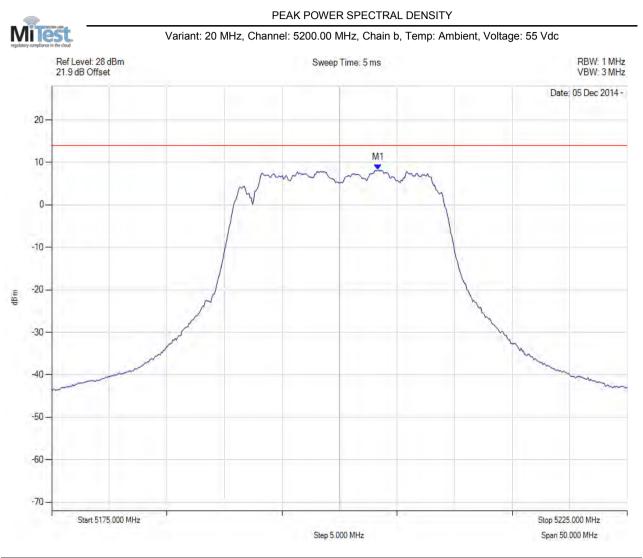
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:166 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5160 MHz : -4 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5160 MHz : -3.503 dBm	Margin: -20.5 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.18 dB	
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

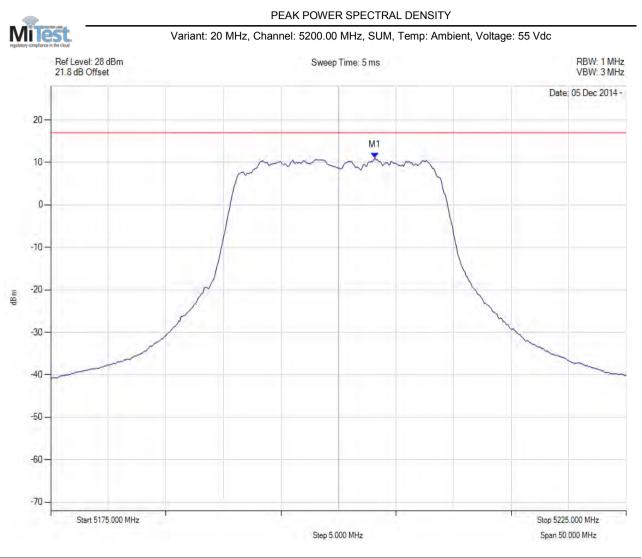
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:167 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5196.042 MHz : 8.156 dBm	Limit: ≤ 13.990 dBm

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

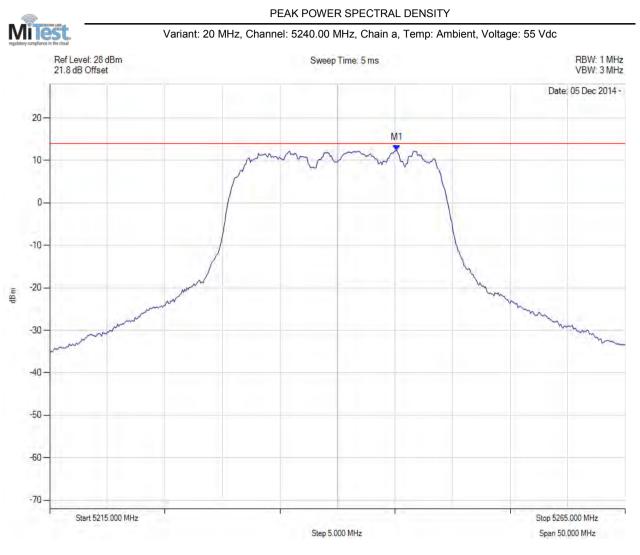
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:168 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5203.357 MHz : 8.257 dBm	Channel Frequency: 5200.00 MHz
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

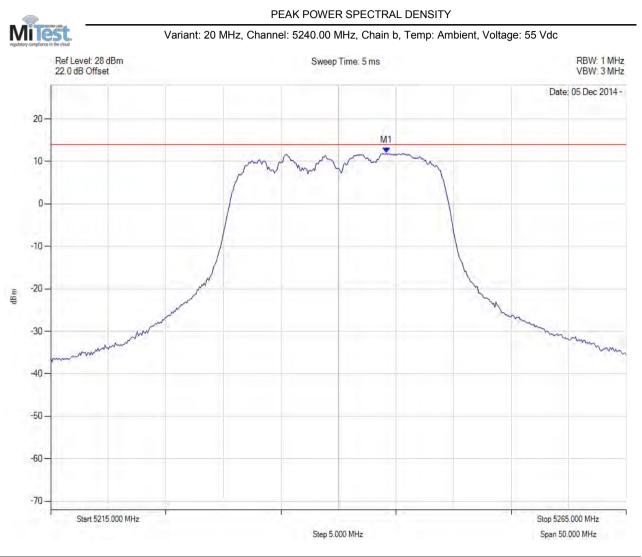
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:169 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results	
Detector = RMS	M1 : 5203 MHz : 11 dBm	Limit: ≤ 17.0 dBm	
Sweep Count = 100	M1 + DCCF : 5203 MHz : 11.303 dBm	Margin: -5.7 dB	
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.18 dB	-	
Trace Mode = VIEW			

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

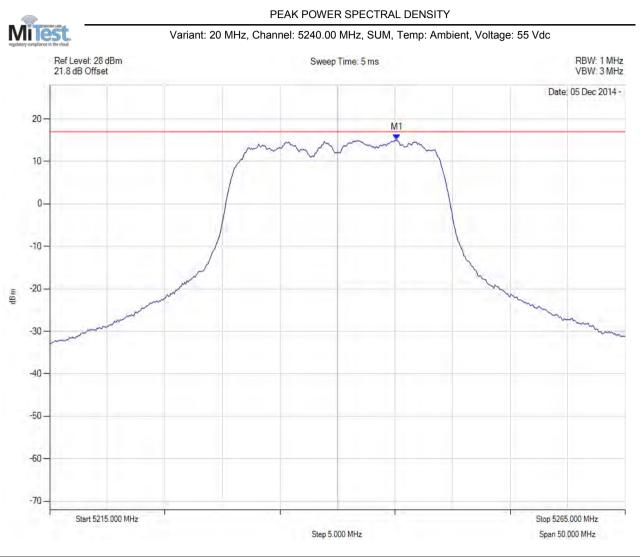
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:170 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5245.160 MHz : 12.415 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

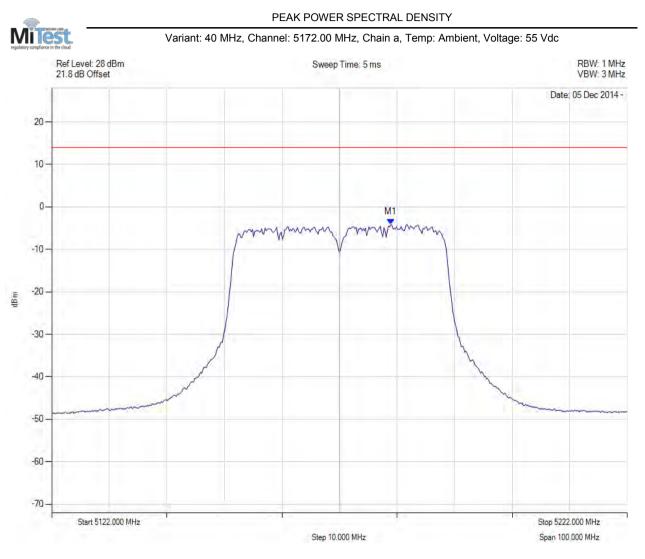
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:171 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5244.158 MHz : 11.946 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

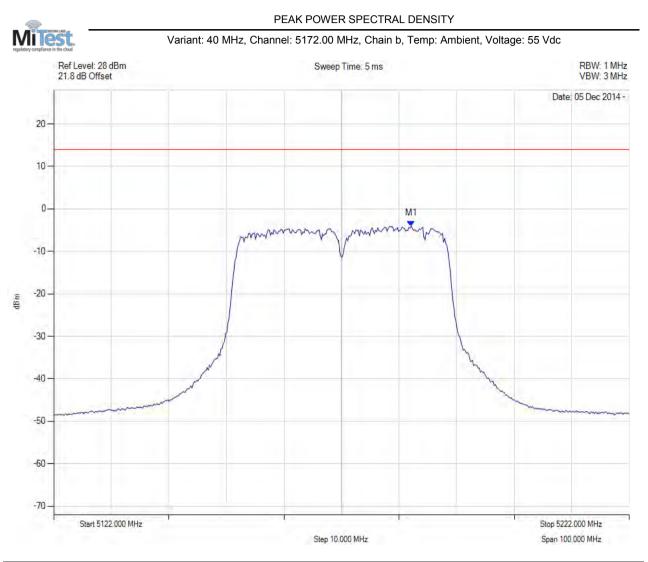
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:172 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5245 MHz : 15 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5245 MHz : 15.271 dBm	Margin: -1.7 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.18 dB	_
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

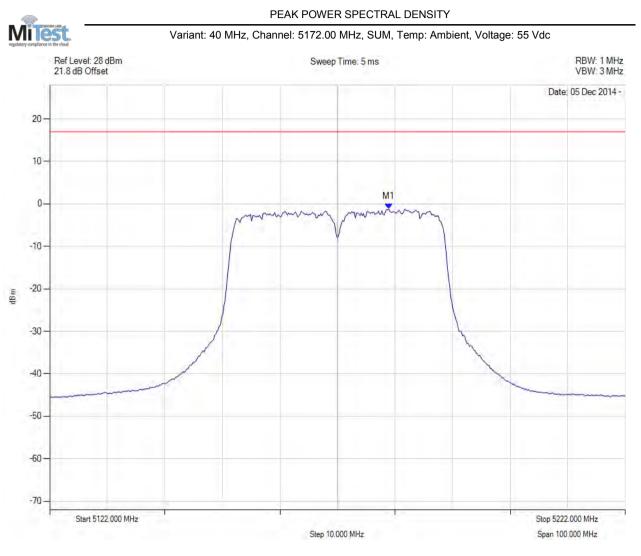
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:173 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5180.918 MHz : -4.134 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

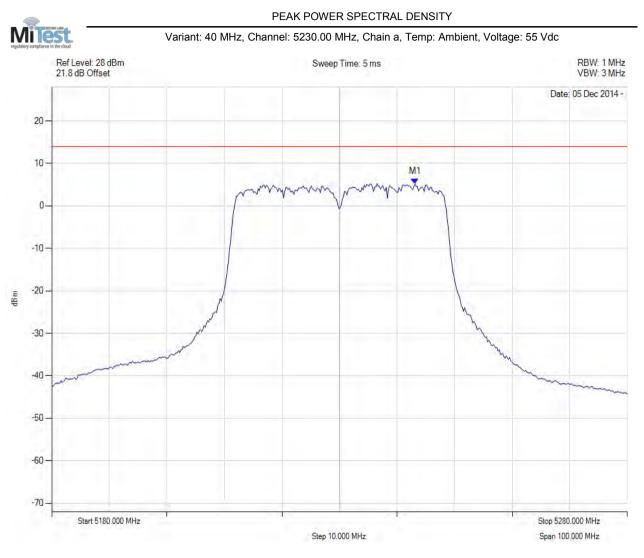
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:174 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5184.124 MHz : -4.033 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

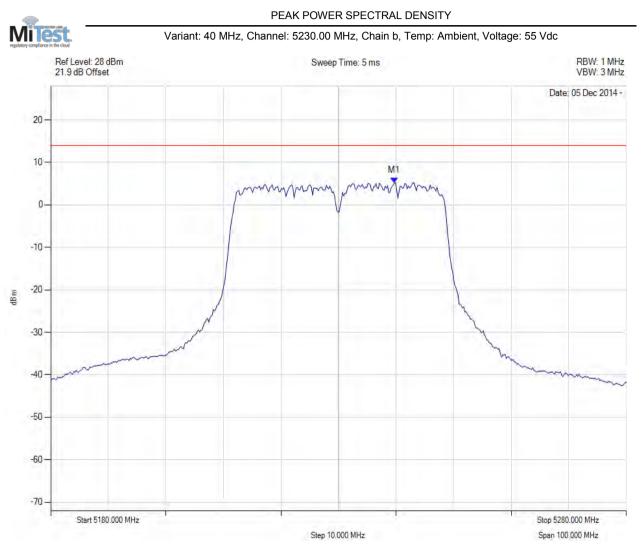
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:175 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5181 MHz : -1 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5181 MHz : -0.829 dBm	Margin: -17.8 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.36 dB	
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

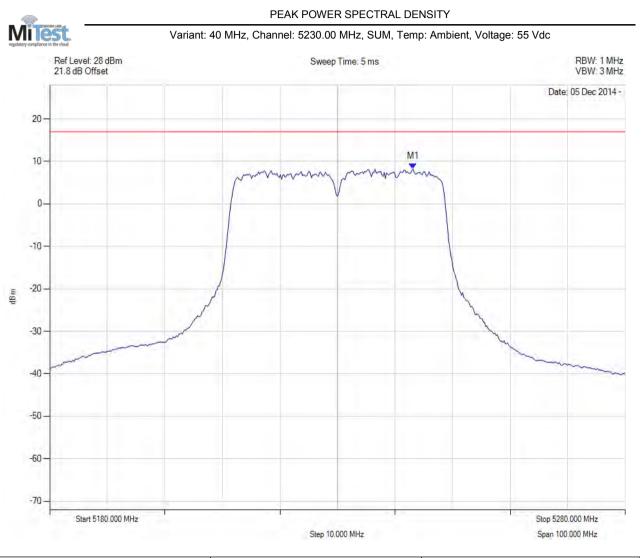
Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:176 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5243.126 MHz : 5.238 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:177 of 179


Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5239.719 MHz : 5.228 dBm	Limit: ≤ 13.990 dBm
Sweep Count = 100		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN Ltd. AP0127730, AP0134760 Wireless ModulesTo:FCC 47 CFR Part 15.407Serial #:RDWN33-U3 Rev AIssue Date:2nd February 2015Page:178 of 179

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 5243 MHz : 8 dBm	Limit: ≤ 17.0 dBm
Sweep Count = 100	M1 + DCCF : 5243 MHz : 8.601 dBm	Margin: -8.4 dB
RF Atten (dB) = 20	Duty Cycle Correction Factor : +0.36 dB	-
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com