

REGULATORY COMPLIANCE TEST REPORT

FCC CFR 47 Part 90 Subpart Y

Report No.: RDWN90-U2 Rev A

Company: Radwin Ltd.

Model Name: RADWIN JET DUO 5.x/5.x GHz

REGULATORY COMPLIANCE TEST REPORT

Company: Radwin Ltd.

Model Name: RADWIN JET DUO 5.x/5.x GHz

To: FCC CFR 47 Part 90 Subpart Y

Test Report Serial No.: RDWN90-U2 Rev A

This report supersedes: NONE

Applicant: Radwin Ltd.

27 Habarzel Street Tel Aviv, 6971039

Israel

Issue Date: 22nd September 2023

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc.

575 Boulder Court Pleasanton California 94566 USA

Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

#: RDWN90-U2 Rev A

Table of Contents

4.4. TEOTINIO ACODEDITATIONI	
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	
2. DOCUMENT HISTORY	
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
5.1. Technical Details	
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	
5.4. Antenna Details	
5.5. Cabling and I/O Ports	
5.6. Test Configurations	
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	
6. TEST SUMMARY	15
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Radiated Emissions - 3m Chamber	
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	10
9.1. Peak Transmit Power	19
9.1. Peak Transmit Power9.2. 26 dB & 99% Bandwidth	19 28
9.1. Peak Transmit Power	19 28 32
9.1. Peak Transmit Power	19 28 32 40
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask	19 28 32 40 47
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask 9.6. Radiated	19 28 32 40 47
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask 9.6. Radiated 9.6.1. TX Spurious Emissions	19 28 32 40 47 54
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask 9.6. Radiated 9.6.1. TX Spurious Emissions 9.6.1.1. Antenna AP0200600 80°	19 28 32 40 47 54 55
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask 9.6. Radiated 9.6.1. TX Spurious Emissions 9.6.1.1. Antenna AP0200600 80° 9.6.1.2. Antenna AP0200600 18° & 19°	19 28 40 47 54 55 55
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask 9.6. Radiated 9.6.1. TX Spurious Emissions 9.6.1.1. Antenna AP0200600 80° 9.6.1.2. Antenna AP0200600 18° & 19° 9.6.2. Receiver Radiated Spurious Emissions	19 28 40 54 55 55 58
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask 9.6. Radiated 9.6.1. TX Spurious Emissions 9.6.1.1. Antenna AP0200600 80° 9.6.1.2. Antenna AP0200600 18° & 19° 9.6.2. Receiver Radiated Spurious Emissions A. APPENDIX - GRAPHICAL IMAGES	19 28 40 54 55 55 58 61
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask. 9.6. Radiated 9.6.1. TX Spurious Emissions 9.6.1.1. Antenna AP0200600 80° 9.6.1.2. Antenna AP0200600 18° & 19° 9.6.2. Receiver Radiated Spurious Emissions A. APPENDIX - GRAPHICAL IMAGES A.1. 26 dB & 99% Bandwidth	19 28 40 54 55 55 58 61 63
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask. 9.6. Radiated 9.6.1. TX Spurious Emissions 9.6.1.1. Antenna AP0200600 80° 9.6.1.2. Antenna AP0200600 18° & 19° 9.6.2. Receiver Radiated Spurious Emissions A. APPENDIX - GRAPHICAL IMAGES A.1. 26 dB & 99% Bandwidth A.2. Power Spectral Density	19 28 32 40 54 55 55 58 61 63
9.1. Peak Transmit Power 9.2. 26 dB & 99% Bandwidth 9.3. Power Spectral Density 9.4. Peak Excursion Ratio 9.5. Spectrum Emission Mask. 9.6. Radiated 9.6.1. TX Spurious Emissions 9.6.1.1. Antenna AP0200600 80° 9.6.1.2. Antenna AP0200600 18° & 19° 9.6.2. Receiver Radiated Spurious Emissions A. APPENDIX - GRAPHICAL IMAGES A.1. 26 dB & 99% Bandwidth	19 28 40 54 55 55 61 63 64 120

Serial #: RDWN90-U2 Rev A

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-01.pdf

Accredited Laboratory

A2LA has accredited

MICOM LABS

Pleasanton, CA

for technical competence in the field of

Electrical Testing

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017

General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

Presented this 14th day of January 2022.

Vice President, Accreditation Services For the Accreditation Council Certificate Number 2381.01 Valid to November 30, 2023

4 of 162

For the tests to which this accreditation applies, please refer to the laboratory's Electrical Scope of Accreditation.

Issue Date: 22nd September 2023 Page:

Serial #: RDWN90-U2 Rev A

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.	
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167	
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3	
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210	
_	VCCI			A-0012	
Europe	European Commission	NB	EU MRA	NB 2280	
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1		
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1		
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1		
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159	
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1		
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1		

EU MRA - European Union Mutual Recognition Agreement.

NB - Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Issue Date: 22nd September 2023

5 of 162

Page:

Serial #: RDWN90-U2 Rev A

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) www.a2la.org test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; https://www.a2la.org/scopepdf/2381-02.pdf

Accredited Product Certification Body

A2LA has accredited

MICOM LABS

Pleasanton, CA

This product certification body is accredited in accordance with the recognized International Standard ISO/IEC 17065:2012 Requirements for bodies certifying products, processes and services. This product certification body also meets the A2LA R322 – Specific Requirements – Notified Body Accreditation Requirements and A2LA R308 - Specific Requirements - ISO-IEC 17065 - Telecommunication Certification Body Accreditation Program. This accreditation demonstrates technical competence for a defined scope and the operation of a management system.

Presented this 14th day of January 2022

Vice President, Accreditation Services
For the Accreditation Council
Certificate Number 2381.02
Valid to November 30, 2023

For the product certification schemes to which this accreditation applies, please refer to the organization's Product Certification Scope of Accreditation

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Issue Date: 22nd September 2023

Page: 6 of 162

Serial #: RDWN90-U2 Rev A

2. DOCUMENT HISTORY

Document History						
Revision	Date	Comments				
Draft	30 th August 2023	Draft for comment"				
Draft 2	14 th September 2023	Basic report update				
Rev A	22 nd September 2023	Initial release				

In the above table the latest report revision will replace all earlier versions.

Issue Date: 22nd September 2023 **Page**: 7 of 162

Serial #: RDWN90-U2 Rev A

3. TEST RESULT CERTIFICATE

Manufacturer: Radwin Ltd.

27 Habarzel Street

Tel Aviv, 6971039

Israel

Model: RADWIN JET DUO 5.x/5.x GHz

Equipment Type: Dual Carrier 5.x GHz Base Station with

Beamforming Antenna

S/N's: Prototype

Test Date(s): 24th – 29th August 2023

Tested By: MiCOM Labs, Inc.

575 Boulder Court

Pleasanton California 94566

USA

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 90 Subpart Y ISED RSS-111 **TEST RESULTS**

EQUIPMENT COMPLIES

TESTING CERT #2381.01

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve

Quality Manager MiCOM Labs, Inc.

Gordon Hurst

President & CEO MiCOM Labs, Inc.

Issue Date: 22nd September 2023 Page: 8 of 162

Serial #:

RDWN90-U2 Rev A

9 of 162

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01, D02, D03	D01 Oct 2013, D02 Oct 2011, D03 Oct 2020	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band. 662911 D01 Multiple Transmitter Output v02r01, 662911 D02 MIMO with Cross Polarized Antenna v01, 662911 D03 MIMO Antenna Gain Measurement v01, OET 13TR1003 Directional Gain of 802 11 MIMO with CDD 04 05 2013
П	A2LA	22nd June 2022	R105 - Requirement's When Making Reference to A2LA Accreditation Status
III	ANSI C63.10	2020	American National Standard for Testing Unlicensed Wireless Devices
IV	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
V	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
VI	M 3003	EDITION 4 Oct 2019	Expression of Uncertainty and Confidence in Measurements
VII	RSS-111	September 4th 2014	Broadband Public Safety Equipment Operating in the Band 4940-4990 MHz
VIII	RSS-Gen Issue 5	Amendment 1,2 (Feb 2021)	General Requirements for Compliance of Radio Apparatus
IX	FCC 47 CFR Part 2.1033	May 2021	FCC requirements and rules regarding photographs and test setup diagrams.
Х	FCC 47 CFR Part 90	June 2003	Private Land Mobile Radio Services; Subpart Y – Regulations Governing Licensing and Use of Frequencies in the 4940-4990 MHz Band
ΧI	KDB 971168 D01, D02	D01 April 2018 D02 April 2023	Guidance for measurement of output emissions and power for licensed wideband digital transmission systems. D01 Power Meas License Digital Systems v03r01 971168 D02 Misc OOBE License Digital Systems v02r02

Issue Date: 22nd September 2023 Page:

Serial #: RDWN90-U2 Rev A

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Issue Date: 22nd September 2023 **Page:** 10 of 162

Serial #: RDWN90-U2 Rev A

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
	Test of the RADWIN Dual Carrier 5.x GHz Base Station with
Purpose:	Beam forming Antenna to FCC CFR 47 Part 90 Subpart Y.
·	Compliance Measurement Procedures for use in the 4940-4990 MHz band
	Radwin
Applicant:	27 Habarzel Street
, pp. est. m	Tel Aviv 6971039 Israel
Manufacturer:	RADWIN
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	FCC CFR 47 Part 90 Subpart Y
. , , , ,	ISED RSS 111
Dates of test (from - to):	
No of Units Tested:	
Product Family Name:	
	RADWIN JET DUO 5.x/5.x GHz
Location for use:	
Declared Frequency Range(s):	
Type of Modulation:	OFDM
EUT Bandwidths:	4940 - 4990 MHz:
	10MHz; 20MHz; 40MHz
Declared Nominal Output Power (dBm):	
Transmit/Receive Operation:	
Rated Input Voltage and Current:	
Operating Temperature Range:	
	10M0W7W, 20M0W7W, 40M0W7W
Equipment Dimensions:	
Weight:	
Hardware Rev:	Prototype
Software Rev:	С

Issue Date: 22nd September 2023 Page: 11 of 162

Serial #: RDWN90-U2 Rev A

5.2. Scope Of Test Program

RADWIN JET DUO 5.x/5.x GHz

The scope of the test program was to test the RADWIN JET DUO 5.x/5.x GHz; for compliance against the following specification:

FCC CFR 47 Part 90 Subpart Y

This subpart sets out the regulations governing use of the 4940–4990 MHz (4.9 GHz) band. It includes eligibility requirements, and specific operational and technical standards for stations licensed in this band. The rules in this subpart are to be read in conjunction with the applicable requirements contained elsewhere in this part; however, in case of conflict, the provisions of this subpart shall govern with respect to licensing and operation in this band.

RSS-111

Broadband Public Safety Equipment Operating in the Band 4940-4990 MHz

Issue Date: 22nd September 2023 **Page**: 12 of 162

Serial #: RDWN90-U2 Rev A

5.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description	Manufacturer	Model No.	Serial No.
EUT	Dual Carrier 5.x GHz Base Station with Beamforming Antenna	RADWIN	RADWIN JET DUO 5.x/5.x GHz	Prototype
Support	POE Power Supply	Sinpro	CPU55A-270-1	
Support	Laptop	Dell	-	

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
Integrated	RADWIN Ltd.	AP0200600	Panel	7.0		80	Yes	4900 - 5000
Integrated	RADWIN Ltd.	AP0200600	Directional	7.0	10.0	18	Yes	4900 - 5000

BF Gain - Beamforming Gain

Dir BW - Directional BeamWidth

X-Pol - Cross Polarization

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Connector Type	Data Type	Data Rate(s)
Ethernet PoE IN	>30m	1	No	RJ45	Packet	10,100,1000

5.6. Test Configurations

Results for the following configurations are provided in this report:

Channel	Data Rate with Highest Power	Channel Frequency (MHz)				
Bandwidths	MBit/s	Low	Mid	High		
	4940 - 4990 MHz					
*10	39	4,945.00	4,965.00	4,985.00		
*20	78	4,950.00	4,965.00	4,980.00		
40	180	4,960.00	4,965.00	4,970.00		

^{*}note: only 10 and 20 MHz bandwidths are compliant for ISED RSS-111. 40MHz may not be used for ISED RSS-111

Issue Date: 22nd September 2023 **Page:** 13 of 162

Serial #: RDWN90-U2 Rev A

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

Issue Date: 22nd September 2023 **Page:** 14 of 162

Serial #: RDWN90-U2 Rev A

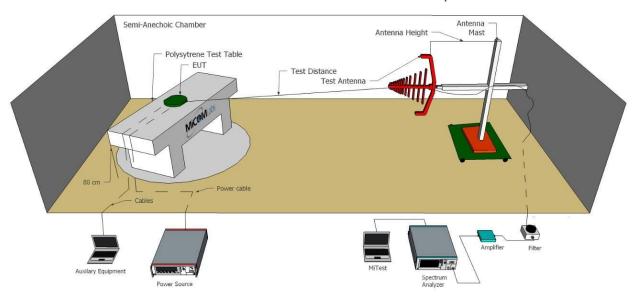
6. TEST SUMMARY

List of Measurements

Test Header	Result	Data Link
Peak Transmit Power	Complies	View Data
26 dB & 99% Bandwidth	Complies	View Data
Power Spectral Density	Complies	View Data
Peak Excursion Ratio	Complies	View Data
Spectrum Emission Mask	Complies	View Data
Radiated	Complies	-
TX Spurious Emissions	Complies	-
Antenna AP0200600 80°	Complies	View Data
Antenna AP0200600 18º	Complies	View Data
RX Spurious Emissions	Complies	View Data

Issue Date: 22nd September 2023 **Page**: 15 of 162

16 of 162


Serial #: RDWN90-U2 Rev A

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Radiated Emissions - 3m Chamber

Test Setup for Radiated Emissions for above and below 1 GHz

Radiated Emissions Below 1GHz Test Setup

Radiated Emissions Above 1GHz Test Setup

Issue Date: 22nd September 2023 Page:

Title: To:

RADWIN JET DUO 5.x/5.x GHz FCC CFR 47 Part 90 Subpart Y

Serial #: RDWN90-U2 Rev A

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
330	Variac 0-280 Vac	Staco Energy Co	3PN1020B	0546	Cal when used
336	Active loop Ant 10kHz to 30 MHz	EMCO	EMCO 6502	00060498	29 Nov 2023
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	29 Sep 2023
373	26III RMS Multimeter	Fluke	Fluke 26 series III	76080720	29 Sep 2023
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	6 Oct 2023
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	27 Oct 2023
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	30 Sep 2023
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	2 Nov 2023
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	27 Oct 2023
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	27 Oct 2023
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	27 Oct 2023
465	Low Pass Filter DC-1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	6 Oct 2023
466	Low Pass Filter DC-1500 MHz	Mini-Circuits	NLP-1750+	VUU10401438	6 Oct 2023
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	6 Oct 2023
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	6 Oct 2023
510	Barometer/Thermometer	Digi Sense	68000-49	170871375	4 Jan 2024
554	Precision SMA Cable	Fairview Microwave	SCE18060101- 400CM	554	6 Oct 2023
555	Rhode & Schwarz Receiver (Firmware Version : 2.00 SP1)	Rhode & Schwarz	ESW 44	101893	28 Jun 2024

RADWIN JET DUO 5.x/5.x GHz FCC CFR 47 Part 90 Subpart Y To:

RDWN90-U2 Rev A Serial #:

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using stateof-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by MiTest. MiTest is an automated test system developed by MiCOM Labs. MiTest is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

Issue Date: 22nd September 2023 18 of 162

Serial #: RDWN90-U2 Rev A

9. TEST RESULTS

9.1. Peak Transmit Power

Conducted Test Conditions for Maximum Output Power					
Standard:	FCC CFR 47:90 (Y)	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Maximum Conducted Output Rel. Humidity (%): 32 - 45				
Standard Section(s):	90.1215 (a) Pressure (mBars): 999 - 1001				
Reference Document(s):	See Normative References				

Test Procedure for Maximum Output Power Measurement

Spectrum Analyzer Method. KDB 789033 defines a methodology using spectrum analyzer. Where power shall be calculated by integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99% occupied bandwidth of the signal.

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document. Supporting KDB's referenced below.

KDB 662911 D01 & KDB 662911 D02

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Radiated measurements used for compliance with conducted limits, the following steps are required to ensure that the total emission power is determined for equipment driving cross polarized antennas:

- (1) Measure radiated emissions with vertical and horizontal polarizations of the measurement antenna;
- (2) Convert each radiated measurement to transmit power based on the antenna gain;

EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20*log(D) + 104.8

Where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

EIRP = PR + LP

where;

EIRP = equivalent (or effective) isotropically radiated power (in same units as P_R);

P_R = adjusted received power level, in dBW, dBm, or PSD;

L_P = basic free space propagation path loss, in dB.

The received power level \mathbf{P}_R is the measured power adjusted for measurement antenna gain, connecting cable loss, and any external signal amplification or attenuation used in the test Configuration. Mathematically:

PR = PMeas - GR + LC + LAtten - GAmp

where;

P_{Measured} = measured power level, in dBW, dBm or psd;

G_R = gain of the receive (measurement) antenna, in dBi;

Lc = signal loss in the measurement cable, in dB;

Latten = value of external attenuation (if used), in dB;

G_{Amp} = value of external amplification (if used), in dB.

Issue Date: 22nd September 2023 Page:

19 of 162

Serial #: RDWN90-U2 Rev A

The free space propagation path loss Lp is determined from the following equation:

LP = 20 Log F + 20 Log D - 27.5

where:

L_P = basic free space propagation path loss, in dB;

F = center frequency of radiated DUT signal, in MHz;

D = measurement distance, in meters.

Where:

E = electric field strength in $dB\mu V/m$,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

(3) Sum the powers across the two polarizations to compare the resultant electric field strength level to the applicable limit.

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power [$10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Conducted Output Power

90.1215

Except as provided in paragraph (f) of this section, the transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

(a)(1) For base, mobile, and temporary fixed operations, the maximum conducted output power must not exceed:

	Low power	High power	
Channel Bandwidth	maximum	maximum	
(MHz)	conducted output	conducted output	
	power (dBm)	power (dBm)	
1	7	20	
5	14	27	
10	17	30	
15	18.8	31.8	
20	20	33	
30	21.8	34.8	
40	23	36	
50	24	37	

(a) (2) High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidth other than those listed above are permitted; however, they are limited to peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to-multipoint operations (both fixed and temporary-fixed rapid deployment) may employ a transmitting antenna with directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or spectral density. Corresponding reduction in the maximum conducted output power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi.

- (f) The transmitting power of permanent fixed point-to-point and point-to-multipoint stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this paragraph (f). Moreover, applicants should request no more power than necessary for a particular use.
 - The maximum equivalent isotropically radiated power (EIRP), as referenced to an isotropic radiator, must not exceed 55 dBW (85 dBm)
 - (2) For path lengths shorter than 17 kilometers, the EIRP shall not exceed the value derived from the following equation: New EIRP limit = 55 dBW 40*log(17/B) dBW, where B = the actual path length in kilometers.

Issue Date: 22nd September 2023 Page: 20 of 162

Serial #: RDWN90-U2 Rev A

Consolidated Power Results, EIRP Limits

The EUT was tested for Radiated Output Power and the following tables define the worst-case compliant results defined for each Antenna

Output Power Summary Table

Antenna Type - Integrated (outdoor use only)

Antenna	Gain	Channel Bandwidths	Channel	Combined Output Power (H+V)	Calc. Output Power	Limit	Margin	Power Setting
Model Number	dBi	MHz	MHz	dBm/EIRP	dBm	dBm	dB	
			4945	34.48	27.48	30.0	-2.52	10.0
		10	4965	34.68	27.68	30.0	-2.32	9.5
			4985	34.80	27.80	30.0	-2.20	11.5
4 D0000000			4950	34.92	27.92	33.0	-5.08	10.5
AP0200600 80°	7.0	20	4965	35.55	28.55	33.0	-4.45	10.5
00			4980	35.55	28.55	33.0	-4.45	13.5
		40	4960	36.16	29.16	36.0	-6.84	13.0
			4965	33.14	26.14	36.0	-9.86	10.0
			4970	31.79	24.79	36.0	-11.21	10.5
			4945	42.76	25.76	30.0	-4.24	13.0
		10	4965	42.06	25.06	30.0	-4.94	10.5
			4985	41.75	24.75	30.0	-5.25	12.0
4 D0000000			4950	41.19	24.19	33.0	-8.81	10.5
AP0200600 18° 17.0	20	4965	41.10	24.10	33.0	-8.90	10.0	
			4980	39.20	22.20	33.0	-10.80	11.0
			4960	42.15	25.15	36.0	-10.85	13.0
		40	4965	40.05	23.05	36.0	-12.95	10.0
		4970	37.77	20.77	36.0	-15.23	10.0	

Issue Date: 22nd September 2023 **Page**: 21 of 162

Serial #: RDWN90-U2 Rev A

The following tables used the lowest gain antenna to calculate the maximum conducted power from the EUT.

Equipment Configuration for RF Output Power

Variant:	10MHz Bandwidth	Duty Cycle (%):	96
Data Rate:	39 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured EIRP (dBm)		Calculated Total Conducted Power + DCCF	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
4945	32.59	29.43	27.48	30.0	-2.52	10.0
4965	32.92	29.35	27.68	30.0	-2.32	9.5
4985	32.27	30.84	27.80	30.0	-2.20	11.5

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

Duty Cycle Correction Factor (DCCF): 0.18 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Issue Date: 22nd September 2023 **Page**: 22 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for RF Output Power

Variant:	20MHz Bandwidth	Duty Cycle (%):	82
Data Rate:	78 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency (dBm)			Calculated Total Conducted Power + DCCF	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
4950	32.91	27.71	27.92	33.0	-5.08	10.5
4965	33.60	28.14	28.55	33.0	-4.45	10.5
4980	32.67	30.38	28.55	33.0	-4.45	13.5

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER	
Uncertainty:	±1.33 dB	

Duty Cycle Correction Factor (DCCF): 0.86 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Issue Date: 22nd September 2023 **Page**: 23 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for RF Output Power

Variant:	40MHz Bandwidth	Duty Cycle (%):	72
Data Rate:	180 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured EIRP (dBm)		Calculated Total Conducted Power + DCCF	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
4960	33.30	29.22	29.16	36.0	-6.84	13.0
4965	30.29	26.18	26.14	36.0	-9.86	10.0
4970	28.06	26.51	24.79	36.0	-11.21	10.5

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Uncertainty:	±1.33 dB		

Duty Cycle Correction Factor (DCCF): 1.43 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Issue Date: 22nd September 2023 **Page**: 24 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for RF Output Power

Variant:	10MHz Bandwidth	Duty Cycle (%):	96
Data Rate:	39 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency	Measured EIRP (dBm)		Calculated Total Conducted Power + DCCF	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
4945	41.54	35.87	25.76	30.0	-4.24	13.0
4965	41.15	33.77	25.06	30.0	-4.94	10.5
4985	40.52	34.91	24.75	30.0	-5.25	12.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Uncertainty:	±1.33 dB			

Duty Cycle Correction Factor (DCCF): 0.18 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Issue Date: 22nd September 2023 **Page**: 25 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for RF Output Power

Variant:	20MHz Bandwidth	Duty Cycle (%):	82
Data Rate:	78 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256 QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured EIRP (dBm)		Calculated Total Conducted Power +DCCF	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
4950	39.53	32.58	24.19	33.0	-8.81	10.5
4965	39.52	32.05	24.10	33.0	-8.90	10.0
4980	36.79	33.10	22.20	33.0	-10.80	11.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER			
Uncertainty:	±1.33 dB			

Duty Cycle Correction Factor (DCCF): 0.86 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Issue Date: 22nd September 2023 **Page**: 26 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for RF Output Power

Variant:	40MHz Bandwidth	Duty Cycle (%):	72
Data Rate:	180 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256 QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured EIRP (dBm)		Calculated Total Conducted Power	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
4960	39.74	33.79	25.15	36.0	-10.85	13.0
4965	37.80	31.01	23.05	36.0	-12.95	10.0
4970	34.83	31.03	20.77	36.0	-15.23	10.0

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB				

Duty Cycle Correction Factor (DCCF): 1.43 dB

NOTE: KDB 412172 D01 was used to determine the EIRP from the results of a power measurements performed under far-field conditions with respect to all transmit and receive (measurement) antennas.

Issue Date: 22nd September 2023 **Page**: 27 of 162

Serial #: RDWN90-U2 Rev A

9.2. 26 dB & 99% Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth						
Standards:	FCC CFR 47:90	CC CFR 47:90 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	26 dB and 99 % Bandwidth	Rel. Humidity (%):	32 - 45			
Standard Section(s):	209 Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured radiated, in a 3 meter chamber, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth. Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported. In this case Vertical a (V) and Horizontal for port b (H).

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document.

Issue Date: 22nd September 2023 Page: 28 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	10 MHz Bandwidth	Duty Cycle (%):	Not Applicable
Data Rate:	39 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)		
MHz	Н	V	Highest	Lowest	
4945	<u>8.741</u>	<u>7.493</u>	8.741	7.493	
4965	<u>8.791</u>	<u>8.741</u>	8.791	8.741	
4985	<u>8.891</u>	<u>8.641</u>	8.891	8.641	
Test Frequency	Measured 99% E	Bandwidth (MHz)	99% Bandy	vidth (MHz)	
MHz	Н	٧	Highest	Lowest	
4945	<u>6.53</u>	<u>6.55</u>	6.53	6.55	
4965	<u>5.50</u>	<u>6.46</u>	5.50	6.46	
4985	<u>6.52</u>	<u>6.50</u>	6.53	6.55	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 29 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	20 MHz Bandwidth	Duty Cycle (%):	Not Applicable
Data Rate:	78 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measure	Test Measurement Results							
Test Frequency	Measured 26 dB	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)				
MHz	Н	V	Highest	Lowest				
4950	<u>18.731</u>	<u>18.432</u>	18.731	18.432				
4965	<u>18.656</u>	<u>17.907</u>	18.656	17.907				
4980	<u>18.581</u>	<u>18.716</u>	18.581	18.716				
Test Frequency	Measured 99% E	Measured 99% Bandwidth (MHz)		width (MHz)				
MHz	Н	V	Highest	Lowest				
4950	<u>14.911</u>	<u>14.820</u>	14.911	14.820				
4965	<u>14.931</u>	<u>14.831</u>	14.931	14.831				
4980	<u>14.847</u>	<u>14.803</u>	14.847	14.803				

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 30 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	40 MHz Bandwidth	Duty Cycle (%):	Not Applicable
Data Rate:	180 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results							
Test Frequency	Measured 26 dB	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)			
MHz	Н	V	Highest	Lowest			
5190.0	<u>43.53</u>	<u>40.05</u>	43.53	40.05			
5210.0	<u>41.73</u>	<u>39.94</u>	41.73	39.94			
5230.0	<u>39.58</u>	<u>38.50</u>	39.58	38.50			
Test Frequency	Measured 99% Bandwidth (MHz)		99% Bandy	vidth (MHz)			
MHz	Н	V	Highest	Lowest			
5190.0	<u>32.83</u>	<u>32.57</u>	32.83	32.57			
5210.0	<u>32.89</u>	<u>32.55</u>	32.89	32.55			
5230.0	<u>32.54</u>	<u>32.36</u>	32.54	32.36			

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 31 of 162

Title: RADW

RADWIN JET DUO 5.x/5.x GHz FCC CFR 47 Part 90 Subpart Y

Serial #: RDWN90-U2 Rev A

9.3. Power Spectral Density

Conducted Test Conditions for Power Spectral Density						
Standard:	andard: FCC CFR 47:90.1215 Ambient Temp. (°C): 24.0 - 27.5					
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45			
Standard Section(s):	90.1215 (a)(2)	90.1215 (a)(2) Pressure (mBars): 999 - 1001				
Reference Document(s):	KDB 789033 - D02 General UNII Test Procedures New Rules v01					

Test Procedure for Power Spectral Density

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v02.)

Measure and sum the spectra across the outputs. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 0 is summed with that in the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density.

Calculated Power = $A + 10 \log (1/x) dBm$

A = Total Power Spectral Density [10 Log10 (10a/10 + 10 b/10 + 10c/10 + 10d/10)]

x = Duty Cycle

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document. Supporting KDB's referenced below.

KDB 662911 D01 & KDB 662911 D02

Radiated measurements used for compliance with conducted limits, the following steps are required to ensure that the total emission power s determined for equipment driving cross polarized antennas:

- (1) Measure radiated emissions with vertical and horizontal polarizations of the measurement antenna;
- (2) Convert each radiated measurement to transmit power based on the antenna gain;

EIRP level to an equivalent electric field strength using the following relationship:

E = EIRP - 20*log(D) + 104.8

Where:

E = electric field strength in dBμV/m,

EIRP = equivalent isotropic radiated power in dBm

D = specified measurement distance in meters.

(3) Sum the powers or PSDs across the two polarizations to compare the resultant electric field strength level to the applicable limit.

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power [$10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})$]

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Issue Date: 22nd September 2023

Page: 32 of 162

Serial #: RDWN90-U2 Rev A

Limits Power Spectral Density

(a) (2) High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidth other than those listed above are permitted; however, they are limited to peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to-multipoint operations (both fixed and temporary-fixed rapid deployment) may employ a transmitting antenna with directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power or spectral density. Corresponding reduction in the maximum conducted output power and peak power spectral density should be the amount in decibels that the directional gain of the antenna exceeds 26 dBi.

(d) The peak power spectral density is measured as conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements are made over a bandwidth of one MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

Issue Date: 22nd September 2023 Page: 33 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Power Spectral Density

Variant:	10 MHz Bandwidth	Duty Cycle (%):	96
Data Rate:	39 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	Fest Measurement Results							
Test	Measured Power S	Measured Power Spectral Density		Limit	Marain			
Frequency	dBm/MHz	EIRP	Summation Peak Marker + DCCF	Limit	Margin			
MHz	Н	V	dBm/MHz	dBm/MHz	dB			
4945	<u>24.35</u>	<u>23.32</u>	20.05	21.00	-0.95			
4965	<u>24.77</u>	<u>24.46</u>	20.81	21.00	-0.19			
4985	<u>24.65</u>	<u>22.87</u>	20.04	21.00	-0.96			

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Duty Cycle Correction Factor (DCCF): 0.18 dB

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 34 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Power Spectral Density

Variant:	20 MHz Bandwidth	Duty Cycle (%):	82
Data Rate:	78 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurem	Test Measurement Results								
Test	Measured Power S	pectral Density	I Density Calc. Conducted						
Frequency	dBm/MHz	EIRP	Summation Peak Marker + DCCF	Limit	Margin				
MHz	Н	V	dBm/MHz	dBm/MHz	dB				
4950	<u>22.29</u>	<u>18.56</u>	17.69	21.00	-3.31				
4965	<u>23.06</u>	<u>18.39</u>	18.20	21.00	-2.80				
4980	<u>22.01</u>	20.82	18.33	21.00	-2.67				

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	2.81 dB	

Duty Cycle Correction Factor (DCCF): 0.86 dB

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 35 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Power Spectral Density

Variant:	40 MHz Bandwidth	Duty Cycle (%):	72
Data Rate:	180 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results							
Test Measured Power Spectral Density		pectral Density	Calc. Conducted		Margin		
Frequency	V JD MIJ. FIDD		Summation Peak Marker + DCCF	Limit			
MHz	Н	V	dBm/MHz	dBm/MHz	dB		
4960	<u>19.81</u>	<u>16.60</u>	15.93	21.00	-5.07		
4965	<u>16.68</u>	<u>14.01</u>	12.98	21.00	-8.02		
4970	<u>15.64</u>	<u>14.20</u>	12.42	21.00	-8.58		

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	
Measurement Uncertainty:	±2.81 dB	

Duty Cycle Correction Factor (DCCF): 0.1.43 dB

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page:** 36 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Power Spectral Density

Variant:	10 MHz Bandwidth	Duty Cycle (%):	96
Data Rate:	39 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measuren Test	Measured Power S	Spectral Density	Calc. Conducted		
Frequency	dBm/MHz	z EIRP	Summation Peak Marker + DCCF	Limit	Margin
MHz	Н	V	dBm/MHz	dBm/MHz	dB
4945	<u>34.12</u>	<u>29.00</u>	18.46	21.00	-2.54
4965	<u>33.59</u>	<u>26.97</u>	17.62	21.00	-3.38
4985	33.60	28.91	18.05	21.00	-2.95

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Duty Cycle Correction Factor (DCCF): 0.18 dB

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 37 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Power Spectral Density

Variant:	20 MHz Bandwidth	Duty Cycle (%):	82
Data Rate:	78 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

	Measured Power Spectral Density		Calc.		
Test Frequency	dBm/M	Hz EIRP	Conducted Summation Peak Marker + DCCF	Limit	Margin
MHz	Н	V	dBm/MHz	dBm/MHz	dB
4950	<u>28.48</u>	<u>22.40</u>	13.30	21.00	-7.70
4965	<u>26.59</u>	<u>21.87</u>	11.71	21.00	-9.29
4980	26.00	22.73	11.54	21.00	-9.46

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	2.81 dB			

Duty Cycle Correction Factor (DCCF): 0.86 dB

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 38 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Power Spectral Density

Variant:	40 MHz Bandwidth	Duty Cycle (%):	72
Data Rate:	180 MBit/s	Antenna Gain (dBi):	7.00
Modulation:	256QAM	Beam Forming Gain (Y)(dB):	10.00
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results						
Test	Measured Power Spectral Density		Calc. Conducted			
Frequency	dBm/MHz	EIRP	Summation Peak Marker + DCCF	Limit	Margin	
MHz	Н	V	dBm/MHz	dBm/MHz	dB	
4960	<u>25.43</u>	<u>20.56</u>	11.08	21.00	-9.92	
4965	<u>22.59</u>	<u>17.75</u>	8.25	21.00	-12.75	
4970	<u>20.74</u>	<u>17.46</u>	6.84	21.00	-14.16	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Duty Cycle Correction Factor (DCCF): 1.43 dB

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page:** 39 of 162

Serial #: RDWN90-U2 Rev A

9.4. Peak Excursion Ratio

Conducted Test Conditions for Peak Excursion Ratio					
Standard:	FCC CFR 47:90 (Y)	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Peak Excursion Ratio	Rel. Humidity (%):	32 - 45		
Standard Section(s):	90.1215 (e)	Pressure (mBars):	999 - 1001		
Reference Document(s):	See Normative References				

Test Procedure for Peak Excursion Ratio

The spectrum analyzers built in Peak-To-Average Power Ratio measurement function was utilized.

Only the center channel is measured for each operating mode and only the Horizontal Polarity is reported as it is the worst case scenario.

Peak Excursion Limits

The ratio of the peak excursion of the modulation envelope to the maximum output power shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less. Additionally, the PAPR can be used, and shall not exceed 13 dB for more than 0.1% of the time, using a signal that corresponds to the highest PAPR during periods of continuous transmission.

Only Horizontal Polarity is reported as it is the worst case scenario.

Issue Date: 22nd September 2023 **Page**: 40 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Peak Excursion Ratio

Variant:	10 MHz	Duty Cycle (%):	99.0
Data Rate:	39.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured Ratio (dB)	Limit	Margin	EUT Power Setting
MHz	0.1% (dB)	dB	dB	
4965.0	<u>7.88</u>	13.0	-5.12	Max

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	

Issue Date: 22nd September 2023 **Page**: 41 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Peak Excursion Ratio

Variant:	20 MHz	Duty Cycle (%):	99.0
Data Rate:	78.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured Ratio (dB)	Limit	Margin	EUT Power Setting
MHz	0.1% (dB)	dB	dB	
4965.0	<u>8.26</u>	13.0	-4.74	Max

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	

Issue Date: 22nd September 2023 **Page**: 42 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Peak Excursion Ratio

Variant:	40 MHz	Duty Cycle (%):	99.0
Data Rate:	180.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured Ratio (dB)	Limit	Margin	EUT Power Setting
MHz	0.1% (dB)	dB	dB	
4965.0	<u>10.38</u>	13.0	-2.62	Max

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	

Issue Date: 22nd September 2023 **Page**: 43 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Peak Excursion Ratio

Variant:	10 MHz	Duty Cycle (%):	99.0
Data Rate:	39.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	10.0
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured Ratio (dB)	Limit	Margin	EUT Power Setting
MHz	0.1% (dB)	dB	dB	
4965.0	<u>8.08</u>	13.0	-4.98	Max

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	

Issue Date: 22nd September 2023 **Page**: 44 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Peak Excursion Ratio

Variant:	20 MHz	Duty Cycle (%):	99.0
Data Rate:	78.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	10.0
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured Ratio (dB)	Limit	Margin	EUT Power Setting
MHz	0.1% (dB)	dB	dB	
4965.0	<u>8.22</u>	13.0	-4.78	Max

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Measurement Uncertainty:			

Issue Date: 22nd September 2023 **Page**: 45 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Peak Excursion Ratio

Variant:	40 MHz	Duty Cycle (%):	99.0
Data Rate:	180.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	10.0
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Frequency	Measured Ratio (dB)	Limit	Margin	EUT Power Setting
MHz	0.1% (dB)	dB	dB	
4965.0	<u>10.48</u>	13.0	-2.22	Max

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER		
Measurement Uncertainty:			

Issue Date: 22nd September 2023 **Page**: 46 of 162

Serial #: RDWN90-U2 Rev A

9.5. Spectrum Emission Mask

Conducted Test Conditions for Spectrum Emission Mask				
Standard: FCC CFR 47:90 (I) Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	Spectrum Emission Mask Rel. Humidity (%): 32 - 45			
Standard Section(s):	90.210 (m) Pressure (mBars): 999 - 1001			
Reference Document(s):	See Normative References			

Test Procedure for Emission Masks

Emission Mask Limits

Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

- (m) **Emission Mask M.** For high power transmitters (greater than 20 dBm) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:
 - (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
 - (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth (BW): 568 log (% of (BW)/45) dB.
 - (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth (BW): 26 + 145 log (% of (BW)/50) dB.
 - (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth (BW): 32 + 31 log (% of (BW)/55) dB.
 - (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth (BW): 40 + 57 log (% of (BW)/100) dB.
 - (6) On any frequency removed from the assigned frequency between above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Issue Date: 22nd September 2023 Page: 47 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Spectrum Emission Mask

Variant:	10MHz	Duty Cycle (%):	99.0
Data Rate:	39.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results					
Test Frequency	Measured Spectrum Mask Complies				
MHz	Н	V			Pass/Fail
4945.0	<u>Mask</u>	<u>Mask</u>			Pass
4965.0	<u>Mask</u>	<u>Mask</u>			Pass
4985.0	Mask	<u>Mask</u>			Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB		

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 48 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Spectrum Emission Mask

Variant:	20MHz	Duty Cycle (%):	99.0
Data Rate:	78.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results					
Test Frequency	Measured Spectrum Mask Complies				Complies
MHz	H V				Pass/Fail
4950.0	<u>Mask</u>	<u>Mask</u>			Pass
4965.0	<u>Mask</u>	<u>Mask</u>			Pass
4980.0	Mask	<u>Mask</u>			Pass

Traceability to Industry Recognized Test Methodologies			
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB		

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 49 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Spectrum Emission Mask

Variant:	40MHz	Duty Cycle (%):	99.0
Data Rate:	180.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results						
Test Frequency	Measured Spectrum Mask Complies						
MHz	Н	V			Pass/Fail		
4960.0	Mask	<u>Mask</u>			Pass		
4965.0	<u>Mask</u>	<u>Mask</u>			Pass		
4970.0	<u>Mask</u>	<u>Mask</u>			Pass		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 50 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Spectrum Emission Mask

Variant:	10MHz	Duty Cycle (%):	99.0
Data Rate:	39.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	10.0
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results						
Test Frequency	Measured Spectrum Mask Complies						
MHz	Н	V			Pass/Fail		
4945.0	<u>Mask</u>	<u>Mask</u>			Pass		
4965.0	<u>Mask</u>	<u>Mask</u>			Pass		
4985.0	Mask	<u>Mask</u>			Pass		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 51 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Spectrum Emission Mask

Variant:	20MHz	Duty Cycle (%):	99.0
Data Rate:	78.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	10.0
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results						
Test Frequency	Measured Spectrum Mask Complies						
MHz	Н	V			Pass/Fail		
4950.0	<u>Mask</u>	<u>Mask</u>			Pass		
4965.0	<u>Mask</u>	<u>Mask</u>			Pass		
4980.0	<u>Mask</u>	<u>Mask</u>			Pass		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 52 of 162

Serial #: RDWN90-U2 Rev A

Equipment Configuration for Spectrum Emission Mask

Variant:	40MHz	Duty Cycle (%):	99.0
Data Rate:	78.00 MBit/s	Antenna Gain (dBi):	7.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	10.0
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measur	Test Measurement Results						
Test Frequency	Measured Spectrum Mask Complies						
MHz	Н	V			Pass/Fail		
4960.0	Mask	<u>Mask</u>			Pass		
4965.0	<u>Mask</u>	<u>Mask</u>			Pass		
4970.0	<u>Mask</u>	<u>Mask</u>			Pass		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Issue Date: 22nd September 2023 **Page**: 53 of 162

Serial #: RDWN90-U2 Rev A

9.6. Radiated

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions						
Standard:	FCC CFR 47:90 (I) Ambient Temp. (°C): 20.0 - 24.5					
Test Heading:	Radiated Spurious Emissions	Rel. Humidity (%):	32 - 45			
Standard Section(s):	90.210 (m) Pressure (mBars): 999 - 1001					
Reference Document(s):	See Normative References					

Test Procedure for Radiated Spurious and Band-Edge Emissions

Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz.

Emission Limits

Except as indicated in this part, transmitters used in the radio services governed by this part must comply with the emission masks outlined in this section. Unless otherwise stated, per paragraphs (d)(4), (e)(4), and (o) of this section, measurements of emission power can be expressed in either peak or average values provided that emission powers are expressed with the same parameters used to specify the unmodulated transmitter carrier power. For transmitters that do not produce a full power unmodulated carrier, reference to the unmodulated transmitter carrier power refers to the total power contained in the channel bandwidth. Unless indicated elsewhere in this part, the table in this section specifies the emission masks for equipment operating under this part.

- (m) **Emission Mask M.** For high power transmitters (greater than 20 dBm) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:
 - (1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.
 - (2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth (BW): 568 log (% of (BW)/45) dB.
 - (3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth (BW): 26 + 145 log (% of (BW)/50) dB.
 - (4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth (BW): 32 + 31 log (% of (BW)/55) dB.
 - (5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth (BW): 40 + 57 log (% of (BW)/100) dB.
 - (6) On any frequency removed from the assigned frequency between above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.
- (7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Test Procedure

Measurements were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency, 100% duty cycle and maximum power at all times. Radiated spurious emissions were measured to 40 GHz. Substitution was performed on any emissions observed. The antenna port was attenuated with 50 dB attenuation plus a 50 Ω terminator.

The measurement equipment was set to measure in peak hold mode. The emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode.

The highest emissions relative to the limit are listed for each frequency spanned.

Measurements below 1 GHz utilized 100 KHz RBW, measurements above 1 GHz were performed using a minimum RBW of 1 MHz.

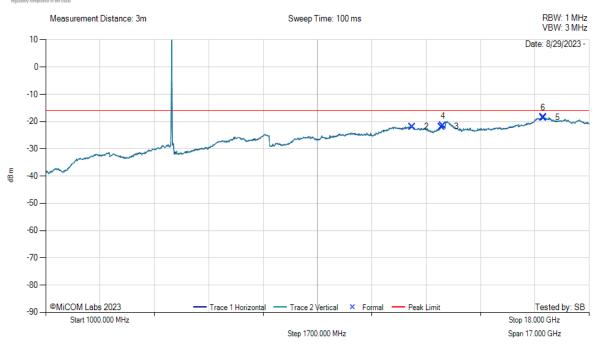
Emission measurements were performed to the 10th harmonic of the transmitter. No emissions were found.

Issue Date: 22nd September 2023 **Page:** 54 of 162

Serial #: RDWN90-U2 Rev A

9.6.1. TX Spurious Emissions

9.6.1.1. Antenna AP0200600 80°


Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Panel	Variant:	10 MHz Bandwidth
Antenna Gain (dBi):	7.0	Modulation:	256QAM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	4945.00	Data Rate:	39 MBit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

MÎTest.

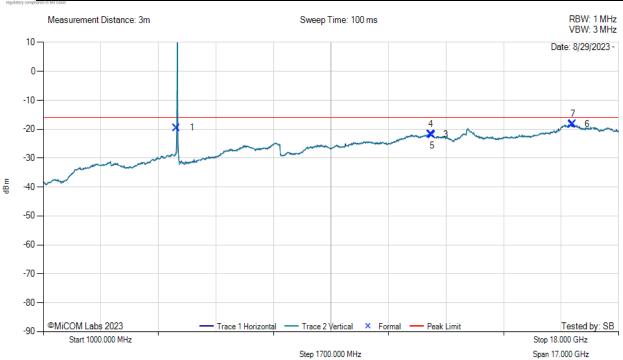
Transmitter Spurious Emissions

					1000	.00 - 18000.00 N	ЛHz					
Num	Frequency MHz	Raw dBm	Cable Loss dB	AF dB/m	Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
1	4944.00	-23.71	-1.70	10.18	23.73	Fundamental	Horizontal	149	-			Pass
2	12458.00	-75.66	-2.83	13.08	-21.96	AVG	Horizontal	149	30	-16.0	-6.0	Pass
3	13393.00	-75.52	-2.84	13.80	-21.90	AVG	Horizontal	99	330	-16.0	-5.9	Pass
4	13427.00	-75.25	-2.84	13.84	-21.64	AVG	Horizontal	149	300	-16.0	-5.6	Pass
5	16555.00	-74.74	-3.11	13.24	-18.45	AVG	Vertical	99	149	-16.0	-2.5	Pass
6	16555.00	-74.87	-3.11	13.24	-18.58	AVG	Horizontal	99	268	-16.0	-2.6	Pass
Test No	Test Notes: POE Powered, Max Power											

Issue Date: 22nd September 2023

Page: 55 of 162

Serial #: RDWN90-U2 Rev A


Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Panel	Variant:	10 MHz Bandwidth
Antenna Gain (dBi):	7.0	Modulation:	256QAM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	4965.00	Data Rate:	39 MBit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

Transmitter Spurious Emissions

					1000	.00 - 18000.00 N	ЛНz					
Num	Frequency MHz	Raw dBm	Cable Loss dB	AF dB/m	Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
1	4944.00	-66.95	-1.70	10.18	-19.50	AVG	Horizontal	100	58	-16.0	-3.5	Pass
2	4961.00	-22.25	-1.67	10.21	25.16	Fundamental	Horizontal	149	-			Pass
3	12441.00	-75.42	-2.77	13.08	-21.79	AVG	Horizontal	149	0	-16.0	-5.8	Pass
4	12458.00	-75.58	-2.83	13.08	-21.88	AVG	Horizontal	199	210	-16.0	-5.9	Pass
5	12492.00	-75.66	-2.78	13.09	-21.99	AVG	Horizontal	100	30	-16.0	-6.0	Pass
6	16623.00	-74.87	-3.26	13.16	-18.31	AVG	Horizontal	149	270	-16.0	-2.3	Pass
7	16640.00	-74.91	-3.30	13.11	-18.25	AVG	Vertical	149	59	-16.0	-2.3	Pass

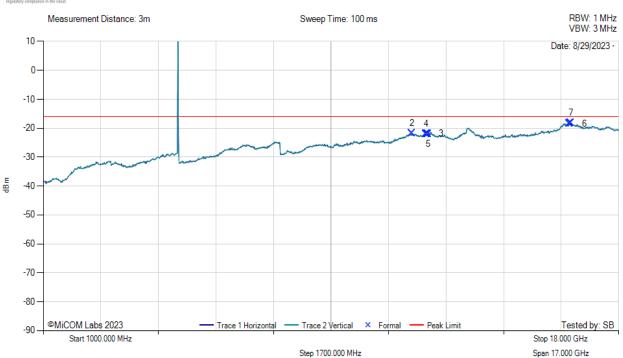
Test Notes: POE Powered, Max Power

Issue Date: 22nd September 2023

Page: 56 of 162

RADWIN JET DUO 5.x/5.x GHz FCC CFR 47 Part 90 Subpart Y

RDWN90-U2 Rev A Serial #:


Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Panel	Variant:	10 MHz Bandwidth
Antenna Gain (dBi):	7.0	Modulation:	256QAM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	4985.00	Data Rate:	39 MBit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

Transmitter Spurious Emissions

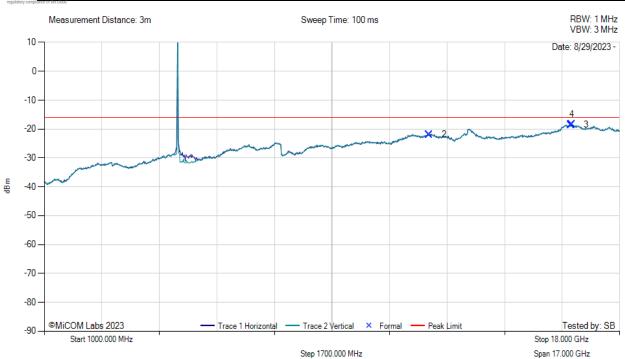
					1000	.00 - 18000.00 N	ИHz					
Num	Frequency MHz	Raw dBm	Cable Loss dB	AF dB/m	Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail
1	4978.00	-26.37	-1.79	10.23	21.17	Fundamental	Horizontal	149				Pass
2	11897.00	-75.22	-2.76	12.97	-21.88	AVG	Horizontal	99	58	-16.0	-5.9	Pass
3	12305.00	-75.35	-2.57	13.04	-21.97	AVG	Horizontal	199	120	-16.0	-6.0	Pass
4	12322.00	-75.28	-2.48	13.04	-21.98	AVG	Horizontal	199	240	-16.0	-6.0	Pass
5	12373.00	-75.46	-2.68	13.05	-21.94	AVG	Horizontal	99	120	-16.0	-5.9	Pass
6	16538.00	-74.62	-3.07	13.26	-18.41	AVG	Horizontal	149	58	-16.0	-2.4	Pass
7	16589.00	-74.53	-3.11	13.23	-18.21	AVG	Vertical	199	209	-16.0	-2.2	Pass

Test Notes: POE Powered, Max Power

Issue Date: 22nd September 2023

Serial #: RDWN90-U2 Rev A

9.6.1.2. Antenna AP0200600 18°


Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Directional	Variant:	10 MHz Bandwidth
Antenna Gain (dBi):	7.0	Modulation:	256QAM
Beam Forming Gain (Y):	10.0	Duty Cycle (%):	99
Channel Frequency (MHz):	4945.00	Data Rate:	39 MBit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

MiTest.

Transmitter Spurious Emissions

					1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBm	Cable Loss dB	AF dB/m	Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail				
1	4944.00	-17.85	-1.70	10.18	29.60	Fundamental	Horizontal	149				Pass				
2	12373.00	-75.47	-2.68	13.05	-21.95	AVG	Horizontal	100	300	-16.0	-5.9	Pass				
3	16555.00	-74.82	-3.11	13.24	-18.53	AVG	Horizontal	100	268	-16.0	-2.5	Pass				
4	16589.00	-74.82	-3.11	13.23	-18.51	AVG	Vertical	199	239	-16.0	-2.5	Pass				

Test Notes: POE Powered, Max Power

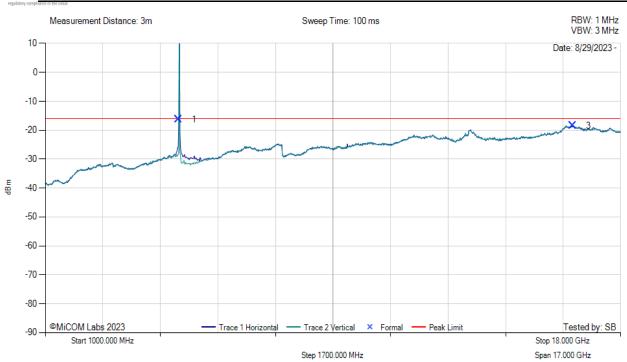
Issue Date: 22nd September 2023

Page:

58 of 162

RADWIN JET DUO 5.x/5.x GHz FCC CFR 47 Part 90 Subpart Y

RDWN90-U2 Rev A Serial #:


Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Directional	Variant:	10 MHz Bandwidth
Antenna Gain (dBi):	7.0	Modulation:	256QAM
Beam Forming Gain (Y):	10.0	Duty Cycle (%):	99
Channel Frequency (MHz):	4965.00	Data Rate:	39 MBit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

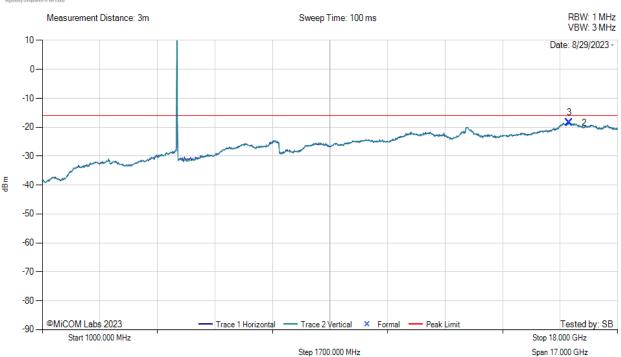
Transmitter Spurious Emissions

					1000	.00 - 18000.00 N	ИHz					
Num	MHz dBm Loss dB/m dBm				Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail	
1	4944.00	-63.69	-1.70	10.18	-16.25	Fundamental	Horizontal	149				Pass
2	4961.00	-16.95	-1.67	10.21	30.47	Fundamental	Horizontal	149	1			Pass
3	16589.00	-74.70	-3.11	13.23	-18.39	AVG	Vertical	149	269	-16.0	-2.4	Pass

Test Notes: POE Powered, Max Power

Issue Date: 22nd September 2023

Serial #: RDWN90-U2 Rev A


Equipment Configuration for Transmitter Spurious Emissions

Antenna:	Directional	Variant:	10 MHz Bandwidth
Antenna Gain (dBi):	7.0	Modulation:	256QAM
Beam Forming Gain (Y):	10.0	Duty Cycle (%):	99
Channel Frequency (MHz):	4985.00	Data Rate:	39 MBit/s
Power Setting:	Max	Tested By:	SB

Test Measurement Results

Transmitter Spurious Emissions

					1000	.00 - 18000.00 N	ИHz					
Num	MHz dBm Loss dB/m dBm				Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail	
1	4978.00	-21.53	-1.79	10.23	26.00	Fundamental	Horizontal	149				Pass
2	16555.00	-74.73	-3.11	13.24	-18.44	AVG	Horizontal	99	180	-16.0	-2.4	Pass
3	16572.00	-74.69	-3.03	13.24	-18.46	AVG	Vertical	149	0	-16.0	-2.5	Pass

Test Notes: POE Powered, Max Power

Issue Date: 22nd September 2023

Page:

60 of 162

Serial #: RDWN90-U2 Rev A

9.6.2. Receiver Radiated Spurious Emissions

Radiated Spurious Emissionsa							
Standard:	RSS-Gen	Ambient Temp. (°C):	24.0 - 27.5				
Test Heading:	Receiver Radiated Emissions	Rel. Humidity (%):	32 - 45				
Standard Section(s):	4.10, 6	Pressure (mBars):	999 - 1001				
Reference Document(s):	See Normative References						

Test Procedure for Receiver RadiatedSpurious Emissions

RSS-Gen §4.10 the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g.. local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is higher, without exceeding 40 GHz.

For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.

Above 1000 MHz, measurements shall be performed using an average detector with a minimum resolution bandwidth of 1 MHz.

RSS-Gen §6 Receiver Spurious Radiated Limits

Spurious emissions from receivers shall not exceed the radiated limits shown in the table below:

RSS-Gen Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Test Procedure

Measurements were made while EUT was operating in a receiver mode of operation. Radiated Receiver emissions were measured to 40 GHz.

The measurement equipment was set to measure in peak hold mode. The emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode.

The highest emissions relative to the limit are listed for each frequency spanned.

Measurements below 1 GHz utilized 100 KHz RBW, measurements above 1 GHz were performed using a minimum RBW of 1 MHz.

Emission measurements were performed to the 10th harmonic of the transmitter. No emissions were found.

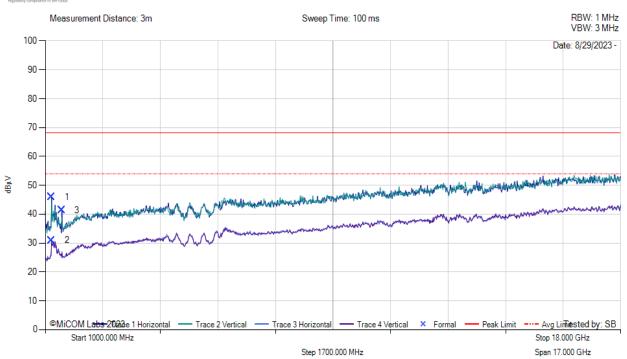
Issue Date: 22nd September 2023

Page:

61 of 162

62 of 162

Serial #: RDWN90-U2 Rev A


Equipment Configuration for Receiver Spurious Emissions

Antenna:	Directional	Variant:	10 MHz Bandwidth
Antenna Gain (dBi):	7.0	Modulation:	256QAM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	Not Applicable
Channel Frequency (MHz):	4965.00	Data Rate:	Not Applicable
Power Setting:	Not Applicable	Tested By:	SB

Test Measurement Results

FCC Spurious 1 GHz -18 GHz

1000.00 - 18000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB/m	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1187.00	61.50	1.40	28.39	45.95	MaxP	Horizontal	149	300	68.2	-22.3	Pass
2	1187.00	46.49	1.40	28.39	30.94	AVG	Horizontal	100	300	54.0	-23.1	Pass
3	1493.00	56.46	1.57	28.27	41.30	MaxP	Horizontal	100	240	68.2	-26.9	Pass

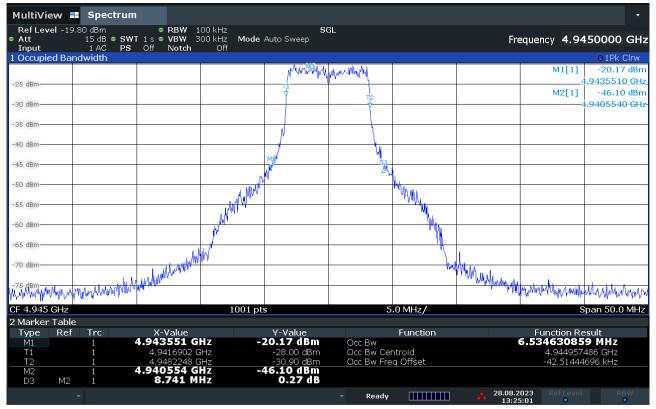
Test Notes: Receiver Mode

Issue Date: 22nd September 2023 Page:

Serial #: RDWN90-U2 Rev A

A. APPENDIX - GRAPHICAL IMAGES

Issue Date: 22nd September 2023 **Page**: 63 of 162



Serial #: RDWN90-U2 Rev A

A.1. 26 dB & 99% Bandwidth

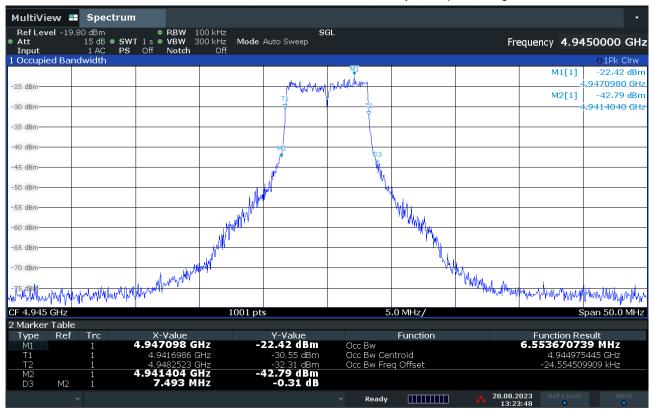
26 dB & 99% BANDWIDTH

Variant: 10MHz, Channel: 4945.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

13:25:01 28.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 64 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

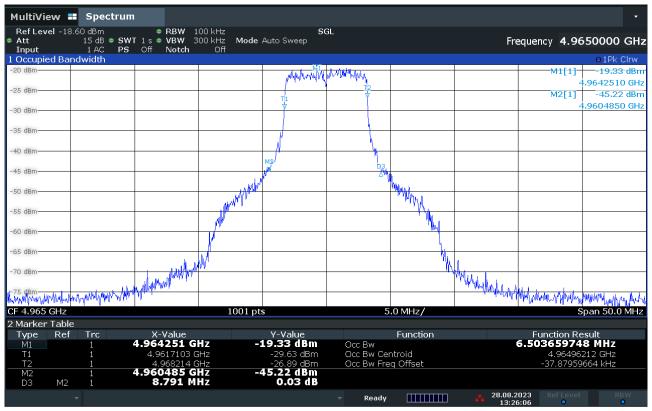
MiTest.

Variant: 10MHz, Channel: 4945.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

13:23:48 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 65 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

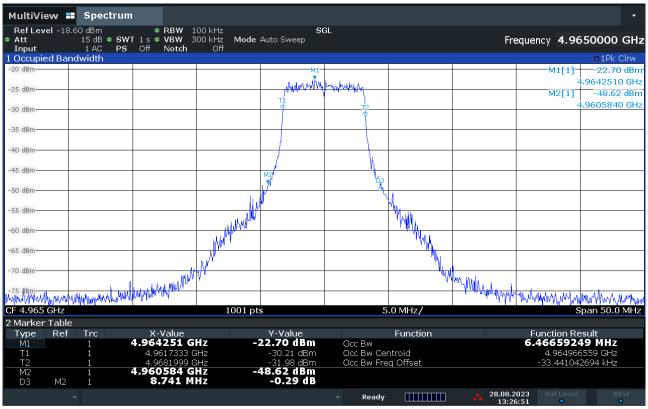
MiTest.

Variant: 10MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

13:26:06 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 66 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

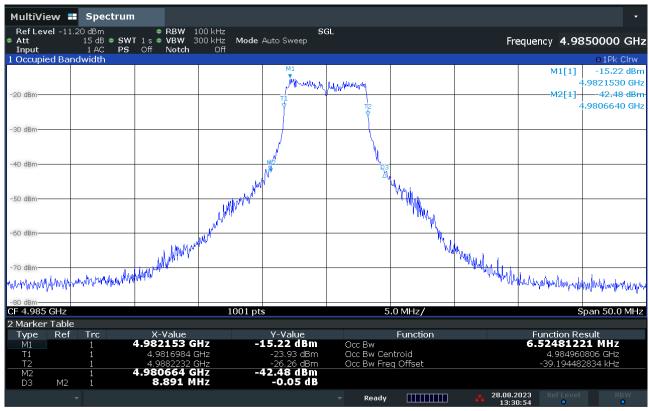
MiTest.

Variant: 10MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

13:26:51 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 67 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

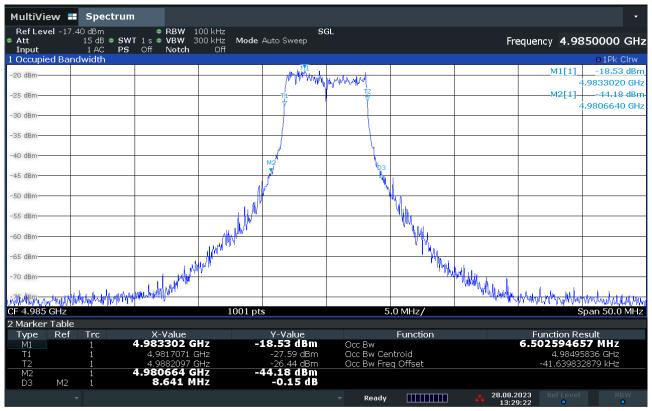
MiTest.

Variant: 10MHz, Channel: 4985.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

13:30:54 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 68 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.

Variant: 10MHz, Channel: 4985.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

13:29:22 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 69 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

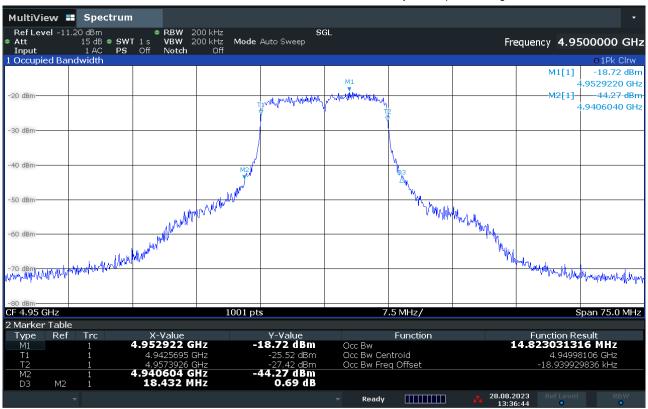
MiTest.

Variant: 20MHz, Channel: 4950.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

13:35:21 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 70 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.

Variant: 20MHz, Channel: 4950.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

13:36:44 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 71 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

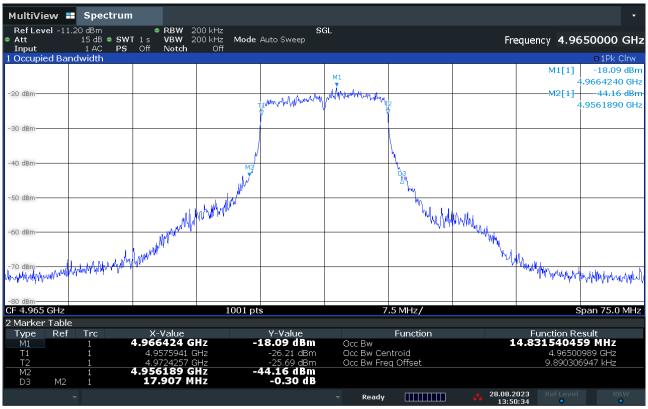
MiTest.

Variant: 20MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

13:51:54 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 72 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

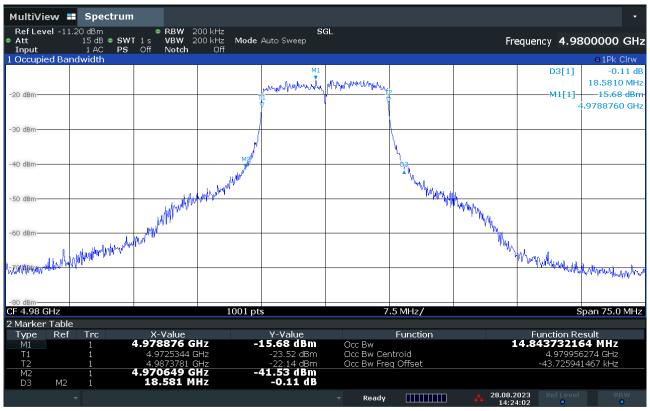
MiTest.

Variant: 20MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

13:50:34 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 73 of 162



Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.

Variant: 20MHz, Channel: 4980.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

14:24:02 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 74 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.

Variant: 20MHz, Channel: 4980.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

14:24:58 28.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 75 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

14:37:16 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 76 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

14:36:10 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 77 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.

Variant: 40MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

14:30:45 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 78 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.

Variant: 40MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

14:32:48 28.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 79 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

MiTest.

Variant: 40MHz, Channel: 4970.00 MHz, Polarity H, Temp: 20, Voltage: 55 Vdc

14:29:31 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 80 of 162

Serial #: RDWN90-U2 Rev A

26 dB & 99% BANDWIDTH

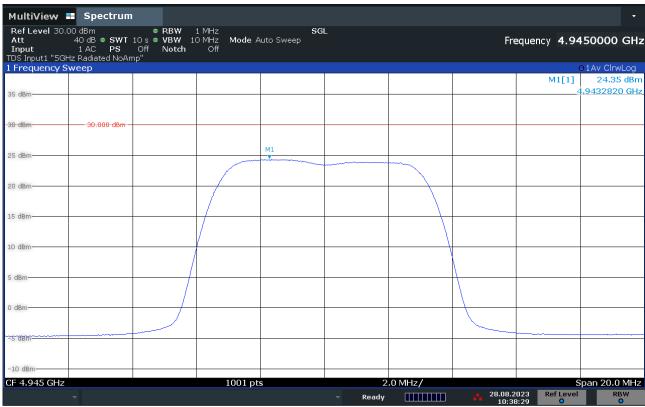
Milest.
regulatory compliance in the cloud

Variant: 40MHz, Channel: 4970.00 MHz, Polarity V, Temp: 20, Voltage: 55 Vdc

14:28:35 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 81 of 162



Serial #: RDWN90-U2 Rev A

A.2. Power Spectral Density

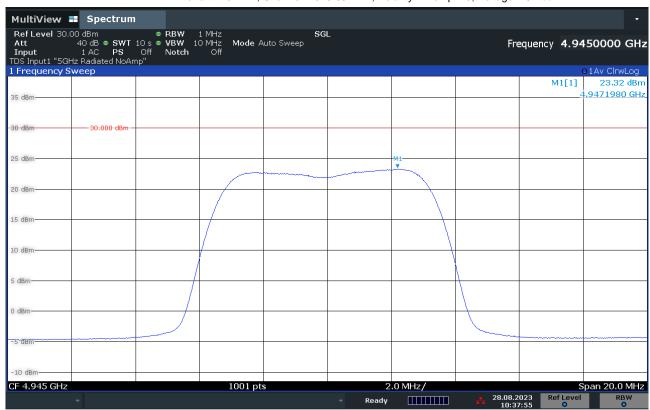
POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 4945.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:38:29 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 82 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

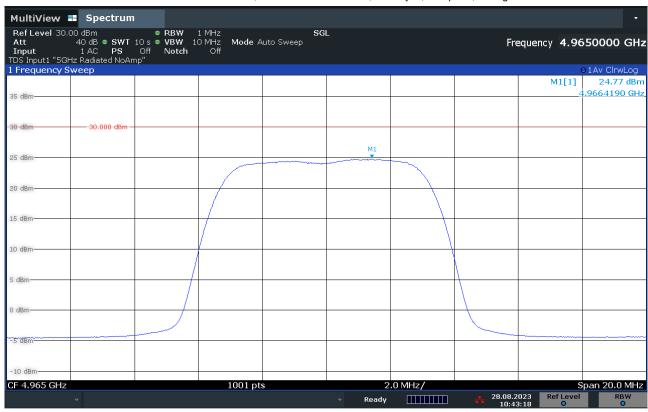
MiTest.

Variant: 10 MHz, Channel: 4945.00 MHz, Polarity V Temp: 20, Voltage: 48 Vdc

10:37:55 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 83 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

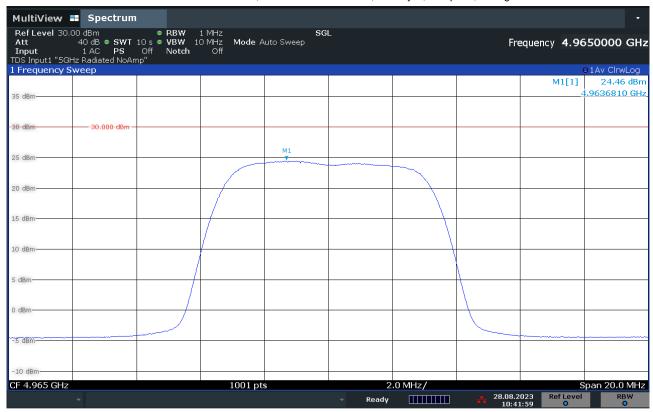
MiTest.

Variant: 10 MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:43:18 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 84 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

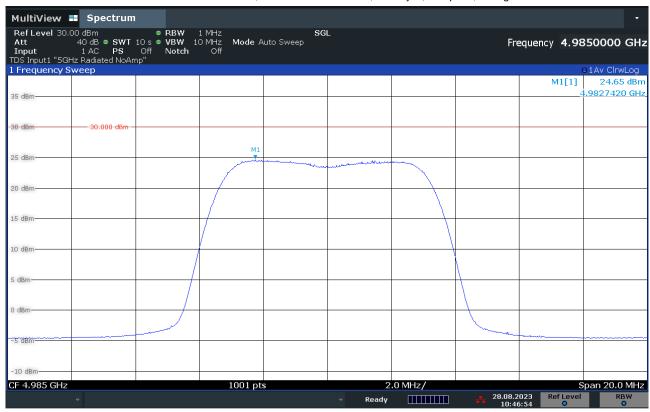
MiTest

Variant: 10 MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

10:41:59 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 85 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

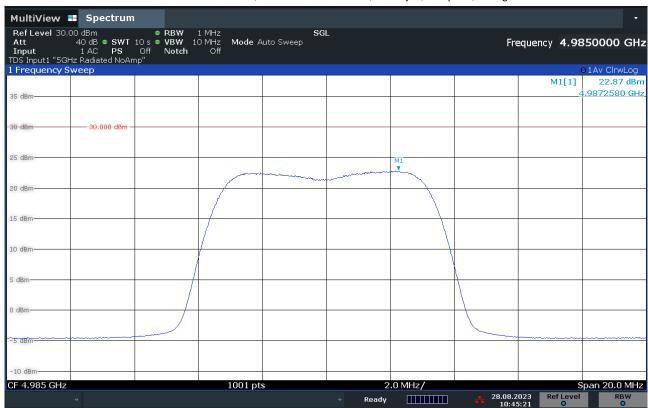
MiTest

Variant: 10 MHz, Channel: 4985.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:46:55 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 86 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

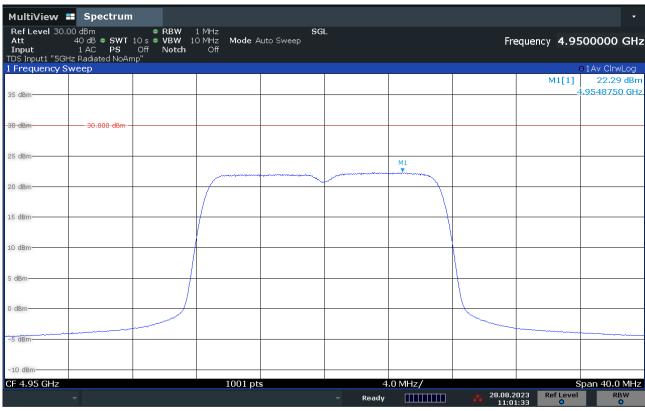
MiTest.

Variant: 10 MHz, Channel: 4985.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

10:45:21 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 87 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

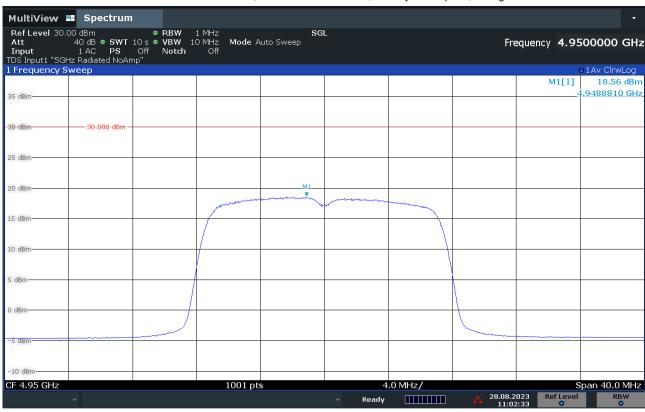
MiTest.
regulatory compliance in the cloud

Variant: 20 MHz, Channel: 4950.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

11:01:34 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 88 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

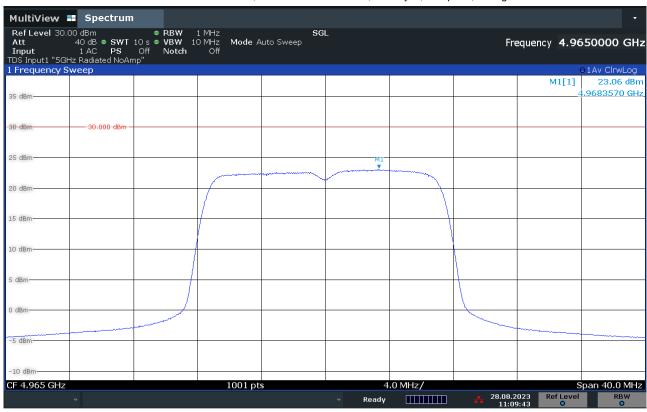
MiTest

Variant: 20 MHz, Channel: 4950.00 MHz, Polarity V Temp: 20, Voltage: 48 Vdc

11:02:34 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 89 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

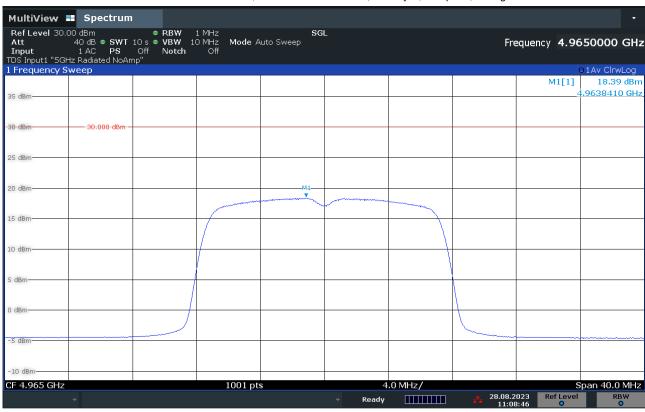
MiTest.

Variant: 20 MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

11:09:44 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 90 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

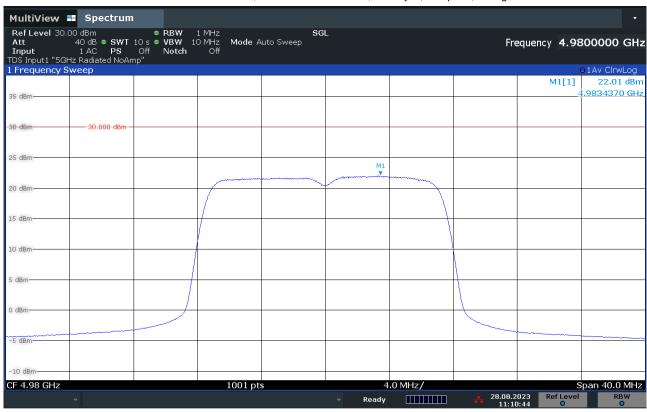
MiTest.

Variant: 20 MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

11:08:47 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 91 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

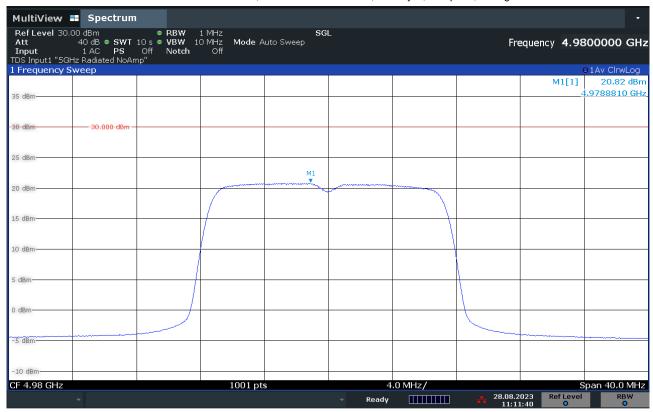
MiTest.

Variant: 20 MHz, Channel: 4980.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

11:10:45 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 92 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

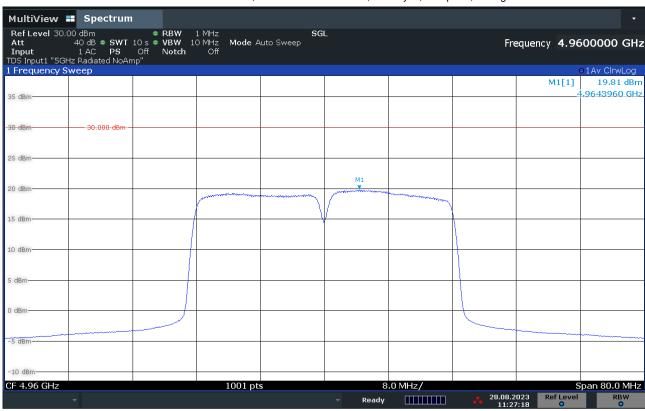
MiTest

Variant: 20 MHz, Channel: 4980.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

11:11:40 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 93 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

MiTest.

Variant: 40 MHz, Channel: 4960.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

11:27:19 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 94 of 162

Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

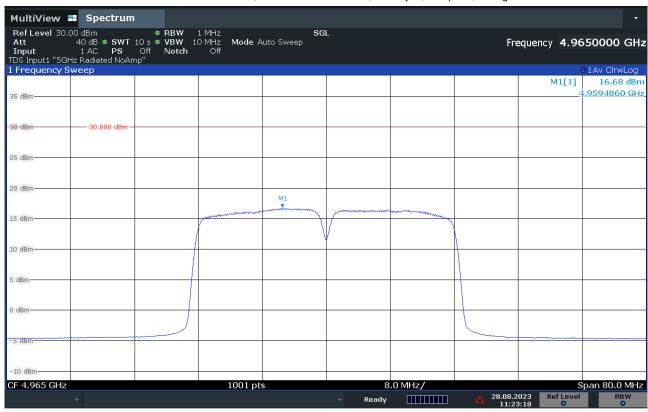
MiTest

Variant: 40 MHz, Channel: 4960.00 MHz, Polarity V Temp: 20, Voltage: 48 Vdc

11:26:26 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 95 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

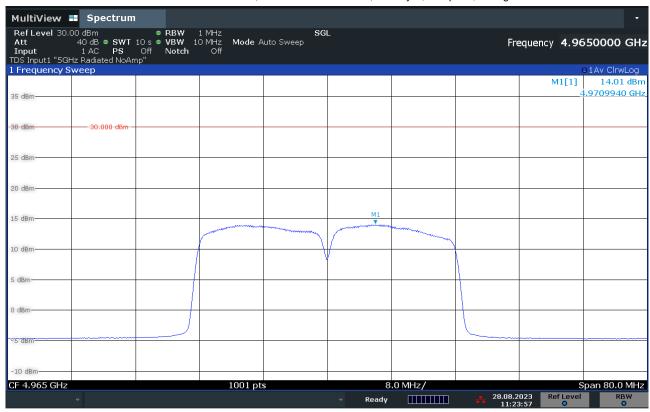
MiTest

Variant: 40 MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

11:23:19 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 96 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

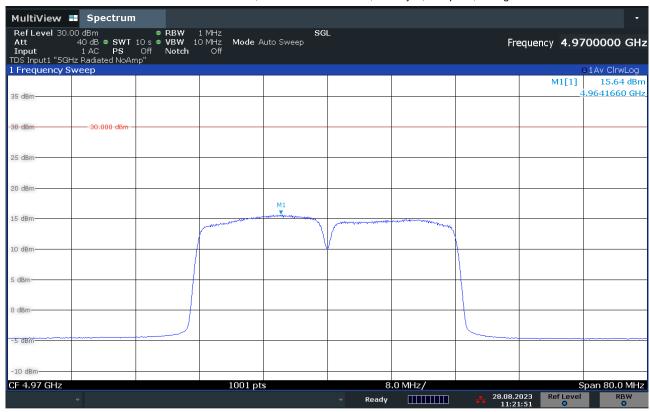
MiTest.

Variant: 40 MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

11:23:58 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 97 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

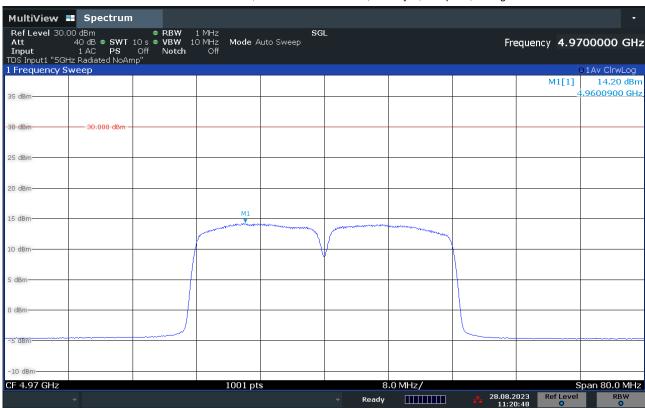
MiTest

Variant: 40 MHz, Channel: 4970.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

11:21:52 28.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 98 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

MiTest

Variant: 40 MHz, Channel: 4970.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

11:20:49 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 99 of 162

Serial #:

RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

MiTest Variant: 80 MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc Max/Ref Lvl Marker 1 [T1] RBW 1 MHz RF Att 0 dB 136 dB**y**V 101.32 dB**y**V VBW 3 MHz 93 dB**y**V 5.22843687 GHz SWT 5 ms Unit dByV 6 dB Offset V1 [T1] 32 dBy D1 123 dB**y**V_ 110 IN1 **1VIEW** 1AV 100 90 8 (TDS 60 50 MiTest Radiat 16 MHz/ Center 5.21 GHz Span 160 MHz

Date: 14.AUG.2019 16:10:04

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1: 5228.44 MHz: 102.32 dBuV/m	Limit: ≤ 16.00 dBm, 123 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

Issue Date: 22nd September 2023 Page: 100 of 162

Serial #: RDWN90-U2 Rev A

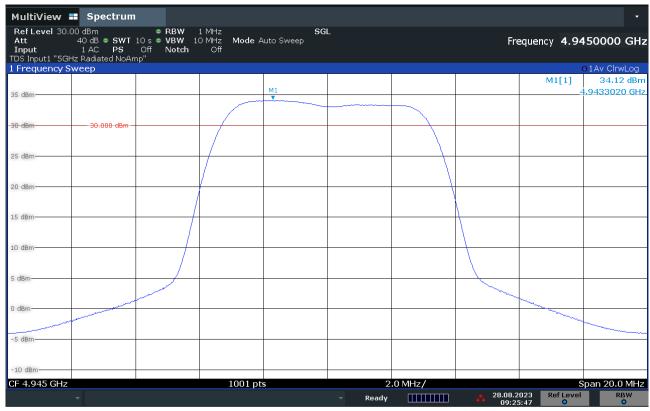
POWER SPECTRAL DENSITY

 Analyzer Setup
 Marker:Frequency:Amplitude
 Test Results

 Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW
 M1 : 5197.66 MHz : 102.43 dBuV/m
 Limit: ≤ 16.00 dBm, 123 dBuVm

back to matrix

Issue Date: 22nd September 2023 **Page:** 101 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

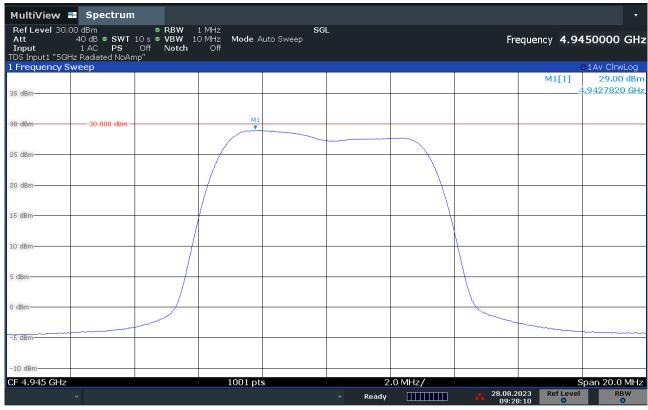
MiTest.

Variant: 10 MHz, Channel: 4960.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

09:25:47 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 102 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

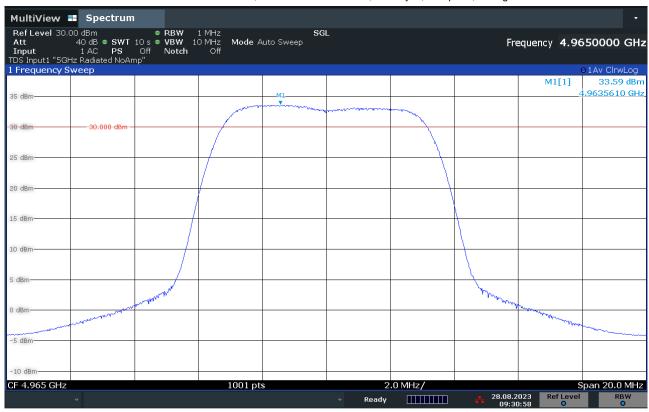
MiTest.

Variant: 10 MHz, Channel: 4960.00 MHz, Polarity V Temp: 20, Voltage: 48 Vdc

09:28:10 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 103 of 162



Serial #: RDWN90-U2 Rev A

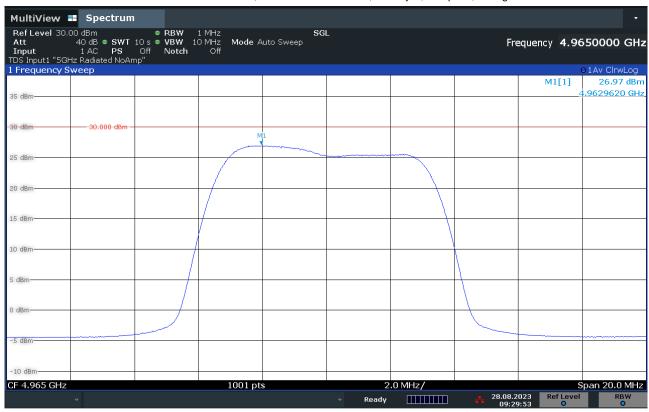
POWER SPECTRAL DENSITY

Variant: 10 MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

09:30:58 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 104 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

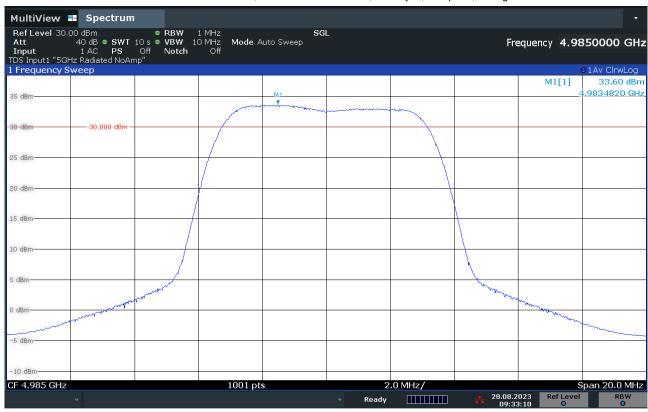
MiTest

Variant: 10 MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

09:29:54 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 105 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

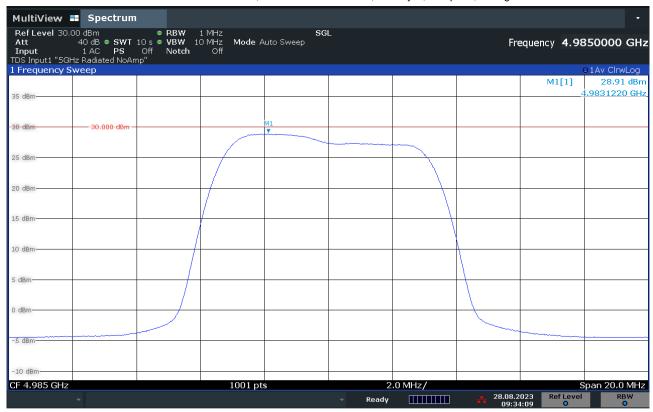
MiTest.

Variant: 10 MHz, Channel: 4970.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

09:33:11 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 106 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

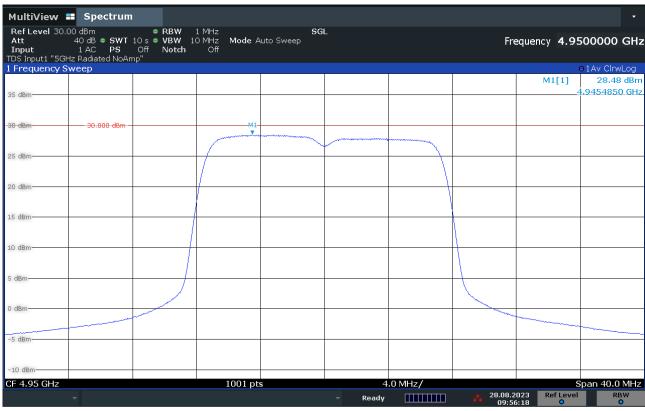
MiTest

Variant: 10 MHz, Channel: 4970.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

09:34:09 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 107 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

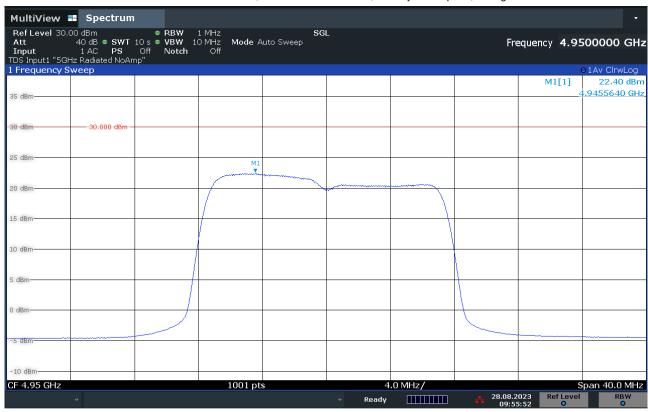
MiTest.
regulatory compliance in the cloud

Variant: 20 MHz, Channel: 4950.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

09:56:19 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 108 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

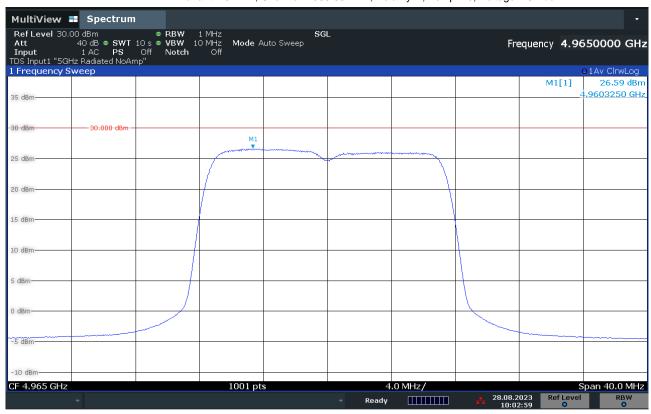
MiTest

Variant: 20 MHz, Channel: 4950.00 MHz, Polarity V Temp: 20, Voltage: 48 Vdc

09:55:52 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 109 of 162


110 of 162

Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

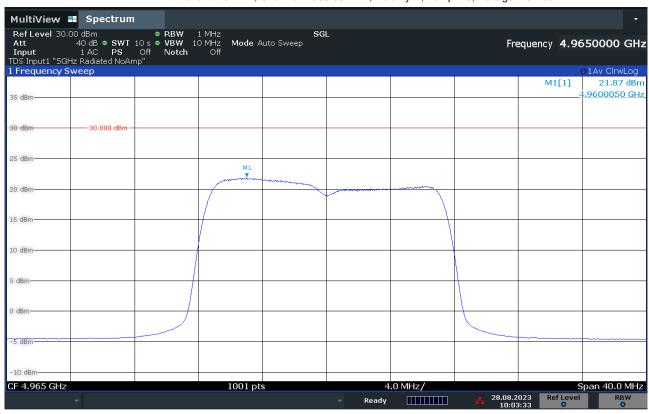
MiTest

Variant: 20 MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:03:00 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page:



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

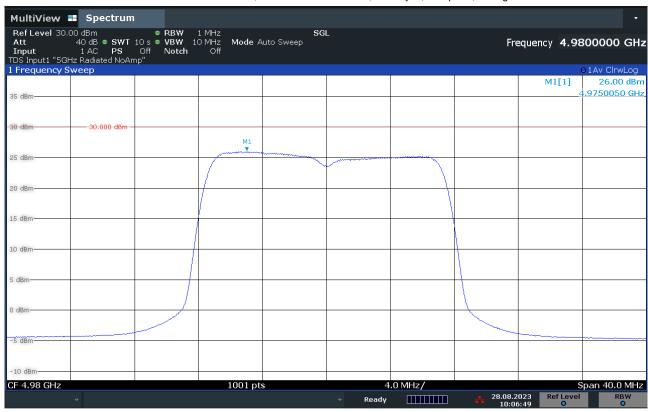
MiTest

Variant: 20 MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

10:03:34 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 111 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

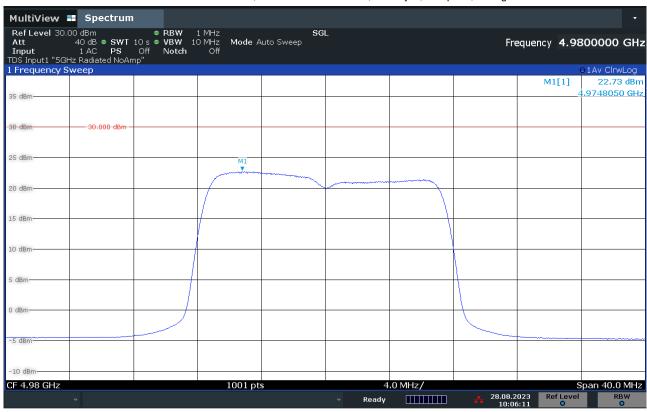
MiTest.

Variant: 20 MHz, Channel: 4980.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:06:50 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 112 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

MiTest.

Variant: 20 MHz, Channel: 4980.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

10:06:12 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 113 of 162

Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

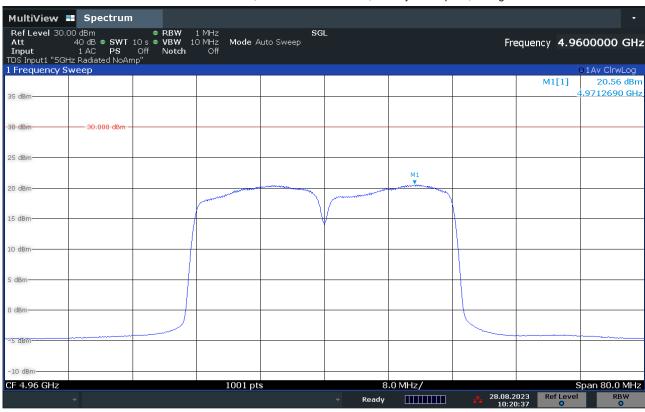
MiTest.

Variant: 40 MHz, Channel: 4960.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:19:30 28.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 114 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

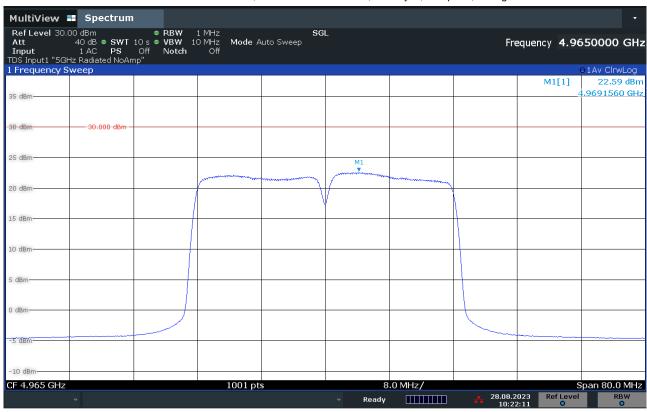
MiTest.

Variant: 40 MHz, Channel: 4960.00 MHz, Polarity V Temp: 20, Voltage: 48 Vdc

10:20:38 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 115 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

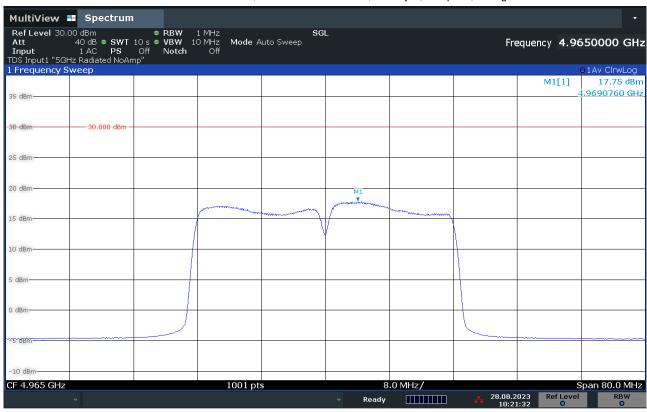
MiTest

Variant: 40 MHz, Channel: 4965.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:22:11 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 116 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

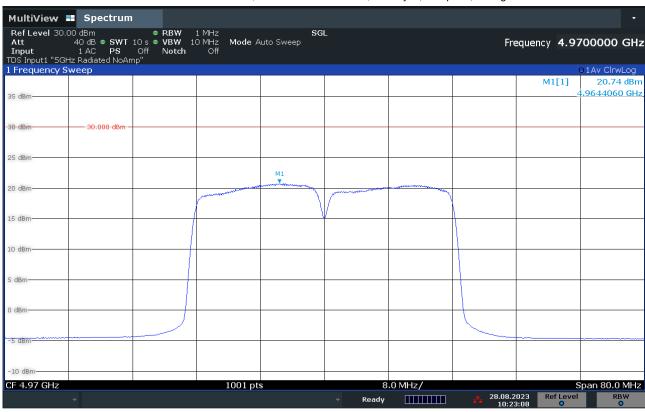
MiTest.

Variant: 40 MHz, Channel: 4965.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

10:21:32 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 117 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

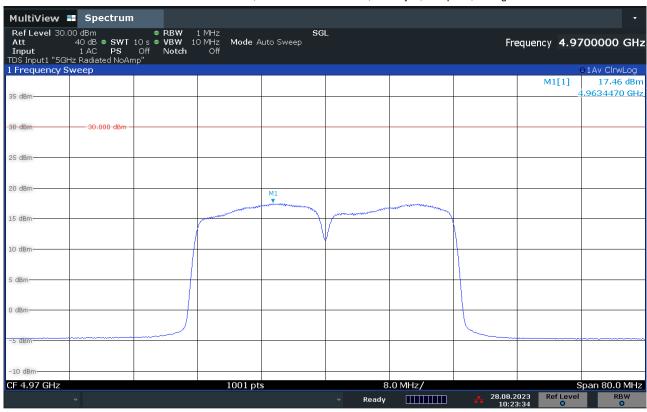
MiTest

Variant: 40 MHz, Channel: 4970.00 MHz, Polarity H, Temp: 20, Voltage: 48 Vdc

10:23:08 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 118 of 162



Serial #: RDWN90-U2 Rev A

POWER SPECTRAL DENSITY

MiTest.

Variant: 40 MHz, Channel: 4970.00 MHz, Polarity V, Temp: 20, Voltage: 48 Vdc

10:23:34 28.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 119 of 162

Serial #: RDWN90-U2 Rev A

A.3. Peak Excursion Ratio

MiTest.

PEAK EXCURSION RATIO

Variant: 20MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

09:09:25 29.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 120 of 162

Serial #: RDWN90-U2 Rev A

PEAK EXCURSION RATIO

MiTest.

Variant: 40MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

09:06:54 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 121 of 162

Serial #: RDWN90-U2 Rev A

PEAK EXCURSION RATIO

MiTest.

Variant: 50MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

09:07:21 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 122 of 162

Serial #: RDWN90-U2 Rev A

PEAK EXCURSION RATIO

MiTest

Variant: 20MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

08:59:11 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 123 of 162

Serial #: RDWN90-U2 Rev A

PEAK EXCURSION RATIO

MiTest

Variant: 20MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

09:01:06 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 124 of 162



Serial #: RDWN90-U2 Rev A

PEAK EXCURSION RATIO

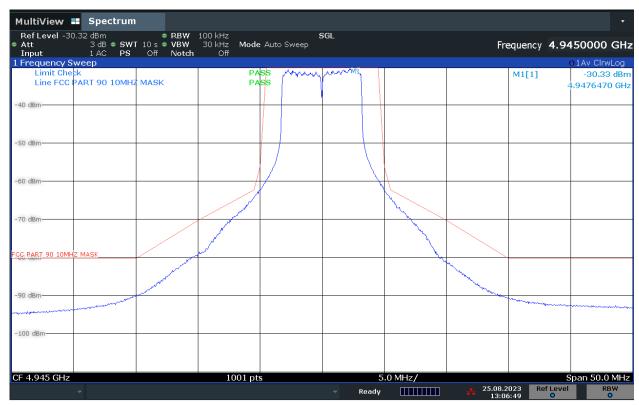
MiTest

Variant: 20MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

09:02:21 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page**: 125 of 162


Serial #: RDWN90-U2 Rev A

A.4. Spectrum Emission Mask

SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4945.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:06:50 25.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 126 of 162

Serial #: RDWN90-U2 Rev A

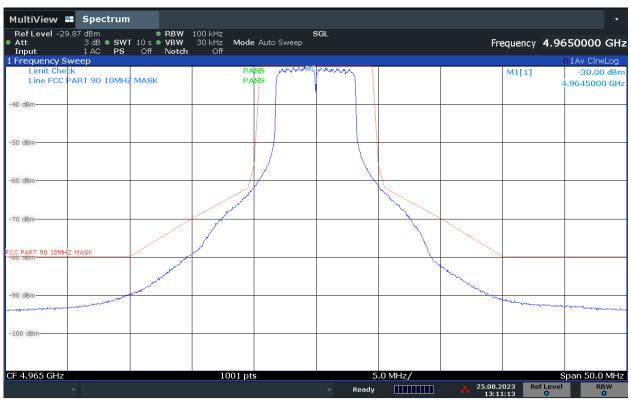
SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4945.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:28:52 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 127 of 162



Serial #: RDWN90-U2 Rev A

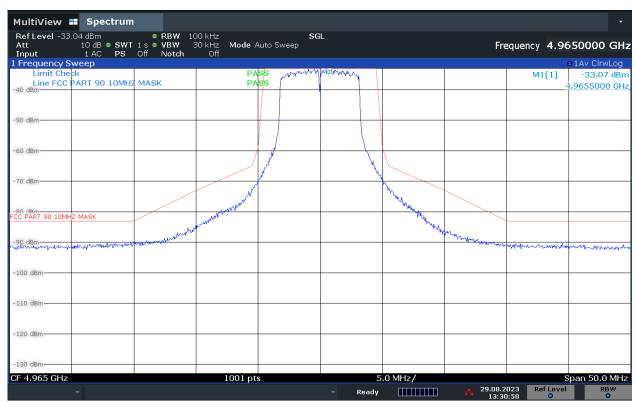
SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:11:14 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 128 of 162



Serial #: RDWN90-U2 Rev A

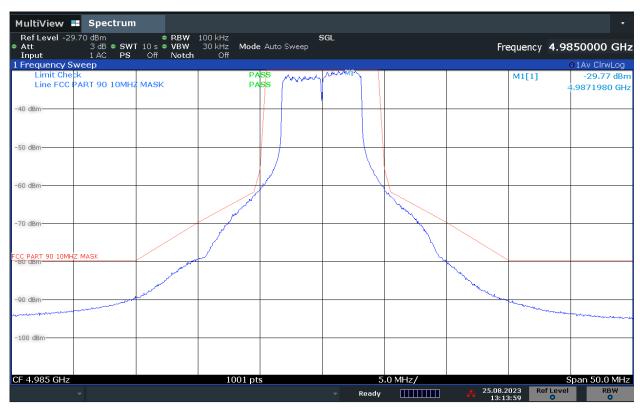
SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4965.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:30:59 29.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 129 of 162



Serial #: RDWN90-U2 Rev A

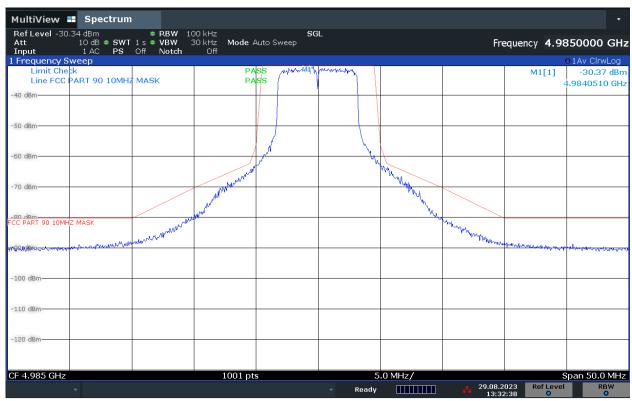
SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4985.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:14:00 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 130 of 162



Serial #: RDWN90-U2 Rev A

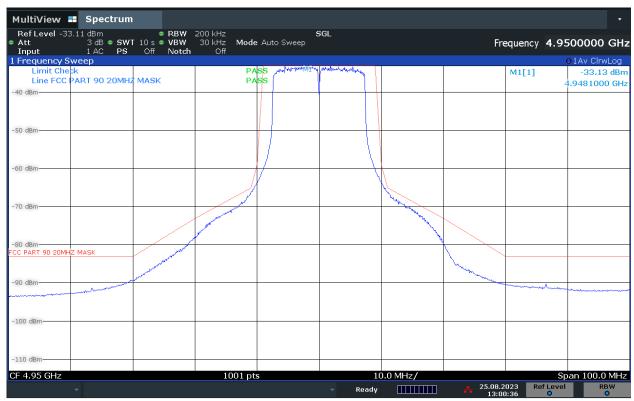
SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4985.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:32:39 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 131 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4950.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:00:37 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 132 of 162

Serial #: RDWN90-U2 Rev A

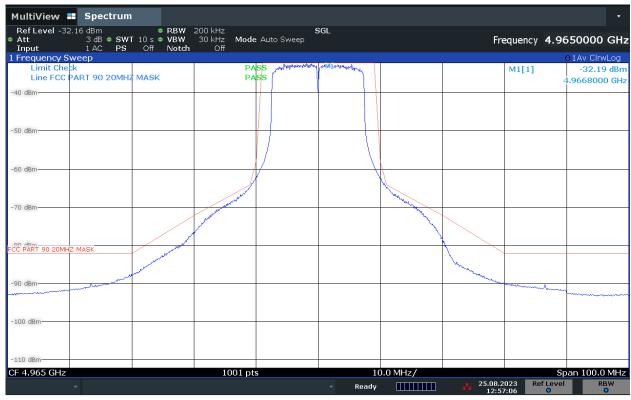
SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4950.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:55:31 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 133 of 162



Serial #: RDWN90-U2 Rev A

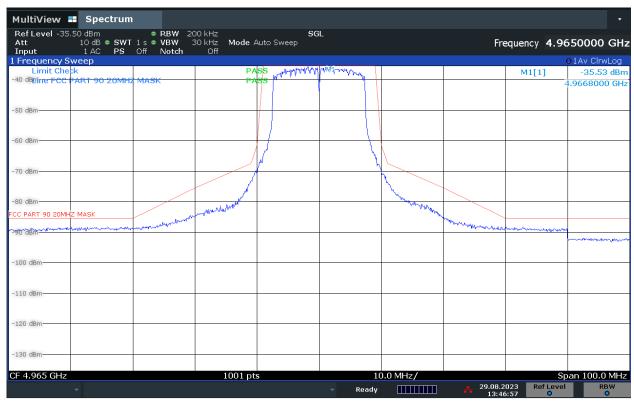
SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

12:57:06 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 134 of 162



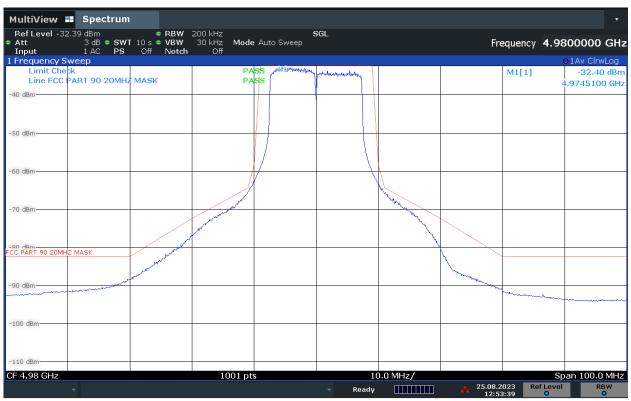
Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4965.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:46:58 29.08.2023

back to matrix


Issue Date: 22nd September 2023 **Page:** 135 of 162

Serial #: RDWN90-U2 Rev A

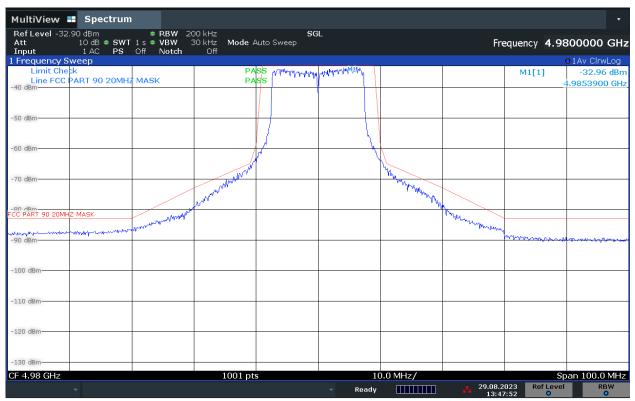
SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4980.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

12:53:40 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 136 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4980.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:47:53 29.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 137 of 162

Serial #: RDWN90-U2 Rev A

MiTest.

SPECTRUM EMISSION MASK

Variant: 40MHz, Channel: 4965 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

12:19:41 25.08.2023

back to matrix


Issue Date: 22nd September 2023 **Page:** 138 of 162

Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 40MHz, Channel: 4965 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:51:54 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 139 of 162

Serial #: RDWN90-U2 Rev A

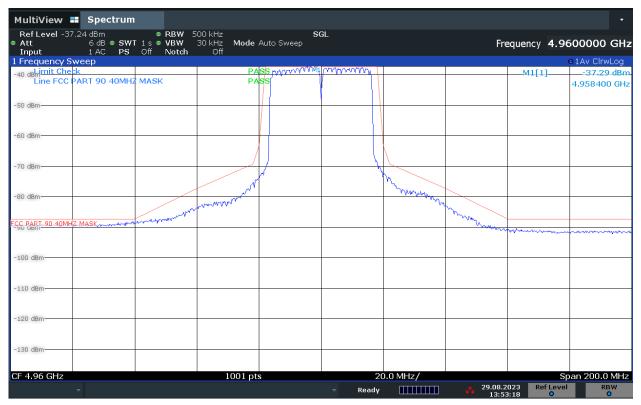
SPECTRUM EMISSION MASK

Variant: 40MHz, Channel: 4960 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

12:18:13 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 140 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

MiTest.

Variant: 40MHz, Channel: 4960 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:53:19 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 141 of 162

Serial #: RDWN90-U2 Rev A

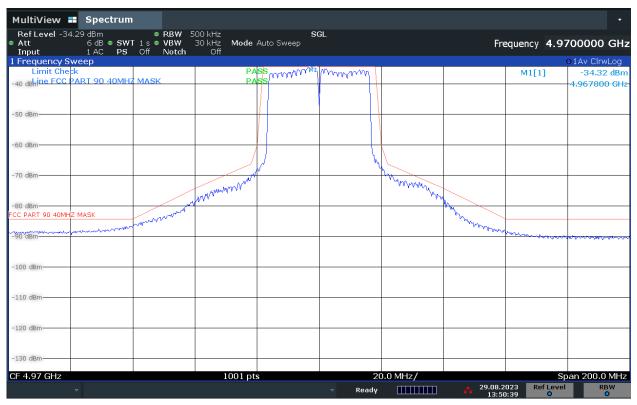
SPECTRUM EMISSION MASK

Variant: 40MHz, Channel: 4970 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

12:24:31 25.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 142 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

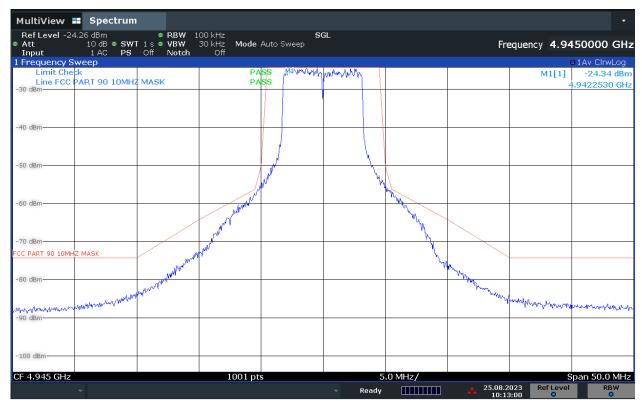
MiTest

Variant: 40MHz, Channel: 4970 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:50:40 29.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 143 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4945.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

10:13:00 25.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 144 of 162

Serial #: RDWN90-U2 Rev A

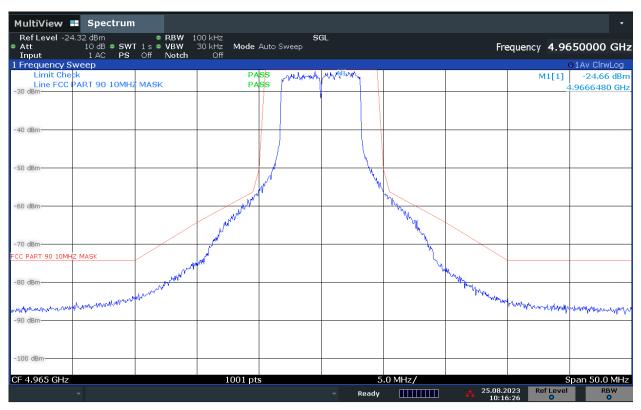
SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4945.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:13:02 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 145 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

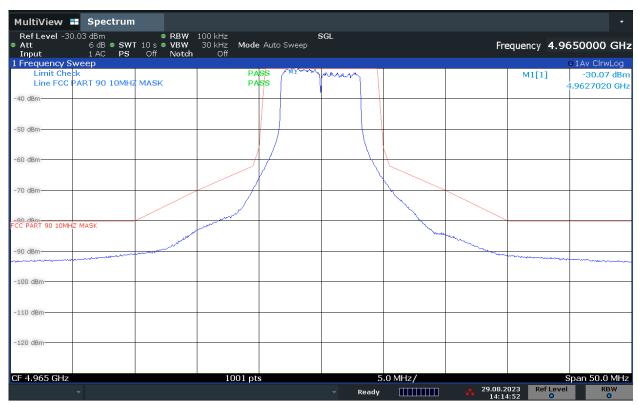
Variant: 10MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

10:16:26 25.08.2023

back to matrix

Issue Date: 22nd September 2023

Page: 146 of 162



Serial #: RDWN90-U2 Rev A

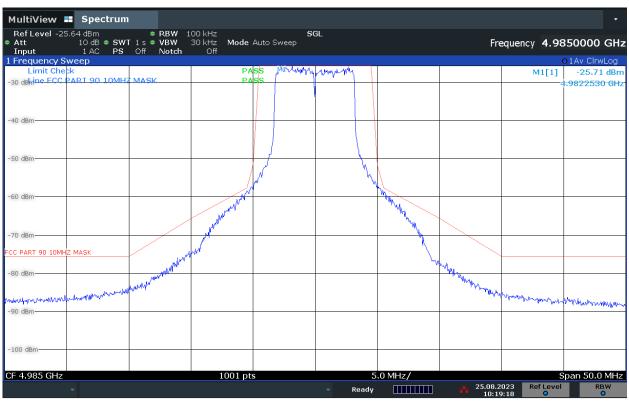
SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4965.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:14:52 29.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 147 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4985.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

10:19:19 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 148 of 162

Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 10MHz, Channel: 4985.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:16:25 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 149 of 162

Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4950.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:22:01 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 150 of 162

Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4950.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:10:59 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 151 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4965.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:24:03 25.08.2023

back to matrix

Issue Date: 22nd September 2023

Page: 152 of 162

Serial #: RDWN90-U2 Rev A

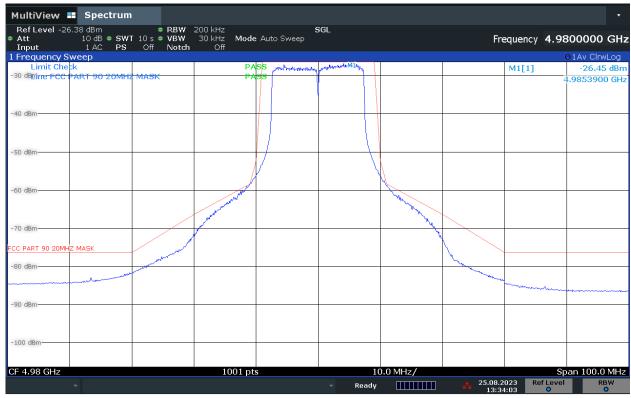
SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4965.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:08:56 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 153 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4980.00 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:34:03 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 154 of 162

Serial #: RDWN90-U2 Rev A

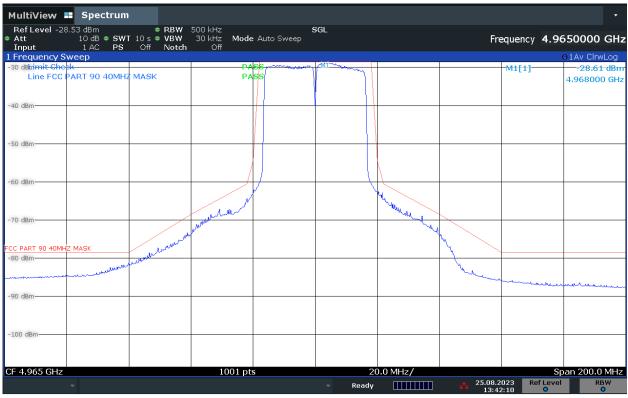
SPECTRUM EMISSION MASK

Variant: 20MHz, Channel: 4980.00 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:04:40 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 155 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 40MHz, Channel: 4965 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:42:11 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 156 of 162

Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

Variant: 40MHz, Channel: 4965 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:00:52 29.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 157 of 162



Serial #: RDWN90-U2 Rev A

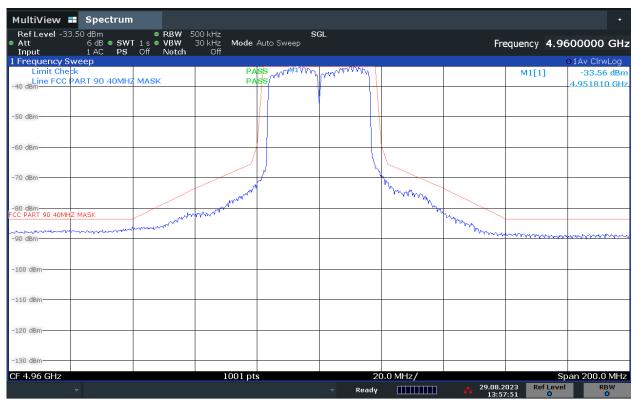
SPECTRUM EMISSION MASK

Variant: 40MHz, Channel: 4960 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:44:29 25.08.2023

back to matrix

Issue Date: 22nd September 2023 **Page:** 158 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

MiTest

Variant: 40MHz, Channel: 4960 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

13:57:52 29.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 159 of 162



Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

MiTest

Variant: 40MHz, Channel: 4970 MHz, Horizontal, Temp: 20, Voltage: 56 Vdc

13:39:36 25.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 160 of 162

Serial #: RDWN90-U2 Rev A

SPECTRUM EMISSION MASK

MiTest regulatory compliance in the cloud

Variant: 40MHz, Channel: 4970 MHz, Vertical, Temp: 20, Voltage: 56 Vdc

14:02:25 29.08.2023

back to matrix

Issue Date: 22nd September 2023 Page: 161 of 162

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com