Test of AP0127730, AP0134760

To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: RDWN12-U2 Rev A

Test of AP0127730, AP0134760

to

To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: RDWN12-U2 Rev A

This report supersedes None

Applicant: RADWIN Ltd 27 Habarzel Street Tel Aviv, 69710 Israel

Product Function: 5 GHz 2x2 MIMO RF Module

Copy No: pdf Issue Date: 29th November 2012

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 4 of 311

TABLE OF CONTENTS

AC	CRE	DITATION, LISTINGS & RECOGNITION	.5
	TES	FING ACCREDITATION	. 5
	REC	OGNITION	.6
-	PRO		.7
1.	TES	T RESULT CERTIFICATE	.9
2.	REF	ERENCES AND MEASUREMENT UNCERTAINTY1	0
	2.1.	Normative References	10
	2.2.	Test and Uncertainty Procedures	11
3.	PRC	DUCT DETAILS AND TEST CONFIGURATIONS 1	2
	3.1.	Technical Details	12
	3.2.	Scope of Test Program	14
	3.3. 2 ₄	Equipment Model(s) and Serial Number(s)	18
	3.4. 3.5	Cabling and I/O Ports	20
	3.6.	Test Configurations	20
	3.7.	Equipment Modifications	21
	3.8.	Deviations from the Test Standard	21
	3.9.	Subcontracted Testing or Third Party Data	21
4.	TES	TING EQUIPMENT CONFIGURATION(S)2	22
	4.1.	Conducted RF Emission Test Set-up	22
	4.2.	Radiated Spurious Emission Test Set-up > 1 GHz	23
	4.3.	Digital Emissions Test Set-up (0.03 – 1 GHz)	24 25
5	4.4. TES		20
J. c	TEO		10
0.	IE9		<u>20</u>
	6.1.	Device Characteristics	28
		6.1.1. Conducted Testing	20
		6.1.3 Receiver Radiated Spurious Emissions (above 1 GHz) 1!	50 50
		6.1.4. Digital Emissions (30M-1 GHz)	57
		6.1.5. AČ Wireline Conducted Emissions (150 kHz – 30 MHz)16	60
7.	PHC)TOGRAPHS	52
	7.1.	Conducted Test Setup	32
	7.2.	Test Setup - Digital Emissions below 1 GHz16	33
-	7.3.	Radiated Emissions Test Setup >1 GHz	54
8.	IES	I EQUIPMENT DETAILS	55
AP	PEND	DIX16	36
Α.	SUP	PORTING INFORMATION 16	6
	A.1.	CONDUCTED TEST PLOTS	66
		A.1.1. 26 dB & 99% Bandwidth	37
		A.1.2. Peak Power Spectral Density	15
		A.1.3. Peak Excursion Ratio	53

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 5 of 311

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

The American Association for Laboratory Accreditation World Class Accreditation Accredited Laboratory A2LA has accredited MICOM LABS Pleasanton, CA for technical competence in the field of Electrical Testing This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-LAF Communiqué dated 8 January 2009). Presented this 27th day of March 2012. Leter President & CEO For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2013 For the tests or types of tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 6 of 311

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	тсв	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB - Notified Body

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 7 of 311

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

USA Telecommunication Certification Body (TCB) - TCB Identifier - US0159

Industry Canada Certification Body - CAB Identifier - US0159

European Notified Body - Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB) - RCB Identifier - 210

DOCUMENT HISTORY

Document History				
Revision	Date	Comments		
Draft				
Rev A	29 th November 2012	Initial release		

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 9 of 311

1. TEST RESULT CERTIFICATE

Applicant:	RADWIN Ltd 27 Habarzel Street Tel Aviv, 69710	Tested By:	MiCOM Labs, Inc. 440 Boulder Court Suite 200
	Israel		Pleasanton
			California, 94566, USA
EUT:	RF Module operating in the 4.9 – 5.8 GHz bands.	Tel:	+1 925 462 0304
Model:	AP0127730, AP0134760	Fax:	+1 925 462 0306
S/N:	Prototype		
Test Date(s):	10th to 18th September '12	Website:	www.micomlabs.com

STANDARD(S)TEST RESULTSFCC 47 CFR Part 15.407 & IC RSS-210EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

TESTING CERTIFICATE #2381.01 Gordon Hurst

ACCREDITE

President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 10 of 311

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 15.407	2012	Code of Federal Regulations
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order
(iii)	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
(iv)	Industry Canada RSS-210	2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment
(v)	Industry Canada RSS-Gen	2010	General Requirements and Information for the Certification of Radiocommunication Equipment
(vi)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(vii)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(viii)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(ix)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(x)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(xi)	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy
(xii)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 12 of 311

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details		
Details	Description	
Purpose:	Test of the AP0127730, AP0134760 in the frequency ranges 5,250 to 5,350 MHz and 5470 to 5725 MHz to FCC Part 15.407 and Industry Canada RSS-210 regulations.	
Applicant:	RADWIN Ltd 27 Habarzel Street Tel Aviv, 69710 Israel	
Manufacturer:	As applicant	
Laboratory performing the tests:	MiCOM Labs, Inc. 440 Boulder Court, Suite 200 Pleasanton, California 94566 USA	
Test report reference number:	RDWN12-U2 Rev A	
Date EUT received:	10 th September 2012	
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210	
Dates of test (from - to):	10th to 18th September '12	
No of Units Tested:	One	
Type of Equipment:	5 GHz 2x2 MIMO RF module.	
Applicants Trade Name:	RADWIN	
Model(s):	AP0127730, AP0134760	
Location for use:	Inside outdoor enclosure	
Declared Frequency Range(s):	5,250 to 5,350 MHz and 5470 to 5725 MHz	
Hardware Rev	Prototype	
Software Rev	Prototype	
Type of Modulation:	Per 802.11n – BPSK, QPSK, 16QAM, 64QAM, OFDM	
Declared Nominal Output Power:	5 MHz: 18.03 dBm (5250-5350 MHz), 17.24 dBm	
(Average Power)	(5470-5725 MHz)	
	10 MHz: 19.95 dBm (5250-5350 MHz), 20.03 dBm	
	(5470-5725 MHz)	
	20 MHz: 23.36 dBm (5250-5350 MHz), 23.06 dBm	
	(5470-5725 MHZ) 40 MHz: 22 72 dDm (5250 5250 MHz) 22 02 dDm	
	40 MINZ. 23.73 UDITI (3230-3330 MINZ), 23.92 UDITI (5470 5725 MHz)	
EUT Modes of Operation:	5 10 20 40 MHz	
Transmit/Receive Operation:		
System Beam Forming:	AP0127730 AP0134760 has no canability for beam	
Gystern Dearn Forning.	forming	
Rated Input Voltage and Current: POE 55 Vdc 1 A		
Operating Temperature Range	Declared range -35° to +60°C	
ITU Emission Designator	5 MHz 5M00W7W	
	10 MHz 10M0W7W	
	20 MHz 20M0W7W	
	40 MHz 40M0W7W	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:	AP0127730, AP0134760
To:	FCC 47 CFR Part 15.407 & IC RSS-210
Serial #:	RDWN12-U2 Rev A
Issue Date:	29th November 2012
Page:	13 of 311

Equipment Dimensions:	1.9" x 2.0" x 0.3" inches
Weight:	0.042 lb (19 g)
Primary function of equipment:	5 GHz 2x2 MIMO RF module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 14 of 311

3.2. Scope of Test Program

AP0127730, AP0134760 RF Testing

The scope of the test program was to test the AP0127730, AP0134760 5 GHz 2x2 MIMO RF module configurations in the frequency range 5250 to 5350 MHz and 5470 to 5725 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; *Emissions Testing of Transmitters with Multiple Outputs in the Same Band*

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 15 of 311

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 16 of 311

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 17 of 311

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.3. Equipment Model(s) and Serial Number(s)

Equipment Type	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	RF module operating in the 4.9-5.8 GHz bands	RADWIN Ltd	AP0127730, AP0134760	None
Support	Laptop PC	DELL	LATITUDE D530	None

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 19 of 311

3.4. Antenna Details

Radiated emissions testing were performed in the mode with the highest spectral density to verify compliance. Radiated emissions were performed on the highest gain of each type of antenna as identified in the table below;-

Radiated Emission	Antenna Type	Manufaturer	Model Number	Antenna Gain (dBi)	
(Antenna #)				5250-5350 MHz	5470-5725 MHz
1	Sector Dual Pole Integrated 120 Deg	RADWIN Ltd.	MT0128930	11	11
	Sector Dual Pole 120 Deg	RADWIN Ltd.	RW-9061-5004	11	11
2	Sector Dual Pole Integrated 95 Deg	RADWIN Ltd.	AM0135060	12	12
	Sector Dual Pole 90 Deg	RADWIN Ltd.	RW-9061-5001	14	14
3	Sector Dual Pole 60 Deg	RADWIN Ltd.	RW-9061-5002	15.5	16.5
	Sector Dual Pole Integrated 90 Deg	RADWIN Ltd.	MT0125250	13	13
	Flat Panel Dual Pole Integrated	RADWIN Ltd.	AM0119960	16	16
4	Flat Panel Dual Pole Integrated	RADWIN Ltd.	AM0111760	16	16.5
	Flat Panel Dual Pole External	RADWIN Ltd.	RW-9612-5001	23	23
5	Flat Panel Dual Pole Integrated	RADWIN Ltd.	MT0070760	23.5	23.5
6	Flat Panel Dual Pole External	RADWIN Ltd.	RW-9622-5001	29	29
	Dual Pole Dish	RADWIN Ltd.	RW-9721-5158	28	29
7	Dual Pole Dish	RADWIN Ltd.	RW-9732-4958	32	32

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 1 x 10/100/1000 Ethernet (includes POE +55 Vdc)

3.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

Channel Bandwidth	Data Rates with Highest Power	Frequencies (MHz)
5 MHz	15 MCS	5255 / 5300 / 5345
10 MHz	15 MCS	5260 / 5300 / 5340
20 MHz	15 MCS	5265 / 5300 / 5335
40 MHz	15 MCS	5275 / 5300 / 5325
5 MHz	15 MCS	5475 / 5595 / 5720
10 MHz	15 MCS	5475 / 5595 / 5720
20 MHz	15 MCS	5480 / 5590 / 5715
40 MHz	15 MCS	5500 / 5570 / 5695

Antenna Test Configurations for Radiated Emissions and Band-Edge

The following measurements were performed on all antenna configurations identified in Section 3.4 Antenna Details.

Spurious Emission and Band-Edge Test Strategy Bands 5,250 – 5,350 Hz ; 5470 – 5725 MHz

5 MHz
SE 5255
SE 5300
SE 5345
BE 5350
BE 5470
SE 5475
SE 5595
SE 5720

KEY:-

SE – Spurious Emissions

BE – Band-Edge

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. Band-Edge Power Reduction

The power settings required for each antenna to comply with the requirements are detailed in Section 6.1.1.2 "Maximum Conducted Output Power"

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

NONE

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 22 of 311

4. TESTING EQUIPMENT CONFIGURATION(S)

4.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 6.1.1.1. 26 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Maximum Conducted Output Power
- 3. Section 6.1.1.3. Peak Power Spectral Density
- 4. Section 6.1.1.4. Peak Excursion Ratio

Conducted Test Set-Up Pictorial Representation

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.

Radiated Emission Measurement Setup – Above 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.4. Digital Emissions

Digital Emission Measurement Setup – Below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.3 ac Wireline Conducted Emissions

Conducted Test Set-Up Pictorial Representation

Measurement set up for ac Wireline Conducted Emissions Test

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210.and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	6.1.1.1 A.1.1
15.407(a) A9.2(2) 4.6	Maximum Conducted Output Power	Power Measurement	Conducted	Complies	6.1.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	6.1.1.3 A.1.2
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	6.1.1.4 A.1.3
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	6.1.1.5
15.407(f) 5.5	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Conducted	See included MPE exhibit	6.1.1.6

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2) 4.7	Radiated Emissions		Radiated		6.1.2
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	6.1.2
	Radiated Band Edge	Band edge results		Complies	6.1.2
4.10 6	Radiated Receiver Emissions			Complies	6.1.3
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Digital Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	6.1.4
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	N/A EUT is POE powered - not shipped with equipment	6.1.5

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 28 of 311

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Conducted Testing

6.1.1.1. 26 dB and 99 % Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth							
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	26 dB and 99 % Bandwidth	% Bandwidth Rel. Humidity (%):					
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001				
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01						

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. KDB 789033 Section 5.1 Emission Bandwidth was used in order to prove compliance. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

5250 -5350 MHz

Fau	inmont	Confic	uration	for	26	dB	aa%
Equ	ipment	Conne	juration	101	20	uь	33/0

Variant:	5 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measurement Results

	Meas	ured 26 dB	Bandwidth	(MHz)			
Test Frequency		Poi	rt(s)	()	26 dB Bandwidth (MHz)		
MHz	а	b	С	d	Highest	Lowest	
5255.0	6.889	7.014			7.014	6.889	
5300.0	6.789	6.889			6.889	6.789	
5345.0	6.713	6.864			6.864	6.713	
	Mea	sured 99% E	Bandwidth (MHz)			

Test Frequency	Measured 99% Bandwidth (MHz)				00% Ban	dwidth (MHz)	
restriequency	Port(s)				99% bandwidth (MHZ)		
MHz	а	b	С	d	Highest	Lowest	
5255.0	4.684	4.684			4.684	4.684	
5300.0	4.684	4.684			4.684	4.684	
5345.0	4.684	4.659			4.684	4.659	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 Measuring RF Spectrum Mask					
Measurement Uncertainty:	±2.81 dB					

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 30 of 311

Equipment Configuration for 26 dB 99%							
Variant:	10 MHz	Duty Cycle (%):	100				
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Maximum Power						
Engineering Test Notes:							

Test Measurement R	lesults							
Tost Fraguancy	Measured 26 dB Bandwidth (MHz)				26 dB Ba	26 dB Bondwidth (MUs)		
rest Frequency		Por	rt(s)		20 00 0a			
MHz	а	b	С	d	Highest	Lowest		
5260.0	11.423	11.022			11.423	11.022		
5300.0	10.922	10.822			10.922	10.822		
5340.0	11.573	10.571			11.573	10.571		
Toot Fragueney	Mea	sured 99% E	Bandwidth (MHz)	00% Bon	dwidth (MUz)		
rest Frequency		Por	rt(s)		99% Dan	awiath (MHZ)		
MHz	а	b	С	d	Highest	Lowest		
5260.0	9.018	9.068			9.068	9.018		
5300.0	9.018	8.968			9.018	8.968		
5340.0	8.968	8.968			8.968	8.968		

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 Measuring RF Spectrum Mask					
Measurement Uncertainty:	±2.81 dB					

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 31 of 311

Equipment Configuration for 26 dB 99%								
Variant:	20 MHz	Duty Cycle (%):	100					
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Maximum Power							
Engineering Test Notes:								

Test Measurement R	esults							
Toot Frequency	Meas	ured 26 dB	Bandwidth	(MHz)	26 dB Bo	26 dB Bendwidth (MUs)		
rest riequency		Por	rt(s)					
MHz	а	b	С	d	Highest	Lowest		
5265.0	23.046	22.545			23.046	22.545		
5300.0	22.745	23.046			23.046	22.745		
5335.0	23.046	22.745			23.046	22.745		
Toot Fragueney	Mea	sured 99% E	Bandwidth (MHz)	00% Bon	dwidth (MUz)		
rest riequency		Port(s)			99% Dali			
MHz	а	b	С	d	Highest	Lowest		
5265.0	17.936	17.936			17.936	17.936		
5300.0	17.936	17.936			17.936	17.936		
5335.0	17.936	17.936			17.936	17.936		

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 Measuring RF Spectrum Mask						
Measurement Uncertainty:	±2.81 dB						

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 32 of 311

Equipment Configuration for 26 dB 99%								
Variant:	40 MHz	Duty Cycle (%):	100					
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Maximum Power							
Engineering Test Notes:								

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 Measuring RF Spectrum Mask						
Measurement Uncertainty:	±2.81 dB						

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 33 of 311

5470 -5725 MHz

			Equipm	ent C	onfigurati	on for 26 dB 9	99%		
	,	Variant:	5 MHz				Duty Cycle (%):	100	
	Dat	ta Rate:	15 MCS			Ant	enna Gain (dBi):	Not Applicable	9
	Mod	ulation:	OFDM			Beam Fo	orming Gain (Y):	Not Applicable	9
		TPC:	Maximum	Powe	er				
Engineering Test Notes:									
Test Measurement R	esults								
Test Frequency	Meas	Measured 26 dB Bandwidth (MHz) Port(s)					26 dB Bondwidth (MHz)		
rest Frequency									
MHz	а	b	c	;	d	Highest	Lowest		
5475.0	6.488	6.613	3			6.613	6.488		
5595.0	6.688	6.638	3			6.688	6.638		
5720.0	6.288	6.588	3			6.588	6.288		
		•					·		
	Measured 99% Bandwidth (MHz)		MHz)	00% Bang	dwidth (MHz)				
						- 33% Ddiiu			

Tost Froguoncy				99% Bandwidth (MHz)			
restriequency	Port(s)				3376 Dan		
MHz	а	b	с	d	Highest	Lowest	
5475.0	4.684	4.684			4.684	4.684	
5595.0	4.659	4.684			4.684	4.659	
5720.0	4.659	4.684			4.684	4.659	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 Measuring RF Spectrum Mask					
Measurement Uncertainty:	±2.81 dB					

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

-

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A **Issue Date:** 29th November 2012 Page: 34 of 311

Equipment Configuration for 26 dB 99%								
Variant:	10 MHz	Duty Cycle (%):	100					
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Maximum Power							
Engineering Test Notes:								

Test Measurement R	Results							
	Meas	ured 26 dB	Bandwidth	(MHz)				
Test Frequency		Ро	rt(s)		- 26 dB Bai	nawiath (MHZ)		
MHz	а	b	С	d	Highest	Lowest		
5475.0	11.022	10.371			11.022	10.371		
5595.0	10.972	10.721			10.972	10.721		
5720.0	11.373	11.473			11.473	11.373		
				•		•	•	
Tool Fromwon ou	Mea	sured 99% l	Bandwidth ((MHz)	00%/ Dam			
Test Frequency		Port(s)			99% Ban	awiath (MHZ)		
MHz	а	b	С	d	Highest	Lowest		
5475.0	9.018	9.018			9.018	9.018		
5595.0	9.018	8.968			9.018	8.968		
5720.0	9.018	9.018			9.018	9.018		

Fraceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 Measuring RF Spectrum Mask					
Measurement Uncertainty:	±2.81 dB					

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 35 of 311

Equipment Configuration for 26 dB 99%								
Variant:	20 MHz	Duty Cycle (%):	100					
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Maximum Power							
Engineering Test Notes:								

esults							
Measured 26 dB Bandwidth (MHz)				26 dB Bar	26 dB Bondwidth (MUz)		
Port(s)							
а	b	С	d	Highest	Lowest		
23.246	22.745			23.246	22.745		
22.745	23.046			23.046	22.745		
23.347	23.146			23.347	23.146		
Measured 99% Bandwidth (MHz)							
	Por	t(s)		99% Dan	awiath (MHZ)		
а	b	С	d	Highest	Lowest		
17.936	17.936			17.936	17.936		
17.936	17.936			17.936	17.936		
17.936	17.936			17.936	17.936		
	esults Meas 23.246 22.745 23.347 Meas 17.936 17.936 17.936	esults Measured 26 dB Por a b 23.246 22.745 22.745 23.046 23.347 23.146 Measured 99% E Por 17.936 17.936 17.936 17.936 17.936 17.936	Measured 26 dB Bandwidth Port(s) a b c 23.246 22.745 23.046 22.745 23.046 23.347 23.347 23.146 23.347 Measured 99% Bandwidth (Port(s) a b c 17.936 17.936 17.936 17.936 17.936 17.936 17.936 17.936	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 23.246 22.745 2 2 22.745 23.046 2 2 23.347 23.146 2 2 Measured 99% Bandwidth (MHz) Port(s) a b c d 17.936 17.936 c d 17.936 17.936 17.936	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest 23.246 22.745 23.246 23.246 22.745 23.046 23.046 23.046 23.347 23.146 23.347 23.347 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) 17.936 17.936 17.936 17.936 17.936 17.936 17.936 17.936 17.936 17.936 17.936 17.936	Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) a b c d Highest Lowest 23.246 22.745 23.246 22.745 22.745 23.046 23.046 22.745 23.347 23.146 23.347 23.146 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) a b c d Notestandown and the standown	Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) a b c d Highest Lowest 23.246 22.745 23.246 22.745 23.246 22.745 22.745 23.046 23.347 23.146 23.347 23.146 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 99% Bandwidth (MHz) Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) Port(s) Image: Second S

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 Measuring RF Spectrum Mask				
Measurement Uncertainty:	±2.81 dB				

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 36 of 311

Equipment Configuration for 26 dB 99%				
Variant:	40 MHz	Duty Cycle (%):	100	
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Maximum Power			
Engineering Test Notes:				

Test Measurement R	esults						
Tost Frequency	Measured 26 dB Bandwidth (MHz)						
rest Frequency		Por	rt(s)				
MHz	а	b	С	d	Highest	Lowest	
5500.0	44.289	43.287			44.289	43.287	
5570.0	43.487	43.888			43.888	43.487	
5695.0	43.687	43.888			43.888	43.687	
Test Frequency	Measured 99% Bandwidth (MHz)			00% Rendwidth (MUT)			
rest Frequency		Por	rt(s)		99% Dai		
MHz	а	b	С	d	Highest	Lowest	
5500.0	36.673	36.473			36.673	36.473	
5570.0	36.673	36.673			36.673	36.673	
5695.0	36.473	36.673			36.673	36.473	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 37 of 311

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.1.2. Maximum Conducted Output Power

Conducted Test Conditions for Maximum Conducted Output Power					
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001		
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01				

Test Procedure for Maximum Conducted Output Power Measurement

<u>Method PM (Measurement using an RF average power meter)</u>. Section C) 4) of KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result. All operational modes and frequency bands were measured independently and the resultant calculated. For multiple outputs, the measurements were made simultaneously on each output port and summed in a linear fashion. This technique was used in order to prove compliance.

Antenna Power Levels

15. 407 (a) (2) Operation with directional antenna gains greater than 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Further FCC KDB 662911 D01 Multiple Transmitter Output v01 requires that the gain of antennas transmitting the same data (legacy 802.11a mode) must be increased by 10 * Log (N) when N is the number of antenna elements.

Antenna	Gain	Max. Allowable C Power	Max. Allowable Conducted Peak Power (dBm)		
Model Number	(dBi)	Max. Total Power	Max. Power Per Chain	(dBm)	
RW-9732-4958	31*	-1	-4.01	30	
P\\/_9721_5158	27* (5250-5350 MHz)	3	-0.01	30	
1013721-3130	28* (5470-5725 MHz)	2	-1.01	30	
RW-9622-5001	28*	2	-1.01	30	
RW-9612-5001	22*	8	4.99	30	
MT0070760	23.5	6.5	3.49	30	
AM0111760	16 (5250-5350 MHz)	14	10.99	30	
	16.5 (5470-5725 MHz)	13.5	10.49	30	
AM0119960	16	14	10.99	30	
MT0125250	13	17	13.99	30	
	14.5* (5250-5350 MHz)	15.5	12.49	30	
RW-9061-5002	15.5* (5470-5725 MHz)	14.5	11.49	30	
RW-9061-5001	13*	17	13.99	30	
RW-9061-5004	10*	20	16.99	30	
MT0128930	11	19	15.99	30	
AM0135060	12	18	14.99	30	

Operating Frequency Band 5250 - 5350 MHz and 5470 - 5725 MHz

* The gain includes 1 dB feeder cable loss for external antennas

The AP0127730, AP0134760 has no beam-forming capability. The EUT operates in four different bandwidth modes;- 5 MHz; 10 MHz; 20 MHz; and 40 MHz. The 11 dBm + 10 log B limits are calculated for each mode along with the conducted power measurements for each antenna presented in this section of the test report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Measurement Results for Maximum Conducted Output Power

Output Power 5250 - 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power				Total Power (dBm)		26dB Limit	Margin
		RF Port	(dBm)					
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5255	14.08	14.27		-	N/A	17.19	19.27	-2.08
5300	14.09	13.68		-	N/A	16.90	19.27	-2.37
5345	15.23	14.80			N/A	18.03	19.27	-1.24

Measurement uncertainty:	±1.33 dB

	-			-	
Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power RF Port (dBm)			- Total Power (dBm)		26dB Limit	Margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5260	16.75	16.32			N/A	19.55	21.24	-1.69
5300	17.03	16.74			N/A	19.90	21.24	-1.34
5340	17.14	16.73			N/A	19.95	21.24	-1.29

Measurement uncertainty:	±1.33 dB
--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Output Power 5250 - 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power RF Port (dBm)			- Total Power (dBm)		26dB Limit	Margin	
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5265	20.09	19.40			N/A	22.77	24.00	-1.23
5300	19.94	19.30			N/A	22.64	24.00	-1.36
5335	20.43	20.26			N/A	23.36	24.00	-0.64

Measurement uncertainty:	±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measured Peak Power RF Port (dBm)				Total Pow	ver (dBm)	26 dB Limit	Margin
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5275	20.81	20.24			N/A	23.54	24.00	-0.46
5300	20.82	20.22			N/A	23.54	24.00	-0.46
5325	21.20	20.18			N/A	23.73	24.00	-0.27

±1.33 dB	
	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Output Power 5470 - 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	N	leasured Po	eak Power		Total Power (dBm)		26 dB Limit	Margin
		RF Port	(aBm)					
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5475	14.46	12.70		-	N/A	16.68	19.27	-2.59
5595	14.64	13.49			N/A	17.11	19.27	-2.16
5720	14.57	13.86			N/A	17.24	19.27	-2.03

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	N	RF Port	eak Power (dBm)		Total Pow	ver (dBm)	26 dB Limit	Margin
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5475	17.22	15.91			N/A	19.62	21.24	-1.62
5595	17.25	16.06			N/A	19.71	21.24	-1.53
5720	17.36	16.66			N/A	20.03	21.24	-1.21

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Output Power 5470 - 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	N	RF Port	eak Power (dBm)		Total Pow	ver (dBm)	26 dB Limit	Margin
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5480	20.49	19.55		-	N/A	23.06	24.00	-0.94
5590	20.58	19.28			N/A	22.99	24.00	-1.01
5715	19.96	19.41			N/A	22.70	24.00	-1.30

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		0 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	N	leasured Po	eak Power		Total Power (dBm)		26 dB Limit	Margin
		RF Port	(dBm)	_				
MHz	а	b	С	d	Combined	Calculated	dBm	dB
5500	21.45	20.01			N/A	23.80	24.00	-0.20
5570	21.66	20.00			N/A	23.92	24.00	-0.08
5695	21.00	19.78			N/A	23.44	24.00	-0.56

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Antenna #1; 11dBi Sector Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming	N/A dB	Antenna Gain:	11	dBi	
Applied Voltage:	55.0 Vdc		0		
Notes 1:	Bold = Reduced Powe	r Levels to meet Band I	Edge requiren	nents	
Notes 2:					

Test	Mea	asured F	Peak Pov	ver			EIRP		EIRP	Power		
Frequency		RF Port	(dBm)		Total Po	ower (dBm)	dBm	26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5255	11.08	11.27			N/A	14.19	25.19	19.27	25.27	14.27	-0.08	10
5300	11.09	10.68			N/A	13.90	24.90	19.27	25.27	14.27	-0.37	10
5345	5.16	6.57	-		N/A	8.93	19.93	19.27	25.27	14.27	-5.33	1

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming	N/A dB	Antenna Gain:	11	1 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	r Levels to meet Band I	Edge requirer	ments	
Notes 2:					

Test	Mea	asured F	Peak Po	wer			EIRP		EIRP	Power		
Frequency		RF Port	t (dBm)		Total Po	ower (dBm)	dBm	26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5260	13.31	13.07			N/A	16.20	27.20	21.24	27.24	16.24	-0.04	15
5300	13.33	12.74			N/A	16.06	27.06	21.24	27.24	16.24	-0.19	15
5340	8.13	9.37			N/A	11.80	22.80	21.24	27.24	16.24	-4.44	7

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Antenna #1; 11dBi Sector Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming	N/A dB	Antenna Gain:		11 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	er Levels to meet Band	Edge requir	rements	
Notes 2:					

Test	Mea	asured F	Peak Po	ver			EIRP		EIRP	Power		
Frequency		RF Port	t (dBm)		Total Po	Total Power (dBm)		26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5265	16.03	15.85			N/A	18.95	29.95	24.00	30.00	19.00	-0.05	20
5300	16.04	15.80			N/A	18.93	29.93	24.00	30.00	19.00	-0.07	20
5335	9.34	9.34			N/A	12.35	23.35	24.00	30.00	19.00	-6.65	7

|--|

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming	N/A dB	Antenna Gain:	11	dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	r Levels to meet Band I	Edge requirer	nents	
Notes 2:					

Test	Mea	asured F	Peak Po	wer			EIRP		EIRP	Power		
Frequency	RF Port (dBm)				Total Power (dBm)		dBm	26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	c	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5275	15.56	16.25			N/A	18.93	29.93	24.00	30.00	19.00	-0.07	23
5300	15.57	16.35			N/A	18.99	29.99	24.00	30.00	19.00	-0.01	23
5325	8.97	10.00			N/A	12.53	23.53	24.00	30.00	19.00	-6.47	9

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 47 of 311

Antenna #1; 11dBi Sector Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15407(a)(1)	Pol Humidity (%)	35	to	12
Test Conditions.	10.407 (a)(1)	Kei. Humany (76).		10	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming	N/A dB	Antenna Gain:	1	1 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Mea	asured F	Peak Po	wer					EIRP	Power		
Frequency		RF Port	t (dBm)		Total Po	Total Power (dBm)		26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	11.46	10.70			N/A	14.11	25.11	19.27	25.27	14.27	-0.16	10
5595	11.64	10.49			N/A	14.11	25.11	19.27	25.27	14.27	-0.15	10
5720	11.57	10.86			N/A	14.24	25.24	19.27	25.27	14.27	-0.03	10

Measurement uncertainty:

ainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming	N/A dB	Antenna Gain:	1	1 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	er Levels to meet Band	Edge require	ments	
Notes 2:					

Test	Mea	asured F	Peak Po	wer			EIRP		EIRP	Power		
Frequency		RF Port	t (dBm)		Total Po	ower (dBm)	dBm	26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	12.62	12.66	-		N/A	15.65	26.65	21.24	27.24	16.24	-0.59	15
5595	13.25	12.06	-		N/A	15.71	26.71	21.24	27.24	16.24	-0.53	15
5720	13.36	12.66			N/A	16.03	27.03	21.24	27.24	16.24	-0.21	15

Measurement uncertainty:

+'

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 48 of 311

Antenna #1; 11dBi Sector Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming	N/A dB	Antenna Gain:	1	1 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	er Levels to meet Band	Edge require	ments	
Notes 2:					

Test	Mea	asured F	Peak Pov	ver			EIRP		EIRP	Power		
Frequency		RF Port	t (dBm)		Total Po	Total Power (dBm)		26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5480	12.64	12.43			N/A	15.55	26.55	24.00	30.00	19.00	-3.45	15
5590	16.58	15.28			N/A	18.99	29.99	24.00	30.00	19.00	-0.01	20
5715	15.96	15.41			N/A	18.70	29.70	24.00	30.00	19.00	-0.30	20

±1.33 dB

Measurement uncertainty:

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42						
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22						
TPC:	HIGH	Pressure (mBars):	998	to	1003						
Modulation:	ON	Duty Cycle (x):	100								
Beam Forming	N/A dB	Antenna Gain:	11	l dBi							
Applied Voltage:	55.0 Vdc										
Notes 1:	Bold = Reduced Powe	old = Reduced Power Levels to meet Band Edge requirements									
Notes 2:	Numbers in Parenthesis are original measured Power vs 30 dBm)										

Test	Mea	asured F	Peak Po	wer			EIRP		EIRP	Power		
Frequency		RF Port	t (dBm)		Total Po	ower (dBm)	dBm	26 dB Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5500	16.01	15.85			N/A	18.94	29.94	24.00	30.00	19.00	-0.06	15
5570	16.66	15.00		-	N/A	18.92	29.92	24.00	30.00	19.00	-0.08	20
5695	16.00	15.78			N/A	18.90	29.90	24.00	30.00	19.00	-0.10	20

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 49 of 311

Antenna #2; 12dBi Sector Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		12 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	er Levels to meet Band	Edge red	quirement	s
Notes 2:					

	Measured Peak Power					EIRP	26 dB	EIRP	Power			
lest Frequency	R	F Port (dB	m)		I otal Po	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5255	10.08	10.27			N/A	13.19	25.19	19.27	25.27	13.27	-0.08	9
5300	10.09	9.68	-	-	N/A	12.90	24.90	19.27	25.27	13.27	-0.37	9
5345	5.16	6.57			N/A	8.93	20.93	19.27	25.27	13.27	-4.33	1

Measurement uncertainty:	±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		12 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	er Levels to meet Band	Edge req	uirement	s
Notes 2:					

	Meas	ured Peak	Power	•			EIRP	26 dB	EIRP	Power		
Test Frequency	R	F Port (dB	m)		Total Po	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5260	12.25	11.82	-		N/A	15.05	27.05	21.24	27.24	15.24	-0.19	13
5300	12.03	11.74	1	-	N/A	14.90	26.90	21.24	27.24	15.24	-0.34	13
5340	8.13	9.37	-		N/A	11.80	23.80	21.24	27.24	15.24	-3.44	7

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Antenna #2; 12dBi Sector Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42						
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22						
TPC:	HIGH	Pressure (mBars):	998	to	1003						
Modulation:	ON	Duty Cycle (x):	100								
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		12 dBi							
Applied Voltage:	55.0 Vdc										
Notes 1:	Bold = Reduced Power Levels to meet Band Edge requirements										
Notes 2:											

	Measu	Measured Peak Power					EIRP	26 dB	EIRP	Power		
Test Frequency	RF Port (dBm)			Total Power (dBm)		dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5265	15.09	14.40		-	N/A	17.77	29.77	24.00	30.00	18.00	-0.23	17
5300	14.94	14.30		1	N/A	17.64	29.64	24.00	30.00	18.00	-0.36	17
5335	9.34	9.34		-	N/A	12.35	24.35	24.00	30.00	18.00	-5.65	7

Maggingmant		
Measurement	uncertaint	y:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42					
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22					
TPC:	HIGH	Pressure (mBars):	998	to	1003					
Modulation:	ON	Duty Cycle (x):	100							
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		12 dBi						
Applied Voltage:	55.0 Vdc									
Notes 1:	Bold = Reduced Power Levels to meet Band Edge requirements									
Notes 2:										

	Measu	Measured Peak Power					EIRP	26 dB	EIRP	Power		
Test Frequency	RF Port (dBm)				Total Po	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5275	14.66	15.09			N/A	17.89	29.89	24.00	30.00	18.00	-0.11	20
5300	14.55	15.36			N/A	17.98	29.98	24.00	30.00	18.00	-0.02	21
5325	9.37	10.47			N/A	12.97	24.97	24.00	30.00	18.00	-5.03	10

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 51 of 311

Antenna #2; 12dBi Sector Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Antenna Gain:	1	2 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

	Measu	Measured Peak Power					EIRP	26 dB	EIRP	Power		
Test Frequency	RF Port (dBm)			Total Po	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	10.46	8.70	-		N/A	12.68	24.68	19.27	25.27	13.27	-0.59	8
5595	10.64	9.49	-		N/A	13.11	25.11	19.27	25.27	13.27	-0.15	8
5720	10.57	9.86	-		N/A	13.24	25.24	19.27	25.27	13.27	-0.03	8

Measurement uncertainty: ±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42						
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22						
TPC:	HIGH	Pressure (mBars):	998	to	1003						
Modulation:	ON	Duty Cycle (x):	100								
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		12 dBi							
Applied Voltage:	55.0 Vdc										
Notes 1:	Bold = Reduced Power Levels to meet Band Edge requirements										
Notes 2:											

	Measu	Measured Peak Power RF Port (dBm)			Total De	wor (dBm)	EIRP	26 dB	EIRP	Power	Morgin	Bodwin
Test Frequency	RF Port (dBm)			Total PC	ower (abm)	аып	Limit	Limit	Limit	wargin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	12.27	11.90	-		N/A	15.10	27.10	21.24	27.24	15.24	-0.14	15
5595	12.75	11.56	-		N/A	15.21	27.21	21.24	27.24	15.24	-0.03	12
5720	12.50	11.90			N/A	15.22	27.22	21.24	27.24	15.24	-0.02	12

Measurement uncertainty: ±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 52 of 311

Antenna #2; 12dBi Sector Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42					
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22					
TPC:	HIGH	Pressure (mBars):	998	to	1003					
Modulation:	ON	Duty Cycle (x):	100							
Beam Forming Gain (Y):	N/A dB	Antenna Gain:								
Applied Voltage:	55.0 Vdc									
Notes 1:	Bold = Reduced Power Levels to meet Band Edge requirements									
Notes 2:	(Numbers in Parenthesi	s are original measured	Power vs	30 dBm)						

	Measured Peak Power				Total Da	wor (dBm)	EIRP	26 dB	EIRP	Power	Morgin	Bodwin
Test Frequency	RF Port (dBm)			TOLAT		UDIII	LIIIII	Limit	Limit	wargin	Rauwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5480	13.52	13.37			N/A	16.46	28.46	24.00	30.00	18.00	-1.54	17
5590	15.58	14.28			N/A	17.99	29.99	24.00	30.00	18.00	-0.01	18
5715	14.96	14.41			N/A	17.70	29.70	24.00	30.00	18.00	-0.30	18

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42			
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22			
TPC:	HIGH	Pressure (mBars):	998	to	1003			
Modulation:	ON	Duty Cycle (x):	100					
Beam Forming Gain (Y):	N/A dB	Antenna Gain:		12 dBi				
Applied Voltage:	55.0 Vdc							
Notes 1:								
Notes 2:	(Numbers in Parenthesis are original measured Power vs 30 dBm)							

Test Frequency	Measured Peak Power RF Port (dBm)				Total Po	ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	c	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5500	15.01	14.90			N/A	17.97	29.97	24.00	30.00	18.00	-0.03	22
5570	15.66	14.00	-		N/A	17.92	29.92	24.00	30.00	18.00	-0.08	18
5695	15.50	14.28			N/A	17.94	29.94	24.00	30.00	18.00	-0.06	19

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 53 of 311

Antenna #3; 16.5 dBi Flat Panel Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42				
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22				
TPC:	HIGH	Pressure (mBars):	998	to	1003				
Modulation:	ON	Duty Cycle (x):	100						
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	10	3 dBi					
Applied Voltage:	55.0 Vdc								
Notes 1:	Bold = Reduced Power	Levels to meet Band Edge	e requirements						
Notes 2:									

Test Frequency	Meas	sured Peak RF Port (dB	Power	wer Total Po		wer (dBm)	EIRP dBm	26 dB Limit	EIRP	Power	Margin	Radwin
MHz	а	b	c	d	Comb	Calculated	Calculate	dBm	dBm	dBm	dB	PS
5255	6.08	6.27			N/A	9.19	25.19	19.27	25.27	9.27	-0.08	0
5300	6.09	5.68			N/A	8.90	24.90	19.27	25.27	9.27	-0.37	0
5345	2.24	4.20			N/A	6.34	22.34	19.27	25.27	9.27	-2.93	-3

Measurement uncertainty:

uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	1	6 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band Edge	requirem	ents	
Notes 2:					

Test	Meas	sured Peak	Power				EIRP	26 dB	EIRP	Power		
Frequency	F	RF Port (dB	lm)		Total Pov	wer (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5255	7.21	8.54			N/A	10.94	26.94	21.24	27.24	11.24	-0.30	6
5300	7.22	8.73			N/A	11.05	27.05	21.24	27.24	11.24	-0.19	6
5345	6.76	8.08			N/A	10.48	26.48	21.24	27.24	11.24	-0.76	4

Measurement uncertainty:	+1 33 dB
Measurement uncertainty.	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 54 of 311

Antenna #3; 16.5 dBi Flat Panel Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	1	6 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band Edge	requirem	ents	
Notes 2:					

Test	Meas	sured Peak	Power				EIRP	26 dB	EIRP	Power		
Frequency	F	RF Port (dB	im)		Total Pov	wer (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5265	10.17	11.43			N/A	13.86	29.86	24.00	30.00	14.00	-0.14	12
5300	10.22	11.63			N/A	13.99	29.99	24.00	30.00	14.00	-0.01	12
5335	5.80	6.85	-		N/A	9.37	25.37	24.00	30.00	14.00	-4.63	2

Measurement uncertainty:

tainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	10	3 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band Edge	requirem	ents	
Notes 2:					

Test	Meas	sured Peak	Power		_		EIRP	26 dB	EIRP	Power		
Frequency	RF Port (dBm)				Total Por	wer (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5275	9.97	11.16			N/A	13.62	29.62	24.00	30.00	14.00	-0.38	10
5300	10.22	11.57			N/A	13.96	29.96	24.00	30.00	14.00	-0.04	12
5325	7.63	8.87			N/A	11.30	27.30	24.00	30.00	14.00	-2.70	7

Measurement uncertainty: ±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 55 of 311

Antenna #3; 16.5 dBi Flat Panel Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	16.5	5 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	sured Peak	Power				EIRP	26 dB	EIRP	Power		
Frequency		RF Port (dB	im)		Total Po	wer (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	6.46	4.70			N/A	8.68	25.18	19.27	25.27	8.77	-0.09	0
5595	6.14	5.00			N/A	8.62	25.12	19.27	25.27	8.77	-0.15	0
5720	6.07	5.36			N/A	8.74	25.24	19.27	25.27	8.77	-0.03	0

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	16.5	5 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band Edge	requireme	ents	
Notes 2:					

Test	Meas	sured Peak	Power				EIRP	26 dB	EIRP	Power		
Frequency	F	RF Port (dB	lm)		Total Po	wer (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	7.84	7.05			N/A	10.47	26.97	21.24	27.24	10.74	-0.27	5
5595	7.83	7.54			N/A	10.70	27.20	21.24	27.24	10.74	-0.04	6
5720	7.62	7.71			N/A	10.68	27.18	21.24	27.24	10.74	-0.07	5

Measurement uncertainty: ±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 56 of 311

Antenna #3; 16.5 dBi Flat Panel Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	16.5	i dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band Edge	requireme	ents	
Notes 2:					

Test	Meas	sured Peak	Power				EIRP	26 dB	EIRP	Power		
Frequency	F	RF Port (dB	im)		Total Pov	wer (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5480	10.76	10.11			N/A	13.46	29.96	24.00	30.00	13.50	-0.04	11
5590	10.56	10.07			N/A	13.33	29.83	24.00	30.00	13.50	-0.17	11
5715	10.30	10.42			N/A	13.37	29.87	24.00	30.00	13.50	-0.13	11

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Ant Gain	16.5	i dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band Edge	requireme	ents	
Notes 2:					

Test Frequency	Meas F	sured Peak RF Port (dB	Power Bm)		Total Por	wer (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5500	10.27	10.22			N/A	13.26	29.76	24.00	30.00	13.50	-0.24	11
5570	10.39	9.57			N/A	13.01	29.51	24.00	30.00	13.50	-0.49	11
5695	10.34	9.80			N/A	13.09	29.59	24.00	30.00	13.50	-0.41	11

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 57 of 311

Antenna #4; 16.5 dBi Flat Panel Sector Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain	N/A dB	Ant Gain - Feeder	14	5 dBi	
(Y):		Loss:	14.	JUDI	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	r Levels to meet Band	d Edge req	uiremen	ts
Notes 2:					

Test Frequency	Меа	asured Port	eak Pov (dBm)	ver	Total P	ower (dBm)	EIRP dBm	26 dB Limit	EIRP L imit	Power Limit	Margin	Radwin
MHz	а	b	C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5255	7.58	7.77			N/A	10.69	25.19	19.27	25.27	10.77	-0.08	3
5300	7.97	7.50			N/A	10.75	25.25	19.27	25.27	10.77	-0.02	3
5345	0.96	2.46	-		N/A	4.78	19.28	19.27	25.27	10.77	-5.98	-6

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain	N/A dD	Ant Gain - Feeder	14	a dBi	
(Y):	N/A UB	Loss:	14.5	JUDI	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	r Levels to meet Band	I Edge req	uiremen	ts
Notes 2:					

Test	Mea	Measured Peak Power					EIRP	26 dB	EIRP	Power		
Frequency	RF Port (dBm)			Total P	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5260	8.71	10.04			N/A	12.44	26.94	21.24	27.24	12.74	-0.30	11
5300	8.72	10.13			N/A	12.49	26.99	21.24	27.24	12.74	-0.25	11
5340	4.23	5.43			N/A	7.88	22.38	21.24	27.24	12.74	-4.86	3

Measurement uncertainty: ±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 58 of 311

Antenna #4; 16.5 dBi Flat Panel Sector Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain	N/A dB	Ant Gain - Feeder	14.	5 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	r Levels to meet Band	d Edge req	uiremen	ts
Notes 2:					

Test	Mea	asured P	eak Pov	ver			EIRP	26 dB	EIRP	Power		
Frequency	RF Port (dBm)			Total P	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5265	11.67	12.93			N/A	15.36	29.86	24.00	30.00	15.50	-0.14	14
5300	11.72	13.13			N/A	15.49	29.99	24.00	30.00	15.50	-0.01	14
5335	2.59	4.26			N/A	6.52	21.02	24.00	30.00	15.50	-8.98	-3

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42						
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22						
TPC:	HIGH	Pressure (mBars):	998	to	1003						
Modulation:	ON	Duty Cycle (x):	100								
Beam Forming Gain	N/A dB	Ant Gain - Feeder	14.5								
Applied Voltage:	55.0 Vdc										
Notes 1:	Bold = Reduced Power Levels to meet Band Edge requirements										
Notes 2:											

Test Frequency	Measured Peak Power RF Port (dBm) Total Pow				ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5275	11.47	12.66			N/A	15.12	29.62	24.00	30.00	15.50	-0.38	14
5300	11.72	13.07			N/A	15.46	29.96	24.00	30.00	15.50	-0.04	15
5325	5.69	6.78			N/A	9.28	23.78	24.00	30.00	15.50	-6.22	-3

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 59 of 311

Antenna #4; 16.5 dBi Flat Panel Sector Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain		Ant Gain - Feeder	15.	a dBi	
(Y):	IN/A UD	Loss:	15.5	JUDI	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Mea	asured Po	eak Pov	ver			EIRP	26 dB	EIRP	Power		
Frequency		RF Port (dBm) Total Power (ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	7.46	5.70			N/A	9.68	25.18	19.27	25.27	9.77	-0.09	2
5595	7.14	6.00			N/A	9.62	25.12	19.27	25.27	9.77	-0.15	2
5720	7.10	6.33			N/A	9.74	25.24	19.27	25.27	9.77	-0.02	2

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss:	15.		
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	r Levels to meet Band	l Edge req	uiremen	ts
Notes 2:					

Test Frequency	Measured Peak Power RF Port (dBm)			Total P	ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	8.56	8.47			N/A	11.53	27.03	21.24	27.24	11.74	-0.22	7
5595	8.83	8.54			N/A	11.70	27.20	21.24	27.24	11.74	-0.04	8
5720	8.62	8.71		-	N/A	11.68	27.18	21.24	27.24	11.74	-0.07	7

Measurement uncertainty: ±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 60 of 311

Antenna #4; 16.5 dBi Flat Panel Sector Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain	N/A dP	Ant Gain - Feeder	15 /		
(Y):	N/A UD	Loss:	15.5	JUDI	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Powe	r Levels to meet Band	d Edge req	uiremen	ts
Notes 2:					

Test	Mea	Measured Peak Power					EIRP	26 dB	EIRP	Power		
Frequency	RF Port (dBm)			Total P	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5480	9.19	8.94			N/A	12.08	27.58	24.00	30.00	14.50	-2.42	8
5590	11.50	11.17			N/A	14.35	29.85	24.00	30.00	14.50	-0.15	13
5715	11.30	11.42			N/A	14.37	29.87	24.00	30.00	14.50	-0.13	12

Measurement uncertainty: ±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42					
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22					
TPC:	HIGH	Pressure (mBars):	998	to	1003					
Modulation:	ON	Duty Cycle (x):	100							
Beam Forming Gain	N/A dP	Ant Gain - Feeder	15							
(Y):	IN/A UD	Loss:	10.5	JUDI						
Applied Voltage:	55.0 Vdc									
Notes 1:	Bold = Reduced Power Levels to meet Band Edge requirements									
Notes 2:										

Test Frequency	Меа	asured Port	eak Pov (dBm)	ver	Total P	ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5500	11.27	11.22			N/A	14.26	29.76	24.00	30.00	14.50	-0.24	13
5570	11.39	10.57			N/A	14.01	29.51	24.00	30.00	14.50	-0.49	13
5695	11.34	10.80			N/A	14.09	29.59	24.00	30.00	14.50	-0.41	13

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 61 of 311

Antenna #5; 23.5 dBi Flat Panel Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.	5 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band I	Edge require	ements	
Notes 2:					

Test	Meas	ured Peak	Power	ower			EIRP	26 dB	EIRP	Power		
Frequency	R	RF Port (dBm)			Total I	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5255	-1.52	-1.00			N/A	1.76	25.26	19.27	25.27	1.77	-0.01	-11
5300	-1.89	-0.80			N/A	1.70	25.20	19.27	25.27	1.77	-0.07	-11
5345	-7.64	-5.02	1	-	N/A	-3.13	20.37	19.27	25.27	1.77	-4.89	-23

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.5		
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band	Edge require	ments	
Notes 2:					

Test	Meas	sured Peak	Power				EIRP	26 dB	EIRP	Power		
Frequency	RF Port (dBm)			Total Power (dBm)		dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5260	0.00	1.12		-	N/A	3.61	27.11	21.24	27.24	3.74	-0.13	-7
5300	-0.07	1.39		-	N/A	3.73	27.23	21.24	27.24	3.74	-0.01	-7
5340	-2.89	-0.84		-	N/A	1.27	24.77	21.24	27.24	3.74	-2.48	-14

Measurement uncertainty:

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 62 of 311

Antenna #5; 23.5 dBi Flat Panel Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15 407 (a)(1)	Rel Humidity (%)	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.		
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band I	Edge require	ements	
Notes 2:					

Test	Measured Peak Power				EIRP	26 dB	EIRP	Power				
Frequency	F	RF Port (dB	m)		Total I	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5265	2.77	3.71			N/A	6.28	29.78	24.00	30.00	6.50	-0.22	-2
5300	2.72	3.86			N/A	6.34	29.84	24.00	30.00	6.50	-0.16	-2
5335	-3.73	-1.87			N/A	0.31	23.81	24.00	30.00	6.50	-6.19	-16

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.		
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band I	Edge require	ments	
Notes 2:					

Test Frequency	Meas	ured Peak RF Port (dB	Power m)	ower Total Power (dBm)			EIRP dBm	26 dB Limit	EIRP	Power	Margin	Radwin
MHz	а	b	Ć	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5275	2.30	3.61			N/A	6.01	29.51	24.00	30.00	6.50	-0.49	-2
5300	2.01	4.52			N/A	6.45	29.95	24.00	30.00	6.50	-0.05	0
5325	0.59	2.05			N/A	4.39	27.89	24.00	30.00	-5.00	9.39	-6

Measurement uncertainty:	+1 33 dB
modeur enterne uneer tantty.	±1.00 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 63 of 311

Antenna #5; 23.5 dBi Flat Panel Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.5	5 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band	Edge require	ments	
Notes 2:					

Test	Meas	Measured Peak Power					EIRP	26 dB	EIRP	Power		
Frequency	RF Port (dBm)			Total I	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	-1.58	-1.65			N/A	1.40	24.90	19.27	25.27	1.77	-0.37	-13
5595	-1.13	-1.55			N/A	1.68	25.18	19.27	25.27	1.77	-0.09	-12
5720	-0.76	-2.09			N/A	1.64	25.14	19.27	25.27	1.77	-0.13	-12

Measurement uncertainty:	±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42					
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22					
TPC:	HIGH	Pressure (mBars):	998	to	1003					
Modulation:	ON	Duty Cycle (x):	100							
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.							
Applied Voltage:	55.0 Vdc									
Notes 1:	Bold = Reduced Power	Levels to meet Band	els to meet Band Edge requirements							
Notes 2:										

Test	Meas	ured Peak	Power				EIRP	26 dB	EIRP	Power		
Frequency	F	RF Port (dB	Port (dBm)		Total Power (dBm)		dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	0.34	0.95			N/A	3.67	27.17	21.24	27.24	3.74	-0.07	-13
5595	0.68	0.56			N/A	3.63	27.13	21.24	27.24	3.74	-0.11	-12
5720	0.76	0.58			N/A	3.68	27.18	21.24	27.24	3.74	-0.06	-12

weasurement uncertainty.

±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A **Issue Date:** 29th November 2012 Page: 64 of 311

Antenna #5; 23.5 dBi Flat Panel Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.5		
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Power	Levels to meet Band I	Edge require	ments	
Notes 2:					

Test	Measured Peak Power		Total Dawar (dDm)		EIRP	26 dB	EIRP	Power				
Frequency	F	In Port (dB)	m)		I otal I	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5480	1.59	1.95			N/A	4.78	28.28	24.00	30.00	6.50	-1.72	-6
5590	3.81	3.09		-	N/A	6.48	29.98	24.00	30.00	6.50	-0.02	-3
5715	3.55	2.83		1	N/A	6.22	29.72	24.00	30.00	6.50	-0.28	-3

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Actual Antenna Gain	23.		
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	sured Peak	red Peak Power			EIRP	26 dB	EIRP	Power			
Frequency	F	RF Port (dB	m)		Total F	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5500	3.43	3.49			N/A	6.47	29.97	24.00	30.00	6.50	-0.03	-2
5570	3.86	2.84		-	N/A	6.39	29.89	24.00	30.00	6.50	-0.11	-2
5695	4.07	2.76			N/A	6.47	29.97	24.00	30.00	6.50	-0.03	-2
												·
Meas	urement und	certainty:				±1.	33 dB					

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 65 of 311

Antenna #6; 29 dBi Flat Panel Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss		28 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Meas R	ured Peak I F Port (dBr	P <mark>ower</mark> n)		Total P	ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5255	-6.40	-5.34		-	N/A	-2.83	25.17	19.27	25.27	-2.73	-0.09	-20
5300	-6.70	-5.16	-	-	N/A	-2.85	25.15	19.27	25.27	-2.73	-0.12	-20
5345	-6.70	-5.77			N/A	-3.20	24.80	19.27	25.27	-2.73	-0.47	-22

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss		28 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

MHz a b c d Comb Calculated Calculated dBm dBm	PS
5260 -5.05 -3.48 N/A -1.18 26.82 21.24 27.24 -0.76 -0.42	
	-18
5300 -4.85 -3.42 N/A -1.07 26.93 21.24 27.24 -0.76 -0.31	-18
5340 -4.62 -3.39 N/A -0.95 27.05 21.24 27.24 -0.76 -0.19	-20

|--|

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 66 of 311

Antenna #6; 29 dBi Flat Panel Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss		28 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	Measured Peak Power			Total Power (dBm)		EIRP	26 dB	EIRP	Power	Margin	Padwin
MHz	a 1	<u>г гон (ubi</u>	li) C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5265	-2.08	-0.82			N/A	1.61	29.61	24.00	30.00	2.00	-0.39	-13
5300	-2.04	-0.88			N/A	1.59	29.59	24.00	30.00	2.00	-0.41	-13
5335	-2.00	-0.93			N/A	1.58	29.58	24.00	30.00	2.00	-0.42	-15

±1.33 dB

Measurement uncertainty:

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss		28 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2					

Test Frequency	Meas R	ured Peak I F Port (dBr	Power n)		Total P	ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5275	-1.97	-0.68			N/A	1.73	29.73	24.00	30.00	2.00	-0.27	-12
5300	-2.12	-0.84		-	N/A	1.58	29.58	24.00	30.00	2.00	-0.42	-12
5325	-1.88	-0.77		-	N/A	1.72	29.72	24.00	30.00	2.00	-0.28	-13

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 67 of 311

Antenna #6; 29 dBi Flat Panel Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss		28 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	ured Peak I	Power				EIRP	26 dB	EIRP	Power		
Frequency	RF Port (dBm)			Total P	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin	
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	-6.54	-5.62		-	N/A	-3.05	24.95	19.27	25.27	-2.73	-0.31	-21
5595	-5.86	-5.69		-	N/A	-2.76	25.24	19.27	25.27	-2.73	-0.03	-20
5720	-6.43	-5.51			N/A	-2.94	25.06	19.27	25.27	-2.73	-0.20	-20

±1.33 dB

Measurement uncertainty:

Test Conditions: 15.407 (a)(1) Rel. Humidity (%): 35 to 42 10 MHz 22 Variant: Ambient Temp. (°C): 19 to TPC: HIGH 998 1003 Pressure (mBars): to Modulation: Duty Cycle (x): Ant Gain - Feeder ON 100 Beam Forming Gain (Y): N/A 28 dBi dB Loss Applied Voltage: 55.0 Vdc Notes 1: Notes 2:

Test Frequency	Meas R	ured Peak I F Port (dBr	Power n)		Total P	ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	-4.06	-4.08		-	N/A	-1.06	26.94	21.24	27.24	-0.76	-0.30	-18
5595	-3.92	-4.20		-	N/A	-1.05	26.95	21.24	27.24	-0.76	-0.29	-17
5720	-3.99	-3.95			N/A	-0.96	27.04	21.24	27.24	-0.76	-0.20	-18

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 68 of 311

Antenna #6; 29 dBi Flat Panel Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss			
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	ured Peak I	Power				EIRP	26 dB	EIRP	Power		
Frequency	R	F Port (dBr	n)		Total P	ower (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5480	-0.99	-1.74			N/A	1.66	29.66	24.00	30.00	2.00	-0.34	-13
5590	-1.27	-1.59			N/A	1.58	29.58	24.00	30.00	2.00	-0.42	-12
5715	-1.20	-1.36		-	N/A	1.73	29.73	24.00	30.00	2.00	-0.27	-13

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain - Feeder Loss		28 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test Frequency	Measu R	ured Peak I F Port (dBr	Power n)		Total P	ower (dBm)	EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5500	-1.25	-1.54			N/A	1.62	29.62	24.00	30.00	2.00	-0.38	-12
5570	-1.12	-1.80			N/A	1.56	29.56	24.00	30.00	2.00	-0.44	-12
5695	-1.20	-1.79	-		N/A	1.53	29.53	24.00	30.00	2.00	-0.47	-12

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 69 of 311

Antenna #7; 32 dBi Dish Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain	N/A dB	Ant Gain- Feeder		31 dBi	
(Y):		Loss		51 001	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Pow	ver Levels to meet Bar	nd Edge r	equiremen	its
Notes 2:					

Test	Meas	ured Peak	Powe	er			EIRP	26 dB	EIRP	Power		
Frequency	R	F Port (dE	ßm)		Total	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5255	-10.14	-8.32			N/A	-6.13	24.87	19.27	25.27	-5.73	-0.39	-26
5300	-10.43	-8.22			N/A	-6.18	24.82	19.27	25.27	-5.73	-0.44	-26
5345	-10.26	-8.22	1		N/A	-6.11	24.89	19.27	25.27	-5.73	-0.38	-26

Measurement uncertainty: ±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain- Feeder Loss		31 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Pow	er Levels to meet Bar	nd Edge r	equiremen	ts
Notes 2:					

Test	Meas	ured Peak	Powe	ər			EIRP	26 dB	EIRP	Power		
Frequency	R	RF Port (dE	ßm)		Total	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5260	-8.99	-5.73			N/A	-4.05	26.95	21.24	27.24	-3.76	-0.29	-21
5300	-8.94	-5.77			N/A	-4.06	26.94	21.24	27.24	-3.76	-0.30	-21
5340	-7.56	-6.74		-	N/A	-4.12	26.88	21.24	27.24	-3.76	-0.36	-23

	Measurement uncertainty:	±1.33 dB
--	--------------------------	----------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 70 of 311

Antenna #7; 32 dBi Dish Antenna Output Power 5250 – 5350 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain- Feeder Loss		31 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:	Bold = Reduced Pow	ver Levels to meet Bar	nd Edge re	equiremen	ts
Notes 2:					

Test Frequency	Meas R	ured Peak F Port (dE	(Powe Bm)	er	Total Power (dBm)		EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin
MHz	а	b	с	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5265	-5.31	-3.03			N/A	-1.01	29.99	24.00	30.00	-1.00	-0.01	-16
5300	-5.45	-3.26			N/A	-1.21	29.79	24.00	30.00	-1.00	-0.21	-17
5335	-5.35	-3.44			N/A	-1.28	29.72	24.00	30.00	-1.00	-0.28	-21

Measurement ur	ncertainty	/:	±1.33 dB							
Test Conditions:	15.407	(a)(1)	Rel. Humidity (%):	35	to	42				
Variant:	40 MHz		Ambient Temp. (°C):	19	to	22				
TPC:	HIGH		Pressure (mBars):	998	to	1003				
Modulation:	ON		Duty Cycle (x):	100						
Beam Forming Gain (Y):	N/A	dB	Ant Gain- Feeder Loss	3	1 dBi					
Applied Voltage:	55.0	Vdc								
Notes 1:										
Notes 2:										

Test Frequency	Meas R	ured Peak RF Port (dB	(Powe Bm)	ower n) Total Power (dBm)		EIRP dBm	26 dB Limit	EIRP Limit	Power Limit	Margin	Radwin	
MHz	а	b	с	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5275	-5.24	-3.09			N/A	-1.02	29.98	24.00	30.00	-1.00	-0.02	-15
5300	-5.46	-3.39			N/A	-1.29	29.71	24.00	30.00	-1.00	-0.29	-16
5325	-4.91	-4.38			N/A	-1.63	29.37	24.00	30.00	-1.00	-0.63	-17

|--|

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 71 of 311

Antenna #7; 32 dBi Dish Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	5 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain		Ant Gain- Feeder		21 dDi	
(Y):	N/A UB	Loss		31 001	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	ured Peak	Powe	er			EIRP	26 dB	EIRP	Power		
Frequency	R	F Port (dE	ßm)		Total Power (dBm)		dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	-10.18	-9.50			N/A	-6.82	24.18	19.27	25.27	-5.73	-1.08	-28
5595	-10.07	-9.58	-		N/A	-6.81	24.19	19.27	25.27	-5.73	-1.08	-29
5720	-10.15	-10.06	1		N/A	-7.09	23.91	19.27	25.27	-5.73	-1.36	-32

Measurement uncertainty: ±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	10 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain	N/A dB	Ant Gain- Feeder		31 dBi	
(Y):	N/A UD	Loss		51 001	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	ured Peak	Powe	er			EIRP	26 dB	EIRP	Power		
Frequency	R	RF Port (dE	3m)		Total	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5475	-7.18	-6.44			N/A	-3.78	27.22	21.24	27.24	-3.76	-0.02	-28
5595	-7.18	-6.51			N/A	-3.82	27.18	21.24	27.24	-3.76	-0.06	-29
5720	-7.24	-7.10			N/A	-4.16	26.84	21.24	27.24	-3.76	-0.40	-32

Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 72 of 311

Antenna #7; 32 dBi Dish Antenna Output Power 5470 – 5725 MHz

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	20 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain- Feeder Loss		31 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	ured Peak	Powe	er			EIRP	26 dB	EIRP	Power		
Frequency	R	EF Port (dE	Sm)		Total	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	C	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5480	-4.41	-3.73			N/A	-1.05	29.95	24.00	30.00	-1.00	-0.05	-18
5590	-4.62	-4.08			N/A	-1.33	29.67	24.00	30.00	-1.00	-0.33	-19
5715	-4.11	-4.09			N/A	-1.09	29.91	24.00	30.00	-1.00	-0.09	-20

Measurement uncertainty:

±1.33 dB

Test Conditions:	15.407 (a)(1)	Rel. Humidity (%):	35	to	42
Variant:	40 MHz	Ambient Temp. (°C):	19	to	22
TPC:	HIGH	Pressure (mBars):	998	to	1003
Modulation:	ON	Duty Cycle (x):	100		
Beam Forming Gain (Y):	N/A dB	Ant Gain- Feeder Loss		31 dBi	
Applied Voltage:	55.0 Vdc				
Notes 1:					
Notes 2:					

Test	Meas	ured Peak	Powe	er			EIRP	26 dB	EIRP	Power		
Frequency	R	F Port (dE	3m)		Total	Power (dBm)	dBm	Limit	Limit	Limit	Margin	Radwin
MHz	а	b	С	d	Comb	Calculated	Calculated	dBm	dBm	dBm	dB	PS
5500	-4.77	-3.81		-	N/A	-1.25	29.75	24.00	30.00	-1.00	-0.25	-17
5570	-4.50	-4.43			N/A	-1.45	29.55	24.00	30.00	-1.00	-0.45	-18
5695	-4.01	-4.62		-	N/A	-1.29	29.71	24.00	30.00	-1.00	-0.29	-19

Measurement uncertainty: ±1.33 dB		
	Measurement uncertainty:	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.1.3. Peak Power Spectral Density

Conducted Test Conditions for Power Spectral Density					
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a)	Pressure (mBars):	999 - 1001		
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01				

Test Procedure for Power Spectral Density

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)

<u>Measure and sum the spectra across the outputs</u>. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density.

Calculated Power = $A + 10 \log (1/x) dBm$

A = Total Power Spectral Density [10 Log10 (10a/10 + 10 b/10 + 10c/10 + 10d/10)]

x = Duty Cycle

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 75 of 311

5250 – 5350 MHz

Equipment Configuration for power density					
Variant:	5 MHz	Duty Cycle (%):	100		
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Maximum Power				
Engineering Test Notes:					

Test Measure	Test Measurement Results							
Test Frequency	Measu	Measured Power Spectral Density (dBm)				Calculated Total Power Spectral Density (dBm)		Margin
MHz	а	b	c	d	S Port(s)	Conversion to 3 kHz RBW	dBm	dB
5255.0	7.675	8.267			10.991	N/A	11	-0.01
5300.0	7.448	6.856			10.172	N/A	11	-0.83
5345.0	8.407	7.529			11.000	N/A	11	0.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for power density

Variant:	10 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measure	Test Measurement Results							
Test Frequency	Measured Power Spectral Density (dBm) Port(s)				Calculated Total Power Spectral Density (dBm)		Limit	Margin
MHz	а	b	с	d	S Port(s)	Conversion to 3 kHz RBW	dBm	dB
5260.0	8.006	7.578			10.808	N/A	11	-0.19
5300.0	8.003	7.642			10.837	N/A	11	-0.16
5340.0	7.990	7.575			10.798	N/A	11	-0.20

Traceability to Industry Recognized Test Methodologies Work Instruction: WI-03 Measuring RF Spectrum Mask Measurement Uncertainty: ±2.81 dB

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A **Issue Date:** 29th November 2012 Page: 76 of 311

5250 - 5350 MHz

Г

Equipment Configuration for power density						
Variant:	20 MHz	Duty Cycle (%):	100			
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Maximum Power					
Engineering Test Notes:						

Test Measure	Test Measurement Results							
Test Frequency	Measured Power Spectral Density (dBm) Port(s)				Calculated Total Power Spectral Density (dBm)		Limit	Margin
MHz	а	b	с	d	S Port(s)	Conversion to 3 kHz RBW	dBm	dB
5265.0	8.147	7.468			10.831	N/A	11	-0.17
5300.0	8.086	7.478			10.803	N/A	11	-0.20
5335.0	8.289	8.045			10.952	N/A	11	-0.05

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for power density

Variant:	40 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measure	Test Measurement Results							
Test Frequency	Measured Power Spectral Density (dBm) Port(s)				Calculated Total Power Spectral Density (dBm)		Limit	Margin
MHz	а	b	с	d	S Port(s)	Conversion to 3 kHz RBW	dBm	dB
5275.0	5.916	5.299			8.629	N/A	11	-2.37
5300.0	6.174	5.382			8.806	N/A	11	-2.19
5325.0	6.114	5.075			8.636	N/A	11	-2.36

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A **Issue Date:** 29th November 2012 Page: 77 of 311

5470 – 5725 MHz

Γ

Equipment Configuration for power density					
Variant:	5 MHz	Duty Cycle (%):	100		
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Maximum Power				
Engineering Test Notes:					

Test Measurement Results								
Test Frequency	Measured Power Spectral Density (dBm)				Calculated Spectral D	Total Power ensitv (dBm)	Limit	Margin
MHz	а	b	c	d	S Port(s)	Conversion to 3 kHz RBW	dBm	dB
5475.0	7.889	6.472			10.248	N/A	11	-0.75
5595.0	8.161	6.982			10.622	N/A	11	-0.38
5720.0	8.397	7.608			10.987	N/A	11	-0.01

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for power density

Variant:	10 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measurement Results									
Test Measured Power Spectral Density (dBm)			Calculated Total Power		Limit	Morgin			
Frequency		Po	rt(s)		Spectral D	ensity (dBm)	Linit	wargin	
						Conversion			
MHz	а	b	С	d	S Port(s)	to 3 kHz RBW	dBm	dB	
5475.0	7.985	6.909			10.491	N/A	11	-0.51	
5595.0	7.843	6.639			10.293	N/A	11	-0.71	
5720.0	8.191	7.472			10.857	N/A	11	-0.14	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 78 of 311

5470 – 5725 MHz

Г

Equipment Comiguiation for power density					
Variant:	20 MHz	Duty Cycle (%):	100		
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Maximum Power				
Engineering Test Notes:					

Equipment Configuration for power density

Test Measurement Results								
Test Frequency	Measu	Measured Power Spectral Density (dBm)				Calculated Total Power		Margin
Trequency		PO	t(S)		Spectral Density (dBill)			
MHz	а	b	с	d	S Port(s)	Conversion to 3 kHz RBW	dBm	dB
5480.0	8.239	7.330			10.819	N/A	11	-0.18
5590.0	8.336	6.809			10.650	N/A	11	-0.35
5715.0	7.844	7.348			10.613	N/A	11	-0.39

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for power density

Variant:	40 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measurement Results								
Test Frequency	Measured Power Spectral Density (dBm) Port(s)			Measured Power Spectral Density (dBm) Calculated Total P Port(s) Spectral Density (Total Power ensity (dBm)	Limit	Margin
MHz	а	b	с	d	S Port(s)	Conversion to 3 kHz RBW	dBm	dB
5500.0	6.343	4.831			8.663	N/A	11	-2.34
5570.0	6.694	4.910			8.903	N/A	11	-2.10
5695.0	5.974	5.055			8.549	N/A	11	-2.45

Traceability to Industry Recognized Test Methodologies

	-
Work Instruction:	WI-03 Measuring RF Spectrum Mask
Measurement Uncertainty:	±2.81 dB

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2) 5150 – 5250 MHz (a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.
5250 – 5350 MHz & 5470 – 5725 MHz (a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.
Industry Canada RSS-210 § A9.2(1), A9.2(2) 5150 – 5250 MHz § A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band
5250 – 5350 MHz & 5470 – 5725 MHz § A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.1.4. Peak Excursion Ratio

Conducted Test Conditions for Peak Excursion Ratio					
Standard:	FCC CFR 47:15.407	Ambient Temp. (ºC):	24.0 - 27.5		
Test Heading:	Peak Excursion Ratio	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.407 (a)(6)	15.407 (a)(6) Pressure (mBars):			
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01				

Test Procedure for Peak Excursion Ratio

<u>Compliance with the peak excursion requirement is demonstrated by confirming the ratio of the maximum of the peak-hold spectrum</u> <u>to the maximum of the average spectrum</u> during continuous transmission. Section F) of KDB 789033 was used in order to prove compliance. This is a conducted measurement using a spectrum analyzer using dual traces. Peak Excursion Ratio is the difference in amplitude (dB) between both traces; The following identifies two spectrum traces on the same plot. <u>Trace 1</u> is the max hold Peak detector, and <u>Trace 2</u> is the recalled trace data from Peak Power Spectral Density measurements. Each frequency and operational mode is recalled in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 81 of 311

5250 – 5350 MHz

Equipment Configuration for peak excursion						
Variant:	5 MHz	Duty Cycle (%):	100			
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Maximum Power					
Engineering Test Notes:						

Test Measurement Results								
Test Frequency	Measured Peak Excursion (dB) Port(s)		ak Excursion (dB) Port(s) Ratio (dB)		Limit	Lowest Margin		
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5255.0	12.58	10.65			12.58	10.65	-13.0	-0.42
5300.0	12.63	11.62			12.63	11.62	-13.0	-0.37
5345.0	12.50	11.57			12.50	11.57	-13.0	-0.50

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-03 Measuring RF Spectrum Mask				
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for peak excursion

Variant:	10 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measurement Results								
Test Frequency	Measured Peak Excursion (dB) Port(s)		Ratio (dB)		Limit	Lowest Margin		
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5260.0	11.14	11.71			11.71	11.14	-13.0	-1.29
5300.0	11.80	11.83			11.83	11.80	-13.0	-1.17
5340.0	12.18	11.65			12.18	11.65	-13.0	-0.82

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-03 Measuring RF Spectrum Mask				
Measurement Uncertainty:	±2.81 dB			

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 82 of 311

5250 – 5350 MHz

Equipment Configuration for peak excursion						
Variant:	20 MHz	Duty Cycle (%):	100			
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Maximum Power					
Engineering Test Notes:						

Test Measurement Results									
Toot Fraguanay	Measured Peak Excursion (dB)					Lineit	Lowest		
rest riequency		Por	rt(s)		Rauc	(UB)	Linin	Margin	
MHz	а	b	С	d	Highest	Lowest	dB	MHz	
5265.0	10.80	11.55			11.55	10.80	-13.0	-1.45	
5300.0	10.81	10.94			10.94	10.81	-13.0	-2.06	
5335.0	10.98	10.83			10.98	10.83	-13.0	-2.02	

Traceability to Industry Recognized Test Methodologies					
Work Instruction: WI-03 Measuring RF Spectrum Mask					
Measurement Uncertainty:	±2.81 dB				

Equipment	Configuration	for peak	excursion
	0		

Variant:	40 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measurement Results								
Test Frequency	Меа	sured Peak	Excursion	(dB)	Ratio (dB)		Limit	Lowest
restriequency		Por	rt(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5275.0	10.56	11.07			11.07	10.56	-13.0	-1.93
5300.0	10.81	10.56			10.81	10.56	-13.0	-2.19
5325.0	10.94	10.72			10.94	10.72	-13.0	-2.06

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 Measuring RF Spectrum Mask				
Measurement Uncertainty:	±2.81 dB				

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A **Issue Date:** 29th November 2012 Page: 83 of 311

5470 - 5725 MHz

Г

Equipment Configuration for peak excursion						
Variant:	5 MHz	Duty Cycle (%):	100			
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Maximum Power					
Engineering Test Notes:						

Test Measurement Results								
Test Frequency	Measured Peak Excursion (dB)				Potio (dP)		Limit	Lowest
restriequency		Por	rt(s)		Ratio (dB)		Linin	Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5475.0	11.93	11.61			11.93	11.61	-13.0	-1.07
5595.0	11.93	11.51			11.93	11.51	-13.0	-1.07
5720.0	11.34	11.60			11.60	11.34	-13.0	-1.40

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Equipment Configuration for peak excursion

Variant:	10 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measurement Results								
Test Frequency	Меа	sured Peak	Excursion	(dB)	Ratio (dB)		Limit	Lowest
		Por	rt(s)					Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5475.0	11.44	11.21			11.44	11.21	-13.0	-1.56
5595.0	11.71	11.69			11.71	11.69	-13.0	-1.29
5720.0	11.27	11.12			11.27	11.12	-13.0	-1.73

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 84 of 311

5470 – 5725 MHz

Equipment Configuration for peak excursion					
Variant:	20 MHz	Duty Cycle (%):	100		
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Maximum Power				
Engineering Test Notes:					

Test Measurement Results								
Test Frequency	Меа	sured Peak	Excursion	(dB)	Ratio (dB)		Limit	Lowest
restriequency		Por	rt(s)				Linin	Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5480.0	10.78	10.73			10.78	10.73	-13.0	-2.22
5590.0	10.99	10.85			10.99	10.85	-13.0	-2.01
5715.0	11.34	10.89			11.34	10.89	-13.0	-1.66

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 Measuring RF Spectrum Mask			
Measurement Uncertainty:	±2.81 dB			

Equipment	Configuration for	[,] peak	excursion

Variant:	40 MHz	Duty Cycle (%):	100
Data Rate:	15 MCS	Antenna Gain (dBi):	Not Applicable
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable
TPC:	Maximum Power		
Engineering Test Notes:			

Test Measurement Results											
Test Frequency	Mea	sured Peak Por	Excursion t(s)	(dB)	Ratic) (dB)	Limit	Lowest Margin			
MHz	а	b	С	d	Highest	Lowest	dB	MHz			
5500.0	11.06	11.02			11.06	11.02	-13.0	-1.94			
5570.0	10.48	10.85			10.85	10.48	-13.0	-2.15			
5695.0	11.77	10.53			11.77	10.53	-13.0	-1.23			

Traceability to Industry Recognized Test Methodologies Work Instruction: WI-03 Measuring RF Spectrum Mask Measurement Uncertainty: ±2.81 dB

Click on the links above to see the plot

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g) Industry Canada RSS-210 §2.1

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

 \pm 20ppm at 5.250 GHz translates to a maximum frequency shift of \pm 105 KHz. As the edge of the channels is at least one MHz from either of the band edges, \pm 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.1.6. Maximum Permissible Exposure

FCC, Part 15 Subpart C §15.407(f) Industry Canada RSS-Gen §5.6

Calculations for Maximum Permissible Exposure Levels Power Density = Pd (mW/cm²) = EIRP/($4\pi d^2$) EIRP = P * G P = Peak output power (mW) G = Antenna numeric gain (numeric) d = Separation distance (cm) Numeric Gain = 10 ^ (G (dBi)/10)

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

<u>Note:</u> for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification Maximum Permissible Exposure Limits

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.6 Category I and Category II equipment shall comply with the applicable requirements of RSS-102.

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 88 of 311

5250 – 5350 MHz

Antenna Model	Туре	Ant Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Power Density @ 20cm (mW/cm ²)
MT0128930	Sector Dual Pole Integrated 120 Deg	11	13	18.99	79.25	8.91	0.20
RW-9061-5004	Sector Dual Pole 120 Deg	11	13	18.99	79.25	8.91	0.20
AM0135060	Sector Dual Pole Integrated 95 Deg	12	16	17.98	62.81	8.90	0.20
RW-9061-5001	Sector Dual Pole 90 Deg	14	25	15.49	35.40	8.41	0.18
RW-9061-5002	Sector Dual Pole 60 Deg	15.5	35	15.49	35.40	10.00	0.25
MT0125250	Sector Dual Pole Integrated 90 Deg	13	20	15.49	35.40	7.50	0.14
AM0119960	Flat Panel Dual Pole Integrated	16	40	13.99	25.06	8.91	0.20
AM0111760	Flat Panel Dual Pole Integrated	16	40	13.99	25.06	8.91	0.20
RW-9612-5001	Flat Panel Dual Pole External	23	200	6.45	4.42	8.37	0.18
MT0070760	Flat Panel Dual Pole Integrated	23.5	224	6.45	4.42	8.87	0.20
RW-9622-5001	Flat Panel Dual Pole External	29	794	1.73	1.49	9.70	0.24
RW-9721-5158	Dual Pole Dish	28	631	1.73	1.49	8.65	0.19
RW-9732-4958	Dual Pole Dish	32	1585	-1.01	0.79	10.00	0.25

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 89 of 311

5470 – 5725 MHz

Antenna Model	Туре	Ant Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Power Density @ 20cm (mW/cm ²)
MT0128930	Sector Dual Pole Integrated 120 Deg	11	13	18.99	79.25	8.91	0.20
RW-9061-5004	Sector Dual Pole 120 Deg	11	13	18.99	79.25	8.91	0.20
AM0135060	Sector Dual Pole Integrated 95 Deg	12	16	17.99	62.95	8.91	0.20
RW-9061-5001	Sector Dual Pole 90 Deg	14	25	14.37	27.35	7.39	0.14
RW-9061-5002	Sector Dual Pole 60 Deg	16.5	45	14.37	27.35	9.86	0.24
MT0125250	Sector Dual Pole Integrated 90 Deg	13	20	14.37	27.35	6.59	0.11
AM0119960	Flat Panel Dual Pole Integrated	16	40	13.46	22.18	8.38	0.18
AM0111760	Flat Panel Dual Pole Integrated	16.5	45	13.46	22.18	8.88	0.20
RW-9612-5001	Flat Panel Dual Pole External	23	200	6.48	4.45	8.40	0.18
MT0070760	Flat Panel Dual Pole Integrated	23.5	224	6.48	4.45	8.90	0.20
RW-9622-5001	Flat Panel Dual Pole External	29	794	1.73	1.49	9.70	0.24
RW-9721-5158	Dual Pole Dish	29	794	1.73	1.49	9.70	0.24
RW-9732-4958	Dual Pole Dish	32	1585	-1.05	0.79	9.95	0.25

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2. Radiated Emission Testing

FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a) Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBµV/m

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ($dB\mu V/m$);

Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 92 of 311

Specification

Radiated Spurious Emissions

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of - 27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2) For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.10 the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g., local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least 3 times the highest tuneable or local oscillator frequency, whichever is higher, without exceeding 40 GHz.

For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.

Above 1000 MHz, measurements shall be performed using an average detector with a minimum resolution bandwidth of 1 MHz.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Table 1: FCC 15.209 & RSS-Gen Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Traceability:

Test Equipment Used	
0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 94 of 311

6.1.2.1. Antenna # 1

5250 -5350 MHz

Low												
Tes	t Freq.	5255 N	lHz						Engineer	JMH		
Ň	/ariant	5 MHz						Т	emp (⁰C)	25		
Freq.	Range	1000 M	IHz - 180	000 MHz				Rel.	Hum.(%)	34		
Power S	Setting	16						Press	. (mBars)	1004		
Ar	ntenna	11dBi F	lat Pane	el Sector				Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
WICENLADS dBuV/m Vasona by EMISoft 18 Sep 12 10:56 000 000 000 Peak Limit 000 000 0000 Peak Limit 000 00000 Frequency: MHz 000 00000 100000 000 00000 100000 00000 Template: FCC RE 1-186Hz Flename: k: vprogram/zadwin/vdwin/2 - one foe is/Vor 15.407/data/seV15.5 fit program/zadwin/vdwin/2											nt: ll t 1	
Formally	meas	ured	emiss	ion pea	ks							
Frequency MHz	Raw dBuV	Cable Loss	Cable AF dB Level Measurement Pol Hgt Azt Limit Margin Pass Comments Loss dBuV/m Type Pol cm Deg dBuV/m dB /Fail									Comments
5258.517	80.8	4.6	-9.7	75.7	Peak [Scan]	Н	100	0				FUND
6995.991984	54.2	5.4	-6.4	53.2	Peak [Scan]	Н	100	0				NRB
6246.493	50.9	5.0	-7.6	48.3	Peak [Scan]	V	100	0				NRB
Legend:	TX = T	ransmit	ter Emis	sions; DIG	= Digital Emissio	ons; FL	JND = I	undan	nental; WB	= Wideba	and Emi	ssion
	NRB =	Non-Re	estricted	Band. Lim	nit = 68.23 dBuV/	m; RB	= Rest	ricted E	Band. Limi	ts per 15.2	205	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 95 of 311

Mid

		-											
Tes	t Freq.	5300 N	lHz						Engineer	JMH			
١	/ariant	5 MHz						٦	ſemp (⁰C)	25			
Freq.	Range	1000 M	IHz - 180	000 MHz				Rel.	Hum.(%)	34			
Power S	Setting	16						Press	. (mBars)	1004			
Ar	ntenna	11dBi F	lat Pane	el Sector		Duty Cycle (%) 100							
Test N	lotes 1												
Test N	lotes 2												
Micences dBuV/m Vasona by EMJSoft 18 Sep 12 11:09 18 Sep 12 11:09 Predak Limit Average Li Debug Neas Dist 3m Average L											 it i		
Formally	meas	ured e	missio	on peaks	5								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5292.585	83.4	4.6	-9.6	78.4	Peak [Scan]	V	100	0				FUND	
7064.128257	52.5	5.4	-6.1	51.8	Peak [Scan]	Н	100	0				NRB	
6246.493	52.9	5.0	5.0 -7.6 50.3 Peak [Scan] V 100 0 NRB										
Legend:	TX = T	ransmit	ter Emis	sions; DIG	= Digital Emissio	ons; FL	JND = I	undan	nental; WB	= Wideba	and Emi	ssion	
	NRB =	Non-Re	estricted	Band. Lim	nit = 68.23 dBuV/	m; RB	= Rest	ricted E	Band. Limi	ts per 15.2	205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 96 of 311

High													
Test	t Freq.	5345 M	lHz						Engineer	JMH			
v	/ariant	5 MHz				Temp (⁰C)				25			
Freq.	Range	1000 M	IHz - 180	000 MHz		Rel. Hum.(%)				34			
Power S	Setting	16				Press. (mBars) 1004							
Ar	ntenna	11dBi Flat Panel Sector Duty Cycl							Cycle (%)) 100			
Test N	otes 1												
Test N	otes 2												
MICEMEDS dBuV/m Vasona by EMiSoft 18 Sep 12 11:22 18 Sep 12 11:22 P Peak Limit Peak Limit Debug Meas Dist 3m Spec Dist 3m Spec Dist 3m Peak Limit Peak Limit P										nt: 1 t			
Formally	meas	ured e	missio	on peaks	5								
Frequency MHz	Raw dBuV	w Cable IV Loss AF dB Level Measurement dBuV/m Type Pol Hgt Azt Limit Margin Pass // Fail Comments											
5326.653	78.2	4.6	-9.5	73.3	Peak [Scan]	Н	100	0				FUND	
6246.492986	52.1	5.0	-7.6	49.6	Peak [Scan]	V	100	0				NRB	
Legend:	TX = T NRB =	ransmit Non-Re	ter Emis estricted	sions; DIG Band. Lim	= Digital Emission hit = 68.23 dBuV/	ons; FL m; RB	JND = I = Rest	-undan ricted E	nental; WB Band. Limi	= Wideba ts per 15.2	and Emis 205	ssion	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5345 MHz 5350 – 5460 Restricted Band-edge Power Setting = 1

18.SEP.2012 15:31:26

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5475 MHz 5350 – 5460 Restricted Band-edge Power Setting = 15

Date:

18.SEP.2012 15:54:23

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 99 of 311

5470 -5725 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 100 of 311

Mid

Tes	t Freq.	5595 M	lHz						Engineer	JMH		
١	/ariant	5 MHz						Т	emp (⁰C)	25		
Freq.	Range	1000 M	IHz - 180	000 MHz				Rel.	Hum.(%)	34		
Power S	Setting	16				Press. (mBars) 1004						
Aı	ntenna	11 dBi	Flat Pan	el 120d Se	ctor			Duty	Cycle (%)	100		
Test N	lotes 1											
Test N	lotes 2											
MiC®M	Labs dBuV/m Vasona by EMiSoft 18 Sep 12 11:38 TOD TOD TOD TOD TOD TOD TOD TOD										 nt: i t I	
Formally	meas	ured e	missio	on peaks	5							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5599.198	74.5	4.7	-9.7	69.5	Peak [Scan]	Н	100	0				FUND
6246.492986	50.9	5.0	0 -7.6 48.3 Peak [Scan] V 100 0 NRB									
Legend:	TX = T	ransmit	ter Emis	sions; DIG	= Digital Emissio	ons; Fl	JND = I	undan	nental; WB	= Wideba	and Emi	ssion
	NRB =	Non-Re	estricted	Band. Lim	nit = 68.23 dBuV/	m; RB	= Rest	ricted E	Band. Limi	ts per 15.	205	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 101 of 311

High

Tes	t Freq.	5720 MHz							Engineer	JMH		
١	/ariant	5 MHz						Т	⁻ emp (⁰C)	25		
Freq.	Range	1000 M	IHz - 180	000 MHz				Rel.	Hum.(%)	34		
Power S	Setting	16				Press. (mBars)				1004		
Ar	ntenna	11 dBi	Flat Pan	el 120d Se	ctor	Duty Cycle (%) 100						
Test N	lotes 1											
Test N	lotes 2											
Test Notes 2 MiceMLabs dBuV/m Vasona by EMiSoft 18 Sep 12 13:15 PREAK Limit Average Li Debug Meas Dist 3m Spec Dist 3m J Frequency: MHz 100000 Radiated Emissions Filename: k:/program/radwin/vdwn12 - ope foc ic/foc 15.407/vdata/se/11.5 flat panel int/raw data/												
Formally	meas	ured e	missio	on peaks	5							
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	68.5	4.7	-9.6	63.7	Peak [Scan]	V	100	0				FUND
6246.492986	51.1	5.0	-7.6	48.5	Peak [Scan]	V	100	0				NRB
11440.251	56.6	6.8	-2.1	61.3	Peak Max	V	126	220	74	-12.8	Pass	RB
11440.251	39.0	6.8	-2.1	43.7	Average Max	V	126	220	54	-10.3	Pass	RB
Legend:	TX = T NRB =	ransmit Non-Re	ter Emis estricted	sions; DIG Band. Lim	= Digital Emission hit = 68.23 dBuV/	ons; Fl m; RB	JND = F = Rest	-undan ricted E	nental; WB Band. Limi	= Wideba	and Emis 205	ssion

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 102 of 311

6.1.2.2. Antenna # 2

5250 -5350 MHz

Low

Test Freq.	5255 MHz	Engineer	JMH
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	16	Press. (mBars)	1004
Antenna	12 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 103 of 311

Mid

Test Freq.	5300 MHz	Engineer	JMH
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	16	Press. (mBars)	1004
Antenna	12 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 104 of 311

High

Test Freq.	5345 MHz	Engineer	JMH
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	16	Press. (mBars)	1004
Antenna	12 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5345 MHz 5350 – 5460 Restricted Band-edge Power Setting = 1

Date:

18.SEP.2012 19:18:35

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5475 MHz 5350 – 5460 Restricted Band-edge Power Setting = 15

18.SEP.2012 17:33:20

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 107 of 311

5470 -5725 MHz

Low

Test Freq.	5475 MHz	Engineer	JMH
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	15	Press. (mBars)	1004
Antenna	12 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 108 of 311

Frequency: MHz

Mid

Test Freq.	5595 MHz	Engineer	JMH		
Variant	5 MHz	Temp (ºC)	25		
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34		
Power Setting	16	Press. (mBars)	1004		
Antenna	12 dBi Flat Panel Sector	Duty Cycle (%)	100		
Test Notes 1					
Test Notes 2					
MiCCMLabs	dBu√/m Vasona by EM 800 700 600 500 400 300	iSoft 1	8 Sep 12 20:07 [1] Horizont: [2] Vertical Heak Limit Average Lt Debug Meas Dist 3m Spec Dist 3m		

10.0 1000.0 10000.0 18000.0 Radiated Emissions Template: FCC RE 1-18GHz Filename: c:ttest\rdwn12\fcc 15.407\12 dbi int flat panel\se\raw data\TX Spur 5 MHz 5595 PS15..

Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5599.198	71.8	4.7	-9.7	66.7	Peak [Scan]	Н	150	0				FUND
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 109 of 311

High

Test Freq.	5720 MHz	Engineer	JMH
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	16	Press. (mBars)	1004
Antenna	12 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 110 of 311

6.1.2.3. Antenna # 3

5250 -5350 MHz

Low

LOW			
Test Freq.	5255 MHz	Engineer	SB
Variant	5 MHz	Temp (ºC)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	16	Press. (mBars)	1008
Antenna	16.5 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 111 of 311

Mid

Test Freq.	5300 MHz	Engineer	SB
Variant	5 MHz	Temp (ºC)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	16	Press. (mBars)	1008
Antenna	16.5 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
MiCOMLabs	dBu√/m Vasona by EM פסס פסס דסס	iSoft 1	4 Sep 12 10:21 [1] Horizont: [2] Vertical Peak Limit — Average Li Meas Dist 3m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 112 of 311

High

Test Freq.	5345 MHz	Engineer	SB
Variant	5 MHz	Temp (ºC)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	16	Press. (mBars)	1008
Antenna	16.5 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5345 MHz 5350 - 5460 Restricted Band-edge Power Setting = -6 Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 73.94 dB¥V VBW 1 MHz 98.9 dbyv 5.3500000 GHz SWT 20 s dbyv Unit 98.9 -4.9 dB Offse ▼1 [T1] 73. 94 db A 5.35000 000 GHz 90 **∇**₂ [T2] 51.20 dBy SGL 5.35000000 GHz 80 -D1 74 dbyv-70 IN1 1VIEW 1MA 2AV 2VIEW 60 54 dby -D2 unun ma man .M. MLM 50 40 30 20 10-1.1 Start 5.35 GHz 11 MHz/ Stop 5.46 GHz

Date:

14.SEP.2012 09:24:26

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5475 MHz 5350 - 5460 Restricted Band-edge Power Setting = 16

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 115 of 311

5470 -5725 MHz

Low

Test Freq.	5475 MHz	Engineer	SB
Variant	5 MHz	Temp (⁰C)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	16	Press. (mBars)	1008
Antenna	16.5 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 116 of 311

Mid

Test Freq.	5595 MHz	Engineer	SB
Variant	5 MHz	Temp (ºC)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	16	Press. (mBars)	1008
Antenna	16.5 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			
MiCOMLabs	dBuV/m Vasona by EM ຈາມ ສາມ	iSoft 1	4 Sep 12 10:45 — [1] Horizont: — [2] Vertical — Peak Limit

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 117 of 311

High

Test Freq.	5720 MHz	Engineer	SB
Variant	5 MHz	Temp (ºC)	23
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	16	Press. (mBars)	1008
Antenna	16.5 dBi Flat Panel Sector	Duty Cycle (%)	100
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 118 of 311

6.1.2.4. Antenna # 4

5250 -5350 MHz

Low

Test Freq.	5255 MHz	Engineer	jmh
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	16.5 dBi INT Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 119 of 311

Mid

Test Freq.	5300 MHz	Engineer	jmh
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	16.5 dBi INT Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 120 of 311

High

Test Freq.	5345 MHz	Engineer	jmh
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	16.5 dBi INT Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5345 MHz 5350 – 5460 Restricted Band-edge Power Setting = -3

Date: 13.SEP.2012 12:44:24

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5475 MHz 5350 - 5460 Restricted Band-edge Power Setting = 15

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 123 of 311

5470 -5725 MHz

Low			
Test Freq.	5475 MHz	Engineer	JMH
Variant	5 MHz	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	15	Press. (mBars)	1005
Antenna	16.5 dBi Int Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 124 of 311

Mid

IVIIG			
Test Freq.	5595 MHz	Engineer	ЈМН
Variant	5 MHz	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	15	Press. (mBars)	1005
Antenna	16.5 dBi Int Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			
Variant Freq. Range Power Setting Antenna Test Notes 1 Test Notes 2	5 MHz 1000 MHz - 18000 MHz 15 16.5 dBi Int Flat Panel Data Rate MCS 15	Temp (°C) Rel. Hum.(%) Press. (mBars) Duty Cycle (%)	24 33 1005 100

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 125 of 311

High

riigii			
Test Freq.	5720 MHz	Engineer	JMH
Variant	5 MHz	Temp (⁰C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	15	Press. (mBars)	1005
Antenna	16.5 dBi Int Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

MiCOMLabs

Formally n	neasur	ed emis										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	75.3	4.7	-9.6	70.4	Peak [Scan]	V						FUND
16058.116	41.3	9.0	0.3	50.6	Peak [Scan]	V						Noise
Legend:	Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	Non-Rest	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ted Bar	nd. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 126 of 311

6.1.2.5. Antenna # 5

5250 -5350 MHz

Low

Test Freq.	5255 MHz	Engineer	jmh
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	24 dBi INT Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	84.4	4.6	-9.7	79.3	Peak [Scan]	Н						FUND
6212.42485	53.8	5.0	-7.8	51.0	Peak [Scan]	V						NRB
16092.184	41.2	9.0	0.3	50.4	Peak [Scan]	Н	100	0	54.0	-3.6	Pass	Noise
6995.992	50.8	5.4	-6.4	49.8	Peak [Scan]	Н						NRB
5000.414	50.2	4.6	-9.9	44.9	Peak [Scan]	V	98	0	54.0	-9.1	Pass	RB
Legend:	Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											า
	NRB =	Non-Restr	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ed Ban	d. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 127 of 311

Mid

Test Freq.	5300 MHz	Engineer	jmh
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	24 dBi INT Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 128 of 311

High

Test Freq.	5345 MHz	Engineer	jmh
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	24 dBi INT Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5326.653	83.7	4.6	-9.5	78.8	Peak [Scan]	V						FUND
6212.42485	53.9	5.0	-7.8	51.1	Peak [Scan]	V						NRB
15921.844	41.7	8.9	-0.1	50.5	Peak [Scan]	Н	200	0	54.0	-3.5	Pass	Noise
5000.013	51.7	4.6	-9.9	46.4	Peak [Scan]	V	98	0	54	-7.6	Pass	RB
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	Non-Restr	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ed Ban	d. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 129 of 311

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 131 of 311

5470 -5725 MHz

LOW			
Test Freq.	5475 MHz	Engineer	JMH
Variant	5 MHz	Temp (⁰C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	15	Press. (mBars)	1005
Antenna	24 dBi Int Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

MiC@MLabs

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 132 of 311

Mid

Test Freq.	5595 MHz	Engineer	JMH
Variant	5 MHz	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	15	Press. (mBars)	1005
Antenna	24 dBi Int Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

Formally measured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5599.198	80.1	4.7	-9.7	75.1	Peak [Scan]	V						FUND
6246.492986	53.9	5.0	-7.6	51.3	Peak [Scan]	V						NRB
15989.980	41.5	9.0	0.1	50.6	Peak [Scan]	Н	150	0	54	-3.4	Pass	Noise
5000.735	56.1	4.6	-9.9	50.8	Peak Max	V	98	8	74.0	-23.2	Pass	RB
5000.735	44.3	4.6	-9.9	39.0	Average Max	V	98	8	54	-15.0	Pass	RB
	-											
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission												
	NRB =	Non-Rest	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ted Bar	nd. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 133 of 311

High

riigii			
Test Freq.	5720 MHz	Engineer	ЈМН
Variant	5 MHz	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	15	Press. (mBars)	1005
Antenna	24 dBi Int Flat Panel	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

MiCOMLabs

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	74.5	4.7	-9.6	69.7	Peak [Scan]	V						FUND
6280.561122	53.9	5.0	-7.5	51.4	Peak [Scan]	V						NRB
16058.116	41.3	9.0	0.3	50.6	Peak [Scan]	V	150	0	54	-3.4	Pass	Noise
5000.174	55.7	4.6	-9.9	50.5	Peak Max	V	98	9	74.0	-23.6	Pass	RB
5000.174	44.5	4.6	-9.9	39.3	Average Max	V	98	9	54	-14.7	Pass	RB
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	Non-Restr	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ed Ban	d. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 134 of 311

6.1.2.6. Antenna # 6

5250 -5350 MHz

Low

LOW			
Test Freq.	5255 MHz	Engineer	jmh
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	20	Press. (mBars)	1006
Antenna	29 dBi Flat	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 135 of 311

Mid

Test Freq.	5300 MHz	Engineer	jmh
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	20	Press. (mBars)	1006
Antenna	29 dBi Flat	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 136 of 311

High

Test Freq.	5345 MHz	Engineer	jmh
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	20	Press. (mBars)	1006
Antenna	29 dBi Flat	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5345 MHz 5350 – 5460 Restricted Band-edge Power Setting = 20

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 139 of 311

5470 -5725 MHz

LOW			
Test Freq.	5475 MHz	Engineer	JMH
Variant	5 MHz	Temp (⁰C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	21	Press. (mBars)	1005
Antenna	29 dBi Flat	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 140 of 311

Mid

IVIIU			
Test Freq.	5595 MHz	Engineer	ЈМН
Variant	5 MHz	Temp (⁰C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	21	Press. (mBars)	1005
Antenna	29 dBi Flat	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 141 of 311

High

піўп			
Test Freq.	5720 MHz	Engineer	JMH
Variant	5 MHz	Temp (⁰C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	21	Press. (mBars)	1005
Antenna	29 dBi Flat	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

MiCOMLabs

Formally n	neasur	ed emis	sion p	eaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	60.8	4.7	-9.6	56.0	Peak [Scan]	V						FUND
16126.253	41.5	9.0	0.2	50.6	Peak [Scan]	Н					Pass	Noise
Legend:	TX = T	ransmitter	Emissic	ons; DIG = [Digital Emissions	; FUNI) = Fur	ndamer	ntal; WB = \	Nideband	Emissio	n
	NRB =	Non-Rest	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ed Bar	id. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 142 of 311

6.1.2.7. Antenna # 7

5250 -5350 MHz

LOW			
Test Freq.	5255 MHz	Engineer	jmh
Variant	5 MHz	Temp (⁰C)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	32 dBi Dish	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

Formally measured emission peaks

						-						
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5258.517	87.6	4.6	-9.7	82.5	Peak [Scan]	V						FUND
7006.613	64.2	5.4	-6.3	63.3	Peak [Scan]	V						NRB
6246.493	61.1	5.0	-7.6	58.5	Peak [Scan]	Н						NRB
6348.697	56.7	5.1	-7.4	54.4	Peak [Scan]	Н						NRB
16092.184	41.2	9.0	0.3	50.5	Peak [Scan]	Н	150	0	54.0	-3.5	Pass	Noise
6553.106	50.3	5.2	-7.0	48.4	Peak [Scan]	V						NRB
4804.110	50.5	4.5	-9.7	45.3	Peak [Scan]	V	100	0	54.0	-4.7	Pass	RB
2446.284	53.6	3.0	- 11.5	45.1	Peak [Scan]	Н						NRB
Legend:	d: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	Non-Rest	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ed Ban	d. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 143 of 311

Mid

Test Freq.	5300 MHz	Engineer	jmh
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	32 dBi Dish	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 144 of 311

High

riigii			
Test Freq.	5345 MHz	Engineer	jmh
Variant	5 MHz	Temp (ºC)	25
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	31
Power Setting	16	Press. (mBars)	1006
Antenna	32 dBi Dish	Duty Cycle (%)	100
Test Notes 1	Data rate MCS 15		
Test Notes 2			

MiCOMLabs

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5326.653	86.8	4.6	-9.5	81.9	Peak [Scan]	V						FUND
7126.633	60.9	5.4	-6.0	60.2	Peak [Scan]	V	-					NRB
6348.697	57.0	5.1	-7.4	54.7	Peak [Scan]	V						NRB
16058.116	41.4	9.0	0.3	50.7	Peak [Scan]	Н	200	0	54	-3.4	Pass	Noise
6553.106	51.3	5.2	-7.0	49.5	Peak [Scan]	Н						NRB
4937.852	49.4	4.6	-9.8	44.1	Peak [Scan]	V	98	0	54	-9.9	Pass	RB
Legend:	Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	Non-Rest	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ed Ban	d. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5 MHz 5345 MHz 5350 - 5460 Restricted Band-edge Power Setting = -17 Marker 1 [T1] RBW 1 MHz RF Att 20 dB Ref Lvl 72.46 dB¥V VBW 1 MHz 103.2 dbyv 5.35044088 GHz SWT 10 s dbyv Unit 103 -4.9 dB Offse **V** -[7]] 100 A 5.35044088 GHz **V**₂ [T2] 53.07 dBy 90 SGL 5.35000000 GHz 80 -D1 74 db**y**v-IN1 70 1MA 2AV амах 60 MBN 50 40 30 20 10 3.2 Start 5.35 GHz 11 MHz/ Stop 5.46 GHz

12.SEP.2012 09:40:45

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 146 of 311

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 147 of 311

5470 -5725 MHz

Low

LOW			
Test Freq.	5475 MHz	Engineer	JMH
Variant	5 MHz	Temp (⁰C)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	15	Press. (mBars)	1005
Antenna	32 dBi Dish	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

MiC@MLabs

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 148 of 311

Mid

Test Freq.	5595 MHz	Engineer	JMH			
Variant	5 MHz	Temp (ºC)	24			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33			
Power Setting	15	Press. (mBars)	1005			
Antenna	32 dBi Dish	Duty Cycle (%)	100			
Test Notes 1	Data Rate MCS 15					
Test Notes 2						

Formally	measure	ed emission	peaks
----------	---------	-------------	-------

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5599.198	84.9	4.7	-9.7	79.9	Peak [Scan]	V						FUND
6246.492986	59.0	5.0	-7.6	56.4	Peak [Scan]	Н						NRB
16194.389	41.8	8.9	0.2	50.9	Peak [Scan]	V	200	0	54	-3.1	Pass	Noise
6587.174	51.2	5.2	-7.0	49.4	Peak [Scan]	Н						NRB
7459.880	53.8	5.5	-5.3	53.9	Peak Max	Н	104	10	74	-20.1	Pass	RB
7459.880	49.7	5.5	-5.3	49.9	Average Max	Н	104	10	54	-4.1	Pass	RB
Legend:	TX = T	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission										
	NRB =	Non-Restr	ricted Ba	and. Limit =	= 68.23 dBuV/m;	RB = F	Restrict	ed Ban	d. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 149 of 311

High

riigii			
Test Freq.	5720 MHz	Engineer	ЈМН
Variant	5 MHz	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	33
Power Setting	21	Press. (mBars)	1005
Antenna	32 dBi Dish	Duty Cycle (%)	100
Test Notes 1	Data Rate MCS 15		
Test Notes 2			
Freq. Range Power Setting Antenna Test Notes 1 Test Notes 2	1000 MHz - 18000 MHz 21 32 dBi Dish Data Rate MCS 15	Rel. Hum.(%) Press. (mBars) Duty Cycle (%)	33 1005 100

MiCOMLabs

Formally measured emission peaks

-												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5701.403	83.4	4.7	-9.6	78.5	Peak [Scan]	Н						FUND
6212.42485	58.8	5.0	-7.8	56.0	Peak [Scan]	Н						NRB
16126.253	41.1	9.0	0.2	50.3	Peak [Scan]	V	200	0	54	-3.7	Pass	Noise
6587.174	51.0	5.2	-7.0	49.3	Peak [Scan]	Н						NRB
5001.296	52.3	4.6	-9.9	47.1	Peak [Scan]	Н	98	0	54	-6.9	Pass	RB
Legend:	d: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
	NRB =	Non-Restr	ricted Ba	and. Limit =	68.23 dBuV/m;	RB = F	Restrict	ed Ban	d. Limits p	er 15.205		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.3. <u>Receiver Radiated Spurious Emissions (above 1 GHz)</u>

Industry Canada RSS-Gen §4.10, §6

Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

All Sectors of the EUT were tested simultaneously

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBµV/m

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Radiated Receiver Spurious Emissions

RSS-Gen §4.10 the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g., local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is higher, without exceeding 40 GHz.

For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.

Above 1000 MHz, measurements shall be performed using an average detector with a minimum resolution bandwidth of 1 MHz.

RSS-Gen §6 Receiver Spurious Radiated Limits Spurious emissions from receivers shall not exceed the radiated limits shown in the table below:

RSS-Gen Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Traceability:

Test Equipment Used	
0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Legend:

Receiver Radiated Spurious Emissions above 1 GHz

Radiated receiver testing was performed on antennas with the highest gains; 29 dBi Flat Panel and 32 dBi Dish antennas

Test Freq.	5300 MHz					E	Engineer	JMH		
Variant	Receive in T	Test Utility				Т	emp (⁰C)	24		
Freq. Range	1000 MHz -	18000 MHz				Rel.	Hum.(%)	34		
Power Setting	Not Applicat	ble in Receive	Mode			Press.	(mBars)	1002		
Antenna	29 dBi Flat F	Panel								
Test Notes 1										
Test Notes 2										
MiCOMLabs	dBu√/m 80.0 70.0 50.0 40.0 20.0 10.0 10.0 1000.0 Radiater Filenam	d Emissions e: c:ttest\rdwn	Vasona by EN	AiSoft	late: FC	10000 / C RE 1 data'vo) 18 - 18 GHz spur 5mhz	11 Sep 12 PK 22 PK 22	12:49 Horizonta Vertical ik Limit rage Li yug st 3m st 3m st 3m	
Formally measur	ed emissi	ion peaks								
Frequency Raw MHz dBuV	Cable Loss	AF Level dB dBuV/r	Measurement n Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
16058.116 41.5	9.0	0.3 50.7	Peak [Scan]	V	200	0	54	-3.3	Pass	Noise

RB = Restricted Band; NRB = Non-Restricted Band; FUND = Fundamental Freq.

BE = Emission in Restricted Band Nearest Transmission Band Edge;

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 154 of 311

Test Freq.	5595 MHz	Engineer	JMH
Variant	Receive in Test Utility	Temp (ºC)	24
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34
Power Setting	Not Applicable in Receive Mode	Press. (mBars)	1002
Antenna	29 dBi Flat Panel		
Test Notes 1			
Test Notes 2			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

32 dBi Dish antenna

Test Freq.	5300 MHz	Engineer	JMH		
Variant	Receive in Test Utility	n Test Utility Temp (°C)			
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34		
Power Setting	Not Applicable in Receive Mode	Press. (mBars)	1006		
Antenna	32 dBi Dish				
Test Notes 1					
Test Notes 2					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 156 of 311

Test Freq.	5595 MHz	Engineer	JMH				
Variant	Receive in Test Utility	Temp (ºC)	25				
Freq. Range	1000 MHz - 18000 MHz	Rel. Hum.(%)	34				
Power Setting	Not Applicable in Receive Mode	Press. (mBars)	1006				
Antenna	32 dBi Dish						
Test Notes 1							
Test Notes 2							

 Legend:
 RB = Restricted Band; NRB = Non-Restricted Band; FUND = Fundamental Freq.

 BE = Emission in Restricted Band Nearest Transmission Band Edge;

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.4. Digital Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

FS = R + AF + CORR

For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dBµV/m (or dBµV) and µV/m (or µV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: AP0127730, AP0134760 To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: RDWN12-U2 Rev A Issue Date: 29th November 2012 Page: 158 of 311

Test Freq.	N/A	Engineer	SB			
Variant	Digital Emissions	Temp (ºC)	23			
Freq. Range	30 MHz - 1000 MHz	Rel. Hum.(%)	33			
Power Setting	25	Press. (mBars)	1008			
Antenna	16.5 dBi Flat Panel Sector					
Test Notes 1						
Test Notes 2						

Formally measured emission peaks

Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/ m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
33.058	38.4	3.5	-12.1	29.7	Quasi Max	V	104	261	40	-10.3	Pass	
240.136	44.7	4.8	-19.0	30.5	Peak [Scan]	Н	104	261	46	-15.5	Pass	
319.958	40.5	5.2	-16.7	29.1	Peak [Scan]	Н	104	261	46	-16.9	Pass	
97.912	48.8	4.1	-21.9	31.0	Peak [Scan]	V	104	261	43.5	-12.5	Pass	
119.199	40.7	4.2	-17.5	27.4	Peak [Scan]	V	104	261	43.5	-16.1	Pass	
372.410	37.1	5.4	-15.3	27.2	Peak [Scan]	V	104	261	46	-18.8	Pass	
Legend:	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency											
	NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.5. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

Not required - EUT is POE only.

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7. PHOTOGRAPHS

7.1. Conducted Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 163 of 311

7.2. Test Setup - Digital Emissions below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.3. Radiated Emissions Test Setup >1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 AP0127730, AP0134760

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 RDWN12-U2 Rev A

 Issue Date:
 29th November 2012

 Page:
 165 of 311

8. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
0070	Power Meter	Hewlett Packard	437B	3125U11552	28 th Nov 12
0117	Power Sensor	Hewlett Packard	8487D	3318A00371	15 th Nov 13
0223	Power Meter	Hewlett Packard	EPM-442A	US37480256	15 th Nov 13
0374	Power Sensor	Hewlett Packard	8485A	3318A19694	29 th Nov 12
0158	Barometer /Thermometer	Control Co.	4196	E2846	8 th Dec 12
0193	EMI Receiver	Rhode & Schwartz	ESI 7	838496/007	2 nd Dec 12
0287	EMI Receiver	Rhode & Schwartz	ESIB40	100201	16 th Nov 13
0338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	8 th Nov 13
0335	1-18 GHz Horn Antenna	EMCO	3117	00066580	7 th Nov 13
0252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
0293	BNC Cable	Megaphase	1689 1GVT4	15F50B001	N/A
0307	BNC Cable	Megaphase	1689 1GVT4	15F50B002	N/A
0310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	N/A
0312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181-3G0300	209092-001	N/A
0314	30dB N-Type Attenuator	ARRA	N9444-30	1623	N/A
	EMC Test Software	EMISoft	Vasona	5.0051	N/A
	RF Conducted Test Software	National Instruments	Labview	Version 8.2	N/A
	RF Conducted Test Software	MiCOM Labs ATS		Version 1.5	N/A

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.