

APPENDIX

A. SUPPORTING INFORMATION

A.1. CONDUCTED TEST PLOTS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

A.1.1. 26 dB & 99% Bandwidth

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 168 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 169 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 170 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 171 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 172 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 173 of 311

Mi	CO	MLabs	Variar	nt: 10 MHz, Cha	annel: 5260.00	26 dB 99% MHz, Chain a	a, Temp: A	Ambient	, Voltage: {	55.00V	
		Ref Level: 28 dBm 19.7 dB Offset			Sweep 1	Fime: 20.0 s					RBW: 200 KHz VBW: 300 KHz
								Date: 11 Sep 2012 10:39:			12-10:39:00 AM
	20 —										
	10 —	D1: 11.466 dBm		-mmm	howard	M2	m	T 2			
	0—			1		,		Ť			
	-10		M1.J	/				Re	ta1		
dBm	-20 —	D2: -14.534 dBm	NAMA W.	•					MMM .	ω.	
	-30 —	www.W. W.								www	mm much
	-50 —										
	-60 —		54.15 MHz					25.59 MHz			
	-70 —		100 E					F2: 52			
Start 5247.500 MHz			Center 5260.000 MHz			1			Stop 527	2.500 MHz	
					Step 2.5	00 MHz				Spon 25	5.000 MHz
Analyser Setup				Marker : Frequency : Amplitude			٦	Test Results			
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW				M1 : 5254.163 MHz : -16.600 dBm M2 : 5260.476 MHz : 11.466 dBm Delta1 : 11.423 MHz : 2.741 dB T1 : 5255.466 MHz : 4.775 dBm T2 : 5264.434 MHz : 5 246 dBm			N	/leasure /leasure	ed 26 dB Ba ed 99% Bar	andwidth: 11. ndwidth: 9.01	423 MHz 8 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 9.018 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 174 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 175 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 176 of 311

Mi	CO	MLabs	Variant: 10 MHz, Ch	26 dB 99% annel: 5300.00 MHz, Chain	b, Temp: Ambier	nt, Voltage: 55.00V		
		Ref Level: 28 dBm 19.4 dB Offset		Sweep Time: 20.0 s			RBW: 200 KHz VBW: 300 KHz	
						Date: 11 Sep	2012 10:47:27 AM	
	20 -							
	10 -	D1: 11.004 dBm		a second a day	M2			
	.0-							
	-10 -	D2:-14 990 dBm	M		k	eito1		
18m	-20	N/M ^{MMM}	Marry			Marine Marine		
	-30 - -40 -	menders Marine					Marchanna	
	-50 —							
	-60 —		294.68 MHz		205.40 MHz			
	-70		10		100 AN			
Start 5287.500 MHz			1 -	Center 5300.000 MHz	1	Stop 5312 500 MHz		
				Step 2.500 MHz		Spon	25.000 MHz	
Analyser Setup			Marker : Fre	quency : Amplitude	Test R	Test Results		
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW			M1 : 5294.66 M2 : 5302.53 Delta1 : 10.8 T1 : 0 Hz : 50 T2 : 0 Hz : 50 OBW : 8.968	4 MHz : -15.656 dBm 0 MHz : 11.004 dBm 22 MHz : 1.466 dB 00.000 dBm 00.000 dBm MHz	Measu Measu	Measured 26 dB Bandwidth: 10.822 MHz Measured 99% Bandwidth: 8.968 MHz		

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 177 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 178 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 179 of 311

Mi	COMLabs	Varia	int: 20 MHz, Cha	26 dl annel: 5265.00 MHz,	3 99% Chain a, Tem	p: Ambient, Volta	age: 55.00V	
	Ref Level: 28 d 19.7 dB Offset	Bm		Sweep Time: 2	20.0 s			RBW: 200 KHz VBW: 300 KHz
	20- D1: 11.618 dBn 10-	1	Therefore	M2	m	^vm_î2	Date: 11 Sep 20	12 11-43:22 AM
fBm	-10	• M3	/			Delto1	N .	
	-30- -40-	When					www	MARWAN
	-50							
	-60 -		0203.03 MHZ			5276.57 MHz		
	-70	000 MHz	Γ	Center 5265.000 I Step 5.000 MH	VIHz z	12	Stop 529 Spon 50	0.000 MHz .000 MHz
Analyser Setup			Marker : Frequency : Amplitude			Test Results		
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW			M1 : 5253.527 MHz : -15.199 dBm M2 : 5263.747 MHz : 11.618 dBm Delta1 : 23.046 MHz : 1.023 dB T1 : 5256.032 MHz : 5.733 dBm T2 : 5273 868 MHz : 5 454 dBm			Measured 26 dB Bandwidth: 23.046 MHz Measured 99% Bandwidth: 17.936 MHz		

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 17.936 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 180 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 181 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 182 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 183 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 184 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 185 of 311

Mi	COMLabs		26 dB 99%			
C	Ref Level: 28 dBm 19.7 dB Offset	Variant: 40 MHz, Channel: 527	'5.00 MHz, Chain a, Tem weep Time: 20.0 s	np: Ambient, Voltage: 55.00	RBW: 200 KHz VBW: 300 KHz	
				Date: 1	1 Sep 2012 12:58:33 PM	
	20					
	10 - D1: 9.324 dBm	T1	to Archeol	M2		
	0		m Commissioner			
	-10-					
E	-20 _ D2: -16.676 dBm	MUN		Beto1		
8	-30	·		and the second s		
	-40				Martin Martin	
	-50					
	-60	74W 80		41W 100		
	-70	F1: 5253.		F2: 5297.		
	Start 5225.000 MHz	Cente	ar 5275.000 MHz	Stop 5325.000 MHz		
		Ste	ip 10.000 MHz		Span 100.000 MHz	
Anal	yser Setup	Marker : Frequency : /	Amplitude	Test Results		
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = V/EW		M1 : 5253.056 MHz : -1 M2 : 5291.333 MHz : 9. Delta1 : 44.289 MHz : 0 T1 : 5256.864 MHz : 6.4	7.342 dBm 324 dBm).691 dB 440 dBm	Measured 26 dB Bandwidth: 44.289 MHz Measured 99% Bandwidth: 36.473 MHz		

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

T2 : 5293.136 MHz : 6.469 dBm

OBW : 36.473 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 186 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 187 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 188 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 189 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 36.673 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 190 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 191 of 311

5470 – 5725 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 192 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 193 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 194 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 195 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 196 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 197 of 311

Mi		Variant: 10 MHz,	26 dB 99 Channel: 5475.00 MHz, Cha	9% ain a, Temp: Ambient, Volta	ige: 55.00V		
	Ref Level: 28 dBm 20.0 dB Offset		Sweep Time: 20.0	8	RBW: 200 KHz VBW: 300 KHz		
	20-				Date: 11 Sep 2012 2:23:40 PM		
	D1: 11.756 dBm		man marker	M2			
	0	Ĭ					
	-10	MI		Letto1			
1Bm	-20	. all have and the		- North	Mumu		
	-30- -40-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	MOVY			MMM		
	-50						
	-60	83.31 MHz		21-14 20:34 MHz			
	-70	11 12 12		F2: 548			
	Start 5462.500 MHz		Center 5475.000 MHz Step 2.500 MHz		Stop 5487.500 MHz Spon 25.000 MHz		
Analy	ser Setup	Marker : F	Marker : Frequency : Amplitude				
Detec Sweer RF Att Trace	tor = MAX PEAK o Count = 0 ten (dB) = 20 Mode = VIEW	M1 : 5469 M2 : 5477 Delta1 : 1' T1 : 5470.	.314 MHz : -16.191 dBm .630 MHz : 11.756 dBm 1.022 MHz : 2.792 dB 466 MHz : 4.632 dBm	Measured 26 0 Measured 999	Measured 26 dB Bandwidth: 11.022 MHz Measured 99% Bandwidth: 9.018 MHz		

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

T2 : 5479.434 MHz : 5.344 dBm

OBW : 9.018 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 198 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 199 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 200 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 201 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 202 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 203 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 204 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 17.936 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 205 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 206 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 17.936 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 207 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 208 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 209 of 311

Mic		Variant: 40 MHz, Cha	26 dB 99% annel: 5500.00 MHz, Chain	a, Temp: Ambient, Volta	ge: 55.00V
	Ref Level: 28 dBm 20.0 dB Offset		Sweep Time: 20.0 s		RBW: 200 KHz VBW: 300 KHz
	20 -				Date: 11 Sep 2012 3:43:56 PM
	10 D1: 10.355 dBm	Thursday	many pound	M2 MMMM Z2	
	0		V		
	-10	ML		Belta1	
ißm	-20 - D215.645 dBm	Wardward			M.
	-30 - martin har				Mutumanana
	-50				
	-60	477.88 MHz		522.14 MHz	
	-70			<u> </u>	
	Start 5450.000 MHz		Center 5500.000 MHz Step 10.000 MHz		Stop 5550.000 MHz Span 100.000 MHz
Analy	ser Setup	Marker : Freq	uency : Amplitude	Test Results	
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = VIEW		M1 : 5477.856 M2 : 5513.126 Delta1 : 44.28 T1 : 5481.663	3 MHz : -16.903 dBm 3 MHz : 10.355 dBm 9 MHz : 1.332 dB MHz : 5.460 dBm	Measured 26 o Measured 99%	IB Bandwidth: 44.289 MHz 6 Bandwidth: 36.673 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

T2 : 5518.136 MHz : 5.491 dBm

OBW : 36.673 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 210 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 36.473 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 211 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 36.673 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 212 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 36.673 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 213 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 36.473 MHz

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 214 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

OBW : 36.673 MHz

A.1.2. Peak Power Spectral Density

5250 – 5350 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 216 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 217 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 218 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 219 of 311

Analysel Setup	Marker . Frequency . Amplitude	
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5346.165 MHz : 8.407 dBm	Limit: 4.990 dBm Margin: 3.42 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 220 of 311

·		
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5344.837 MHz : 7.529 dBm	Limit: 4.990 dBm Margin: 2.54 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 221 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 222 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 223 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 224 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 225 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 226 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 227 of 311

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5270.361 MHz : 8.147 dBm	Limit: 4.990 dBm Margin: 3.16 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 228 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 229 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 230 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 231 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 232 of 311

Detector = RMS
Sweep Count = 100
RF Atten (dB) = 20
Trace Mode = VIEWM1 : 5341.964 MHz : 8.045 dBm
Margin: 3.06 dBLimit: 4.990 dBm
Margin: 3.06 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 233 of 311

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5288.727 MHz : 5.916 dBm	Limit: 4.990 dBm Margin: 0.93 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 234 of 311

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5291.733 MHz : 5.299 dBm	Limit: 4.990 dBm Margin: 0.31 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 235 of 311

Anaryser oetap	Marker : Trequency : Ampirtude	
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5313.928 MHz : 6.174 dBm	Limit: 4.990 dBm Margin: 1.18 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 236 of 311

Analyser octup	Marker : Trequency : Ampiltude	
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5314.729 MHz : 5.382 dBm	Limit: 4.990 dBm Margin: 0.39 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 237 of 311

Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5340.130 MHz : 6.114 dBm	Limit: 4.990 dBm Margin: 1.12 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 238 of 311

· ·		
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5340.731 MHz : 5.075 dBm	Limit: 4.990 dBm Margin: 0.09 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 239 of 311

5470 – 5725 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 240 of 311

·		
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5473.660 MHz : 6.472 dBm	Limit: 4.990 dBm Margin: 1.48 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 241 of 311

·		
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5596.365 MHz : 8.161 dBm	Limit: 4.990 dBm Margin: 3.17 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 242 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A **Issue Date:** 29th November 2012 Page: 243 of 311

etector = RMS weep Count = 100 F Atten (dB) = 20 ace Mode = VIEW	M1 : 5718.810 MHz : 8.397 dBm

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 244 of 311

Analyser Setup	Marker . Frequency . Amplitude	
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5721.140 MHz : 7.608 dBm	Limit: 4.990 dBm Margin: 2.62 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 245 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 246 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 247 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 248 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 249 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 250 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 251 of 311

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5486.964 MHz : 8.239 dBm	Limit: 4.990 dBm Margin: 3.25 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 252 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 253 of 311

Analysei Setup	Marker . Trequency . Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5583.838 MHz : 8.336 dBm	Limit: 4.990 dBm Margin: 3.35 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 254 of 311

·		
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5597.265 MHz : 6.809 dBm	Limit: 4.990 dBm Margin: 1.82 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 255 of 311

, mailyeen eerap		
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5708.537 MHz : 7.844 dBm	Limit: 4.990 dBm Margin: 2.85 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 256 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 257 of 311

Analyser Setup	Marker : Frequency : Amplitude	Test Results
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5516.333 MHz : 6.343 dBm	Limit: 4.990 dBm Margin: 1.35 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 258 of 311

·		
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5485.271 MHz : 4.831 dBm	Limit: 4.990 dBm Margin: -0.16 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 259 of 311

Analyser octup	Marker : Trequency : Ampiltude	
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5554.669 MHz : 6.694 dBm	Limit: 4.990 dBm Margin: 1.70 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 260 of 311

Analyser octup	Marker : Trequency : Ampiltude	
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5555.471 MHz : 4.910 dBm	Limit: 4.990 dBm Margin: -0.08 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 261 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 262 of 311

Analyser octup	Marker : Trequency : Ampirude	
Detector = RMS Sweep Count = 100 RF Atten (dB) = 20 Trace Mode = VIEW	M1 : 5681.072 MHz : 5.055 dBm	Limit: 4.990 dBm Margin: 0.07 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

A.1.3. Peak Excursion Ratio

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 264 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 265 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 266 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 267 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 268 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 269 of 311

Mi	Va	peak excursion riant: 10 MHz, Channel: 5260.00 MHz, Chain a, T	emp: Ambient, Voltage: 55.00V
	Ref Level: 28 dBm 19.7 dB Offset	Sweep Time: 5.0 s	RBW: 1 MHz VBW: 3 MHz
			Date: 11 Sep 2012 10:44:03 AM
	20-	M1	
		and the second	some la
	10-	Delta	
	0	1/	$\sum V_{i}$
	-10- Included		and a second sec
fBm	-20 121/11/11/11/11/11	/	Willington .
	-30		"White him here have been here here here here here here here h
	-40-		
	-50		
	-60		
	-70		
	Start 5247 500 MHz	Center 5260 000 MHz Step 2.500 MHz	Stop 5272.500 MHz Spon 25.000 MHz
Anal	yser Setup	Marker : Frequency : Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 30 TRACE 1 Detector = MAX PEAK Trace Mode = VIEW TRACE 2 Detector = RMS Trace Mode = VIEW		M1 : 5256.618 MHz : 19.135 dBm Delta1 : 6.112 MHz : -11.137 dB	Measured Excursion Ratio: 11.14 dB Limit: -13.0 dB Margin: -1.86 dB

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 270 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 271 of 311

Mi	COMLabs	Variant: 10 MHz,	peak excur Channel: 5300.00 MHz, Cha	sion in a, Temp: Ambier	nt, Voltage: 55.00V		
	Ref Level: 28 dBm 19.7 dB Offset		Sweep Time: 5.0 s			RBW: 1 MHz VBW: 3 MHz	
					Date: 11 S	ap 2012 10:51:24 AM	
	20 -		M1			-	
		Numer	munnun	mondering			
	10-	/		Delta1			
					λ		
	0-	Mar			Mr.		
	-10-	MN" /			W W		
1Bm	-20	' /			1 mg	A	
	mannet					Mummer	
	-30-						
	-40-	-					
	-50-						
	-60						
	-70		Contro 5200 000 MHz			- 5212 500 Mile	
	Start 5267, 500 Miliz		Step 2.500 MHz		St	on 25.000 MHz	
A I				T D	-,		
Analyser Setup		Marker : F	Marker : Frequency : Amplitude		Iest Results		
Sweep Count = 0 RF Atten (dB) = 30 TRACE 1 Detector = MAX PEAK Trace Mode = VIEW		M1 : 5297. Delta1 : 5.9	M1 : 5297.069 MHz : 19.763 dBm Delta1 : 5.962 MHz : -11.803 dB		Measured Excursion Ratio: 11.80 dB Limit: -13.0 dB Margin: -1.20 dB		

Back to the Matrix

Detector = RMS Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 272 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 273 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 274 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 275 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 276 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 277 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 278 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 279 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 280 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 281 of 311

Mi	COMLabs	ariant: 40 MHz, Cha	peak excursion	on a, Temp: Ambient, \	/oltage: 55.00V		
	Ref Level: 28 dBm 19.7 dB Offset		Sweep Time: 5.0 s			RBW: 1 MHz VBW: 3 MHz	
					Date: 11 Sep 20	12 1:03:37 PM	
	20	MI	man man	mm			
	10-			Delto1			
	-10	work	V	1 m	have a second		
dBm	-20- www.www.www	area l			Mar Marken	when	
	-30					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	-50 -						
	-60						
	-70						
Start 5225.000 MHz			Center 5275.000 MHz		Stop 5325.0		
			Step 10.000 MHz		Spon 100	0.000 MHz	
Analyser Setup		Marker : Free	Marker : Frequency : Amplitude		Test Results		
Swee RF At TRAC Detec Trace	p Count = 0 tten (dB) = 30 CE 1 ttor = MAX PEAK a Mode = VIEW CE 2	M1 : 5262.475 Delta1 : 26.25	5 MHz : 16.434 dBm 3 MHz : -10.561 dB	Measured Limit: -13.0 Margin: -2.	Excursion Ratio: 10.56) dB 44 dB	3 dB	

Back to the Matrix

Detector = RMS Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 282 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 283 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 284 of 311

Mi	COMLabs	ariant: 40 MHz, Char	peak excursi nnel: 5300.00 MHz, Chain	i on b, Temp: Ambient,	Voltage: 55.00V		
	Ref Level: 28 dBm 19.4 dB Offset		Sweep Time: 5.0 s			RBW: 1 MHz VBW: 3 MHz	
					Date: 11 Sep	2012 1:11:28 PM	
	20	mm	heren man	MI			
	10			Delto1			
	-10	hard	V		hay		
dBm	-20			Ĺ	North Mark	Morringhy	
	-30				And the second s		
	-50						
	-60						
	-70						
Start 5250.000 MHz		1	Center 5300.000 MHz	1	Stop 5350.000 MHz		
			Step 10.000 MHz		Spon	100.000 MHz	
Analyser Setup		Marker : Frequ	Marker : Frequency : Amplitude		Test Results		
Sweep Count = 0 RF Atten (dB) = 30 TRACE 1 Detector = MAX PEAK Trace Mode = VIEW TRACE 2		M1 : 5311.523 Delta1 : 3.206 N	M1 : 5311.523 MHz : 15.927 dBm Delta1 : 3.206 MHz : -10.557 dB Margin: -2.44 dB			9.56 dB	

Back to the Matrix

Detector = RMS Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 285 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 286 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 287 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 288 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 289 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 290 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 291 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 292 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 293 of 311

Mi	COMLabs	Variant:	10 MHz, Chann	peak excurs el: 5475.00 MHz, Chair	ion n a, Temp: A	mbient, Voltage:	: 55.00V	
	Ref Level: 28 dBm 20.0 dB Offset			Sweep Time: 5.0 s				RBW: 1 MHz VBW: 3 MHz
							Pate: 11 Sep 20	12 2:28:42 PM
	~				M1			
	20-		mm	mouhannon	man			
			م ² م			www.		
	10-		ſ		Delta1	1		
	0-	/				$\sqrt{\sum}$		
		Mar				Mun		
	-10-	MM					Muy .	
Ξ	-20 M	V /				\rightarrow	W	
8	mar and work work							Manne
	-30							
	-40	~					h	~
	-50							
	~							
	-60 -							
	-70							
	Start 5462.500 MH	z		Center 5475.000 MHz	-		Stop 548	7.500 MHz
				Step 2.500 MHz			Spon 25	.000 MHz
Analy	ser Setup	N	larker : Freque	ncy : Amplitude	т	est Results		
Sweep RF Att TRAC Detec Trace TRAC Detec	p Count = 0 ten (dB) = 30 E 1 tor = MAX PEAK Mode = VIEW E 2 E 2 tor = RMS	N C	11 : 5478.081 M velta1 : -400802	Hz : 19.403 dBm Hz : -11.441 dB	M L M	leasured Excurs imit: -13.0 dB largin: -1.56 dB	ion Ratio: 11.44	4 dB

Back to the Matrix

Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 294 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 295 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 296 of 311

Mi	COMLabs	pea Variant: 10 MHz, Channel: 5595.00 I	k excursion vIHz, Chain b, Temp: Ambient, V	Voltage: 55.00V		
	Ref Level: 28 dBm 19.5 dB Offset	Sweep T	ime: 5.0 s	RBW: 1 MHz VBW: 3 MHz		
				Date: 11 Sep 2012 2:39:52 PM		
	20	MI	manutine			
	10-	Delta1	\sim			
	0	with	L	4m.		
	-10/W	/·· /	\rightarrow	"WA		
18m	-20	/		Why when		
	-30	/		· · · · ······························		
	-40					
	-50 -					
	-60					
	-70					
Start 5582.500 MHz		Center 5595	.000 MHz	Stop 5607.500 MHz		
		Step 2.50	0 MHz	Span 25.000 MHz		
Analyser Setup		Marker : Frequency : Ampli	ude Test Resu	Test Results		
Swee RF A TRAC Detec Trace	ep Count = 0 titen (dB) = 30 CE 1 ctor = MAX PEAK e Mode = VIEW CE 2	M1 : 5593.372 MHz : 18.326 / Delta1 : -951904 Hz : -11.686	dB Measured Limit: -13. Margin: -1	Excursion Ratio: 11.69 dB 0 dB .31 dB		

Back to the Matrix

Detector = RMS Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 297 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 298 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 299 of 311

Mi	CO	MLabs	Variant: 20 MHz,	peak Channel: 5480.00 M⊦	excursion lz, Chain a, Temp	o: Ambient, Voltag	e: 55.00V		
		Ref Level: 28 dBm 20.0 dB Offset		Sweep Time	e: 5.0 s			RBW: 1 MHz VBW: 3 MHz	
							Date: 11 Sep 20	12 3:05:47 PM	
					M1				
	20-		man	mmmmmm	mm	m			
			1		Dalla	. \			
	10 -		1		Deno	~ \			
	0		and a						
	0-		warden /			1 2			
	-10-	- W	/			1	Mr.		
	-20	and the second				\sim	Mark		
Bm	-20-	Www	1			-		White	
		hul minut					~	annon	
	-30 -								
	-40 -							~~~~	
	-50 -								
	-60								
	- 00								
	-70 -								
		Start 5455.000 MHz		Center 5480.000 MHz			Stop 5505.000 MHz		
				Step 5.000 M	1Hz		Span 50	000 MHz	
Analyser Setup		Marker : F	Marker : Frequency : Amplitude		Test Results				
Sweep Count = 0 RF Atten (dB) = 30 TRACE 1 Detector = MAX PEAK Trace Mode = VIEW TRACE 2		M1 : 5485 Delta1 : 1.	M1 : 5485.762 MHz : 19.000 dBm Delta1 : 1.202 MHz : -10.784 dB Measured Ex Limit: -13.0 df Margin: -2.22			rsion Ratio: 10.78	3 dB		

Back to the Matrix

Detector = RMS Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 300 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 301 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 302 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 303 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 304 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 305 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 306 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 307 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 308 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 309 of 311

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 310 of 311

MiceiMLabs	peak excursion /ariant: 40 MHz, Channel: 5695.00 MHz, Chain b, ⁻	Temp: Ambient, Voltage: 55.00V
Ref Level: 28 dBm 19.6 dB Offset	Sweep Time: 5.0 s	RBW: 1 MHz VBW: 3 MHz
		Date: 11 Sep 2012 4:04:33 PM
20	manne manne	MI
10	Delta1	
0	www.	have a second se
-10-		1 marson
5 -20 - Jund www		the production
-40		
-50		
-60		
-70		
Start 5645.000 MHz	Center 5695.000 MHz	Stop 5745.000 MHz
	Step 10.000 MHz	Span 100.000 MHz
Analyser Setup	Marker : Frequency : Amplitude	Test Results
Sweep Count = 0 RF Atten (dB) = 30 TRACE 1 Detector = MAX PEAK Trace Mode = VIEW TRACE 2	M1 : 5711.533 MHz : 15.573 dBm Delta1 : -30460922 Hz : -10.529 dB	Measured Excursion Ratio: 10.53 dB Limit: -13.0 dB Margin: -2.47 dB

Back to the Matrix

Detector = RMS Trace Mode = VIEW

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

MiCOM Labs, 440 Boulder Court, Suite 200, Pleasanton, CA 94566 USA, Phone: 925.462.0304, Fax: 925.462.0306, www.micomlabs.com

440 Boulder Court, Suite 200 Pleasanton, CA 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com