Test of RADWIN 2000 JET, RADWIN 5000 JET

To: FCC Part 90 Subpart Z & IC RSS-197

Test Report Serial No.: RDWN35-U3 Rev A

Test of: RADWIN 2000 JET, RADWIN 5000 JET

To: FCC Part 90 Subpart Z & IC RSS-197

Test Report Serial No.: RDWN35-U3 Rev A

This report supersedes NONE

Manufacturer: RADWIN Ltd 27 Habarzel Street Tel Aviv, 6971039 Israel

Product Function: 3.x GHz Integrated Smart Antenna Outdoor Radio Service

Copy No: pdf Issue Date: 19th March 2015

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:3 of 192

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:4 of 192

TABLE OF CONTENTS

CREDITATION, LISTINGS and RECOGNITION	6
TESTING ACCREDITATION	6
RECOGNITION	7
PRODUCT CERTIFICATION	8
TEST RESULT CERTIFICATE	10
REFERENCES AND MEASUREMENT UNCERTAINTY	11
2.1. Normative References	11
2.2. Test and Uncertainty Procedures	11
PRODUCT DETAILS AND TEST CONFIGURATIONS	12
3.1. Technical Details	12
3.2. Scope of Test Program	13
3.3. Equipment Model(s) and Serial Number(s)	18
3.4. Antenna Details	18
3.5. Cabling and I/O Ports	18
3.7 Equipment Modifications	19
3.8. Deviations from the Test Standard	19
TEST EQUIPMENT CONFIGURATIONS	20
	20
4.1. Conducted Testing	20
4.1. Conducted Testing4.2. Radiated Testing	20 22
4.1. Conducted Testing	20 22 24
 4.1. Conducted Testing	20 22 24 25
 4.1. Conducted Testing	20 22 24 25 26
 4.1. Conducted Testing	20 22 24 25 26 27
 4.1. Conducted Testing	20 22 24 25 26 27 27
 4.1. Conducted Testing	20 22 24 25 26 27 27 27
 4.1. Conducted Testing	20 22 24 25 26 27 27 27 27 32
 4.1. Conducted Testing	20 22 24 25 26 27 27 27 32 37
 4.1. Conducted Testing	20 22 24 25 26 27 27 27 32 37 42
 4.1. Conducted Testing	20 22 24 25 26 27 27 27 27 27 32 37 42 43
 4.1. Conducted Testing	20 22 24 25 26 27 27 27 27 32 37 42 43 45 51
	TESTING ACCREDITATION RECOGNITION PRODUCT CERTIFICATION TEST RESULT CERTIFICATE REFERENCES AND MEASUREMENT UNCERTAINTY 2.1. Normative References 2.2. Test and Uncertainty Procedures PRODUCT DETAILS AND TEST CONFIGURATIONS 3.1. Technical Details 3.2. Scope of Test Program 3.3. Equipment Model(s) and Serial Number(s) 3.4. Antenna Details 3.5. Cabling and I/O Ports 3.6. Test Configurations 3.7. Equipment Modifications 3.8. Deviations from the Test Standard

8.	TES	T SET-UP PHOTOGRAPHS	65
	8.1.	Conducted Measurement Test Set-Up	
	8.2.	Radiated Spurious Emissions below 1GHz	
	8.3.	Radiated Spurious Emissions above 1GHz	
	8.4.	Digital Emissions (0.03 – 1 GHz)	
	8.5.	ac Wireline Emissions (150 kHz - 30 MHz)	69
AP	PEN	DIX A GRAPHICAL IMAGES	71
	A.1.	CONDUCTED TEST PLOTS	71
		A.1.1. Occupied Bandwidth	
		A.1.1. Occupied Bandwidth A.1.2. Power Spectral Density	72
		A.1.1. Occupied Bandwidth A.1.2. Power Spectral Density A.1.3. Frequency Stability	

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:6 of 192

ACCREDITATION, LISTINGS and RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:7 of 192

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB - Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:8 of 192

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

<u>United States of America – Telecommunication Certification Body (TCB)</u> TCB Identifier – US0159

Industry Canada – Certification Body

CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB) RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

DOCUMENT HISTORY

Document History			
Revision	Date	Comments	
Draft #1	12 th March 2015		
Draft #2	16 th March 2015		
Rev A	19 th March 2015	Initial Release	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:10 of 192

1. TEST RESULT CERTIFICATE

Manufacturer:	RADWIN Ltd	Tested By:	MiCOM Labs, Inc.
	27 Habarzel Street		575 Boulder Court
	Tel Aviv, 6971039		Pleasanton
	Israel		California, 94566, USA
EUT:	3.x GHz Integrated Smart Antenna Outdoor Radio Device	Telephone:	+1 925 462 0304
Model:	RADWIN 2000 JET, RADWIN 5000 JET	Fax:	+1 925 462 0306
S/N:	Prototype		
Test Date(s):	23rd - 4th March 2015	Website:	www.micomlabs.com

STANDARD(S)	TEST RESULTS
FCC Part 90 Subpart Z & IC RSS-197	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

CREDITE STING CERT #2381.01 Gordon Hurst

President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:11 of 192

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title
(i)	FCC 47 CFR Part 90	2004	Code of Federal Regulations
(ii)	IC RSS-197	Feb 2010	Wireless Broadband Access Equipment Operating in the Band 3650–3700 MHz
(iii)	ANSI C63.4	2003	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iv)	CISPR 22/ EN 55022	1997 1998	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(v)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements
(vi)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(Vii)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(Viii)	A2LA	14 th September 2005	Reference to A2LA Accreditation Status – A2LA Advertising Policy

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:12 of 192

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details

Details	Description
Burpose:	Test of the PADW/IN 2000 JET PADW/IN 5000 JET to ECC
ruipose.	Part 90 Subpart 7 & IC RSS-197 regulations
Applicant:	RADWIN I td
	27 Habarzel Street
	Tel Aviv 6971039
	Israel
Manufacturer:	As Applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	RDWN35-U3 Rev A
Date EUT received:	23 rd February 2015
Dates of test (from - to):	23rd - 4th March 2015
Standard(s) applied:	FCC Part 90 Subpart Z & IC RSS-197
No of Units Tested:	1
Type of Equipment:	3 GHz Integrated Smart Antenna Outdoor Radio Device
Manufacturers Trade Name:	RADWIN JET
Model(s):	RADWIN 2000 JET, RADWIN 5000 JET
Location for use:	Outdoor use only
Declared Frequency Range(s):	Transmit: 3,650 – 3,700 MHz,
	Receiver: 3,650 – 3,700 MHz
Type of Modulation:	BPSK, QPSK, 16QAM, 64QAM
Operational Bandwidths:	5, 10, 20, 40 MHz
Declared Maximum Output Power:	+30 dBm conducted
ITU Emission Designator:	5M0W7W
	10M0W7W
	20M0W7W
Iransmit/Receive Operation:	Time Division Duplex (TDD)
Rated Input Voltage and Current:	POE: 115Vac 60Hz / +55 Vdc 1.0 A
Operating Temperature Range:	
Equipment Dimensions:	13.9" X 9.0" X 2.6" INCHES
Weight:	
Primary function of equipment:	3 GHz Integrated Smart Antenna Outdoor Radio Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:13 of 192

3.2. Scope of Test Program

The scope of the test program was to test the RADWIN 2000 JET, RADWIN 5000 JET for compliance against;-

FCC 47 CFR Part 90, Subpart Z & IC RSS-197 regulatory requirements.

The RADWIN JET has four operational bandwidths 5, 10, 20, 40 MHz with 4 modulation schemes BPSK, QPSK, 16QAM, 64QAM in the frequency range 3650 to 3700 MHz.

Per Part 90 Subpart Z, 90.1319 & RSS-197 Section 4.2 the RADWIN 2000 JET and RADWIN 5000 JET equipment incorporated a contention based protocol therefore this device has access to the full 50 MHz frequency band (3,650 – 3700 MHz).

Product Differences

RADWIN 2000 JET: The RADWIN 2000 denotes that the device is configured for Point to Point installation.

RADWIN 5000 JET: The RADWIN 5000 denotes that the device is configured for Point to Multipoint installation.

The RADWIN 2000 JET and RADWIN 5000 JET is a high-speed, affordable, and reliable radio unit for outdoor environments. The RADWIN 2000 JET and RADWIN 5000 JET deliver wire-like performance at data rates up to 200 MBit/s to 600 Mbit/s.

The RADWIN 2000 JET and RADWIN 5000 JET operates with integral antennas which has three radio chains. The device can be operated in two different modes 3x3 and 2x2 spatial multiplexing.

3x3 Chain Operation

Antenna gains are as follows;

Chain A (Horizontal Pol) 17 dBi : Chain B (Vertical Pol) 14 dBi : Chain C (Vertical Pol) 14 dBi

2x2 Chain Operation

In this operational mode the device is limited to operate with the lower gain antennas;

Chain B (Vertical Pol) 14 dBi : Chain C (Vertical Pol) 14 dBi

<u>NOTE</u>: This program limited testing to 3x3 operational mode. When implementing the 2x2 mode the antenna chain power level(s) cannot be set higher than those that were measured under the 3x3 case for each operational mode.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:14 of 192

RADWIN 2000 JET, RADWIN 5000 JET

Integral Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:15 of 192

RADWIN 2000 JET, RADWIN 5000 JET

Integral Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:16 of 192

RADWIN 2000 JET, RADWIN 5000 JET Integral Antenna

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:17 of 192

RADWIN 2000 JET, RADWIN 5000 JET POE Injector

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.3. Equipment Model(s) and Serial Number(s)

EUT/ Support	Manufacturer	Equipment Description (Including Brand Name)	Model No.	Serial No.
EUT	RADWIN Ltd.	3.x GHz Integrated Smart Antenna Outdoor Radio Device	RADWIN 2000 JET RADWIN 5000 JET	Prototype
EUT	SINPRO	Power Injector for Power Over Ethernet (POE) 100- 240V / 50-60Hz: 55 Vdc, 1.0 A	CPU55A-270-1	C35473741 322
Support	Laptop	Computer		

3.4. Antenna Details

Antenna Type	Port Gain (dBi)	Manufacturer	Model No.	Serial No.
Integral Antenna				
Multipole	17			
Multipole				
Beamforming Sector	14	RADWIN Ltd	AM0156440	
Multipole	14			
Beamforming Sector	17			

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 2 x 10/100/1000 BT Ethernet

3.6. Test Configurations

Matrix of test configurations

Parameter	Operational Mode	Test Conditions	Bandwidths (MHz)	
99% Occupied BW				
Output power	Modulated - BPSK QPSK,	Ambient, 55 Vdc (POE)	5, 10, 20, 40	
Peak Power Spectral Density	16QAM, 64QAM			
Frequency Stability	Modulated	Temperature (-35°C to +60°C) and Voltage Variations (55, 46.75, 63.25 Vdc)	Carrier Breakthrough	
Conducted Spurious Emissions	Modulated	Ambient, 55 Vdc	5, 10, 20, 40	
Radiated Spurious Emissions	Modulated	Ambient, 55 Vdc	5	
AC Wireline Emissions	Modulated	Ambient, 55 Vdc	5	

		Modulation		
BW (MHz)	BPSK, QPSK, 16QAM, 64QAM			
	Low (MHz)	Mid (MHz)	High (MHz)	
5	3652.50	3675.00	3697.00	
10	3655.00	3675.00	3695.00	
20	3661.00	3675.00	3689.00	
40		3675.00		

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:20 of 192

4. TEST EQUIPMENT CONFIGURATIONS

4.1. Conducted Testing

Conducted RF Emission Test Set-up(s) with Environmental Chamber. The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Occupied Bandwidth
- 2. Peak Output Power
- 3. Power Spectral Density
- 4. *Frequency Stability
- 5. Conducted Spurious Emissions

*environmental chamber utilized

Conducted Test Measurement Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:21 of 192

Assets Utilized for Conducted Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
127	Power Supply	HP	6674A	US36370530	Cal when used
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	14 Jan 2016
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	30 Oct 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
376	USB 10MHz - 18GHz Average Power Sensor	Agilent	U2000A	MY51440005	28 Oct 2015
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	17 Jul 2015
381	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC002	30 Jun 2015
419	Laptop with Labview s/w	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Jul 2015
436	USB Wideband Power Sensor	Boonton	55006	8731	31 Jul 2015
437	USB Wideband Power Sensor	Boonton	55006	8759	31 Jul 2015
445	PoE Injector	D-Link	DPE-101GL	QTAH1E200062 5	Not Required
460	Dell Computer with installation of MiTest executable.	Dell	Optiplex330	BC944G1	Not Required
74	Environmental Chamber Chamber 3	Tenney	TTC	12808-1	30 Sep 2015
RF#2 GPIB#1	GPIB cable to Pwr Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	30 Jun 2015
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	30 Jun 2015
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	30 Jun 2015
RF#2 SMA#4	EUT to Mitest box port 3	Flexco	SMA Cable port4	None	30 Jun 2015
RF#2 SMA#SA	Mitest box to Spec Anal	Flexco	SMA Cable SA	None	30 Jun 2015
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.2. Radiated Testing

The following tests were performed using the radiated test set-up shown in the diagram below.

Radiated Emission Measurement Setup

Radiated Emission Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:23 of 192

Assets Utilized for Radiated Emission Testing

Asset#	Description	Manufacturer Model#		Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2015
301	5470 to 5725 MHz Notch Filter	Microtronics	RBC50704	001	08 Oct 2015
302	5150 to 5350 MHz Notch Filter	Microtronics	BRC50703	002	08 Oct 2015
303	5725 to 5875 MHz Notch filter	Microtronics	BRC50705	003	08 Oct 2015
310	SMA Cable	Micro-Coax	UFA210A-0- 0787-3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2015
342	2.4 GHz Notch Filter	EWT	EWT-14-0203	H1	08 Oct 2015
343	5.15 GHz Notch Filter	EWT	EWT-14-0200	H1	08 Oct 2015
344	5.35 GHz Notch Filter	EWT	EWT-14-0201	H1	08 Oct 2015
345	5.46 GHz Notch Filter	EWT	EWT-14-0202	H1	08 Oct 2015
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	08 Oct 2015
396	2.4 GHz Notch Filter	Microtronics	BRM50701	001	07 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	30 May 2015
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
414	DC Power Supply 0-60V	HP	6274	1029A01285	Cal when used
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required
87	Uninterruptible Power Supply	Falcon Electric	ED2000-1/2LC	F3471 02/01	Cal when used

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.3. ac Wireline

The ac Wireline Conducted Emissions test was performed using the conducted test set-up shown in the diagram below.

Test Measurement Set up

Measurement set up for ac Wireline Conducted Emissions Test

Assets Utilized for ac Wireline Emission Testing

Asset#	Description Manufacturer Model#		Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	Cal when used
190	LISN (two-line V- network)	Rhode & Schwarz	ESH3Z5	836679/006	12 Sep 2015
193	Receiver 20 Hz to 7 GHz	Rhode & Schwarz	ESI 7	838496/007	14 Jan 2015
307	BNC-CABLE	Megaphase	1689 1GVT4	15F50B002	Cal when used
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:25 of 192

5. MEASUREMENT AND PRESENTATION OF TEST DATA

The conducted measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:26 of 192

6. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 90, Subpart Z & RSS-197.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
2.1049 5.2	99% Occupied Bandwidth	Bandwidth measurement(s)	Conducted	Complies	7.1.1
2.1046; 90.1321 (a) 5.6	EIRP Rated Power	Modulated Output Power	Conducted	Complies	7.1.2
2.1046; 90.1321 (a) 5.6	Peak EIRP Power Density	Maximum Spectral Density	Conducted	Complies	7.1.3
Subpart C 90.1217	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Radiated	Complies	7.1.4
2.1055(a)(1) 5.3	Frequency Stability	Includes temperature and voltage variations	Conducted	Complies	7.1.5
2.1051; 90.1323 5.7	Conducted Spurious Emissions at Antenna Port	Emissions from the antenna port	Conducted	Complies	7.1.6
2.1053; 90.1323 ANSI/TIA- 603 5.8	Radiated Spurious Emissions	Spurious emissions	Radiated	Complies	7.1.7
	Contention Based Protocol		Declaration	Client Declaration	
15.207 RSS_Gen 7.2.7	AC Wireline Conducted	Emissions 150 kHz–30 MHz	Conducted	Complies	7.1.8

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 'Equipment Modifications' highlight the equipment modifications that were required to bring the product into compliance with the above matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:27 of 192

7. TEST RESULTS

7.1. Device Characteristics

7.1.1. Occupied Bandwidth

FCC 47 CFR Part 90, Subpart Z; 2.1049;

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure the 99% occupied bandwidth. The system highest power setting was selected with modulation ON.

The measurement of channel bandwidth used a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission.

Test Set-up is shown in Section 4.1 Test Equipment Configurations/Conducted Testing

Ambient conditions.Temperature: 19 to 26 °CRelative humidity: 31 to 57 %Pressure: 999 to 1009 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:28 of 192

Equipment Configuration for 26 dB & 99% Occupied Bandwidth								
Variant:	5 MHz	Duty Cycle (%):	99.0					
Data Rate:	-	Antenna Gain (dBi):	17/14/14					
Modulation:	BPSK	Beam Forming Gain (Y)(dB):						
TPC:	Not Applicable	Tested By:	SB					
Engineering Test Notes:								

Test Measurement Results

Test	Me	asured 26 dB	Bandwidth (M	Hz)	26 dB Bandwidth (MUs)		
Frequency	Port(s)			20 UB Ballu			
MHz	а	b	с	d	Highest	Lowest	
3652.5	<u>5.35</u>	<u>5.51</u>	<u>5.11</u>		5.51	5.11	
3675	<u>5.31</u>	<u>5.37</u>	<u>5.29</u>		5.37	5.29	
3697	<u>5.29</u>	<u>5.25</u>	<u>5.15</u>		5.29	5.15	

Test	M	easured 99% E	Bandwidth (MF	łz)	00% Bandwidth (MHz)		
Frequency	Port(s)			55% Dalluv			
MHz	а	b	С	d	Highest	Lowest	
3652.5	<u>4.44</u>	<u>4.44</u>	<u>4.44</u>		4.44	4.44	
3675	<u>4.44</u>	<u>4.44</u>	<u>4.42</u>		4.44	4.42	
3697	<u>4.44</u>	<u>4.44</u>	<u>4.44</u>		4.44	4.44	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:29 of 192

Equipment Configuration for 26 dB & 99% Occupied Bandwidth									
Variant:	10 MHz	Duty Cycle (%):	99.0						
Data Rate:	-	Antenna Gain (dBi):	17/14/14						
Modulation:	BPSK	Beam Forming Gain (Y)(dB):							
TPC:	Not Applicable	Tested By:	SB						
Engineering Test Notes:									

Test Measurement Results

Test	Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Band	width (MUz)	
Frequency	Port(s)			20 UB Ballu			
MHz	а	b	с	d	Highest	Lowest	
3655	<u>10.28</u>	<u>10.04</u>	<u>10.46</u>		10.46	10.04	
3675	<u>10.01</u>	<u>10.55</u>	<u>10.01</u>		10.55	10.01	
3695	<u>10.04</u>	<u>9.88</u>	<u>10.10</u>		10.10	9.88	

Test	M	easured 99% E	Bandwidth (MF	lz)	00% Bandwidth (MHz)		
Frequency	Port(s)			55% Dalluv			
MHz	а	b	с	d	Highest	Lowest	
3655	<u>8.80</u>	<u>8.71</u>	<u>8.77</u>		8.80	8.71	
3675	<u>8.77</u>	<u>8.77</u>	<u>8.77</u>		8.77	8.77	
3695	<u>8.77</u>	<u>8.74</u>	<u>8.77</u>		8.77	8.74	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:30 of 192

E	Equipment Configuration for 26 dB & 99% Occupied Bandwidth								
Variant:	20 MHz	Duty Cycle (%):	99.0						
Data Rate:	Data Rate: - Antenna Gain (dBi): 17/14/14								
Modulation:	BPSK	Beam Forming Gain (Y)(dB):							
TPC:	Not Applicable	Tested By:	SB						
Engineering Test Notes:									

Test Measurement Results

Test	Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Band	width (MUz)	
Frequency		Ροι	rt(s)		20 UB Ballu		
MHz	а	b	с	d	Highest	Lowest	
3661	<u>22.60</u>	<u>22.06</u>	<u>26.81</u>		26.81	22.06	
3675	<u>23.44</u>	<u>24.4</u>	<u>28.67</u>		28.67	23.44	
3689	<u>23.14</u>	<u>24.52</u>	<u>27.05</u>		27.05	23.14	

Test	Μ	easured 99% E	Bandwidth (MH	lz)	00% Bandu	vidth (MU-)	
Frequency		Port(s)			55% Dalluv		
MHz	а	b	с	d	Highest	Lowest	
3661	<u>17.85</u>	<u>17.61</u>	<u>17.85</u>		17.85	17.61	
3675	<u>17.79</u>	<u>17.67</u>	<u>17.91</u>		17.91	17.67	
3689	<u>17.79</u>	<u>17.67</u>	<u>17.85</u>		17.85	17.67	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:31 of 192

E	Equipment Configuration for 26 dB & 99% Occupied Bandwidth								
Variant: 40 MHz Duty Cycle (%): 99.0									
Data Rate:	Data Rate: - Antenna Gain (dBi): 17/14/14								
Modulation:	BPSK	Beam Forming Gain (Y)(dB):							
TPC:	TPC: Not Applicable Tested By: SB								
Engineering Test Notes:	Engineering Test Notes:								

Test Measurement Results

Test	Ме	Measured 26 dB Bandwidth (MHz)				width (MUz)	
Frequency		Poi	rt(s)		20 UB Ballu	width (iwinz)	
MHz	а	b	с	d	Highest Lowest		
3675	<u>47.61</u>	<u>63.16</u>	<u>80.00</u>		80.00 47.61		

Test	M	easured 99% E	Bandwidth (MH	lz)	00% Bandu	vidth (MU-)	
Frequency		Por	t(s)		99% Banuv		
MHz	а	b	С	d	Highest	Lowest	
3675	<u>37.03</u>	<u>37.19</u>	<u>37.83</u>		37.83	37.03	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.2. <u>Peak Output Power</u>

FCC 47 CFR Part 90, Subpart Z; §90.1321(a)

The following power limits apply to the 3650 – 3675 MHz band.

Base and fixed stations are limited to 25W/25 MHz equivalent isotropically radiated power (EIRP). In any event the peak EIRP power density shall not exceed 1 Watt (+30 dBm) in any one Megahertz slice of spectrum.

EIRP Power Limit 5 MHz Channel Spacing = 37.0 dBm EIRP Power Limit 10 MHz Channel Spacing = 40.0 dBm EIRP Power Limit 20 MHz Channel Spacing = 43.0 dBm EIRP Power Limit 40 MHz Channel Spacing = 46.0 dBm

Test Procedure

Average power measurements were measured with the use of an average power head. The system highest power setting was selected with modulation ON.

Test Set-up is shown in Section 4.1 Test Equipment Configurations/Conducted Testing

Ambient conditions. Temperature: 19 to 26 °C Relative humidity: 31 to 57 % Pressure: 999 to 1009 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:33 of 192

Equipment Configuration for Peak Transmit Power

Variant:	5 MHz	Duty Cycle (%):	99
Data Rate:	-	Antenna Gain (dBi):	17/14/14
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measu	Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Total	Limit	Morain		
Frequency		Por	t(s)		Power	EIRP	EIRP	Margin	EUT Power	
MHz	а	b	с	d	Σ Port(s) dBm	dBm	dBm	dBm	Setting	
3652.5	13.85	16.71	19.77		22.20	36.79	37	-0.21	10	
3675	13.41	16.36	19.40		21.83	36.41	37	-0.59	10	
3697	13.63	16.47	19.05	-	21.70	36.32	37	-0.68	10	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-01 MEASURING RF OUTPUT POWER

 Measurement Uncertainty:
 ±1.33 dB

NOTE: the antenna gain shown in the above matrix is different for each of the three antenna chains

Chain a: 17.00 dBi Chain b: 14.00 dBi Chain c: 14.00 dBi

Total EIRP Calculation

Total EIRP = 10 * Log(10^(EIRP Chain (a/10))+10^(EIRP Chain (b/10)) +10^(EIRP Chain (c/10)))

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:34 of 192

	Equipment Configuration for Peak Transmit Power								
Variant:	10 MHz	Duty Cycle (%):	99						
Data Rate:	-	Antenna Gain (dBi):	17/14/14						
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable						
TPC:	Not Applicable	Tested By:	SB						
Engineering Test Notes:									

Test Measurement Results									
Test Measured Conducted Output Power (dBm) Frequency Port(s)				Calculated Total Power	Total EIRP	Limit EIRP	Margin	EUT Power	
MHz	а	b	с	d	Σ Port(s) dBm	dBm	dBm	dBm	Setting
3655	16.50	18.98	21.80		24.39	39.05	40	-0.95	12.5
3675	16.15	18.91	21.56		24.19	38.82	40	-1.18	12.5
3695	15.98	19.28	21.75		24.35	38.91	40	-1.09	12.5

Traceability to Industry Recognized Test Methodologies

-	-	-		
			Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
			Measurement Uncertainty:	±1.33 dB

NOTE: the antenna gain shown in the above matrix is different for each of the three antenna chains

Chain a: 17.00 dBi Chain b: 14.00 dBi Chain c: 14.00 dBi

Total EIRP Calculation

Total EIRP = 10 * Log(10⁽(EIRP Chain (a/10))+10⁽(EIRP Chain (b/10)) +10⁽(EIRP Chain (c/10)))

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:35 of 192

Equipment Configuration for Peak Transmit Power							
Variant:	20 MHz	Duty Cycle (%):	99				
Data Rate:	-	Antenna Gain (dBi):	17/14/14				
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

Test Measurement Results

Test Frequency	Measure	d Conducted Por	Output Pow t(s)	er (dBm)	Calculated Total Power	Total EIRP	Limit EIRP	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	dBm	dBm	dBm	Setting
3661	19.33	21.75	24.22		26.99	41.57	43	-1.33	14.5
3675	20.02	23.59	25.09		28.14	42.76	43	-0.24	16
3689	20.29	23.16	24.75		27.87	42.57	43	-0.43	15.5

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Measurement Uncertainty:	±1.33 dB

NOTE: the antenna gain shown in the above matrix is different for each of the three antenna chains

Chain a: 17.00 dBi Chain b: 14.00 dBi Chain c: 14.00 dBi

Total EIRP Calculation

Total EIRP = 10 * Log(10^(EIRP Chain (a/10))+10^(EIRP Chain (b/10)) +10^(EIRP Chain (c/10)))

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:36 of 192

Equipment Configuration for Peak Transmit Power							
Variant:	40 MHz	Duty Cycle (%):	99				
Data Rate:	-	Antenna Gain (dBi):	17/14/14				
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Total	Limit	Margin	FUT
Frequency	equency Port(s)			Total Power	EIRP	EIRP	margin	Power	
MHz	а	b	с	d	Σ Port(s) dBm	dBm	dBm	dBm	Setting
3675	21.86	23.98	25.01		28.58	43.41	46	-2.59	17

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-01 MEASURING RF OUTPUT POWER					
Measurement Uncertainty:	±1.33 dB					

NOTE: the antenna gain shown in the above matrix is different for each of the three antenna chains

Chain a: 17.00 dBi Chain b: 14.00 dBi Chain c: 14.00 dBi

Total EIRP Calculation

Total EIRP = 10 * Log(10^(EIRP Chain (a/10))+10^(EIRP Chain (b/10)) +10^(EIRP Chain (c/10)))

7.1.3. Power Spectral Density

FCC 47 CFR Part 90, Subpart Z; §90.1321(a)

The following power limits apply to the 3650 – 3700 MHz band.

Base and fixed stations are limited to 25W/25 MHz equivalent isotropically radiated power (EIRP). In any event the peak EIRP power density shall not exceed 1 Watt (+30 dBm) in any one Megahertz slice of spectrum.

EIRP Power Limit is constant for all channel bandwidths = +30.0 dBm/MHz (137 dBuv/MHz)

Test Procedure

The test methodology used for this measurement was determined to provide the highest possible power density readings.

Power spectral density measurements were performed via the spectrum analyzer and plots were recorded. The system highest power setting was selected and modulation was ON.

Test Set-up is shown in Section 4.1 Test Equipment Configurations/Conducted Testing

Ambient conditions.Temperature: 19 to 26 °CRelative humidity: 31 to 57 %Pressure: 999 to 1009 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:38 of 192

Equipment Configuration for Power Spectral Density					
Variant:	5 MHz	Duty Cycle (%):	99		
Data Rate:	-	Antenna Gain (dBi):	17/14/14		
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					

Test Measurement Results							
Test Measured Power Spectral Density				у		L ins if	Margin
Frequency		Port(s) (dBuV/MHz)				Linin	wargin
MHz	а	b	с	d	dBuV /MHz	dBuV /MHz	dB
3652.5	<u>112.76</u>	<u>115.62</u>	<u>118.35</u>		135.54	137	-1.46
3675	<u>113.80</u>	<u>117.22</u>	<u>118.96</u>		136.54	137	-0.46
3697	<u>114.16</u>	<u>117.09</u>	<u>118.83</u>		136.54	137	-0.46

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Note: click the links in the above matrix to view the graphical image (plot).

Limit 137 dBuV/MHz = +30 dBm

Total Power Density EIRP Calculation

Total Power Density EIRP = 10 * Log(10^(EIRP Chain (a/10))+10^(EIRP Chain (b/10)) +10^(EIRP Chain (c/10)))

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:39 of 192

Equipment Configuration for Power Spectral Density					
Variant:	10 MHz	Duty Cycle (%):	99		
Data Rate:	-	Antenna Gain (dBi):	17/14/14		
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					

Test Measurement Results							
Test Measured Power Spectral Density				y	Total EIPP	Lingit	Margin
Frequency		Port(s) (dBuV/MHz)				Linin	wargin
MHz	а	b	с	d	dBuV /MHz	dBuV /MHz	dB
3655	<u>112.16</u>	<u>114.88</u>	<u>118.12</u>		135.09	137	-1.91
3675	<u>111.99</u>	<u>114.54</u>	<u>118.01</u>		134.91	137	-2.09
3695	<u>112.18</u>	<u>114.88</u>	<u>117.78</u>		134.92	137	-2.08

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Limit 137 dBuV/MHz = +30 dBm

Total Power Density EIRP Calculation Total Power Density EIRP = 10 * Log(10^(EIRP Chain (a/10))+10^(EIRP Chain (b/10)) +10^(EIRP Chain (c/10)))

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:40 of 192

Equipment Configuration for Power Spectral Density				
Variant:	20 MHz	Duty Cycle (%):	99	
Data Rate:	-	Antenna Gain (dBi):	17/14/14	
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable	
TPC:	Not Applicable	Tested By:	SB	
Engineering Test Notes:				

Test Measurement Results

Test	Measured Power Spectral Density				Total EIPP	Limit	Margin
Frequency	Port(s) (dBuV/MHz)				Linin	Wargin	
MHz	а	b	С	d	dBuV /MHz	dBuV /MHz	dB
3661	<u>110.15</u>	<u>113.21</u>	<u>115.55</u>		132.89	137	-4.11
3675	<u>111.54</u>	<u>115.06</u>	<u>116.66</u>		134.29	137	-2.71
3689	<u>110.79</u>	<u>114.78</u>	<u>115.62</u>		133.57	137	-3.43

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Limit 137 dBuV/MHz = +30 dBm

Total Power Density EIRP Calculation

Total Power Density EIRP = 10 * Log(10^(EIRP Chain (a/10))+10^(EIRP Chain (b/10)) +10^(EIRP Chain (c/10)))

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:41 of 192

Equipment Configuration for Power Spectral Density						
Variant:	40 MHz	Duty Cycle (%):	99			
Data Rate:	-	Antenna Gain (dBi):	17/14/14			
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						

Test Measurement Results							
Test Measured Power Spectral Density				у	Total EIPP	Limit	Margin
Frequency	Port(s) (dBuV/MHz)				Linin	wargin	
MHz	а	b	с	d	dBuV /MHz	dBuV /MHz	dB
3575	<u>111.84</u>	<u>114.33</u>	<u>115.75</u>		133.78	137	-3.22

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

Limit 137 dBuV/MHz = +30 dBm

Total Power Density EIRP Calculation

Total Power Density EIRP = 10 * Log(10^(EIRP Chain (a/10))+10^(EIRP Chain (b/10)) +10^(EIRP Chain (c/10)))

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:42 of 192

7.1.4. <u>Maximum Permissible Exposure</u> FCC, Part 90 Subpart C §90.1217

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/($4\pi d^2$)

EIRP = P * G

P = Peak output power (mW)

G = Antenna numeric gain (numeric)

d = Separation distance (cm)

Numeric Gain = $10 \wedge (G (dBi)/10)$

The RADWIN 2000 JET and RADWIN 5000 JET has three antenna chains. The peak power in the table below is calculated by assuming a worst case scenario for the maximum gain antenna and output power. The calculated separation distance is worst case found (Operational mode 40 MHz, channel 3675.00 MHz. Calculation was performed using the 17 dBi antenna gain.

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 mW/cm²

						Dista	nce
Freq. Band (MHz)	Antenna Gain (dBi)	Numeric Gain (numeric)	Max Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Power Density @ 20cm	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Minimum Separation Distance (cm)
3,675.0	17	50.12	+28.58	721.1	7.19	53.6	53.6

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§90.1217 Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency levels in excess of the Commission's guidelines. See §1.1307 (b)(1) of this chapter.

Limit = $1 \text{ mW} / \text{cm}^2$ from 1.310 Table 1

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty

±1.33dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.5. Frequency Stability; Temperature Variations, and Voltage Variations

FCC 47 CFR Part 90, Subpart Z; 2.1055(a)(1)

Test Procedure

The transmitter output was connected to a spectrum analyzer and the frequency stability was measured in a modulated operational mode as the transmitter could not operate Continuous Wave (CW). Carrier breakthrough was available to provide a measurement point.

Frequency stability was measured through the extremes of temperature on the mid channel and a single operating mode only. Before measurements were taken at each temperature the equipment waited until thermal balance was obtained.

Test Set-up is shown in Section 4.1 Test Equipment Configurations/Conducted Testing

Ambient conditions.Temperature: 19 to 26 °CRelative humidity: 31 to 57 %Pressure: 999 to 1009 mbar

TABLE OF RESULTS Frequency Stability – Channel Measured 3662.25 MHz

Manufacturers Specification for Frequency Stability

As no apparent frequency stability limits were provided the manufacturer's specification was used ±20 ppm.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:44 of 192

Equipment Configuration for Carrier Frequencies

Variant:	20 MHz	Duty Cycle (%):	99		
Data Rate:	Not Applicable	Antenna Gain (dBi):	Not Applicable		
Modulation:	BPSK	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:	Transmitter carrier breakthrough was used for test purposes				

Test Measurement Results

Test frequency	3660 MHz	Measured Frequency	Frequency Error		Limit	Margin
Temperature	Voltage	Hz	kHz	ppm	ppm	ppm
2E %C	48.0 Vdc	<u>3660.003120</u>	3.12	0.85	-20 to +20	-19.15
25 C	61.6 Vdc	<u>3660.003250</u>	3.25	0.89	-20 to +20	-19.11
-35 °C		<u>3660.001820</u>	1.82	-0.36	-20 to +20	-19.64
-25 °C	55 1/1-	<u>3660.001190</u>	1.19	0.33	-20 to +20	-19.67
-15 °C		<u>3660.000670</u>	0.67	0.18	-20 to +20	-19.82
-5 °C		<u>3660.000200</u>	0.2	0.05	-20 to +20	-19.95
5 °C		<u>3660.000670</u>	0.67	0.18	-20 to +20	-19.82
15 °C	55 VUC	<u>3660.001910</u>	1.91	0.52	-20 to +20	-19.48
35 °C		<u>3660.002410</u>	2.41	0.66	-20 to +20	-19.34
45 °C		<u>3660.001630</u>	1.63	0.45	-20 to +20	-19.55
55 °C		<u>3660.001150</u>	1.15	0.31	-20 to +20	-19.69
60 °C		<u>3660.001130</u>	1.13	0.31	-20 to +20	-19.69

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-02 MEASURING FREQUENCY			
Measurement Uncertainty:	±0.86 ppm			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.6. Spurious Emissions at Antenna Terminals

FCC 47 CFR Part 90, Subpart Z; §90.1323, 2.1051

7.1.6.1. Transmitter Conducted Spurious Emissions (0.03 - 40 GHz)

Test Procedure

Transmitter conducted spurious emissions were measured for BPSK modulation state only. Measurement were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency. Conducted spurious emissions were measured to 40 GHz in a peak hold mode.

Test Set-up is shown in Section 4.1 Test Equipment Configurations/Conducted Testing

Limit

For operation in the 3650 - 3700 band the power of any emission outside the frequency band of operation shall be attenuated below the transmitter power (P) within the licensed band of operation, measured in Watts, by at least 43 + 10*Log (P) = -13dBm.

Ambient conditions.Temperature: 19 to 26 °CRelative humidity: 31 to 57 %Pressure: 999 to 1009 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:46 of 192

Equipment Configuration for Transmitter Spurious Emissions							
Variant:	5 MHz	Duty Cycle (%):	99				
Data Rate:	-	Antenna Gain (dBi):	Not Applicable				
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	CC				
Engineering Test Notes:							

Test Measurement Results

CHAIN A						
Temperature	20.0 °C	Maximum Observed Spurious Emission				
Voltage	56.00 Vdc	Amplitude	Emission Frequency	Limit	Margin	
Test Frequency	Frequency Range	dBm	MHz	dBm	dB	
3652.5 MHz	30 - 1000 MHz	<u>-55.80</u>	459.59	-13.0	-41.0	
	1000 - 20000 MHz	<u>-24.21</u>	3208.41	-13.0	-11.21	
	20000 - 40000 MHz	<u>-19.80</u>	34869.73	-13.0	-6.8	

CHAIN B

Temperature 20.0 °C		Maximum Observed Spurious Emission			
Voltage	56.00 Vdc	Amplitude	Emission Frequency	Limit	Margin
Test Frequency	Frequency Range	dBm	MHz	dBm	dB
3652.5 MHz	30 - 1000 MHz	<u>-52.74</u>	488.75	-13.0	-39.74
	1000 - 20000 MHz	<u>-21.14</u>	3170.34	-13.0	-8.14
	20000 - 40000 MHz	<u>-19.68</u>	34909.81	-13.0	-6.68

CHAIN C

Temperature 20.0 °C		Maximum Observed Spurious Emission			
Voltage	56.00 Vdc	Amplitude	Emission Frequency	Limit	Margin
Test Frequency	Frequency Range	dBm	MHz	dBm	dB
3652.5 MHz	30 - 1000 MHz	<u>-53.24</u>	411.00	-13.0	-40.24
	1000 - 20000 MHz	<u>-18.61</u>	3246.49	-13.0	-5.61
	20000 - 40000 MHz	<u>-19.48</u>	34549.09	-13.0	-6.48

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:47 of 192

Equipment Configuration for Transmitter Spurious Emissions					
Variant:	5 MHz	Duty Cycle (%):	99		
Data Rate:	-	Antenna Gain (dBi):	Not Applicable		
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	CC		
Engineering Test Notes:					

Test Measurement Results

CHAIN A

Temperature	20.0 °C	Maximum Observed	Spurious Emission		
Voltage	56.00 Vdc	Amplitude	Emission Frequency	Limit	Margin
Test Frequency	Frequency Range	dBm	MHz	dBm	dB
3675 MHz	30 - 1000 MHz	<u>-55.17</u>	521.80	-13.0	-42.17
	1000 - 20000 MHz	<u>-23.83</u>	3208.41	-13.0	-10.83
	20000 - 40000 MHz	<u>-20.17</u>	34549.09	-13.0	-7.17

CHAIN B

Temperature	20.0 °C	Maximum Observed Spurious Emission			
Voltage	56.00 Vdc	Amplitude	Emission Frequency	Limit	Margin
Test Frequency	Frequency Range	dBm	MHz	dBm	dB
3675 MHz	30 - 1000 MHz	<u>-51.92</u>	473.20	-13.0	-38.92
	1000 - 20000 MHz	<u>-21.59</u>	3132.26	-13.0	-8.59
	20000 - 40000 MHz	<u>-20.23</u>	34949.89	-13.0	7.23

CHAIN C

Temperature	20.0 °C	Maximum Observed	Spurious Emission			
Voltage 56.00 Vdc		Amplitude	Emission Frequency	Limit	Margin	
Test Frequency	Frequency Range	dBm	MHz	dBm	dB	
	30 - 1000 MHz	<u>-53.25</u>	480.98	-13.0	-40.25	
3675 MHz	1000 - 20000 MHz	<u>-18.73</u>	3208.41	-13.0	-4.11	
	20000 - 40000 MHz	<u>-19.98</u>	34869.73	-13.0	-6.98	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:48 of 192

Equipment Configuration for Transmitter Spurious Emissions							
5 MHz	Duty Cycle (%):	99					
-	Antenna Gain (dBi):	Not Applicable					
BPSK	Beam Forming Gain (Y)(dB):	Not Applicable					
Not Applicable	Tested By:	СС					
	Equipment Configuration for T 5 MHz - BPSK Not Applicable	Equipment Configuration for Transmitter Spurious Emissions 5 MHz Duty Cycle (%): - Antenna Gain (dBi): BPSK Beam Forming Gain (Y)(dB): Not Applicable Tested By:					

Test Measurement Results

CHAIN A

Temperature	20.0 °C	Maximum Observed	Spurious Emission			
Voltage	56.00 Vdc	Amplitude	Emission Frequency	Limit	Margin	
Test Frequency	Frequency Range	dBm	MHz	dBm	dB	
	30 - 1000 MHz	<u>-53.57</u>	496.53	-13.0	-40.57	
3697 MHz	1000 - 20000 MHz	<u>-23.49</u>	3208.41	-13.0	-10.49	
	20000 - 40000 MHz	<u>-20.25</u>	34829.65	-13.0	-7.25	

CHAIN B

Temperature	20.0 °C	Maximum Observed	Spurious Emission			
Voltage 56.00 Vdc		Amplitude Emission Frequency		Limit	Margin	
Test Frequency	Frequency Range	dBm	MHz	dBm	dB	
3697 MHz	30 - 1000 MHz	<u>-53.38</u>	494.58	-13.0	-40.38	
	1000 - 20000 MHz	<u>-21.56</u>	3113.22	-13.0	-8.56	
	20000 - 40000 MHz	<u>-20.23</u>	34629.25	-13.0	-7.23	

CHAIN C

Temperature	20.0 °C	Maximum Observed	Spurious Emission			
Voltage 56.00 Vdc		Amplitude Emission Frequency		Limit	Margin	
Test Frequency	Frequency Range	dBm MHz		dBm	dB	
	30 - 1000 MHz	<u>-52.71</u>	455.71	-13.0	-39.71	
3697 MHz	1000 - 20000 MHz	<u>-18.79</u>	3246.49	-13.0	-5.79	
	20000 - 40000 MHz	<u>-19.72</u>	34829.65	-13.0	-6.72	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS
Measurement Uncertainty:	<=40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:49 of 192

Equipment Configuration for Transmitter Conducted Spurious and Band-Edge Emissions							
Variant:	5 MHz	Duty Cycle (%):	99.0				
Data Rate:	-	Antenna Gain (dBi):	17/14/14				
Modulation:	BPSK	Beam Forming Gain (Y)(dB):					
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							

Test Measurement Results

Test	Band-Edge		Transmitter Conducted Band-Edge Emissions (dBm)						
Frequency	Frequency	Port a		Port b Por		rt c	P	Port d	
MHz	MHz	BE	Limit	BE	Limit	BE	Limit	BE	Limit
3652.5	3650	<u>-32.13</u>	-28.78	<u>-28.57</u>	-25.67	<u>-27.01</u>	-23.86		
3697	3700	<u>-47.35</u>	-30.85	<u>-42.51</u>	-27.65	<u>-39.07</u>	-25.16		
	0.00		00.00		2.100		20110	l	

BE - Maximum band-edge emission found

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS				
Measurement Uncertainty:	= 40 GHz ±2.37 dB, > 40 GHz ±4.6 dB				

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Transmitter Conducted Spurious and Band-Edge Emissions

Variant:	10 MHz	Duty Cycle (%):	99.0
Data Rate:	-	Antenna Gain (dBi):	17/14/14
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Band-Edge	Transmitter Conducted Band-Edge Emissions (dBm)								
Frequency	Frequency	Port a		Port b		Po	Port c		Port d	
MHz	MHz	BE	Limit	BE	Limit	BE	Limit	BE	Limit	
3655	3650	<u>-34.00</u>	-27.51	<u>-31.87</u>	-24.23	<u>-28.51</u>	-22.40			
3695	3700	<u>-30.25</u>	-28.22	<u>-27.40</u>	-24.25	<u>-24.23</u>	-21.95			

BE - Maximum band-edge emission found

Traceability to Industry Recognized Test Methodologies

Work Instruction:WI-05 MEASUREMENT OF SPURIOUS EMISSIONSMeasurement Uncertainty:= 40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:50 of 192

Equipment Config	Equipment Configuration for Transmitter Conducted Spurious and Band-Edge Emissions												
Variant:	20 MHz	Duty Cycle (%):	99.0										
Data Rate:	-	Antenna Gain (dBi):	17/14/14										
Modulation:	BPSK	Beam Forming Gain (Y)(dB):											
TPC:	Not Applicable	Tested By:	SB										
Engineering Test Notes:													

Test Measurement Results

Test	Test Band-Edge Transmitter Conducted Band-Edge Emissions (dBm)											
Frequency	Frequency	Po	rt a	Po	rt b	Po	rt c	Port d				
MHz	MHz	BE	Limit	BE	Limit	BE	BE Limit		Limit			
3661	3650	<u>-27.34</u>	-25.10	<u>-26.62</u>	-21.91	<u>-20.05</u>	-19.11					
3689	3700	<u>-27.29</u>	-24.85	<u>-23.01</u>	-20.51	<u>-21.36</u>	-20.23					
3003	5700	-21.20	-24.00	-20.01	-20.01	-21.00	-20.25					

BE - Maximum band-edge emission found

Work Instruction: WI-05 MEASUREMENT OF SPURIOUS EMISSIONS								
Work Instruction:	WI-05 MEASUREMENT OF SPURIOUS EMISSIONS							
Measurement Uncertainty:	= 40 GHz ±2.37 dB, > 40 GHz ±4.6 dB							

Note: click the links in the above matrix to view the graphical image (plot).

Equipment Configuration for Transmitter Conducted Spurious and Band-Edge Emissions

Variant:	40 MHz	Duty Cycle (%):	99.0
Data Rate:	-	Antenna Gain (dBi):	17/14/14
Modulation:	BPSK	Beam Forming Gain (Y)(dB):	
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Band-Edge	Transmitter Conducted Band-Edge Emissions (dBm)											
Frequency	Frequency	Po	rt a	Po	rt b	Po	rt c	Port d					
MHz	MHz	BE	Limit	BE	Limit	BE	Limit	BE	Limit				
3675	3650	<u>-27.46</u>	-20.87	<u>-24.03</u>	-18.86	<u>-18.53</u>	-17.86						
3675	3700	<u>-31.16</u>	-20.87	<u>-26.48</u>	-18.86	<u>-19.66</u>	-17.86						

BE - Maximum band-edge emission found

Traceability to Industry Recognized Test Methodologies

Work Instruction:WI-05 MEASUREMENT OF SPURIOUS EMISSIONSMeasurement Uncertainty:= 40 GHz ±2.37 dB, > 40 GHz ±4.6 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:51 of 192

7.1.7. Radiated Spurious Emissions

7.1.7.1. Transmitter Radiated Emissions

FCC 47 CFR Part 90, Subpart Z; §90.1323, 2.1053; ANSI/TIA-603

Test Procedure

Measurements were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency. Substitution was performed on any emissions observed. The antenna port was attenuated with a 50 Ω termination.

The measurement equipment was set to measure in peak hold mode. The emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode.

The highest emissions relative to the limit are listed for each frequency band measured.

Limit

For operation in the 3650 - 3700 band the power of any emission outside the frequency band of operation shall be attenuated below the transmitter power (P) within the licensed band of operation, measured in Watts, by at least 43 + 10*Log (P) = -13dBm.

Laboratory Measurement Uncertainty for Radiated Emissions

Traceability

Method
Measurements were made per work instruction WI-03
'Measurement of Radiated Emissions'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:52 of 192

Teet	From	2052 5							Engineer	CD.				
Test	Freq.	3652.5							Engineer	SB				
Va	ariant	BPSK				Temp (°C)			18					
Freq. F	Range	30MHz -	1GHz			Rel. Hum.(%)			Hum.(%)	57				
Power Se	etting	10						Press	. (mBars)	1005				
An	tenna	Integral	itegral Duty Cycle (%) 100%											
Test No	otes 1													
Test No	otes 2													
MiCemLab	IS	dBuV/m 900 700 600 500 400 300 200 100 00 300 Filen	130.0 ated Emiame: c:\	230.0 330.0 ssions program files	Vasona by EMi	630.0 Templai results	730.0 le: FCC client p	830.0 : 15.209 rograms	02 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Mar 15 11: 2) Veri 2) Veri 4 Debug Meas Dist 3 Spec Dist 3 equency: M 0 MH2 data\3852.0	55 – zonti ical m m Hz			
Formally m	easur	ed emis	ssion	peaks										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
No emissions obs	served v	within 6 dB	of the I	imit.										
I														
Legend:	TX = T	ransmitter	Emissi	ons; DIG =	Digital Emissions	; FUN	D = Fu	ndame	ntal; WB =	Wideband	l Emissio	on		
	NRB =	Non-Rest	ricted B	and. Limit	= 82.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits	per 15.20	5			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:53 of 192

Tes	t Freq.	3652.5							Engineer	SB			
۱ ۱	Variant	BPSK				Temp (°C)				18	18		
Freq.	Range	1-18GHz				Rel. Hum.(%)				57			
Power S	Setting	10				Press. (mBars)				1005			
A	ntenna	Integral						Duty	Cycle (%)	100%			
Test N	lotes 1												
Test N	lotes 2												
MiCOMLa	bs	dBuV/m 90.0 70.0 60.0 50.0 40.0 20.0 10.0 1000.0 Radii Filem	ated Emisp	sions rogram files/	asona by EMiS	emplate suits ic	10 FCC Filent pro	20000 0 2E 1-18 grams in	02 M PK PK Free 18000.0 GHz GHz dwn35\raw d	Mar 15 14:16 = [1] Horizo = 22 Vertic = Pk Lmt Debug eas Dist 3n pec Dist 3m quency: MH o ata\3852.5 :	3 al		
Formality II	leasui					1	r				1		
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
3657.315	87.4	4.9	-11.0	81.2	Peak [Scan]	Н	100					FUND	
Legend:	TX = 1	ransmitter	Emissio	ns; DIG = D	igital Emissions;	FUND) = Fun	damen	tal; WB = V	Videband I	Emissior	1	
	NRB =	Non-Rest	ricted Ba	nd. Limit =	82.23 dBuV/m;	RB = F	Restricte	ed Ban	d. Limits p	er 15.205			

The emission closest to the limit line is the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:54 of 192

Test	F ue a	0075 141	_							0.0				
Test	Freq.	3675 MH	Z						Engineer	SB				
V	ariant	BPSK				Temp (°C)			18					
Freq. F	Range	30MHz -	1GHz					Rel.	Hum.(%)	57				
Power Se	etting	10						Press	. (mBars)	1005				
An	tenna	Integral	itegral Duty Cycle (%) 100%											
Test No	otes 1													
Test No	otes 2													
MiCOMLab	95	dBuV/m 900 700 600 500 400 300 200 100 0.0 300 Radia	130.0 ated Emis ame: c:\p	230.0 330.0 ssions program files	Vasona by EMi	630.0 Templar	730.0 le: FCC client p	830.0 15.209 rograms	02	Mar 15 11: 12 Ver 2 Ver Pk Lmt + Debug Meas Dist 3 Spec Dist 3 equency: M 0 MH2 data\3875 s	53 – ical m m Hz se 30			
Formally m	neasu	red emis	sion	peaks										
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
No emissions obs	served v	within 6 dB	of the l	imit.										
Γ														
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	n		
	NRB =	Non-Rest	ricted B	and. Limit	= 82.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits	per 15.20	5			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:55 of 192

Tes	t Freq.	3675 MHz							Engineer	SB		
<u> </u>	/ariant	BPSK				Temp (°C) 18			18			
Freq.	Range	1-18GHz				Rel. Hum.(%) 57			57			
Power S	Setting	10						Press	. (mBars)	1005		
Aı	ntenna	Integral						Duty	Cycle (%)	100%		
Test N	lotes 1											
Test N	lotes 2											
MiCOMLa	bs	dBuV/m 900 700 600 500 400 300 200 100 10000 Radiat Filenai	ted Emissi me: c:\pro	Va	sona by EMiSc	mplate:	100 FCC R ent prog	0000 E 1-18G rams\rd	02 Ma Pk + (4) Me: Spa Frequ 18000 0 HIZ 18000 0	ar 15 14:18 [1] Horizor [2] Vertica Pk Lmt Debug as Dist 3m vency: MHz ta\3675 se		
Formally r	neasu	red emis	sion pe	eaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
3657.315	87.1	4.9	-11.0	80.9	Peak [Scan]	Н	100					FUND
Legend:	TX = 1	ransmitter I	Emission	s; DIG = Di	gital Emissions; I	UND	= Fund	amenta	al; WB = W	ideband E	mission	
	NRB =	Non-Restri	cted Ban	id. Limit = 8	82.23 dBuV/m; R	B = Re	estricte	d Band	. Limits pe	r 15.205		

The emission closest to the limit line is the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:56 of 192

Tes	t Freq.	3697							Engineer	SB				
١	Variant	BPSK				Temp (°C)			18	18				
Freq.	Range	30MHz -	1GHz					Rel.	Hum.(%)	57	57			
Power S	Setting	10						Press.	. (mBars)	1005				
A	ntenna	Integral	ntegral Duty Cycle (%) 100%											
Test N	lotes 1													
Test N	lotes 2													
Formally	measu	dBuV/m 900 800 700 600 500 400 200 100 200 100 800 800 800 800 800 800 800 800 8	130.0 ated Emil ame: c:\y	230.0 330.0 ssions program files	Vasona by EMi	630.0 Templa results	730.0 re: FCC client p	830.0 15.209 ogramsi	02	Mar 15 11: (1) Hori (2) Vent Pk Lent + Debug Meas Dist 3 Spec Dist 3 equency: M 0 MHz data\3897 s	onti ical m Hz ie 30			
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
No emissions of	oserved	within 6 dB	of the I	imit.										
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	n		
	NRB =	Non-Rest	ricted B	and. Limit	= 82.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits	per 15.208	5			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:57 of 192

Test Fi	req.	3697						Engineer	SB			
Vari	riant	BPSK						٦	ſemp (ºC)	18		
Freq. Ra	ange	1-18GHz					Rel. Hum.(%) 57					
Power Set	tting	10						Press	. (mBars)	1005		
Ante	enna	Integral						Duty	Cycle (%)	100%		
Test Note	es 1											
Test Note	es 2											
MiC@MLabs		dBuV/m 900 700 600 500 400 300 200 100 1000 Radiat Filenar	ed Emissi me: o:\pro	ons gram files\er	sona by EMiSc	mplate: sults\cli	100 FCC R ent prog	000 0 E 1-18G rams\rd	02 Ma PK + (2) Key Frequ 18000 0 H/Z Wn35\raw dat	ar 15 14:20 [1] Horizor [2] Vertica PK Lmt Debug as Dist 3m ec Dist 3m vency: MHz ta\3897 se	- 1-	
Formally me	easur	red emis	sion pe	eaks								
Frequency R MHz dl	Raw IBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
3691.383 8	84.8	4.9	-11.0	78.8	Peak [Scan]	Н	100					FUND
Legend: T	TX = T	ransmitter E	Emission	s; DIG = Di	gital Emissions; I	FUND	= Fund	amenta	al; WB = W	ideband E	mission	
Ν	NRB =	B = Non-Restricted Band. Limit = 82.23 dBuV/m; RB = Restricted Band. Limits per 15.205										

The emission closest to the limit line is the fundamental frequency

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

7.1.7.2. Transmitter Radiated Spurious Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-111 §4.4

Test Procedure

Preliminary radiated emissions were measured in the anechoic chamber at a 10-meter distance on every azimuth in both horizontal and vertical polarity. The emissions are recorded with a spectrum analyzer in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting

Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:59 of 192

For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

 $40 \text{ dB}\mu\text{V/m} = 100\mu\text{V/m}$ $48 \text{ dB}\mu\text{V/m} = 250\mu\text{V/m}$

Measurement Results for Spurious Emissions (30 MHz - 1 GHz)

Ambient conditions. Temperature: 19 to 26 °C

Temperature: 19 to 26 °C Relative humidity: 31 to 57 %

Pressure: 999 to 1009 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:60 of 192

Test	t Freq.	3675 M	Hz						Engineer	SB		
v	/ariant	BPSK					Temp (°C) 18			18	18	
Freq. F	Range	30MHz - 1GHz					Rel. Hum.(%)			57		
Power S	Setting	10					Press. (mBars)			1005		
An	ntenna	Integral						Duty (Cycle (%)	100%		
Test No	otes 1							-	,			
Test No	otes 2											
		dBuV/m 60.0 50.0 40.0 30.0	MAN		Vasona by EMi	Soft	j.	Liberal	02 02 02 02 02	Mar 15 13: 	42 — izonti ical nt	
Formally n	neasu	200 10.0 00 300 Rac File	130.0 diated Emi name: c:\y	230.0 330.0 ssions program files peaks	0 430.0 530.0 Siemisoft - vasonal	630.0 Templa results\	730.0 te: FCC client p	830.0 15.209 rograms	530.0 1000.0 RE 30-1000 rdwn35\raw	Meas Dist 3 Spec Dist 3 equency: M) MHz data\3897 s	Sm m Hz se 30	
Formally n	neasu Raw dBuV	200 10.0 30.0 Rac File	130.0 diated Emin name: c:\y ission	230.0 330.0 ssions program files peaks	0 430.0 530.0 Wemisoft - vasonal	630.0 Templar results	730.0 te: FCC client p	830.0 15.209 tograms	Sign 1000 RE 30-1000 rdwn35'iraw	Meas Dist 3 Spec Dist 3 equency: M) MHz data\3897 s data\3897 s	Pass /Fail	Comments
Formally n Frequency MHz 700.017	neasu Raw dBuV 49.7	200 10.0 00 300 Rac File red em Cable Loss 5.9	130.0 fiated Eminame: c:\p ission AF dB -9.9	230.0 330.0 ssions program files peaks Level dBuV/m 45.7	Measurement Type Quasi Peak	630.0 Templar results	730.0 te: FCC client pr Hgt cm 98	830.0 15.209 rograms Azt Deg 181	Fra 930.0 1000.0 RE 30-1000 rdwn35\raw dBuV/m 46	Meas Dist 3 Spec Dist 3 equency: M) MHz data\3897 s data \3897 s	Hz Hz Pass /Fail Pass	Comments
Formally n Frequency MHz 700.017 34.075	neasu Raw dBuV 49.7 48.8	red em Cable Loss 5.9 3.5	130.0 fiated Eminame: c:\y ission AF dB -9.9 -12.9	230.0 330.0 ssions program files peaks Level dBuV/m 45.7 39.4	Measurement Type Quasi Peak Quasi Peak	630.0 Templa results Pol H	730.0 te: FCC client pi Hgt cm 98 98	830.0 15.209 tograms Deg 181 0	Fra 9300 10000 RE 30-10001 rdwn35'iraw Limit dBuV/m 46 40.0	Meas Dist 3 Spec Dist 3 equency: M MHz data\3897 s Margin dB -0.3 -0.6	Hz Hz Pass /Fail Pass Pass	Comments
Formally n Frequency MHz 700.017 34.075 45.259	neasu dBuV 49.7 48.8 54.4	200 100 00 300 Rat File red em Cable Loss 5.9 3.5 3.5 3.5	1300 Jiated Eminame: c:\y ission AF dB -9.9 -12.9 -20.9	230.0 330.0 ssions program files peaks Level dBuV/m 45.7 39.4 37.1	Measurement Type Quasi Peak Quasi Peak Quasi Peak	esolo Templa results	730.0 te: FCC client pr 98 98 98	830.0 15.209 rograms Azt Deg 181 0 122	5300 1000 C RE 30-1000 rdwn35 raw dBuV/m 46 40.0 40	Meas Dist 3 Spec Dist 3 equency: M MHz data\3897 s MHz data\3897 s data 3897 s -0.3 -0.6 -2.9	Hz Hz Pass /Fail Pass Pass Pass	Comments
Formally n Frequency MHz 700.017 34.075 45.259 66.293	Raw dBuV 49.7 48.8 54.4 56.6	200 100 00 300 Rac File Tred em Cable Loss 5.9 3.5 3.5 3.5 3.7	130.0 fiated Eminame: c:\y ission AF dB -9.9 -12.9 -20.9 -23.3	230.0 330.0 ssions program files peaks Level dBuV/m 45.7 39.4 37.1 37.0	Measurement Type Quasi Peak Quasi Peak Quasi Peak Quasi Peak	Fol H V V	730.0 te: FCC client pr 98 98 98 98 98	830.0 15.209 rograms 0 181 0 122 207	Eimit dBuV/m 46 40.0 40 40	Meas Dist 3 Spec Dist 3 equency: M MHz data\3897 s Margin dB -0.3 -0.6 -2.9 -3.0	Hz Hz Be 30 Pass Pass Pass Pass Pass Pass	Comments
Formally n Frequency MHz 700.017 34.075 45.259 66.293 562.526	neasu Raw dBuV 49.7 48.8 54.4 56.6 48.3	200 100 00 300 Rate File red em Cable Loss 5.9 3.5 3.5 3.5 3.7 5.5	1300 Jiated Eminame: C: V ission AF dB -9.9 -12.9 -20.9 -23.3 -11.8	230.0 3300 ssions program files peaks Level dBuV/m 45.7 39.4 37.1 37.0 42.0	Measurement Type Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak	Pol H V V V	730.0 te: FCC client p 98 98 98 98 98 98 98	830.0 15.209 rograms 181 0 122 207 213	5000 1000 C RE 30-1000 rdwn35 raw 46 40.0 40 40 40 40	Meas Dist 3 Spec Dist 3 equency: M MHz data/3897 s MHz data/3897 s -0.3 -0.6 -2.9 -3.0 -4.0	Pass Pass Pass Pass Pass Pass Pass Pass	Comments
Formally n Frequency MHz 700.017 34.075 45.259 66.293 562.526 382.753	Raw dBuV 49.7 48.8 54.4 56.6 48.3 47.2	200 100 100 100 100 200 100 200 20	1300 fiated Eminame: c:\y ission -9.9 -12.9 -20.9 -23.3 -11.8 -15.4	230.0 330.0 ssions program files peaks Level dBuV/m 45.7 39.4 37.1 37.0 42.0 36.7	Measurement Type Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak	Fol H V V V H	730.0 te: FCC client p 98 98 98 98 98 98 98 98	830.0 15.209 fograms 0 181 0 122 207 213 181	Eimit dBuV/m 46 40 40 40 46 46 46	Meas Dist 3 Spec Dist 3 equency: M MHz data/3897 s Margin dB -0.3 -0.6 -2.9 -3.0 -4.0 -9.3	Hz Hz Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Formally n Frequency MHz 700.017 34.075 45.259 66.293 562.526 382.753	neasu Raw dBuV 49.7 48.8 54.4 56.6 48.3 47.2	200 100 00 300 Pare red em Cable Loss 5.9 3.5 3.5 3.5 3.7 5.5 5.0 	1300 Jated Eminame: C.V ission -9.9 -12.9 -20.9 -23.3 -11.8 -15.4	230.0 330.0 ssions program files peaks Level dBuV/m 45.7 39.4 37.1 37.0 42.0 36.7	Measurement Type Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak	Fol Pol H V V V H	730.0 te: FCC client p 98 98 98 98 98 98 98 98 98	830.0 15.209 rograms 181 0 122 207 213 181	2000 10000 RE 30-1000 rdwn35 raw 46 40.0 40 40 40 40 46 46 46	Meas Dist 3 Spec Dist 3 equency: M MHz data/3897 s data/3897 s -0.3 -0.6 -2.9 -3.0 -4.0 -9.3	Hz Hz ee 30 Pass Pass Pass Pass Pass Pass Pass	Comments
Formally n Frequency MHz 700.017 34.075 45.259 66.293 562.526 382.753	Raw dBuV 49.7 48.8 54.4 56.6 48.3 47.2 TX = 1	200 1 100 0 300 Page red em Cable Loss 5.9 3.5 3.5 3.5 3.7 5.5 5.0 7ransmitte	1300 fiated Eminame: c:\y ission -9.9 -12.9 -20.9 -23.3 -11.8 -15.4 er Emissio	230.0 330.0 ssions program files peaks Level dBuV/m 45.7 39.4 37.1 37.0 42.0 36.7 cons; DIG =	Measurement Type Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak	Fol H V V V H S; FUN	730.0 te: FCC client p 98 98 98 98 98 98 98 98 98 98 98 98	8300 15.209 rograms 181 0 122 207 213 181 181	Eimit dBuV/m 46 40 40 40 46 46 46 46 46	Meas Dist 3 Spec Dist 3 equency: M MHz data/3897 s MHz data/3897 s -0.3 -0.6 -2.9 -3.0 -4.0 -9.3 Wideband	Hz Hz Hz Hz Hz Hz Hz Pass Pass Pass Pass Pass Pass Pass Pas	Comments

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:61 of 192

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty +5.6/	
	4.5 dB

Traceability

Method
Measurements were made per work instruction WI-03
'Measurement of Radiated Emissions'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:62 of 192

7.1.8. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Test Set-up is shown in Section 4.1 Test Equipment Configurations/Radiated Testing

Ambient conditions. Temperature: 19 to 26 °C Relative humidity: 31 to 57 % Pressure:

Pressure: 999 to 1009 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:63 of 192

Tes	st Freq.	N/A					Engineer	JMH		
	Variant	AC Cond 120V Te					Temp (°C)	20		
Freq.	Range	0.150 MHz - 30 MHz 87 88 89 37								
Power	Setting	N/A Press. (mBars)			1010					
A	ntenna	N/A								
Test	lotes 1	Laptop connected to POE with unshielded Enet cable with Type 31 ferr					ype 31 ferrit	e on Lapto	op end o	f cable
Test	lotes 2	SINPRO	POE Adap	ter 120 Va	ac 60 Hz / 55 Vdc	Model No: C	PU55A-270-	-1		
MICOML	MicCimLabs		han	Va	isona by EMiSc	oft		02 Mar 15	16:01 Live Neutral Lint Lint Jug	
Formally	measu	30.0 20.0 0.15 Powe Filen	r Line Condi ame: c:\prog	1.0 ucted Elless ram filester aks	sions misoft - vasona/res	10. Ten sults'rdwn36\A	0 3 plate: CISPR: C Cond 120V-	Frequency 00 228 ACMair unshid.emi	r: MHz ns	
Frequency MHz	Raw dBuV	Cable Loss	Factors dB	Level dBuV	Measurement Type	Line	Limit dBuV	Margin dB	Pass /Fail	Comments
0.155	36.8	9.9	0.1	46.7	Average	Live	55.7	-9.0	Pass	
0.155	45.1	9.9	0.1	55.1	Quasi Peak	Live	65.7	-10.6	Pass	
0.226	27.0	9.9	0.1	36.9	Average	Live	52.6	-15.7	Pass	
0.226	35.4	9.9	0.1	45.4	Quasi Peak	Live	62.6	-17.3	Pass	
0.440	37.5	9.9	0.1	47.5	Quasi Peak	Live	57.1	-9.6	Pass	
0.440	24.0	9.9	0.1	34.0	Average	Live	47.1	-13.1	Pass	
0.518	25.2	9.9	0.1	35.2	Average	Live	46.0	-10.8	Pass	
0.518	37.4	9.9	0.1	47.4	Quasi Peak	Live	56.0	-8.6	Pass	
0.731	19.3	10.0	0.1	29.4	Average	Neutral	46.0	-16.6	Pass	
0.731	35.8	10.0	0.1	45.8	Quasi Peak	Neutral	56.0	-10.2	Pass	
1.038	34.3	9.9	0.1	44.3	Quasi Peak	Live	56.0	-11.7	Pass	
1.038	20.5	9.9	0.1	30.5	Average	Live	46.0	-15.5	Pass	
1.250	18.5	10.0	0.1	28.5	Average	Live	46.0	-17.5	Pass	
1.250	32.7	10.0	0.1	42.8	Quasi Peak	Live	56.0	-13.2	Pass	
				34 5	1			21.5		
3.815	24.2	10.1	0.2	54.5	Quasi Peak	Live	56.0	-21.5	Pass	
3.815 3.815	24.2 11.6	10.1 10.1	0.2	21.9	Quasi Peak Average	Live Live	56.0 46.0	-21.5	Pass Pass	
3.815 3.815 9.388	24.2 11.6 33.1	10.1 10.1 10.3	0.2 0.2 0.4	21.9 43.8	Quasi Peak Average Peak [Scan]	Live Live Live	56.0 46.0 50.0	-21.3 -24.1 -6.2	Pass Pass Pass	
3.815 3.815 9.388	24.2 11.6 33.1	10.1 10.1 10.3	0.2 0.2 0.4	21.9 43.8	Quasi Peak Average Peak [Scan]	Live Live Live	56.0 46.0 50.0	-24.1 -6.2	Pass Pass Pass	
3.815 3.815 9.388 Legend:	24.2 11.6 33.1 DIG =	10.1 10.1 10.3 Digital Dev	0.2 0.2 0.4 vice Emissi	21.9 43.8 on; TX = T	Quasi Peak Average Peak [Scan] ransmitter Emiss	Live Live Live sion; FUND =	56.0 46.0 50.0 Fundamenta	-24.1 -6.2 al Frequer	Pass Pass Pass	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:64 of 192

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

§15.207 (a) Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB
-------------------------	----------

Traceability

Method
Measurements were made per work instruction WI-EMC-01
'Measurement of Conducted Emissions'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:65 of 192

8. TEST SET-UP PHOTOGRAPHS

8.1. Conducted Measurement Test Set-Up

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:66 of 192

8.2. Radiated Spurious Emissions below 1GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:67 of 192

8.3. Radiated Spurious Emissions above 1GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:68 of 192

8.4. Digital Emissions (0.03 – 1 GHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:69 of 192

8.5. ac Wireline Emissions (150 kHz - 30 MHz)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:70 of 192

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:71 of 192

APPENDIX A GRAPHICAL IMAGES

A.1. CONDUCTED TEST PLOTS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:72 of 192

A.1.1. Occupied Bandwidth

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:73 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3649.945 MHz : -19.884 dBm	Channel Frequency: 3652.50 MHz
Sweep Count = 0	M2: 3650.787 MHZ: 6.237 dBm	
RF Atten (dB) = 20	Delta1: 5.511 MHZ: 2.097 dB	
Trace Mode = CLR/WRITE	11:3650.286 MHz: 1.270 dBm	
	12:3654.734 MHZ: 1.490 dBm	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:74 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3649.965 MHz : -16.749 dBm	Channel Frequency: 3652.50 MHz
Sweep Count = 0	M2 : 3651.408 MHz : 9.012 dBm	
RF Atten (dB) = 20	Delta1 : 5.110 MHz : -0.134 dB	
Trace Mode = CLR/WRITE	T1 : 3650.286 MHz : 3.060 dBm	
	T2 : 3654.734 MHz : 3.830 dBm	
	OBW : 4.449 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:75 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3672.445 MHz : -23.250 dBm M2 : 3673.447 MHz : 3.407 dBm Delta1 : 5.311 MHz : 1.261 dB T1 : 3672.786 MHz : -2.340 dBm T2 : 3677.234 MHz : -2.590 dBm OBW : 4.449 MHz	Channel Frequency: 3675.00 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:76 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3672.425 MHz : -19.982 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3676.894 MHz : 6.341 dBm	
RF Atten (dB) = 20	Delta1 : 5.371 MHz : -0.116 dB	
Trace Mode = CLR/WRITE	T1 : 3672.796 MHz : 1.300 dBm	
	T2 : 3677.234 MHz : 0.080 dBm	
	OBW : 4.449 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:77 of 192

Analyser Setup	warker.Frequency.Amplitude	Test Results
Detector = MAX PEAK	M1 : 3672.244 MHz : -17.646 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3676.894 MHz : 9.181 dBm	
RF Atten (dB) = 20	Delta1 : 5.291 MHz : 0.635 dB	
Trace Mode = CLR/WRITE	T1 : 3672.806 MHz : 5.400 dBm	
	T2 : 3677.234 MHz : 2.880 dBm	
	OBW : 4.429 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:78 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3694.445 MHz : -23.425 dBm M2 : 3697.331 MHz : 2.487 dBm Delta1 : 5.291 MHz : 0.614 dB T1 : 3694.786 MHz : -2.420 dBm T2 : 3699.234 MHz : -3.080 dBm	Channel Frequency: 3697.00 MHz
	OBW : 4.449 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:79 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3694.425 MHz : -20.458 dBm M2 : 3695.447 MHz : 6.091 dBm Delta1 : 5.251 MHz : 0.549 dB T1 : 3694.786 MHz : 1.070 dBm T2 : 3699.234 MHz : 1.040 dBm OBW : 4.449 MHz	Channel Frequency: 3697.00 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:80 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3694.425 MHz : -18.006 dBm M2 : 3698.894 MHz : 8.154 dBm Delta1 : 5.150 MHz : -0.622 dB T1 : 3694.786 MHz : 3.020 dBm	Channel Frequency: 3697.00 MHz
	T2 : 3699.234 MHz : 2.760 dBm OBW : 4.449 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:81 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3649.965 MHz : -20.990 dBm M2 : 3652.520 MHz : 5.866 dBm Delta1 : 10.281 MHz : 0.476 dB T1 : 3650.596 MHz : 0.790 dBm	Channel Frequency: 3655.00 MHz
	T2 : 3659.404 MHz : 1.510 dBm OBW : 10.281 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:82 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3649.875 MHz : -17.139 dBm M2 : 3655.947 MHz : 9.357 dBm Delta1 : 10.040 MHz : 0.224 dB T1 : 3650.656 MHz : 3.120 dBm T2 : 3659.374 MHz : 3.570 dBm OBW : 8.717 MHz	Channel Frequency: 3655.00 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:83 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3649.544 MHz : -13.632 dBm	Channel Frequency: 3655.00 MHz
Sweep Count = 0	M2 : 3657.510 MHz : 11.528 dBm	
RF Atten (dB) = 20	Delta1 : 10.461 MHz : -0.397 dB	
Trace Mode = CLR/WRITE	T1 : 3650.626 MHz : 5.960 dBm	
	T2 : 3659.404 MHz : 6.320 dBm	
	OBW : 8.778 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:84 of 192

Analyser Setup	warker: Frequency: Amplitude	Test Results
Detector = MAX PEAK	M1 : 3669.965 MHz : -20.941 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3673.151 MHz : 5.973 dBm	
RF Atten (dB) = 20	Delta1 : 10.010 MHz : 1.367 dB	
Trace Mode = CLR/WRITE	T1 : 3670.626 MHz : 1.080 dBm	
	T2 : 3679.404 MHz : 0.860 dBm	
	OBW : 8.778 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:85 of 192

Analyser Setup	warker.Frequency.Amplitude	Test Results
Detector = MAX PEAK	M1 : 3669.394 MHz : -16.783 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3676.578 MHz : 9.483 dBm	
RF Atten (dB) = 20	Delta1 : 10.551 MHz : -0.295 dB	
Trace Mode = CLR/WRITE	T1 : 3670.626 MHz : 3.940 dBm	
	T2 : 3679.404 MHz : 3.960 dBm	
	OBW : 8.778 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:86 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3669.935 MHz : -14.166 dBm M2 : 3678.141 MHz : 12.185 dBm Delta1 : 10.010 MHz : 1.712 dB T1 : 3670.626 MHz : 5.400 dBm T2 : 3679.404 MHz : 6.910 dBm OBW : 8.778 MHz	Channel Frequency: 3675.00 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:87 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3690.025 MHz : -20.372 dBm M2 : 3692.219 MHz : 5.709 dBm Delta1 : 10.040 MHz : -0.413 dB T1 : 3690.626 MHz : 1.730 dBm T2 : 3699.404 MHz : 0.220 dBm OBW : 8.778 MHz	Channel Frequency: 3695.00 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:88 of 192

Detector = MAX PEAK M1 : 3690.055 MHz : -16.976 dBm Channel Frequency: 3695.00 MHz	
Sweep Count = 0 M2 : 3696.879 MHz : 9.782 dBm	
RF Atten (dB) = 20 Delta 1 : 9.890 MHz : 0.423 dB	
Trace Mode = CLR/WRITE T1 : 3690.626 MHz : 3.430 dBm	
T2 : 3699.374 MHz : 3.390 dBm	
OBW : 8.778 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:89 of 192

/ analyour outup	markern requeries in an pricade	Toot Roodito
Detector = MAX PEAK	M1 : 3689.875 MHz : -13.121 dBm	Channel Frequency: 3695.00 MHz
Sweep Count = 0	M2 : 3692.791 MHz : 12.262 dBm	
RF Atten (dB) = 20	Delta1 : 10.100 MHz : -0.846 dB	
Trace Mode = CLR/WRITE	T1 : 3690.626 MHz : 6.800 dBm	
	T2 : 3699.404 MHz : 6.270 dBm	
	OBW : 8.778 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:90 of 192

Analyser Setup	warker: Frequency: Amplitude	Test Results
Detector = MAX PEAK	M1 : 3649.788 MHz : -15.566 dBm	Channel Frequency: 3661.00 MHz
Sweep Count = 0	M2 : 3667.042 MHz : 9.490 dBm	
RF Atten (dB) = 20	Delta1 : 22.605 MHz : 0.744 dB	
Trace Mode = CLR/WRITE	T1 : 3652.072 MHz : 1.680 dBm	
	T2 : 3669.928 MHz : 1.080 dBm	
	OBW : 17.856 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:91 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3650.148 MHz : -13.840 dBm	Channel Frequency: 3661.00 MHz
Sweep Count = 0	M2 : 3664.998 MHz : 12.226 dBm	
RF Atten (dB) = 20	Delta1 : 22.064 MHz : -0.616 dB	
Trace Mode = CLR/WRITE	T1 : 3652.243 MHz : 4.820 dBm	
	T2 : 3669.868 MHz : 4.850 dBm	
	OBW : 17.615 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:92 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3647.864 MHz : -9.033 dBm	Channel Frequency: 3661.00 MHz
Sweep Count = 0	M2 : 3664.577 MHz : 14.648 dBm	
RF Atten (dB) = 20	Delta1 : 26.814 MHz : -1.627 dB	
Trace Mode = CLR/WRITE	T1 : 3652.012 MHz : 5.040 dBm	
	T2 : 3669.868 MHz : 7.450 dBm	
	OBW : 17.856 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:93 of 192

Analyser Setup	warker: Frequency: Amplitude	Test Results
Detector = MAX PEAK	M1 : 3663.126 MHz : -15.214 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3669.559 MHz : 10.747 dBm	
RF Atten (dB) = 20	Delta1 : 23.447 MHz : 1.084 dB	
Trace Mode = CLR/WRITE	T1 : 3666.072 MHz : 2.920 dBm	
	T2 : 3683.868 MHz : 3.710 dBm	
	OBW : 17.956 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:94 of 192

Analysel Setup	warker.Frequency.Amplitude	Test Results
Detector = MAX PEAK	M1 : 3663.727 MHz : -10.975 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3677.134 MHz : 13.699 dBm	
RF Atten (dB) = 20	Delta1 : 24.469 MHz : -1.806 dB	
Trace Mode = CLR/WRITE	T1 : 3666.192 MHz : 6.290 dBm	
	T2 : 3683.868 MHz : 6.640 dBm	
	OBW : 17.675 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:95 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3660.661 MHz : -8.533 dBm M2 : 3680.020 MHz : 15.728 dBm Delta1 : 28.677 MHz : -0.992 dB T1 : 3666.012 MHz : 6.470 dBm T2 : 3683.928 MHz : 6.640 dBm OBW : 17.916 MHz	Channel Frequency: 3675.00 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:96 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK Sweep Count = 0	M1 : 3677.186 MHz : -15.856 dBm M2 : 3682.778 MHz : 10.017 dBm	Channel Frequency: 3689.00 MHz
RF Atten (dB) = 20 Trace Mode = CLR/WRITE	Delta1 : 23.146 MHz : 0.024 dB T1 : 3680.072 MHz : 1.820 dBm T2 : 3697.868 MHz : 3.280 dBm OBW : 17.796 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:97 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3677.246 MHz : -13.126 dBm	Channel Frequency: 3689.00 MHz
RF Atten (dB) = 20	Delta1 : 24.529 MHz : -0.685 dB	
Trace Mode = CLR/WRITE	T1 : 3680.192 MHz : 6.190 dBm	
	OBW : 17.675 MHz : 6.080 dBm	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:98 of 192

Analysel Setup	warker.i requency.Ampiltude	Test Results
Detector = MAX PEAK	M1 : 3675.263 MHz : -10.863 dBm	Channel Frequency: 3689.00 MHz
Sweep Count = 0	M2 : 3685.303 MHz : 14.833 dBm	
RF Atten (dB) = 20	Delta1 : 27.054 MHz : 0.118 dB	
Trace Mode = CLR/WRITE	T1 : 3680.012 MHz : 5.650 dBm	
	T2 : 3697.868 MHz : 7.530 dBm	
	OBW : 17.856 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:99 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3650.230 MHz : -13.341 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3664.339 MHz : 12.422 dBm	
RF Atten (dB) = 20	Delta1 : 47.615 MHz : 0.120 dB	
Trace Mode = CLR/WRITE	T1 : 3656.323 MHz : 3.490 dBm	
	T2 : 3693.357 MHz : 5.180 dBm	
	OBW : 37.034 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:100 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3643.818 MHz : -11.538 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3678.126 MHz : 14.754 dBm	
RF Atten (dB) = 20	Delta1 : 63.166 MHz : -0.513 dB	
Trace Mode = CLR/WRITE	T1 : 3656.323 MHz : 5.670 dBm	
	T2 : 3693.517 MHz : 6.070 dBm	
	OBW : 37.194 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:101 of 192

Analyser betup	marker.r requency.Amplitude	Test Results
Detector = MAX PEAK	M1 : 3635.000 MHz : -9.364 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3663.697 MHz : 16.444 dBm	
RF Atten (dB) = 20	Delta1 : 80.000 MHz : -0.207 dB	
Trace Mode = CLR/WRITE	T1 : 3655.842 MHz : 2.610 dBm	
	T2 : 3693.677 MHz : 5.040 dBm	
	OBW : 37.836 MHz	

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:102 of 192

A.1.2. Power Spectral Density

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3653.364 MHz : 112.758 dBuV/MHz	Channel Frequency: 3652.50 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:103 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3651.065 MHz : 115.621 dBuV/MHz	Channel Frequency: 3652.50 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:104 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3651.591 MHz : 118.346 dBuV/MHz	Channel Frequency: 3652.50 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:105 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3674.031 MHz : 113.796 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:106 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3673.550 MHz : 117.223 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:107 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3673.489 MHz : 118.956 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:108 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3696.061 MHz : 114.160 dBuV/MHz	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:109 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3695.595 MHz : 117.090 dBuV/MHz	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:110 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3695.565 MHz : 118.833 dBuV/MHz	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:111 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3656.578 MHz : 112.155 dBuV/MHz	Channel Frequency: 3655.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:112 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3652.189 MHz : 114.875 dBuV/MHz	Channel Frequency: 3655.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:113 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3653.031 MHz : 118.116 dBuV/MHz	Channel Frequency: 3655.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:114 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3676.127 MHz : 111.987 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:115 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3672.099 MHz : 114.544 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:116 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3672.971 MHz : 118.013 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:117 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3692.971 MHz : 112.175 dBuV/MHz	Channel Frequency: 3695.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:118 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3692.129 MHz : 114.879 dBuV/MHz	Channel Frequency: 3695.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:119 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3692.941 MHz : 117.784 dBuV/MHz	Channel Frequency: 3695.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:120 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3656.100 MHz : 110.150 dBuV/MHz	Channel Frequency: 3661.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:121 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3664.998 MHz : 113.212 dBuV/MHz	Channel Frequency: 3661.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:122 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3664.457 MHz : 115.545 dBuV/MHz	Channel Frequency: 3661.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:123 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3669.499 MHz : 111.544 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:124 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3678.156 MHz : 115.064 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:125 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3676.413 MHz : 116.664 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:126 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3686.024 MHz : 110.787 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:127 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3692.096 MHz : 114.784 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:128 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3692.998 MHz : 115.621 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:129 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3662.796 MHz : 111.843 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:130 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3678.186 MHz : 114.328 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:131 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3665.681 MHz : 115.752 dBuV/MHz	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 30		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:132 of 192

A.1.3. Frequency Stability

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS Sweep Count = 0 RF Atten (dB) = 20 Trace Mode = CLR/WRITE	M1 : 3660.003 MHz : -22.038 dBm	Channel Frequency: 3660.00 MHz

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:133 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.003 MHz : -23.645 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:134 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.002 MHz : -6.218 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:135 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.001 MHz : 2.019 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:136 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.001 MHz : -0.488 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:137 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.000 MHz : -11.614 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:138 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.001 MHz : -1.114 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:139 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.002 MHz : -4.543 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:140 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.002 MHz : -5.750 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:141 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.002 MHz : -15.931 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:142 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.001 MHz : -8.106 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:143 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3660.001 MHz : -8.643 dBm	Channel Frequency: 3660.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:144 of 192

A.1.4. Conducted Spurious Emissions

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 459.599 MHz : -55.800 dBm	Channel Frequency: 3653.00 MHz
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:145 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 488.758 MHz : -52.740 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:146 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 411.002 MHz : -53.244 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:147 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3627.255 MHz : 20.669 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0	M2 : 3208.417 MHz : -24.207 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:148 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3627.255 MHz : 22.098 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0	M2 : 3170.341 MHz : -21.137 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:149 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3627.255 MHz : 25.936 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0	M2 : 3246.493 MHz : -18.614 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:150 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.870 GHz : -19.798 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:151 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.910 GHz : -19.679 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:152 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.549 GHz : -19.485 dBm	Channel Frequency: 3653.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:153 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 521.804 MHz : -55.165 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:154 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 473.206 MHz : -51.925 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:155 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 480.982 MHz : -53.246 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:156 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3665.331 MHz : 19.998 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3208.417 MHz : -23.833 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:157 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3665.331 MHz : 24.409 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3132.265 MHz : -21.591 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:158 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3665.331 MHz : 24.364 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3208.417 MHz : -18.727 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:159 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.549 GHz : -20.168 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:160 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.950 GHz : -20.318 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:161 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.870 GHz : -19.980 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:162 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 496.533 MHz : -53.569 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:163 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 494.589 MHz : -53.379 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:164 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 455.711 MHz : -52.713 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 10		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:165 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3703.407 MHz : 18.922 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0	M2 : 3208.417 MHz : -23.485 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:166 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3665.331 MHz : 25.468 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0	M2 : 3132.265 MHz : -21.562 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:167 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 3665.331 MHz : 25.519 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0	M2 : 3246.493 MHz : -18.786 dBm	
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:168 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.830 GHz : -20.250 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:169 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.629 GHz : -20.232 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:170 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	M1 : 34.830 GHz : -19.717 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0		
RF Atten (dB) = 20		
Trace Mode = VIEW		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:171 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -32.125 dBm	Channel Frequency: 3652.50 MHz
Sweep Count = 0	M2 : 3653.517 MHz : -2.781 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:172 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -28.567 dBm	Channel Frequency: 3652.50 MHz
Sweep Count = 0	M2 : 3650.591 MHz : 0.327 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:173 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -27.007 dBm	Channel Frequency: 3652.50 MHz
Sweep Count = 0	M2 : 3651.713 MHz : 2.138 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:174 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3695.323 MHz : -4.850 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -47.351 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:175 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3695.002 MHz : -1.651 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -42.506 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:176 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3699.010 MHz : 0.840 dBm	Channel Frequency: 3697.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -39.069 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:177 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -34.001 dBm	Channel Frequency: 3655.00 MHz
Sweep Count = 0	M2 : 3652.144 MHz : -1.512 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:178 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -31.869 dBm	Channel Frequency: 3655.00 MHz
Sweep Count = 0	M2 : 3655.752 MHz : 1.773 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:179 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -28.506 dBm	Channel Frequency: 3655.00 MHz
Sweep Count = 0	M2 : 3653.186 MHz : 3.600 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:180 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3693.687 MHz : -2.216 dBm	Channel Frequency: 3695.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -30.255 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:181 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3694.168 MHz : 1.745 dBm	Channel Frequency: 3695.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -27.402 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:182 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3693.367 MHz : 4.054 dBm	Channel Frequency: 3695.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -24.233 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:183 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -27.345 dBm	Channel Frequency: 3661.00 MHz
Sweep Count = 0	M2 : 3656.772 MHz : 0.899 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:184 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -26.620 dBm	Channel Frequency: 3661.00 MHz
Sweep Count = 0	M2 : 3663.886 MHz : 4.093 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:185 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -20.054 dBm	Channel Frequency: 3661.00 MHz
Sweep Count = 0	M2 : 3664.287 MHz : 6.887 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:186 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3684.411 MHz : 1.492 dBm	Channel Frequency: 3689.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -27.289 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:187 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3691.325 MHz : 5.492 dBm	Channel Frequency: 3689.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -23.015 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:188 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3692.226 MHz : 5.767 dBm	Channel Frequency: 3689.00 MHz
Sweep Count = 0	M2 : 3700.000 MHz : -21.362 dBm	
RF Atten (dB) = 20		
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:189 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -27.464 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3661.934 MHz : 5.132 dBm	
RF Atten (dB) = 20	M3 : 3700.000 MHz : -31.161 dBm	
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:190 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -24.027 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3661.613 MHz : 7.139 dBm	
RF Atten (dB) = 20	M3 : 3700.000 MHz : -26.475 dBm	
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 90 Subpart Z & IC RSS-197Serial #:RDWN35-U3 Rev AIssue Date:19th March 2015Page:191 of 192

Analyser Setup	Marker:Frequency:Amplitude	Test Results
Detector = RMS	M1 : 3650.000 MHz : -18.530 dBm	Channel Frequency: 3675.00 MHz
Sweep Count = 0	M2 : 3666.102 MHz : 8.141 dBm	
RF Atten (dB) = 20	M3 : 3700.000 MHz : -19.660 dBm	
Trace Mode = CLR/WRITE		

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com