Company: RADWIN Ltd.

Test of: RADWIN 2000 JET, RADWIN 5000 JET

To: FCC Part 15 Subpart E 15.407 & ISED RSS-247 Issue 2

Report No.: RDWN47-U4 Rev B (non-DFS Bands)

TEST REPORT

Test of: RADWIN 2000 JET, RADWIN 5000 JET

To: FCC CFR 47 Part 15 Subpart E 15.407 & ISED RSS-247 Issue 2

Test Report Serial No.: RDWN47-U4 Rev B (non-DFS Bands)

This report supersedes: RDWN47-U4 Rev A (non-DFS Bands)

Applicant: RADWIN Ltd. 27 Habarzel Street Tel Aviv 69710

Israel Product Function: 5 GHz Beamforming Outdoor Radio Device

Issue Date: 30th November 2017

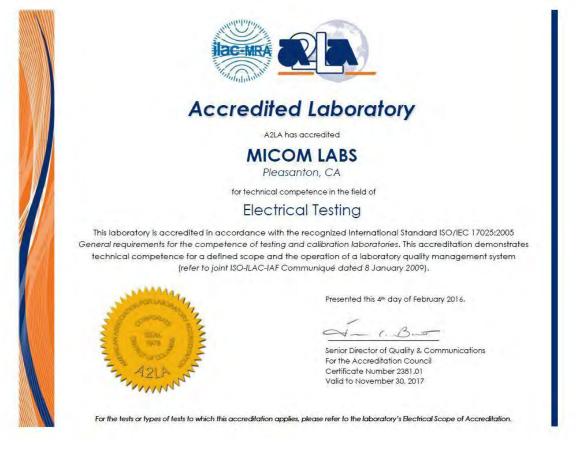
This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:3 of 188

Table of Contents


1. ACCREDITATION, LISTINGS & RECOGNITION	
1.1. TESTING ACCREDITATION	
1.2. RECOGNITION	
1.3. PRODUCT CERTIFICATION	
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	
5.1. Technical Details	11
5.2. Scope Of Test Program	
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	13
5.5. Cabling and I/O Ports	
5.6. Test Configurations	14
5.7. Equipment Modifications	
5.8. Deviations from the Test Standard	14
6. TEST SUMMARY	
7. TEST EQUIPMENT CONFIGURATION(S)	
7.1. Radiated Emissions - 3m Chamber	
8. MEASUREMENT AND PRESENTATION OF TEST DATA	
9. TEST RESULTS	
9.1. 26 dB & 99% Bandwidth	
9.2. 6 dB & 99% Bandwidth	
9.3. RF Output Power	
9.4. Power Spectral Density	
9.5. Radiated	
9.5.1. TX Spurious & Restricted Band Emissions	
9.5.1.1. RADWIN Ltd. SA0183620 11 dBi	
9.5.1.2. RADWIN Ltd. SA0183620 20.5 dBi	
9.5.2. Restricted Edge & Band-Edge Emissions	
9.5.2.3. RADWIN Ltd. SA0183620 11 dBi	
9.5.2.4. RADWIN Ltd. SA0183620 20.5 dBi	
9.5.3. Digital Emissions	
A. APPENDIX - GRAPHICAL IMAGES	
A.1. 26 dB & 99% Bandwidth	
A.2. 6 dB & 99% Bandwidth	
A.3. Power Spectral Density	
A.4. Radiated	
A.4.1. TX Spurious & Restricted Band Emissions	
A.4.1.1. RADWIN Ltd. SA0183620 11 dBi	
A.4.1.2. RADWIN Ltd. SA0183620 20.5 dBi	
A.4.2. Restricted Edge & Band-Edge Emissions	
A.4.2.3. RADWIN Ltd. SA0183620 11 dBi	
A.4.2.4. RADWIN Ltd. SA0183620 20.5 dBi	

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	САВ	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition

agreement under which test lab is accredited to regulatory standards of the APEC member countries. Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:6 of 188

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

2. DOCUMENT HISTORY

	Document History						
Revision	Date	Comments					
Draft	2 nd November 2017	Program undertaken to test the following; a) Full testing 5725 – 5850 MHz band test for compliance to new FCC mask b) add new antennas					
Draft #2	15 th November 2017						
Rev A	26 th November 2017	Initial Release					
Rev B	30 th November 2017	Updated Section 5.4 Antenna Details					
This report was orig	inally issued as RDWN	39-U8 for a module					
Rev A	8 th December 2017	Initial Release					
	est report revision will replace						

In the above table the latest report revision will replace all earlier versions.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:8 of 188

Telephone: +1 925 462 0304

Fax: +1 925 462 0306

3. TEST RESULT CERTIFICATE

Manufacturer: Radwin 27 Habarzel Street Tel Aviv .69710 Israel **Tested By:** MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Model: RADWIN 2000 JET, RADWIN 5000 JET

Equipment Type: 5 GHz Beamforming Outdoor Radio Device

S/N's: Prototype

Test Date(s): 23rd to 26th October 2017

Website: www.micomlabs.com

STANDARD(S)

TEST RESULTS

EQUIPMENT COMPLIES

FCC CFR 47 Part 15 Subpart E 15.407 & ISED RSS-247 (non-DFS Bands)

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:9 of 188

4. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
I	KDB 662911 D01 & D02	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency band
П	KDB 905462 D07 v02	22nd August 2016	Test guidance to demonstrate compliance for U-NII devices subject to DFS requirements.
Ш	KDB 926956 D01 v02	22nd August 2016	U-NII Device Transition Plan
IV	KDB 789033 D02 v01r04	2nd May 2017	Guidelines for compliance testing of Unlicensed National Information Infrastructure (U-NII) Devices (Part 15, Subpart E)
V	A2LA	August 2017	R105 - Requirement's When Making Reference to A2LA Accreditation Status
VI	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices
VII	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
VIII	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
IX	FCC 47 CFR Part 15.407	2016	Radio Frequency Devices; Subpart E –Unlicensed National Information Infrastructure Devices
x	M 3003	Edition 3 Nov.2012	Expression of Uncertainty and Confidence in Measurements
XI	RSS-247 Issue 2	Feb 2017	Digital Transmission Systems (DTSs), Frequency Hopping System (FHSs) and Licence-Exempt Local Area Network (LE-LEN) Devices
XII	RSS-Gen Issue 4	November 2014	General Requirements and Information for the Certification of Radiocommunication Equipment
XIII	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules
XIV	FCC 47 CFR Part 2.1033	2016	FCC requirements and rules regarding photographs and test setup diagrams.
xv	KDB 905462 D02 v02	April 8 2016	Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5250 to 5350 MHz and 5470 to 5725 MHz bands incorporating Dynamic Frequency Selection.
XVI	KDB 662911 D01	October 31, 2013	Emissions Testing of Transmitters with Multiple Outputs in the Same Band
XVII	KDB 662911 D02	October 25 2011	MIMO with Cross-Polarized Antenna
XVIII	KDB 558074 D01	April 5, 2017	Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the RADWIN 2000 JET, RADWIN 5000 JET to FCC CFR
	47 Part 15 Subpart E 15.407 and ISED RSS-247 Issue 2.
	Compliance Measurement Procedures for Unlicensed National
	Information Infrastructure devices operating in the 5150 to 5250
A see Prove to	MHz and 5725 to 5850 MHz bands.
Applicant:	RADWIN Ltd. 27 Habarzel Street
	Tel Aviv .69710 Israel
Manufacturer:	
Laboratory performing the tests:	
Laboratory performing the tests.	575 Boulder Court
	Pleasanton California 94566 USA
Test report reference number:	
Date EUT received:	
Standard(s) applied:	
	23 rd – 26 th October 2017
No of Units Tested:	
Product Family Name:	
	RADWIN 2000 JET, RADWIN 5000 JET
Location for use:	Indoor & Outdoors
Declared Frequency Range(s):	5150 - 5250 MHz; 5725 - 5850 MHz;
Type of Modulation:	BPSK, QPSK, 16QAM, 64QAM, 256QAM
EUT Modes of Operation:	Bandwidths 10 MHz, 20 MHz, 40 MHz, 80 MHz
Declared Nominal Output Power (dBm):	
Transmit/Receive Operation:	
Rated Input Voltage and Current:	POE 55 Vdc 1 A
Operating Temperature Range:	-40°C to +60°C
ITU Emission Designator:	
	20 MHz 20M0W7W
	40 MHz 40M0W7W
	80 MHz 80M0W7W
Equipment Dimensions:	
Weight:	
Hardware Rev:	2.7 2.7
Software Rev:	Prototype

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

5.2. Scope Of Test Program

RADWIN 2000 JET, RADWIN 5000 JET

The scope of the test program was to test the RADWIN 2000 JET, RADWIN 5000 JET configurations in the frequency ranges 5150 - 5250 MHz; 5725 - 5850 MHz; for compliance against the following specification:

The following antennas were tested to 5725-5850MHz for transmitter spurious and band edge integral antenna 20.5 dBi and integral antenna 11 dBi

The following antennas were tested to 5150-5250 MHz for transmitter spurious and band edge: integral antenna 11 dBi

For band 5150-5250 MHz covering the integral antenna 20.5 dBi please refer to the following report: **RDWN39-U8 Rev A Radwin AP0158770 AP 5150-5250 MHz FCC 15.407**

FCC CFR 47 Part 15 Subpart E 15.407

Compliance Measurement Procedures for Unlicensed National Information Infrastructure devices operating in the 5150 to 5250 MHz and 5725 to 5850 MHz bands.

ISED RSS-247

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Product Differences

RADWIN 2000 JET: The RADWIN 2000 denotes that the device is configured for Point to Point installation.

RADWIN 5000 JET: The RADWIN 5000 denotes that the device is configured for Point to Multipoint installation.

5.3. Equipment Model(s) and Serial Number(s)

Туре	Description	Manufacturer	Model	Serial no.	Delivery Date
EUT	5 GHz Beamforming Outdoor Radio Device	Radwin Ltd.	RADWIN 2000 JET, RADWIN 5000 JET	Prototype	16 th October 2017

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
integral	RADWIN Ltd.	SA0183620	Flat Panel	11.0	9.5	9.4	Yes	5150 – 5850
integral	RADWIN Ltd.	SA0183620	Sector	11.0		60	Yes	5150 – 5850
Dir BW - D	BF Gain - Beamforming Gain Dir BW - Directional BeamWidth X-Pol - Cross Polarization							

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# of Ports	Screened	Conn Type	Data Type	Bit Rate
Ethernet	>30m	1	Yes	RJ45	Packet Data	10/100/1000

5.6. Test Configurations

Results for the following configurations are provided in this report:

Channel	Data Rate		Channel Frequency (MHz)	
Bandwidth(s)	MBit/s	Low	Mid	High
		5150-5250 MHz		
10MHz	3.25	5162	5200	5245
20MHz	6.50	5165	5200	5240
40MHz	13.50	5172	5200	5230
80MHz	29.30	5194		5210
		5725 - 5850 MHz		
10MHz	3.25	5730	5787	5845
20MHz	6.50	5735	5787	5840
40MHz	13.50	5745	5787	5830
80MHz	29.30	5765	5787	5810

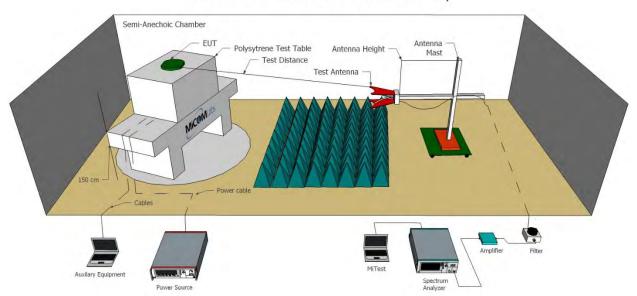
5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

6. TEST SUMMARY


List of Measurements				
Test Header	Result	Data Link		
Radiated	Complies	-		
6 dB & 99% Bandwidth	Complies	View Data		
26 dB & 99% Bandwidth	Complies	View Data		
Peak Transmit Power	Complies	View Data		
Power Spectral Density	Complies	View Data		
TX Spurious & Restricted Band Emissions	Complies	-		
RADWIN Ltd. SA0183620 11 dBi	Complies	View Data		
RADWIN Ltd. SA0183620 20.5 dBi	Complies	View Data ¹		
Restricted Edge & Band-Edge Emissions	Complies	-		
RADWIN Ltd. SA0183620 11 dBi	Complies	View Data		
RADWIN Ltd. SA0183620 20.5 dBi	Complies	View Data ¹		
Digital Emissions	Complies	View Data		
Conducted Emissions AC mains	Complies ²			
Note1: 5150-5250 MHz Transmitter Spurious and Band Edge Data for the 20.5 dBi antenna refer to report "RDWN39-U8 Rev A" Note2: Please refer to report "RDWN39-U3 Rev A Radwin AP0158770 AP 5725-5850 MHz FCC 15.407" for the following test results.				

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Radiated Emissions - 3m Chamber

The following tests were performed using the radiated test set-up shown in the diagram below. Radiated emissions above 1GHz.

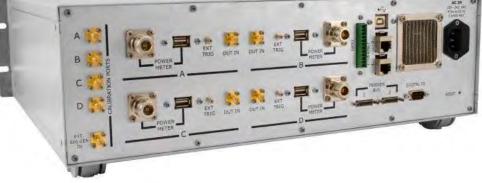
Radiated Emissions Above 1GHz Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	30 Nov 2017
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CU101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	2 May 2018
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	5 Oct 2018
341	900MHz Notch Filter	EWT	EWT-14-0199	H1	30 Oct 2017
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	30 Oct 2017
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	30 Oct 2017
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	30 Oct 2017
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	MiTest Rad Emissions Test Software	MiCOM	Rad Emissions Test Software Version 1.0	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	30 Oct 2017
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	30 Oct 2017
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	30 Oct 2017
480	Cable - Bulkhead to Amp	SRC Haverhill	157-3050360	480	30 Oct 2017
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-3050787	481	30 Oct 2017
482	Cable - Amp to Antenna	SRC Haverhill	157-3051574	482	30 Oct 2017

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:18 of 188


8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "MiTest" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9. TEST RESULTS

9.1. 26 dB & 99% Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth					
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	26 dB and 99 % Bandwidth	26 dB and 99 % Bandwidth Rel. Humidity (%): 32 - 45			
Standard Section(s):	15.407 (a)	15.407 (a) Pressure (mBars): 999 - 1001			
Reference Document(s):	See Normative References				

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured radiated, in a 3 meter chamber, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth. Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported. In this case Vertical a (V) and Horizontal for port b (H).

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document.

Equipment Configuration for 26 dB & 99% Occupied Bandwidth

Variant:	10 MHz Bandwidth	Duty Cycle (%):	100
Data Rate:	3.25 MBit/s	Antenna Gain (dBi):	11
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Frequency	Measured 26 dB	Bandwidth (MHz)	26 dB Band	width (MHz)	
MHz	Н	V	Highest	Lowest	
5162.0	-	<u>11.70</u>	11.70	11.70	
5200.0	-	<u>11.50</u>	11.50	11.50	
5245.0	-	<u>11.50</u>	11.50	11.50	
Test Frequency	Measured 99% I	Measured 99% Bandwidth (MHz)		vidth (MHz)	
MI 1-		V	llinkaat	Lauraat	

Frequency		ζ γ		· · /	
MHz	Н	V	Highest	Lowest	
5162.0	-	<u>8.98</u>	8.98	8.98	
5200.0	-	<u>8.98</u>	8.98	8.98	
5245.0	-	<u>8.98</u>	8.98	8.98	

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

Note: click the links in the above matrix to view the graphical image (plot).

The above values are representative of the worst case value between polarities and based on the power measurements.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Equipment Configuration for 26 dB & 99% Occupied Bandwidth				
Variant:	20 MHz Bandwidth	Duty Cycle (%):	100	
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	11	
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable	
TPC:	Not Applicable	Tested By:	OC	
Engineering Test Notes:				

Test Measure	ement Results					
Test Frequency	Measured 26 dB	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)		
MHz	Н	V	Highest	Lowest		
5165.0	-	<u>22.53</u>	22.53	22.53		
5200.0	-	<u>21.80</u>	21.80	21.80		
5240.0	-	<u>22.53</u>	22.53	22.53		
Test Frequency	Measured 99% E	3andwidth (MHz)	99% Bandy	vidth (MHz)		
MHz	Н	V	Highest	Lowest		
5165.0	-	<u>17.88</u>	17.88	17.88		
5200.0	-	<u>17.88</u>	17.88	17.88		
5240.0	-	<u>17.88</u>	17.88	17.88		

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

The above values are representative of the worst case value between polarities and based on the power measurements.

Equipment Configuration for 26 dB & 99% Occupied Bandwidth					
Variant:	40 MHz Bandwidth	Duty Cycle (%):	100		
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	11		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	JMH		
Engineering Test Notes:		·	·		

Test Measure	ment Results					
Test Frequency	Measured 26 dB	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)		
MHz	н	V	Highest	Lowest		
5172.0	-	<u>43.89</u>	43.89	43.89		
5200.0	-	<u>45.03</u>	45.03	45.03		
5230.0	-	<u>45.15</u>	45.15	45.15		
Test Frequency	Measured 99% E	Bandwidth (MHz)	99% Bandy	vidth (MHz)		
MHz	н	V	Highest	Lowest		
5172.0	-	<u>36.67</u>	36.67	36.67		
5200.0	-	<u>36.87</u>	36.87	36.87		
5230.0	-	<u>36.87</u>	36.87	36.87		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

The above values are representative of the worst case value between polarities and based on the power measurements.

Equipment Configuration for 26 dB & 99% Occupied Bandwidth						
Variant:	80MHz	Duty Cycle (%):	100			
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	11			
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable			
TPC:	Not Applicable	Tested By:	OC			
Engineering Test Notes:						

Test Measurem	ent Results					
Test Frequency	Measured 26 dB	Measured 26 dB Bandwidth (MHz)		26 dB Bandwidth (MHz)		
MHz	н	V	Highest	Lowest		
5194.0	-	<u>87.03</u>	87.03	87.03		
5210.0	-	<u>88.32</u>	88.32	88.32		
Test Frequency	Measured 99% I	Bandwidth (MHz)	99% Bandv	vidth (MHz)		
MHz	н	V	Highest	Lowest		
MHz 5194.0	H -	V <u>76.31</u>	Highest 76.31	Lowest 76.31		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

The above values are representative of the worst case value between polarities and based on the power measurements.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

9.2. 6 dB & 99% Bandwidth

Conducted Test Conditions for 6 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.407	CC CFR 47:15.407 Ambient Temp. (°C): 24.0 - 27.5				
Test Heading:	6 dB and 99 % Bandwidth Rel. Humidity (%):		32 - 45			
Standard Section(s):	15.407 (a)	15.407 (a) Pressure (mBars): 999 - 1001				
Reference Document(s):	Reference Document(s): See Normative References					

Test Procedure for 6 dB and 99% Bandwidth Measurement

The bandwidth at 6 dB and 99 % is measured radiated, in a 3 meter chamber, while EUT is operating in transmission mode at the appropriate center frequency. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth. Testing was performed under ambient conditions at nominal voltage. Where the device operated with multiple antenna ports i.e. MIMO device, each port was measured and reported. In this case Vertical a (V) and Horizontal for port b (H).

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document.

Equipment Configuration for 6 dB & 99% Bandwidth

Variant:	10 MHz Bandwidth	Duty Cycle (%):	100
Data Rate:	3.25 MBit/s	Antenna Gain (dBi):	11
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	OC
Engineering Test Notes:			

Test Measure	ment Results					
Test Frequency	Measured 6 dB I	Measured 6 dB Bandwidth (MHz)		6 dB Bandwidth (MHz)		
MHz	Н	V	Highest	Lowest		
5730.0	<u>9.14</u>	-	9.14	9.14		
5787.0	<u>8.86</u>	-	8.86	8.86		
5845.0	<u>9.14</u>	-	9.14	9.14		
Test Frequency	Measured 99% E	3andwidth (MHz)	99% Bandy	width (MHz)		
MHz	Н	V	Highest	Lowest		
5730.0	<u>9.98</u>	-	9.98	9.98		
5787.0	<u>9.90</u>	-	9.90	9.90		
5845.0	<u>10.02</u>	-	10.02	10.02		

 Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

The above values are representative of the worst case value between polarities and based on the power measurements.

-

Equipment Configuration for 6 dB & 99% Bandwidth				
Variant:	20MHz	Duty Cycle (%):	100	
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	11	
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable	
TPC:	Not Applicable	Tested By:	OC	
Engineering Test Notes:				

Test Measure	ment Results					
Test Frequency	Measured 6 dB I	Measured 6 dB Bandwidth (MHz)		6 dB Bandwidth (MHz)		
MHz	Н	V	Highest	Lowest		
5735.0	<u>17.88</u>	-	17.88	17.88		
5787.0	<u>17.80</u>	-	17.80	17.80		
5840.0	<u>17.96</u>	-	17.96	17.96		
Test Frequency	Measured 99% E	Measured 99% Bandwidth (MHz)				
MHz	н	V	Highest	Lowest		
5735.0	<u>18.23</u>	-	18.23	18.23		
5787.0	<u>18.36</u>	-	18.36	18.36		
5840.0	<u>18.52</u>	-	18.52	18.52		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

The above values are representative of the worst case value between polarities and based on the power measurements.

Equipment Configuration for 6 dB & 99% Bandwidth				
		1	1	
Variant:	40MHz	Duty Cycle (%):	100	
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	11	
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable	
TPC:	Not Applicable	Tested By:	00	
Engineering Test Notes:				

Test Measurement Results						
Test Frequency	Measured 6 dB I	Measured 6 dB Bandwidth (MHz)		6 dB Bandwidth (MHz)		
MHz	Н	V	Highest	Lowest		
5745.0	<u>36.67</u>	-	36.67	36.67		
5787.0	<u>36.76</u>	-	36.76	36.76		
5830.0	<u>36.44</u>	-	36.44	36.44		
Test Frequency	Measured 99% E	Measured 99% Bandwidth (MHz)				
MHz	н	V	Highest	Lowest		
5745.0	<u>36.67</u>	-	36.67	36.67		
5787.0	<u>36.67</u>	-	36.67	36.67		
5830.0	<u>36.67</u>	-	36.67	36.67		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

The above values are representative of the worst case value between polarities and based on the power measurements.

Equipment Configuration for 6 dB & 99% Bandwidth					
Variant:	80MHz	Duty Cycle (%):	100		
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	11		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	OC		
Engineering Test Notes:					

Test Measure	Test Measurement Results						
Test Frequency	Measured 6 dB	Measured 6 dB Bandwidth (MHz)		6 dB Bandwidth (MHz)			
MHz	н	V	Highest	Lowest			
5765.0	<u>76.74</u>	-	76.74	76.74			
5787.0	<u>76.74</u>	-	76.74	76.74			
5810.0	<u>76.42</u>	-	76.42	76.42			
Test Frequency	Measured 99% E	Bandwidth (MHz)	99% Bandy	width (MHz)			
MHz	Н	V	Highest	Lowest			
5765.0	<u>75.99</u>	-	75.99	75.99			
5787.0	<u>75.99</u>	-	75.99	75.99			
5810.0	<u>76.31</u>	-	76.31	76.31			

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

The above values are representative of the worst case value between polarities and based on the power measurements.

9.3. Peak Transmit Power

Conducted Test Conditions for Maximum Conducted Output Power					
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.407 (a) Pressure (mBars): 999 - 1001				
Reference Document(s):	KDB 789033 - D02 General UNII Test Procedures New Rules v01				

Test Procedure for Maximum Output Power Measurement

Spectrum Analyzer Method. KDB 789033 defines a methodology using spectrum analyzer. Where power shall be calculated by integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99% occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with Section 15.407(a). Testing was performed under ambient conditions at nominal voltage.

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document. Supporting KDB's referenced below.

KDB 662911 D01 & KDB 662911 D02, KDB 558074 D01

Radiated measurements used for compliance with conducted limits, the following steps are required to ensure that the total emission power is determined for equipment driving cross polarized antennas:

(1) Measure radiated emissions with vertical and horizontal polarizations of the measurement antenna;(2) Convert each radiated measurement to transmit power based on the antenna gain;

EIRP level to an equivalent electric field strength using the following relationship: E = EIRP - 20*log (D) + 104.8

Where:

 $E = electric field strength in dB\mu V/m, \\ EIRP = equivalent isotropic radiated power in dBm \\ D = specified measurement distance in meters.$

(3) Sum the powers across the two polarizations to compare the resultant electric field strength level to the applicable limit.

Calculated Power = $A + G + Y + 10 \log (1/x) dBm$

A = Total Power $[10*Log10 (10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10})]$

G = Antenna Gain

Y = Beamforming Gain

x = Duty Cycle (average power measurements only)

Limits Maximum Conducted Output Power

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:30 of 188

spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 - 5725 MHz

15. 407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 – 5850 MHz

15. 407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

The following Data for 5150-5250 falls under FCC Part 15.407 Only

Equipment Configuration for RF Output Power

Variant:	10MHz	Duty Cycle (%):	99
Data Rate:	3.25 MBit/s	Antenna Gain (dBi):	11.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured O	utput Power	Calculated Total Power	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
5162	11.62	15.79	17.97	30	-12.03	1.5
5200	17.59	21.2	23.54	30	-6.46	8.5
5245	17.92	19.01	22.28	30	-7.72	6.0

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

Equipment Configuration for RF Output Power					
Variant:	20MHz	Duty Cycle (%):	99		
Data Rate:	6.50MBit/s	Antenna Gain (dBi):	11.0		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					
Engineering Test Notes:					

Test Measurement Results

Test Frequency MHz	Measured O	utput Power	Calculated Total Power	Limit	Margin	EUT Power Setting
	н	v	dBm	dB	Numeric	Numeric
5165	6.46	11.45	13.42	30	-16.58	-2.0
5200	17.05	20.61	22.97	30	-7.03	8.5
5240	17.07	18.46	21.60	30	-8.40	6.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

Equipment Configuration for RF Output Power					
Variant:	40MHz	Duty Cycle (%):	99		
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	11.0		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					
	1				

Test Measurement Results

Test Frequency MHz	Measured O	utput Power	Calculated Total Power	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
5172	-0.81	3.69	5.78	30	-16.58	-11.0
5200	16.54	19.01	21.73	30	-7.03	8.5
5230	15.58	17.96	20.71	30	-8.40	6.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

Equipment Configuration for RF Output Power

Variant:	80MHz	Duty Cycle (%):	99
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	11.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured O	utput Power	Calculated Total Power	Limit	Margin	EUT Power Setting
	н	V	dBm	dB	Numeric	Numeric
5194	5.33	8.63	11.07	30	-18.93	-3.0
5210	14.86	17.83	20.38	30	-9.62	6.0

Traceability to Industry Recognized Test Methodologies		
Work Instruction: WI-01 MEASURING RF OUTPUT POWER		
Uncertainty:	±1.33 dB	

The following data falls under FCC Part 15.407 & IC RSS-247

Equipment	Configuration	for RF C	Dutput Power

Variant:	10MHz	Duty Cycle (%):	99
Data Rate:	3.25 MBit/s	Antenna Gain (dBi):	11.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
5730	25.94	26.13	29.82	30.00	-0.18	15.0
5787	27.07	24.15	29.63	30.00	-0.37	16.5
5845	26.79	23.99	29.39	30.00	-0.61	18.5

Traceability to	o Industry Recognized Test Methodologi	es
-----------------	--	----

Work Instruction:	WI-01 MEASURING RF OUTPUT POWER
Uncertainty:	±1.33 dB

Equipment Configuration for RF Output Power					
Variant:	20MHz	Duty Cycle (%):	99		
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	11.0		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					
	•				

Test Measurement Results

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	н	V	dBm	dB	Numeric	Numeric
5735	25.95	25.76	29.64	30.00	-0.36	15.5
5787	26.95	24.03	29.51	30.00	-0.49	17.0
5840	27.47	24.43	29.99	30.00	-0.01	19.00

Traceability to Industry Recognized Test Methodologies		
Work Instruction: WI-01 MEASURING RF OUTPUT POWER		
Uncertainty:	±1.33 dB	

Equipment Configuration for RF Output Power								
Variant: 40MHz Duty Cycle (%): 99								
13.50 MBit/s	Antenna Gain (dBi):	11.0						
OFDM	Beam Forming Gain (Y)(dB):	Not Applicable						
Not Applicable	Tested By:	SB						
	•••	40MHz Duty Cycle (%): 13.50 MBit/s Antenna Gain (dBi): OFDM Beam Forming Gain (Y)(dB):						

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
	Н	V	dBm	dB	Numeric	Numeric
5745	25.4	25.3	29.13	30.00	-0.87	15.5
5787	26.82	24.48	29.59	30.00	-0.41	17.5
5830	26.95	24.63	29.73	30.00	-0.27	17.5

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

Equipment Configuration for RF Output Power								
Variant: 80MHz Duty Cycle (%): 99								
29.30 MBit/s	Antenna Gain (dBi):	11.0						
OFDM	Beam Forming Gain (Y)(dB):	Not Applicable						
Not Applicable	Tested By:	SB						
	-							
	80MHz 29.30 MBit/s OFDM	80MHz Duty Cycle (%): 29.30 MBit/s Antenna Gain (dBi): OFDM Beam Forming Gain (Y)(dB):						

Test Frequency MHz	Measured Output Power		Calculated Total Power	Limit	Margin	EUT Power Setting
н		v	dBm	dB	Numeric	Numeric
5765	26.09	25.79	29.73	30.00	-0.27	16.0
5787	26.55	24.2	29.31	30.00	-0.69	16.5
5810	26.83	25.21	29.88	30.00	-0.12	18.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

9.4. IC RSS-247 5150-5250 Peak Transmit Power

Conducted Test Conditions for Maximum Conducted Output Power						
Standard:	IC RSS-247	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45			
Standard Section(s):	6.2.1.1	Pressure (mBars):	999 - 1001			
Reference Document(s):						

Test Procedure for Maximum Output Power Measurement

Spectrum Analyzer Method. KDB 789033 defines a methodology using spectrum analyzer. Where power shall be calculated by integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99% occupied bandwidth of the signal.1. Testing was performed under ambient conditions at nominal voltage.

Test configuration and setup used for the measurement was per the Radiated Test Set-up section specified in this document.

Limits Maximum Conducted Output Power

Operating Frequency Band 5150-5250 MHz

For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW. For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less.

Equipment Configuration for RF Output Power								
Variant: 10MHz Duty Cycle (%): 99								
Data Rate:	3.25 MBit/s	Antenna Gain (dBi):						
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable					
TPC:	Not Applicable	Tested By:	SB					
Engineering Test Notes:	Ingineering Test Notes:							
Engineering reactivetes.								

Test Frequency MHz	Measured Output Power		Calculated Total Power	Total EIRP	Limit	Margin	EUT Power Setting
	н	V	dBm	dBm	dB	Numeric	Numeric
5162	2.12	6.79	8.83	19.83	20.0	-0.17	-8.00
5200	2.59	6.70	8.89	19.89	20.0	-0.11	-6.50
5245	3.92	6.01	8.87	19.87	20.0	-0.13	-8.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

Equipment Configuration for RF Output Power							
Variant:	20MHz	Duty Cycle (%):	99				
Data Rate:	6.50MBit/s	Antenna Gain (dBi):	11.0				
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	SB				
Engineering Test Notes:							
	•						

Test Frequency MHz	Measured Output Power		Calculated Total Power	Total EIRP	Limit	Margin	EUT Power Setting
	н	V	dBm	dBm	dB	Numeric	Numeric
5165	4.46	9.95	11.80	22.80	23.0	-0.20	-4.00
5200	6.05	9.61	11.97	22.97	23.0	-0.03	-2.50
5240	7.07	8.96	11.90	22.90	23.0	-0.10	-4.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

Equipment Configuration for RF Output Power					
Variant:	40MHz	Duty Cycle (%):	99		
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	11.0		
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable		
TPC:	Not Applicable	Tested By:	SB		
Engineering Test Notes:					
	•				

Test Frequency MHz	Measured O	utput Power	Calculated Total Power	Total EIRP	Limit	Margin	EUT Power Setting
	н	v	dBm	dBm	dB	Numeric	Numeric
5172	-0.81	3.69	5.78	16.78	23.0	-6.22	-11.00
5200	6.54	9.01	11.73	22.73	23.0	-0.27	-1.50
5230	6.08	8.96	11.53	22.53	23.0	-0.47	-3.50

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

Equipment Configuration for RF Output Power

Variant:	80MHz	Duty Cycle (%):	99
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	11.0
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test Frequency MHz			Calculated Total Power	Total EIRP	Limit	Margin	EUT Power Setting
	н	V	dBm	dBm	dB	Numeric	Numeric
5194	5.33	8.63	11.07	22.07	23.0	-0.93	-3.00
5210	5.86	9.33	11.71	22.71	23.0	-0.29	-3.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction: WI-01 MEASURING RF OUTPUT POWER				
Uncertainty:	±1.33 dB			

9.5. Power Spectral Density

Conduc	ted Test Conditions for Po	wer Spectral Density	
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001
Reference Document(s):	KDB 789033 - D02 General UNII 1	est Procedures New Rules v01	
Test Procedure for Power Spectral De	ensity		
The In-Band power spectral density was Transmitter Output v01.)	measured using the measure and s	sum approach per FCC KDB 66291	1 (D01 Multiple
Measure and sum the spectra across the required resolution bandwidth. The indi- measurements, in which the sum involve with PSD limits involve summing entire s maintained for any device with N transm number of points. In this instance, the lir first spectral bin of output 1, and the first frequency bin of the summed spectrum. summed spectral values were calculated produce a representative plot of total spe-	vidual spectra are then summed ma es a single measured value (output spectra across corresponding freque itter outputs to be certain the individ near power spectrum value within the spectral bin of output 2, and so on The summed spectrum value for ea d on a computer, and the results rea	thematically in linear power units. bower) from each output, measurer ency bins on the various outputs. C ual outputs are all aligned with the e first spectral bin of output 0 is sur up to the Nth output to obtain the tr ch frequency bin is computed in th	Unlike in-band power nents for compliance onsistency is same span and same nmed with that in the ue value for the first is fashion. These
Calculated Power = $A + 10 \log (1/x) dB$	n		
A = Total Power Spectral Density [10 Lo	g10 (10a/10 + 10 b/10 + 10c/10 + 1	0d/10)]	
x = Duty Cycle			
Test configuration and setup used for th Supporting KDB's referenced below.	e measurement was per the Radiate	ed Test Set-up section specified in	this document.
KDB 662911 D01 & KDB 662911 D02,	KDB 558074 D01		
Radiated measurements used for compl power s determined for equipment drivir		wing steps are required to ensure	that the total emission
 Measure radiated emissions with ver Convert each radiated measurement 			
EIRP level to an equivalent electric field E = EIRP – 20*log (D) + 104.8	strength using the following relation	ship:	
Where: E = electric field strength in dB μ V/m, EIRP = equivalent isotropic radiated pov D = specified measurement distance in t			
(3) Sum the powers or PSDs across the	two polarizations to compare the re	sultant electric field strength level t	o the applicable limit.
Calculated Power = A + G + Y+ 10 log (1/x) dBm		
A = Total Power [10*Log10 (10 ^{a/10} + 10 ^{b/} G = Antenna Gain Y = Beamforming Gain x = Duty Cycle (average power measure			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Limits Maximum Power Spectral Density

Operating Frequency Band 5150-5250 MHz

15. 407 (a)(1)

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5250-5350 and 5470 - 5725 MHz

15. 407 (a)(2)

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Operating Frequency Band 5725 – 5850 MHz

15. 407 (a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Variant:	10 MHz	Duty Cycle (%):	100
Data Rate:	3.25 MBit/s	Antenna Gain (dBi):	11.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power Spectral Density		Summation			
Test Frequency	(dBm	/MHz)	Peak Marker + DCCF (+0.0 dB)	Limit	Margin	
MHz	н	v	dBm/MHz	dBm/MHz	dB	
5162.0	<u>-10.49</u>	<u>-6.01</u>	-3.91	17.0	-20.91	
5200.0	<u>-3.42</u>	<u>0.00</u>	2.40	17.0	-14.60	
5245.0	<u>-3.43</u>	<u>-2.03</u>	1.11	17.0	-15.89	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Equipment Configuration for Power Spectral Density							
Variant:	20 MHz	Duty Cycle (%):	100				
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	11.00				
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable				
TPC:	Not Applicable	Tested By:	JMH				
Engineering Test Notes:							
	•						

Test Measurem	nent Results					
Test Measured Powe		Spectral Density	Summation Peak Marker +	Limit	. .	
Frequency	(dBm	/MHz)	DCCF (+0.0 dB)		Margin	
MHz	н	v	dBm/MHz	dBm/MHz	dB	
5165.0	<u>-16.70</u>	<u>-12.55</u>	-10.36	17.0	-27.36	
5200.0	<u>-6.54</u>	<u>-4.00</u>	-1.30	17.0	-18.30	
5240.0	<u>-6.65</u>	<u>-5.11</u>	-2.03	17.0	-19.03	

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	40 MHz	Duty Cycle (%):	100.0
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	11.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power	Spectral Density	Summation		
Frequency			Peak Marker + DCCF (+0.00 dB)	Limit	Margin
MHz	н	v	dBm/MHz	dBm/MHz	dB
5172.0	<u>-27.35</u>	<u>-23.16</u>	-20.99	17.0	-37.99
5200.0	<u>-11.56</u>	<u>-10.89</u>	-7.43	17.0	-24.43
5230.0	<u>-11.87</u>	<u>-9.46</u>	-6.72	17.0	-23.72

Traceability to Industry Recognized Test Methodologies			
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK		
Measurement Uncertainty:	±2.81 dB		

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	80 MHz	Duty Cycle (%):	100.0
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	11.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	JMH
Engineering Test Notes:			

Test Measurement Results

Measured Power Spectral Density		Spectral Density	Summation Peak Marker + DCCF (+0.00 dB)	Limit	Margin
Test Frequency					
MHz	н	V	dBm/MHz	dBm/MHz	dB
5194.0	<u>-24.81</u>	<u>-22.36</u>	-19.63	17.0	-36.63
5210.0	<u>-16.20</u>	<u>-14.07</u>	-11.22	17.0	-28.22

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	10 MHz	Duty Cycle (%):	100
Data Rate:	3.25 MBit/s	Antenna Gain (dBi):	11.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power	Spectral Density	Summation Peak Marker +			
Frequency			DCCF (+0.00 dB)	Limit	Margin	
MHz	н	v	dBm/MHz	dBm/MHz	dB	
5730.0	<u>4.83</u>	<u>3.90</u>	8.17	30.00	-21.83	
5787.0	<u>5.96</u>	<u>2.20</u>	8.26	30.00	-21.74	
5845.0	<u>6.23</u>	<u>2.78</u>	8.62	30.00	-21.38	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Equipment Configuration for Power Spectral Density						
	· · · · · · · · · · · · · · · · · · ·					
Variant:	20 MHz	Duty Cycle (%):	100			
Data Rate:	6.50 MBit/s	Antenna Gain (dBi):	11.00			
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable			
TPC:	Not Applicable	Tested By:	SB			
Engineering Test Notes:						
	•					

Test Measurem	Test Measurement Results						
T	Measured Power Spectral Density		Summation Peak Marker +				
Test Frequency	(dBm	(dBm/MHz)		Limit	Margin		
MHz	Н	v	dBm/MHz	dBm/MHz	dB		
5735.0	<u>1.96</u>	<u>0.72</u>	5.17	30.00	-24.83		
5787.0	<u>4.73</u>	<u>1.52</u>	7.20	30.00	-22.80		
5840.0	<u>4.49</u>	<u>0.53</u>	6.73	30.00	-23.27		

Traceability to Industry Recognized Test Methodologies		
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK	

Measurement Uncertainty: 2.81 dB

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	40 MHz	Duty Cycle (%):	100
Data Rate:	13.50 MBit/s	Antenna Gain (dBi):	11.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power	Spectral Density	Summation Peak Marker +		Margin	
Frequency	(dBm	/MHz)	DCCF (+0.00 dB)	Limit		
MHz	н	v	dBm/MHz	dBm/MHz	dB	
5745.0	<u>-2.25</u>	<u>-3.33</u>	1.03	30.00	-28.97	
5787.0	<u>0.12</u>	<u>-3.25</u>	2.54	30.00	-27.46	
5830.0	<u>0.64</u>	<u>-4.31</u>	2.62	30.00	-27.38	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

Variant:	80 MHz	Duty Cycle (%):	100
Data Rate:	29.30 MBit/s	Antenna Gain (dBi):	11.00
Modulation:	OFDM	Beam Forming Gain (Y)(dB):	Not Applicable
TPC:	Not Applicable	Tested By:	SB
Engineering Test Notes:			

Test Measurement Results

Test	Measured Power	Spectral Density	Summation		Margin	
Test Frequency	(dBm	/MHz)	Peak Marker + DCCF (+0.00 dB)	Limit		
MHz	н	v	dBm/MHz	dBm/MHz	dB	
5765.0	<u>-7.11</u>	<u>-5.81</u>	-2.63	30.00	-32.63	
5787.0	<u>-7.15</u>	<u>-8.96</u>	-4.18	30.00	-34.18	
5810.0	<u>-5.47</u>	<u>-8.00</u>	-2.77	30.00	-32.77	

Traceability to Industry Recognized Test Methodologies					
Work Instruction: W	NI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty: ±	±2.81 dB				

DCCF - Duty Cycle Correction Factor

Note: click the links in the above matrix to view the graphical image (plot).

9.6. Radiated

Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions								
Standard	FCC CFR 47:15.407	Ambient Temp. (°C):	20.0 - 24.5					
Test Heading	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45					
Standard Section(s)	15.407 (b), 15.205, 15.209	Pressure (mBars):	999 - 1001					
Reference Document(s)	: See Normative References							
 Test Procedure for Radiated Spurious and Band-Edge Emissions Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz. Test configuration and setup for Undesirable Measurement were per the Radiated Test Set-up specified in this document. 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits: 								
(1) For transmitters operat e.i.r.p. of −27 dBm/MHz.	ing in the 5.15-5.25 GHz band: All (emissions outside of the 5.15-5.35	GHz band shall not exceed ar					
(2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.								
(3) For transmitters operat an e.i.r.p. of −27 dBm/MH	ing in the 5.47-5.725 GHz band: All z.	l emissions outside of the 5.47-5.7	25 GHz band shall not exceed					
MHz above or below the b	ing in the 5.725-5.85 GHz band: All and edge shall not exceed an e.i.r.j ssions shall not exceed an e.i.r.p. o	p. of −17 dBm/MHz; for frequencie						
	ments shall be performed using a n red near the band edge, when nece							
	elow 1 GHz must comply with the g er line are required to comply also w							
(7) The provisions of §15.2	205 apply to intentional radiators op	erating under this section.						
	mission limits, the nominal carrier fi the design of the equipment permits		e to the upper and lower					
imits for Restricted Bands (1 eak emission: 68.23 dBuV/m verage emission: 54 dBuV/n								
ield Strength Calculation he field strength is calculate easured reading. All factors	d by adding the Antenna Factor a	and Cable Loss, and subtracting	Amplifier Gain from the					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

FS = R + AF + CORR - FO

where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss

Example:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength (dBµV/m);

 $E = \frac{1000000 \times \sqrt{30P}}{3} \mu \text{V/m}$ where P is the EIRP in Watts

Therefore: -27 dBm/MHz equates to 68.23 dBuV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = $20 \times \log (\text{level (mV/m)})$

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

	Frequer	ncy Band	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

12.57675-12.57725 322-335.4 3600-4400 Above 13.36-13.41 1	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
 b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these f parads shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with th [515.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 11 compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured em provisions in §15.35 apply to these measurements. c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhe subpart, the provisions of this section apply to emissions from any intentional radiator. d) The following devices are exempt from the requirements of this section: (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions on through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emissis bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraps exciton more than 99% of the time the device is actively transmitting, without compensation for duty cycle. (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone compare (3) Cable locating equipment operated pursuant to §15.253, 15.255, and 15.256 in the frequency band 75-85 Gł of this part. (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restr 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from compl	12.57675-12.57725	322-335.4	3600-4400	Above 38.6
 ands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the \$15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 10 compliance with the emission limits in §15.205 shall be demonstrated based on the average value of the measured em provisions in §15.35 apply to these measurements. c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhe subpart, the provisions of this section apply to emissions from any intentional radiator. d) The following devices are exempt from the requirements of this section: (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions on through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emissio bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section markers at 101.4 kHz which are employed by telephone compare (3) Cable locating equipment operated pursuant to §15.253, 15.255, and 15.256 in the frequency band 75-85 Gl of this part. (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restr 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirem section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and	13.36-13.41			
 d) The following devices are exempt from the requirements of this section: (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions on through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emissio bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraps section more than 99% of the time the device is actively transmitting, without compensation for duty cycle. (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone compare (3) Cable locating equipment operated pursuant to §15.213. (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GI of this part. (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restr 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requireer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requireer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only. 	nds shall not exceed the limits shown 5.209 shall be demonstrated using m npliance with the emission limits in § visions in §15.35 apply to these mea Except as provided in paragraphs (c	n in §15.209. At frequenci neasurement instrumental 15.209 shall be demonst asurements. I) and (e) of this section, r	es equal to or less than 1000 MHz, tion employing a CISPR quasi-peak rated based on the average value o regardless of the field strength limits	compliance with the limits in detector. Above 1000 MHz, f the measured emissions. The
 (1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions onl through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emissio bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of the section, and the fundamental emission is outside of the bands listed in paragraph (a) of the time the device is actively transmitting, without compensation for duty cycle. (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone compare (3) Cable locating equipment operated pursuant to §15.213. (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GF of this part. (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restre 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.249 are exempt from complying with the requirement section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement of the 48.15-48.35 GHz and 72.225-72.525 GHz band under §15.249 are exempt from complying with the requirement of the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement of the 48.05-48.25 GHz band under §15.249 are exempt from complying with the requirement of the 48.05-48.05 GHz and 72.225-72.525 GHz bands only. 				
 through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emissio bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle. (2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone compare (3) Cable locating equipment operated pursuant to §15.213. (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GH of this part. (5) Biomedical telemetry devices operating under the provisions of subparts D or F of this part. (6) Transmitters operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirement section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § (9) Devices operated in the 24.0-24.25 GHz band un	The following devices are exempt from	om the requirements of th	iis section:	
 (3) Cable locating equipment operated pursuant to §15.213. (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 Gł of this part. (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restr 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement 	through the bands listed in paragr bands listed in paragraph (a) of th	aph (a) of this section, the is section, and the fundation of the fundatio	e sweep is never stopped with the f mental emission is outside of the ba	undamental emission within the inds listed in paragraph (a) of this
 (4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 Gł of this part. (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restr 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement 	(2) Transmitters used to detect bu	iried electronic markers a	t 101.4 kHz which are employed by	telephone companies.
 of this part. (5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restr 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement 	(3) Cable locating equipment ope	rated pursuant to §15.213	3.	
 608-614 MHz but are subject to compliance within the other restricted bands. (6) Transmitters operating under the provisions of subparts D or F of this part. (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement 		r the provisions of §15.25	53, 15.255, and 15.256 in the freque	ency band 75-85 GHz, or §15.257
 (7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz b (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement 				subject to the restricted band
 (8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirer section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in § (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement 	(6) Transmitters operating under t	he provisions of subparts	D or F of this part.	
section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in (9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirement	(7) Devices operated pursuant to	§15.225 are exempt from	complying with this section for the	13.36-13.41 MHz band only.
e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating un rovisions of §15.245 shall not exceed the limits specified in §15.245(b).				nsors operating under the

9.6.1. TX Spurious & Restricted Band Emissions

9.6.1.1. RADWIN Ltd. SA0183620 11 dBi

Equipment Configuration for TX Spurious & Restricted Band Emissions								
Antenna:	RADWIN Ltd. SA0183620	Variant:	10 MHz					
Antenna Gain (dBi):	11.00	Modulation:	OFDM					

Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5162.00	Data Rate:	3.25 MBit/s
Power Setting:	1.5	Tested By:	JMH

Test Measurement Results

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5165.52	71.15	3.08	-14.39	59.84	Fundamental	Vertical	151	8			
#2	10324.28	40.61	4.44	0.11	45.16	Peak (NRB)	Horizontal	151	0			Pass
Test No	tes: EUT pow	ered by P	OE and o	connected	to laptop	outside chambe	r					

Equip	oment Configuration for TX Spurio	ous & Restricted Band Emissions								
Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz										
Antenna Gain (dBi): 11.00 Modulation: OFDM										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	5200.00	Data Rate:	3.25 MBit/s							
Power Setting:	8.5	Tested By:	JMH							

					1000	.00 - 18000.00 N	//Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5202.67	89.18	3.09	-14.25	78.02	Fundamental	Vertical	151	0			
#2	6163.52	59.82	3.20	-11.97	51.05	Peak (NRB)	Horizontal	151	0			Pass
#3	6216.44	59.51	3.26	-11.81	50.96	Peak (NRB)	Horizontal	151	0			Pass
#4	10402.63	61.94	4.41	0.00	66.35	Max Peak	Horizontal	165	50	68.2	-1.9	Pass
#5	15601.96	53.29	5.58	1.30	60.17	Max Peak	Vertical	162	34	68.2	-8.1	Pass
#6	15601.96	38.24	5.58	1.30	45.12	Max Avg	Vertical	162	34	54.0	-8.9	Pass
Test No	est Notes: EUT powered by POE and connected to laptop outside chamber											

Equip	oment Configuration for TX Spurio	ous & Restricted Band Emissions									
Antenna:	RADWIN Ltd. SA0183620	Variant:	10 MHz								
Antenna Gain (dBi):	Antenna Gain (dBi): 11.00 Modulation: OFDM										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99								
Channel Frequency (MHz):	5245.00	Data Rate:	3.25 MBit/s								
Power Setting:	6	Tested By:	JMH								

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5245.12	87.14	3.15	-14.40	75.89	Fundamental	Vertical	151	9			
#2	10490.94	63.16	4.46	0.33	67.95	Max Peak	Horizontal	158	26	68.2	-0.3	Pass
Test Not	Test Notes: EUT powered by POE and connected to laptop outside chamber											

Equij	oment Configuration for TX Spurio	ous & Restricted Band Emissions										
Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz												
Antenna Gain (dBi):	Antenna Gain (dBi): 11.00 Modulation: OFDM											
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99									
Channel Frequency (MHz):	5730.00	Data Rate:	3.25 MBit/s									
Power Setting:	15.0	Tested By:	JMH									

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5726.82	71.01	3.16	-12.86	61.31	Fundamental	Vertical	150	0			
#2	6068.05	57.35	3.24	-11.92	48.67	Peak (NRB)	Horizontal	150	0			Pass
#3	11453.49	59.90	4.64	-0.80	63.74	Max Peak	Horizontal	167	48	68.2	-4.5	Pass
#4	11453.49	43.79	4.64	-0.80	47.63	Max Avg	Horizontal	167	48	54.0	-6.4	Pass
Test No	est Notes: EUT powered by POE and connected to laptop outside chamber											

Equij	oment Configuration for TX Spurio	ous & Restricted Band Emissions										
Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz												
Antenna Gain (dBi):	Antenna Gain (dBi): 11.00 Modulation: OFDM											
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99									
Channel Frequency (MHz):	5787.00	Data Rate:	3.25 MBit/s									
Power Setting:	16.5	Tested By:	JMH									

		1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5787.78	75.59	3.21	-12.78	66.02	Fundamental	Horizontal	151	0				
#2	6072.79	59.32	3.25	-11.75	50.82	Peak (NRB)	Horizontal	151	0			Pass	
#3	11574.29	61.03	4.56	-0.46	65.13	Max Peak	Horizontal	162	44	68.2	-3.1	Pass	
#4	11574.29	49.30	4.56	-0.46	53.40	Max Avg	Horizontal	162	44	54.0	-0.6	Pass	
#5	17363.87	55.45	5.99	0.79	62.23	Max Peak	Horizontal	151	70	68.2	-6.0	Pass	
#6	17363.87	39.01	5.99	0.79	45.79	Max Avg	Horizontal	151	70	54.0	-8.2	Pass	

Equi	oment Configuration for TX Spurio	ous & Restricted Band Emissions									
Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz											
Antenna Gain (dBi):	Antenna Gain (dBi): 11.00 Modulation: OFDM										
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99								
Channel Frequency (MHz):	5845.00	Data Rate:	3.25 MBit/s								
Power Setting:	18.5	Tested By:	JMH								

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5841.37	72.41	3.22	-13.00	62.63	Fundamental	Horizontal	151	0			
#2	6101.68	60.32	3.24	-11.89	51.67	Peak (NRB)	Horizontal	151	0			Pass
#3	11685.48	60.91	4.95	-0.46	65.40	Max Peak	Horizontal	154	82	68.2	-2.8	Pass
#4	11685.48	46.48	4.95	-0.46	50.97	Max Avg	Horizontal	154	82	54.0	-3.0	Pass
Test No	est Notes: EUT powered by POE and connected to laptop outside chamber											

9.6.1.2. RADWIN Ltd. SA0183620 20.50 dBi

Equipment Configuration for TX Spurious & Restricted Band Emissions

Antenna:	RADWIN Ltd. SA0183620	Variant:	10 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5730.00	Data Rate:	3.25 MBit/s
Power Setting:	8.5	Tested By:	JMH

Test Measurement Results

					1000	.00 - 18000.00 N	ИHz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5729.26	71.19	3.17	-12.84	61.52	Fundamental	Vertical	151	8			
#2	6072.79	57.33	3.25	-11.75	48.83	Peak (NRB)	Horizontal	151	8			Pass
#3	11461.84	57.89	4.62	-0.78	61.73	Max Peak	Horizontal	174	324	68.2	-6.5	Pass
#4	11461.84	42.67	4.62	-0.78	46.51	Max Avg	Horizontal	174	324	54.0	-7.5	Pass
Test No	est Notes: EUT powered by POE and connected to laptop outside chamber											

Equip	Equipment Configuration for TX Spurious & Restricted Band Emissions										
Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz											
Antenna Gain (dBi):	Antenna Gain (dBi): 11.00 Modulation: OFDM										
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99								
Channel Frequency (MHz):	5787.00	Data Rate:	3.25 MBit/s								
Power Setting:	16	Tested By:	JMH								

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5789.10	75.74	3.21	-12.79	66.16	Fundamental	Horizontal	151	7			
#2	6070.25	61.85	3.25	-11.84	53.26	Peak (NRB)	Horizontal	151	7			Pass
#3	6103.72	62.82	3.24	-11.84	54.22	Peak (NRB)	Horizontal	150	0			Pass
#4	6103.72	56.05	3.24	-11.84	47.45	Max Avg	Horizontal	160	12	54.0	-6.6	Pass
#5	11573.85	62.63	4.54	-0.48	66.69	Max Peak	Horizontal	154	324	68.2	-1.5	Pass
#6	11573.85	49.48	4.54	-0.48	53.54	Max Avg	Horizontal	154	324	54.0	-0.5	Pass

Equip	Equipment Configuration for TX Spurious & Restricted Band Emissions										
Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz											
Antenna Gain (dBi):	Antenna Gain (dBi): 11.00 Modulation: OFDM										
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99								
Channel Frequency (MHz):	5845.00	Data Rate:	3.25 MBit/s								
Power Setting:	9.5	Tested By:	JMH								

	1000.00 - 18000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5844.29	69.66	3.21	-12.82	60.05	Fundamental	Horizontal	151	9			
#2	6099.58	59.54	3.24	-11.94	50.84	Peak (NRB)	Horizontal	151	9			Pass
#3	11686.91	54.02	4.98	-0.48	58.52	Max Peak	Horizontal	149	59	68.2	-9.7	Pass
#4	11686.91	38.62	4.98	-0.48	43.12	Max Avg	Horizontal	149	59	54.0	-10.9	Pass
Test No	est Notes: EUT powered by POE and connected to laptop outside chamber											

9.6.2. Restricted Edge & Band-Edge Emissions

9.6.2.3. RADWIN Ltd. SA0183620 11 dBi

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

5150 - 5250 MHz

RADWIN Ltd. S/	A0183620 11 dBi	Band-Edge Freq	Limit 68.2dBµV/m	Limit 54.0dBµV/m	Power Setting	
Channel Bandwidth(s)	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	I ower octaing	
10 MHz	5162.00	5150.00	67.72	49.81	1.5	
20 MHz	5165.00	5150.00	67.48	48.24	-2	
40 MHz	5172.00	5150.00	68.19	49.07	-11	
80 MHz	5194.00	5150.00	66.97	48.58	-3	

5725 MHz Radiated Lower Band-Edge Emissions

RADWIN Ltd. SA	A0183620 11 dBi	Band-Edge Freq	Limit 68.2dBµV/m	Limit 122.2dBµV/m	Dower Sotting
Channel Bandwidth(s)	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
10 MHz	5730.00	5725.00	67.30	116.79	15.5
20 MHz	5735.00	5725.00	67.58	109.22	15.5
40 MHz	5745.00	5725.00	66.89	102.11	15.5
80 MHz	5785.00	5725.00	67.93	99.80	16.0

5850 MHz Radiated Higher Band-Edge Emissions

RADWIN Ltd. SA	A0183620 11 dBi	Band-Edge Freq	Limit 68.2dBµV/m	Limit 122.2dBµV/m	Power Setting	
Channel Bandwidth(s)	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	r ower octaing	
10 MHz	5845.00	5850.00	67.78	118.35	18.5	
20 MHz	5840.00	5850.00	67.99	109.34	19.0	
40 MHz	5830.00	5850.00	67.79	103.58	17.5	
80 MHz	5810.00	5850.00	68.18	100.93	18.0	

Click on the links to view the data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

MiCOM Labs, 575 Boulder Court, Pleasanton, California 94566 USA, Phone: +1 (925) 462 0304, Fax: +1 (925) 462 0306, www.micomlabs.com

Equipment Configuration for Restricted Lower Band-Edge Emissions Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz Antenna Gain (dBi): 11.00 Modulation: OFDM Beam Forming Gain (Y): Not Applicable Duty Cycle (%): 99 Channel Frequency (MHz): 5162.00 Data Rate: 3.25 MBit/s

 Power Setting:
 1.5
 Tested By:
 JMH

 Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence
 The power setting

Test Measurement Results

	4500.00 - 5250.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5150.00	11.35	3.06	35.40	49.81	Max Avg	Vertical	155	8	54.0	-4.2	Pass	
#2	5150.00	29.26	3.06	35.40	67.72	Max Peak	Vertical	155	8	68.2	-0.5	Pass	
#3	5150.00					Restricted- Band							
Test Not	est Notes: EUt powered by POE and connected to laptop outside chamber												

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	RADWIN Ltd. SA0183620	Variant:	20 MHz
Antenna Gain (dBi):		Modulation:	-
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5165.00	Data Rate:	6.50 MBit/s
Power Setting:	-2	Tested By:	JMH
Note: The above power setting ma reported in Section 9.3 always take		under Section 9.3 Peak Transmit Powe	er. The power setting

Test Measurement Results

	4500.00 - 5250.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5150.00	9.78	3.06	35.40	48.24	Max Avg	Vertical	155	8	54.0	-5.8	Pass	
#2	5150.00	29.02	3.06	35.40	67.48	Max Peak	Vertical	155	8	68.2	-0.8	Pass	
#3	5150.00					Restricted- Band							
Test Not	est Notes: EUt powered by POE and connected to laptop outside chamber												

Equ	uipment Configuration for Restric	ted Lower Band-Edge Emissions								
Antenna:	RADWIN Ltd. SA0183620	Variant:	40 MHz							
Antenna Gain (dBi):	11.00	Modulation:	OFDM							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	5172.00	Data Rate:	13.50 MBit/s							
Power Setting:	-11	Tested By:	JMH							
	Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence									

	4500.00 - 5250.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5150.00	10.61	3.06	35.40	49.07	Max Avg	Vertical	155	8	54.0	-4.9	Pass
#2	5150.00	29.73	3.06	35.40	68.19	Max Peak	Vertical	155	8	68.2	0.0	Pass
#3	5150.00					Restricted- Band						
Test Not	est Notes: EUt powered by POE and connected to laptop outside chamber											

Equipment Configuration for Restricted Lower Band-Edge Emissions Antenna: RADWIN Ltd. SA0183620 Variant: 80 MHz Antenna Gain (dBi): 11.00 Modulation: OFDM Beam Forming Gain (Y): Not Applicable Duty Cycle (%): 99 Channel Frequency (MHz): 5194.00 Data Rate: 29.30 MBit/s Power Setting: -3 Tested By: JMH Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence Section 9.3 always takes precedence

Test Measurement Results

	4500.00 - 5250.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5150.00	10.12	3.06	35.40	48.58	Max Avg	Vertical	155	8	54.0	-5.4	Pass
#2	5150.00	28.51	3.06	35.40	66.97	Max Peak	Vertical	155	8	68.2	-1.3	Pass
#3	5150.00					Restricted- Band						
Test No	est Notes: EUt powered by POE and connected to laptop outside chamber											

Equipment Configuration for 5725 MHz Radiated Band-Edge Emissions

r										
Antenna:	RADWIN Ltd. SA0183620	Variant:	10 MHz							
Antenna Gain (dBi):	11.00	Modulation:	OFDM							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	5730.00	Data Rate:	3.25 MBit/s							
Power Setting:	15.5	Tested By:	JMH							
Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence										

Test Measurement Results

	5600.00 - 5780.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5643.22	27.82	3.18	36.30	67.30	Max Peak	Horizontal	155	11	68.2	-0.9	Pass
#2	5725.00	77.12	3.17	36.50	116.79	Max Peak	Horizontal	155	11	122.2	-5.4	Pass
#3	5725.00					Band-Edge						
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber											

Equipment Configuration for 5725 MHz Radiated Band-Edge Emissions

Antenna:	RADWIN Ltd. SA0183620	Variant:	20 MHz							
Antenna Gain (dBi):		Modulation:	-							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	5735.00	Data Rate:	6.50 MBit/s							
Power Setting:	15.5	Tested By:	JMH							
Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence										

Test Measurement Results

	5600.00 - 5780.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5648.99	28.07	3.21	36.30	67.58	Max Peak	Horizontal	155	11	68.2	-0.7	Pass
#2	5725.00	69.55	3.17	36.50	109.22	Max Peak	Horizontal	155	11	122.2	-13.0	Pass
#3	5725.00					Band-Edge						
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber											

Equipment Configuration for 5725 MHz Radiated Band-Edge Emissions

Antenna:	RADWIN Ltd. SA0183620	Variant:	40 MHz							
Antenna Gain (dBi):	11.00	Modulation:	OFDM							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	5745.00	Data Rate:	13.50 MBit/s							
Power Setting:	15.5	Tested By:	JMH							
Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence										

Test Measurement Results

	5600.00 - 5780.00 MHz												
Num	MHz dBµV Loss dBµV/m Type cm Deg dBµV/m dB								Margin dB	Pass /Fail			
#1	5634.63	27.39	3.20	36.30	66.89	Max Peak	Horizontal	155	11	68.2	-1.3	Pass	
#2	5725.00	62.44	3.17	36.50	102.11	Max Peak	Horizontal	155	11	122.2	-20.1	Pass	
#3	#3 5725.00 Band-Edge												
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber												

Equipment Configuration for 5725 MHz Radiated Band-Edge Emissions Antenna: RADWIN Ltd. SA0183620 Variant: 80 MHz Antenna Gain (dBi): 11.00 Modulation: OFDM Beam Forming Gain (Y): Not Applicable Duty Cycle (%): 99 Channel Frequency (MHz): 5765.00 Data Rate: 29.30 MBit/s Power Setting: 16 Tested By: JMH

Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence

Test Measurement Results

	5600.00 - 5780.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5646.10	28.43	3.20	36.30	67.93	Max Avg	Horizontal	155	11	68.2	-0.3	Pass	
#2	5725.00	60.13	3.17	36.50	99.80	Max Avg	Horizontal	155	11	122.2	-22.4	Pass	
#3	#3 5725.00 Band-Edge												
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber												

Equipment Configuration for 5850 MHz Radiated Band-Edge Emissions Antenna: RADWIN Ltd. SA0183620 Variant: 10 MHz Antenna Gain (dBi): 11.00 Modulation: OFDM Beam Forming Gain (Y): Not Applicable Duty Cycle (%): 99 Channel Frequency (MHz): 5845.00 Data Rate: 3.25 MBit/s

 Power Setting:
 20.5
 Tested By:
 JMH

 Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power.
 The power setting reported in Section 9.3 always takes precedence

Test Measurement Results

	5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5850.00	78.45	3.20	36.70	118.35	Max Peak	Horizontal	155	11	122.2	-3.8	Pass	
#3	5924.99	27.79	3.19	36.80	67.78	Max Peak	Horizontal	155	11	68.2	-0.5	Pass	
#2	#2 5850.00 Band-Edge												
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber												

Equipment Configuration for 5850 MHz Radiated Band-Edge Emissions

Antenna:	RADWIN Ltd. SA0183620	Variant:	20 MHz							
Antenna Gain (dBi):	11.00	Modulation:	OFDM							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	5840.00	Data Rate: 6.50 MBit/s								
Power Setting:	20.5	Tested By:	JMH							
Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence										

Test Measurement Results

	5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5850.00	69.44	3.20	36.70	109.34	Max Peak	Horizontal	155	11	122.2	-12.9	Pass	
#3	5926.37	28.00	3.19	36.80	67.99	Max Peak	Horizontal	155	11	68.2	-0.2	Pass	
#2 5850.00 Band-Edge													
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber												

Equipment Configuration for 5850 MHz Radiated Band-Edge Emissions Antenna: RADWIN Ltd. SA0183620 Variant: 40 MHz Antenna Gain (dBi): 11.00 Modulation: OFDM Beam Forming Gain (Y): Not Applicable Duty Cycle (%): 99 Channel Frequency (MHz): 5830.00 Data Rate: 13.50 MBit/s Power Setting: 20.5 Tested By: JMH

Note: The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power. The power setting reported in Section 9.3 always takes precedence

Test Measurement Results

	5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5850.00	63.68	3.20	36.70	103.58	Max Peak	Horizontal	155	11	122.2	-18.7	Pass	
#3	5934.21	27.80	3.19	36.80	67.79	Max Peak	Horizontal	155	11	68.2	-0.4	Pass	
#2 5850.00 Band-Edge													
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber												

Data Rate: 29.30 MBit/s

Equipment Configuration for 5850 MHz Radiated Band-Edge Emissions Antenna: RADWIN Ltd. SA0183620 Variant: 80 MHz Antenna Gain (dBi): 11.00 Modulation: OFDM Beam Forming Gain (Y): Not Applicable Duty Cycle (%): 99

 Power Setting:
 19.5
 Tested By:
 JMH

 Note:
 The above power setting may be higher than the result reported under Section 9.3 Peak Transmit Power.
 The power setting reported in Section 9.3 always takes precedence

Test Measurement Results

Channel Frequency (MHz): 5810.00

	5770.00 - 6000.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5850.00	61.03	3.20	36.70	100.93	Max Peak	Horizontal	155	11	68.2	-21.3	Pass	
#3	5927.29	28.19	3.19	36.80	68.18	Max Peak	Horizontal	155	11	68.2	-0.1	Pass	
#2	#2 5850.00 Band-Edge												
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber												

9.6.2.4. RADWIN Ltd. SA0183620 20.50 dBi

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

5725 MHz Radiated Lower Band-Edge Emissions

RADWIN Ltd. SA	0183620 20.5 dBi	Band-Edge Freq	Limit 68.2dBµV/m	Limit 122.2dBµV/m	Power Setting	
Channel Bandwidth(s)	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	rower Setting	
10 MHz	5730.00	5725.00	65.79	118.18	8.5	
20 MHz	5735.00	5725.00	66.50	109.73	8.5	
40 MHz	5745.00	5725.00	66.89	102.77	6.5	
80 MHz	5785.00	5725.00	66.40	99.60	7	

5850 MHz Radiated Higher Band-Edge Emissions

RADWIN Ltd. SA	0183620 20.5 dBi	Band-Edge Freq	Limit 68.23dBµV/m	Limit 122.2dBµV/m	Dowen Cotting
Channel Bandwidth(s)	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
10 MHz	5845.00	5850.00	66.41	116.49	9.5
20 MHz	5840.00	5850.00	66.99	108.39	9.5
40 MHz	5830.00	5850.00	66.89	102.77	9.5
80 MHz	5810.00	5850.00	66.40	99.60	9.5

Click on the links to view the data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Equipment Configuration for 5725 MHz Radiated Band-Edge Emissions

Antenna:	RADWIN Ltd. SA0183620	Variant:	10 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5730.00	Data Rate:	3.25 MBit/s
Power Setting:	8.5	Tested By:	JMH

Test Measurement Results

	5600.00 - 5780.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5645.74	26.29	3.20	36.30	65.79	Max Peak	Horizontal	155	11	68.2	-2.4	Pass	
#2	5725.00	78.51	3.17	36.50	118.18	Max Peak	Horizontal	155	11	122.2	-4.0	Pass	
#3 5725.00 Band-Edge													
Test Not	Test Notes: EUT powered by POE and connected to laptop outside chamber												

Equi	pment Configuration for 5725 MHz	Radiated Band-Edge Emissions	
Antenna:	RADWIN Ltd. SA0183620	Variant:	20 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5735.00	Data Rate:	6.50 MBit/s
Power Setting:	8.5	Tested By:	JMH

	5600.00 - 5780.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5647.18	27.00	3.20	36.30	66.50	Max Peak	Horizontal	155	11	68.2	-1.7	Pass
#2	5725.00	70.06	3.17	36.50	109.73	Max Peak	Horizontal	155	11	122.2	-12.5	Pass
#3	5725.00					Band-Edge						
Test Not	Fest Notes: EUT powered by POE and connected to laptop outside chamber											

Equi	pment Configuration for 5725 MH	z Radiated Band-Edge Emissions	
Antenna:	RADWIN Ltd. SA0183620	Variant:	40 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5745.00	Data Rate:	13.50 MBit/s
Power Setting:	6.5	Tested By:	JMH

	5600.00 - 5780.00 MHz												
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail	
#1	5625.18	27.25	3.19	36.30	66.74	Max Peak	Horizontal	155	11	68.2	-1.5	Pass	
#2	5725.00	61.43	3.17	36.50	101.10	Max Peak	Horizontal	155	11	122.2	-21.1	Pass	
#3	5725.00					Band-Edge							
Test Not	Fest Notes: EUT powered by POE and connected to laptop outside chamber												

Equi	pment Configuration for 5725 MH	z Radiated Band-Edge Emissions	
Antenna:	RADWIN Ltd. SA0183620	Variant:	80 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5765.00	Data Rate:	29.30 MBit/s
Power Setting:	7	Tested By:	JMH

	5600.00 - 5780.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5605.34	27.69	3.24	36.30	67.23	Max Peak	Horizontal	155	11	68.2	-1.0	Pass
#2	5725.00	58.79	3.17	36.50	98.46	Max Peak	Horizontal	155	11	122.2	-23.7	Pass
#3	5725.00					Band-Edge						
Test Not	Test Notes: EUT powered by POE and connected to laptop outside chamber											

Equi	pment Configuration for 5850 MHz	Radiated Band-Edge Emissions	
Antenna:	RADWIN Ltd. SA0183620	Variant:	10 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5845.00	Data Rate:	3.25 MBit/s
Power Setting:	9.5	Tested By:	JMH

					5770	0.00 - 6000.00 M	lHz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5850.00	76.59	3.20	36.70	116.49	Max Peak	Horizontal	155	11	122.2	-5.7	Pass
#3	5926.37	26.42	3.19	36.80	66.41	Max Peak	Horizontal	155	11	68.2	-1.8	Pass
#2	5850.00					Band-Edge						
Test Not	Test Notes: EUT powered by POE and connected to laptop outside chamber											

Equi	pment Configuration for 5850 MHz	Radiated Band-Edge Emissions	
Antenna:	RADWIN Ltd. SA0183620	Variant:	20 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5840.00	Data Rate:	6.50 MBit/s
Power Setting:	9.5	Tested By:	JMH

	5770.00 - 6000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5850.00	68.49	3.20	36.70	108.39	Max Peak	Horizontal	155	11	68.2	-13.8	Pass
#3	5976.15	26.81	3.28	36.90	66.99	Max Peak	Horizontal	155	11	68.2	-1.2	Pass
#2	5850.00					Band-Edge						
Test No	Test Notes: EUT powered by POE and connected to laptop outside chamber											

Equi	pment Configuration for 5850 MHz	z Radiated Band-Edge Emissions	
Antenna:	RADWIN Ltd. SA0183620	Variant:	40 MHz
Antenna Gain (dBi):	11.00	Modulation:	OFDM
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99
Channel Frequency (MHz):	5830.00	Data Rate:	13.50 MBit/s
Power Setting:	9.5	Tested By:	JMH

	5770.00 - 6000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5850.00	62.87	3.20	36.70	102.77	Max Peak	Horizontal	155	11	68.2	-19.5	Pass
#3	5960.02	26.83	3.26	36.80	66.89	Max Peak	Horizontal	155	11	68.2	-1.3	Pass
#2	5850.00					Band-Edge						
Test Not	Test Notes: EUT powered by POE and connected to laptop outside chamber											

Equipment Configuration for 5850 MHz Radiated Band-Edge Emissions				
Antenna:	RADWIN Ltd. SA0183620	Variant:	80 MHz	
Antenna Gain (dBi):	11.00	Modulation:	OFDM	
Beam Forming Gain (Y):	9.50	Duty Cycle (%):	99	
Channel Frequency (MHz):	5810.00	Data Rate:	29.30 MBit/s	
Power Setting:	9.5	Tested By:	JMH	

	5770.00 - 6000.00 MHz											
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5850.00	59.70	3.20	36.70	99.60	Max Peak	Horizontal	155	11	122.2	-22.6	Pass
#3	5930.06	26.42	3.18	36.80	66.40	Max Peak	Horizontal	155	11	68.2	-1.8	Pass
#2	5850.00					Band-Edge						
Test Not	tes: EUT pow	ered by F	OE and o	connected	to laptop	outside chambe	r			•		

9.6.3. Digital Emissions

FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

FS = R + AF + CORR

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB_{\mu}V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

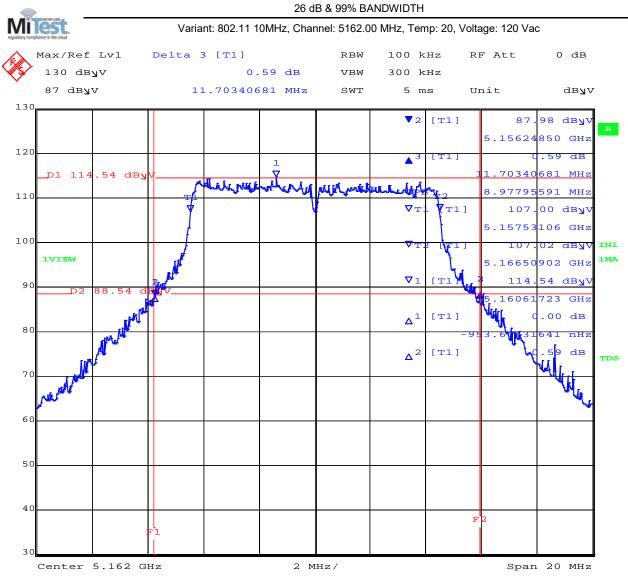
Conversion between $dB\mu V/m$ (or $dB\mu V$) and $\mu V/m$ (or μV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

	st Freq.	NA				Engineer		JMH				
	Variant	Digital E	Emissions	6				Т	emp (°C)	20		
Freq	. Range	30-1000) MHz				Rel. Hum.(%)		56			
Power	Setting	NA	NA					Press	(mBars)	848		
۵	ntenna	20.5 dBi										
Test	Notes 1											
Test	Notes 2											
MiC@ML	adds	08 Dec 14 19:14 08 Dec 14 19:14 09 Dec 14 19:14 00 Dec										
		30.0								0		
Formally		30.0 Rac File	diated Emi name: k:∖j	ssions program\radv						0		
Formally Frequency	Raw	30.0 Rac File red em Cable	diated Emi mame: k:\y ission AF	ssions program\radv peaks Level	vin\rdwn34 - ap0158	Templat 770 foo	te: FCC c ic 5gh	15.209 z\u8 - fc	RE 30-1000 c 15.407 & it	0 MHz c rss 210 ar Margin	n 9\da Pass	Comments
Frequency MHz	Raw dBuV	red em Cable Loss	diated Emi name: k:\y ission AF dB	ssions program\radv peaks Level dBuV/m	win\rdwn34 - ap0158 Measurement Type	Templa 770 for Pol	te: FCC c ic 5ghz Hgt cm	15.209 z\u6 - fo Azt Deg	RE 30-1000 c 15.407 & i Limit dBuV/m	MHz orss 210 ar Margin dB	Pass /Fail	Comments
Frequency MHz 319.999	Raw dBuV 45.4	red em Cable Loss 5.2	ission AF dB -16.7	peaks Level dBuV/m 33.9	win\rdwn34 - ap0158 Measurement Type Quasi Max	Templa 770 for Pol	Hgt cm 99	Azt Deg 179	RE 30-1000 c 15.407 & in Limit dBuV/m 46.0	MHz b rss 210 ar Margin dB -12.1	Pass /Fail Pass	Comments
Frequency MHz 319.999 240.015	Raw dBuV 45.4 56.0	red em Cable Loss 5.2 4.8	ission AF dB -16.7 -19.0	peaks Level dBuV/m 33.9 41.9	win\rdwn34 - ap0158 Measurement Type Quasi Max Quasi Max	Pol H	Hgt cm 99 100	Azt Deg 179 157	E 30-1000 c 15.407 & i Limit dBuV/m 46.0 46	Margin dB -12.1 -4.2	Pass /Fail Pass Pass	Comments
Frequency MHz 319.999 240.015 30.251	Raw dBuV 45.4 56.0 43.5	red em Cable Loss 5.2 4.8 3.5	ission AF dB -16.7 -19.0 -9.9	peaks Level dBuV/m 33.9 41.9 37.1	win\rdwn34 - ap0158 Measurement Type Quasi Max Quasi Max Quasi Max	Pol H H V	Hgt cm 99 100 224	Azt Deg 157 18	E 30-1000 c 15.407 & i dBuV/m 46.0 46 40	Margin dB -12.1 -4.2 -2.9	Pass /Fail Pass Pass Pass	Comments
Frequency MHz 319.999 240.015 30.251 34.975	Raw dBuV 45.4 56.0 43.5 45.3	30.0 Rad File File Cable Loss 5.2 4.8 3.5 3.6	ission AF dB -16.7 -19.0 -9.9 -13.6	peaks Level dBuV/m 33.9 41.9 37.1 35.3	win\rdwn34 - ap0158 Measurement Type Quasi Max Quasi Max Quasi Max Quasi Max	Pol H H V V	Hgt cm 99 100 224 142	Azt Deg 179 157 18 12	E 30-1000 c 15.407 & i Limit dBuV/m 46.0 46 40 40 40	Margin dB -12.1 -4.2 -2.9 -4.7	Pass /Fail Pass Pass Pass Pass	Comments
Frequency MHz 319.999 240.015 30.251 34.975 120.005	Raw dBuV 45.4 56.0 43.5 45.3 48.6	red em Cable Loss 5.2 4.8 3.5 3.6 4.2	ission AF dB -16.7 -19.0 -9.9 -13.6 -17.5	ssions program/radv peaks Level dBuV/m 33.9 41.9 37.1 35.3 35.3	Measurement Type Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max	Pol H V H	Hgt cm 99 100 224 142 209	Azt Deg 179 157 18 12 204	E 30-1000 c 15.407 & i dBuV/m 46.0 46 40 40 43.5	Margin dB -12.1 -4.2 -2.9 -4.7 -8.2	Pass /Fail Pass Pass Pass Pass Pass	Comments
Frequency MHz 319.999 240.015 30.251 34.975 120.005 360.008	Raw dBuV 45.4 56.0 43.5 45.3 48.6 42.9	Solution Solution red em Cable Loss 5.2 4.8 3.5 3.6 4.2 5.3 5.3	ission AF dB -16.7 -19.0 -9.9 -13.6 -17.5 -15.4	peaks Level dBuV/m 33.9 41.9 37.1 35.3 35.3 32.8	win\rdwn34 - ap0158 Measurement Type Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max	Pol H H V V H H	Hgt cm 99 100 224 142 209 217	Azt Deg 179 157 18 12 204 152	Limit dBuV/m 46.0 46 40 40 43.5 46	Margin dB -12.1 -4.2 -2.9 -4.7 -8.2 -13.2	Pass /Fail Pass Pass Pass Pass Pass Pass	Comments
Frequency MHz 319.999 240.015 30.251 34.975 120.005 360.008 399.995	Raw dBuV 45.4 56.0 43.5 45.3 48.6 42.9 49.0	30.0 30.0 Pred em Cable Loss 5.2 4.8 3.5 3.6 4.2 5.3 5.5	ission AF dB -16.7 -19.0 -9.9 -13.6 -17.5 -15.4 -14.8	ssions program/radv peaks Level dBuV/m 33.9 41.9 37.1 35.3 35.3 35.3 32.8 39.7	Measurement Type Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max	Pol H H V H H H	Hgt cm 99 100 224 142 209 217 160	Azt Deg 179 157 18 12 204 152 202	Limit dBuV/m 46.0 46 40 43.5 46 46 46	Margin dB -12.1 -4.2 -2.9 -4.7 -8.2 -13.2 -6.3	Pass /Fail Pass Pass Pass Pass Pass Pass Pass	Comments
Frequency MHz 319.999 240.015 30.251 34.975 120.005 360.008 399.995 66.934	Raw dBuV 45.4 56.0 43.5 45.3 48.6 42.9 49.0 50.9	30.0 30.0 Radie Cable Loss 5.2 4.8 3.5 3.6 4.2 5.3 5.5 3.8 3.8	ission AF dB -16.7 -19.0 -9.9 -13.6 -17.5 -15.4 -14.8 -23.3	peaks Level dBuV/m 33.9 41.9 37.1 35.3 35.3 32.8 39.7 31.4	win\rdwn34 - ap0158 Measurement Type Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max	Pol H H V H H H V	Hgt cm 99 100 224 142 209 217 160 108	Azt Deg 179 157 18 12 204 152 202 313	Limit dBuV/m 46.0 40 40 43.5 46 40	Margin dB -12.1 -4.2 -2.9 -4.7 -8.2 -13.2 -6.3 -8.6	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 319.999 240.015 30.251 34.975 120.005 360.008 399.995 66.934 44.815	Raw dBuV 45.4 56.0 43.5 45.3 48.6 42.9 49.0 50.9 45.7	red em Cable Loss 5.2 4.8 3.5 3.6 4.2 5.3 5.5 3.8 3.6	ission AF dB -16.7 -19.0 -9.9 -13.6 -17.5 -15.4 -14.8 -23.3 -20.7	ssions program/radv peaks Level dBuV/m 33.9 41.9 37.1 35.3 35.3 32.8 39.7 31.4 28.7	Measurement Type Quasi Max Quasi Max	Pol H H V V H H H V V V V V V V V V	Hgt cm 99 100 224 142 209 217 160 108 130	Azt Deg 179 157 18 12 204 152 202 313 349	Limit dBuV/m 46.0 46 40 43.5 46 40 40 43.5 46 40 40 40	Margin dB -12.1 -4.2 -2.9 -4.7 -8.2 -13.2 -6.3 -8.6 -11.4	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 319.999 240.015 30.251 34.975 120.005 360.008 399.995 66.934	Raw dBuV 45.4 56.0 43.5 45.3 48.6 42.9 49.0 50.9	30.0 30.0 Radie Cable Loss 5.2 4.8 3.5 3.6 4.2 5.3 5.5 3.8 3.8	ission AF dB -16.7 -19.0 -9.9 -13.6 -17.5 -15.4 -14.8 -23.3	peaks Level dBuV/m 33.9 41.9 37.1 35.3 35.3 32.8 39.7 31.4	win\rdwn34 - ap0158 Measurement Type Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max Quasi Max	Pol H H V H H H V	Hgt cm 99 100 224 142 209 217 160 108	Azt Deg 179 157 18 12 204 152 202 313	Limit dBuV/m 46.0 40 40 43.5 46 40	Margin dB -12.1 -4.2 -2.9 -4.7 -8.2 -13.2 -6.3 -8.6	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 319.999 240.015 30.251 34.975 120.005 360.008 399.995 66.934 44.815	Raw dBuV 45.4 56.0 43.5 45.3 48.6 42.9 49.0 50.9 45.7 42.0	30.0 Pred em Cable Loss 5.2 4.8 3.5 3.6 4.2 5.3 5.5 3.8 3.6 7.2	ission AF dB -16.7 -19.0 -9.9 -13.6 -17.5 -15.4 -14.8 -23.3 -20.7 -7.7	ssions program/radv peaks Level dBuV/m 33.9 41.9 37.1 35.3 35.3 32.8 39.7 31.4 28.7 41.4	Measurement Type Quasi Max Quasi Max	Pol H H V V H H H V V H H H	Hgt cm 99 100 224 142 209 217 160 108 130 109	Azt Deg 179 157 18 12 204 152 202 313 349 181	Limit dBuV/m 46.0 46 40 43.5 46 40 43.5 46 40 43.5 46 40 46 46 46 40 46 46 40 46 46 40 46	Margin dB -12.1 -4.2 -2.9 -4.7 -8.2 -13.2 -6.3 -8.6 -11.4 -4.6	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

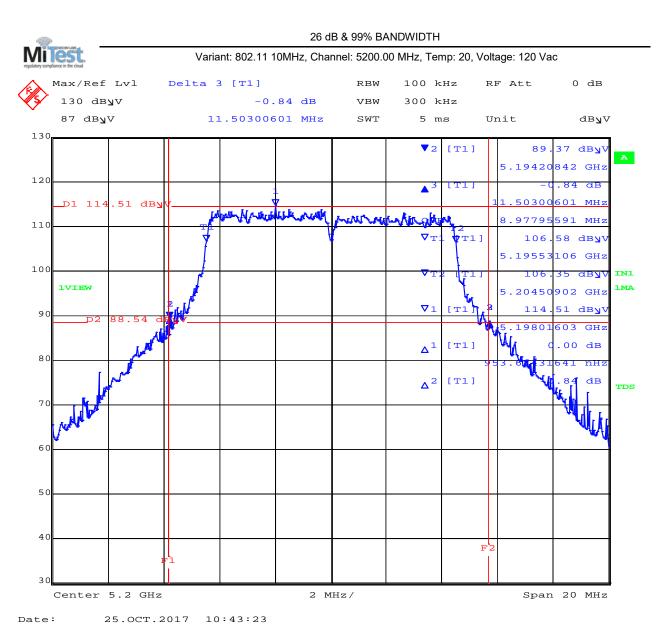


A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.1. 26 dB & 99% Bandwidth

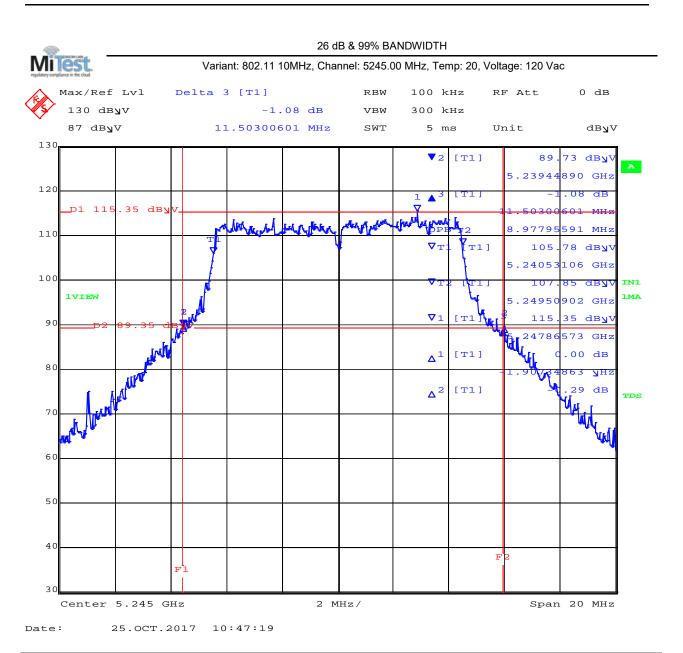
Date: 25.0CT.2017 10:37:14


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5157.53106 MHz : 107.02 dBuV	Measured 26 dB Bandwidth: 11.70 MHz
Sweep Count = 0	T2 : 5166.50902 MHz : 114.54 dBuV	Measured 99% Bandwidth: 8.98 MHz
RF Atten (dB) = 0	OBW : 8.98 MHz	
Trace Mode = MAX HOLD		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

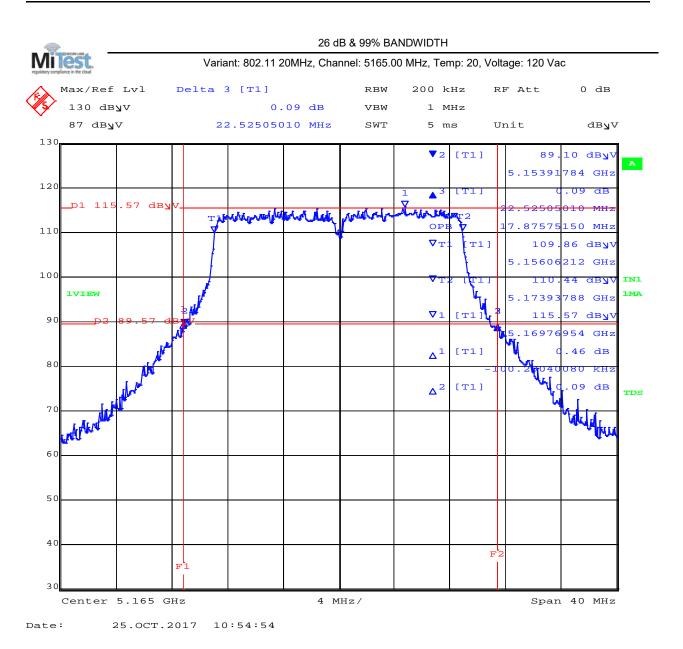
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 92 of 188



Analyzer SetupMarker:Frequency:AmplitudeTest ResultsDetector = MAX PEAKT1 : 5195.53106 MHz : 106.58 dBuVMeasured 26 dB Bandwidth: 11.50 MHzSweep Count = 0T2 : 5204.50902 MHz : 106.35 dBuVMeasured 99% Bandwidth: 8.98 MHzRF Atten (dB) = 0OBW : 17.555 MHzOBW : 17.555 MHz

back to matrix

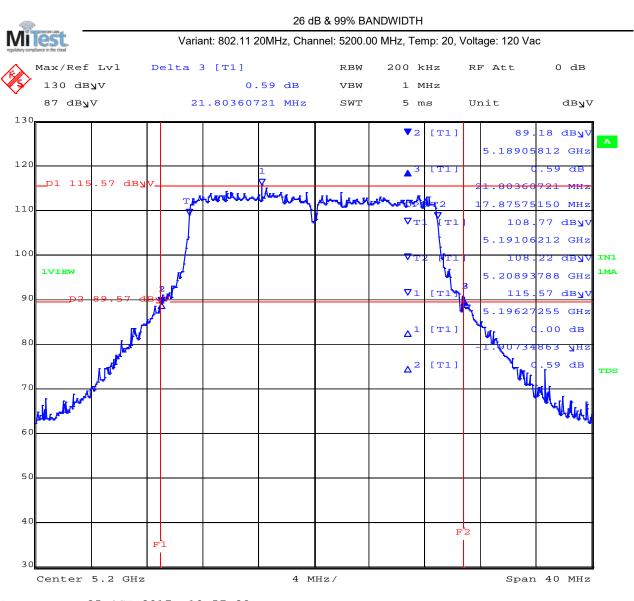
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:93 of 188


Analyzer SetupMarker:Frequency:AmplitudeTest ResultsDetector = MAX PEAKT1 : 5240.53106 MHz : 105.78 dBuVMeasured 26 dB Bandwidth: 11.50 MHzSweep Count = 0T2 : 5249.50902 MHz : 107.85 dBuVMeasured 99% Bandwidth: 8.98 MHzRF Atten (dB) = 0OBW : 8.98 MHzOBW : 8.98 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:94 of 188



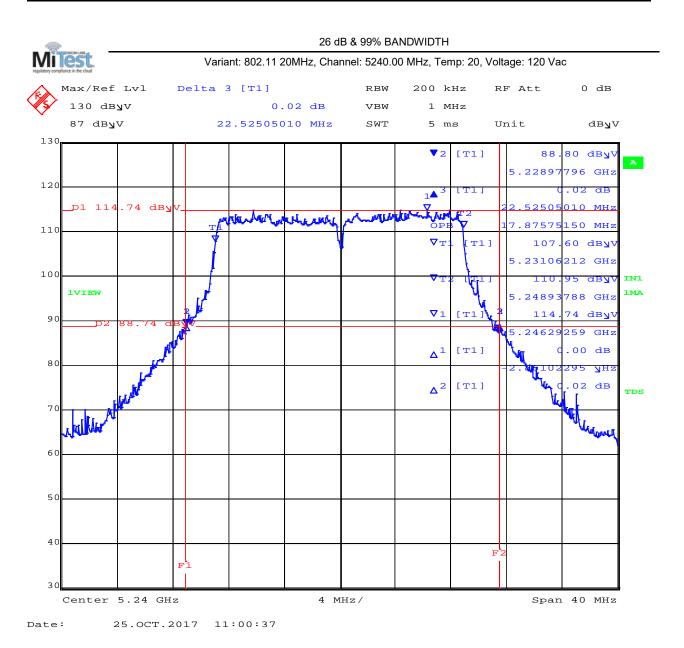
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5156.06212 MHz : 109.86 dBuV	Measured 26 dB Bandwidth: 22.53 MHz
Sweep Count = 0	T2 : 5173.93788 MHz : 110.44 dBuV	Measured 99% Bandwidth: 17.88 MHz
RF Atten (dB) = 0	OBW : 17.88 MHz	
Trace Mode = MAX HOLD		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:95 of 188

Date:

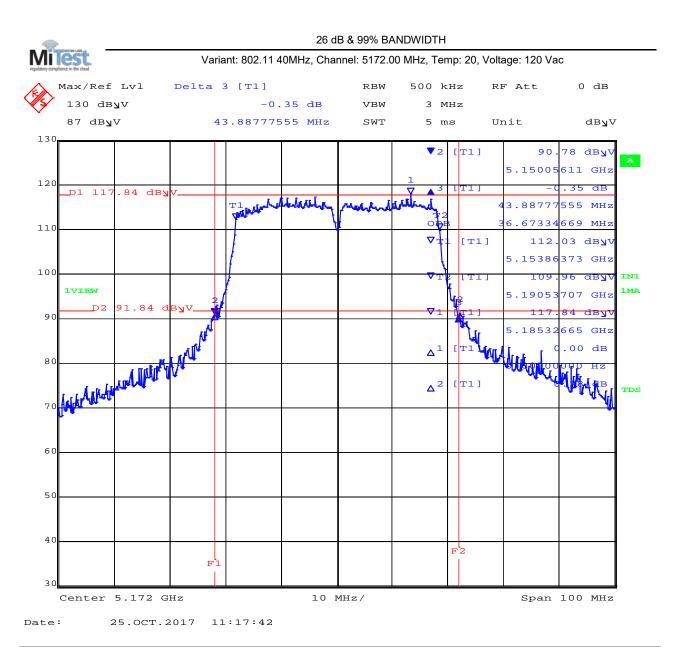
25.OCT.2017 10:57:28


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5191.06212 MHz : 108.77 dBuV	Measured 26 dB Bandwidth: 21.80 MHz
Sweep Count = 0	T2 : 5208.93788 MHz : 108.22 dBuV	Measured 99% Bandwidth: 17.88 MHz
RF Atten (dB) = 0	OBW : 17.88 MHz	
Trace Mode = MAX HOLD		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

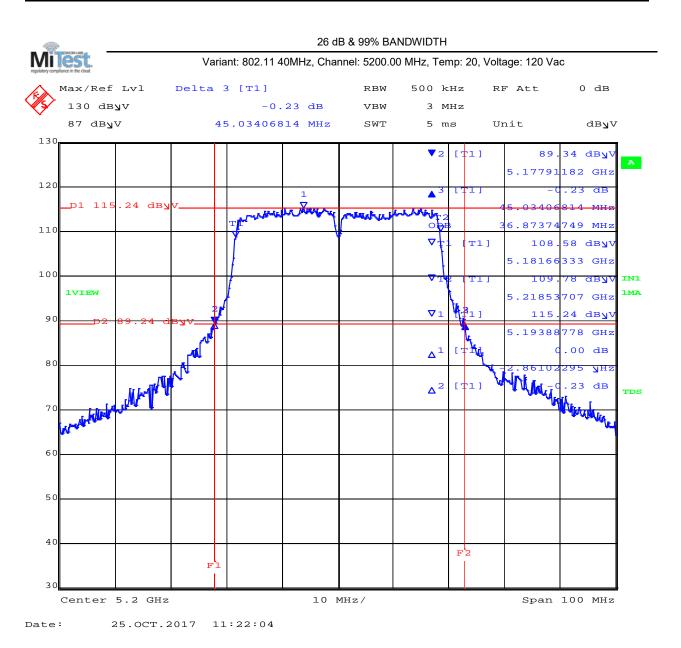
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:96 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5231.06212 MHz : 107.60 dBuV	Measured 26 dB Bandwidth: 22.53 MHz
Sweep Count = 0	T2 : 5248.93788 MHz : 110.95 dBuV	Measured 99% Bandwidth: 17.88 MHz
RF Atten (dB) = 0	OBW : 17.88 MHz	
Trace Mode = MAX HOLD		

back to matrix

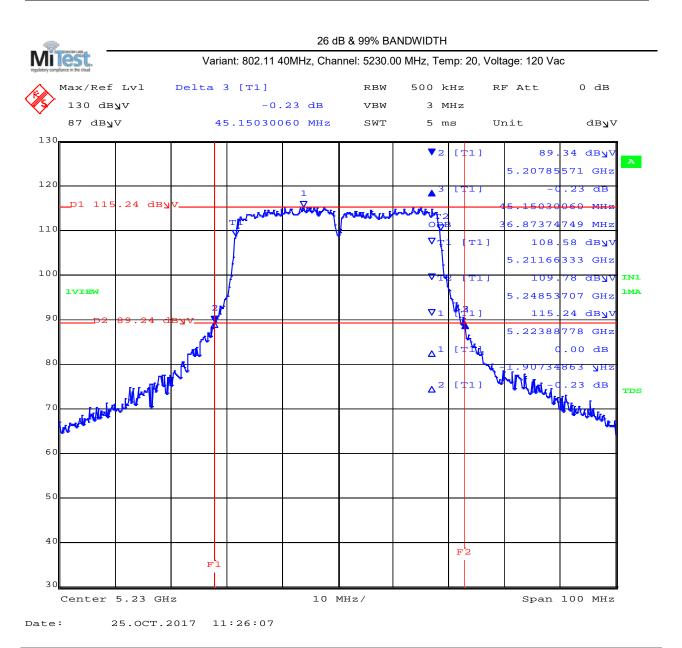
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 97 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
		Measured 26 dB Bandwidth: 43.89 MHz
		Measured 99% Bandwidth: 36.67 MHz
RF Atten (dB) = 0	OBW : 36.67 MHz	
Trace Mode = MAX HOLD		

back to matrix

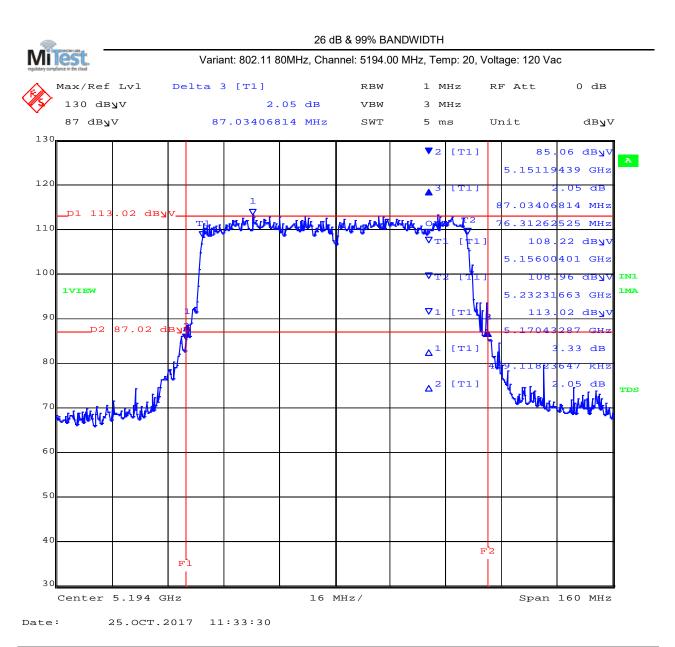
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:98 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK		Measured 26 dB Bandwidth: 45.03 MHz
Sweep Count = 0		Measured 99% Bandwidth: 36.87 MHz
RF Atten (dB) = 0	OBW : 36.87 MHz	
Trace Mode = MAX HOLD		

back to matrix

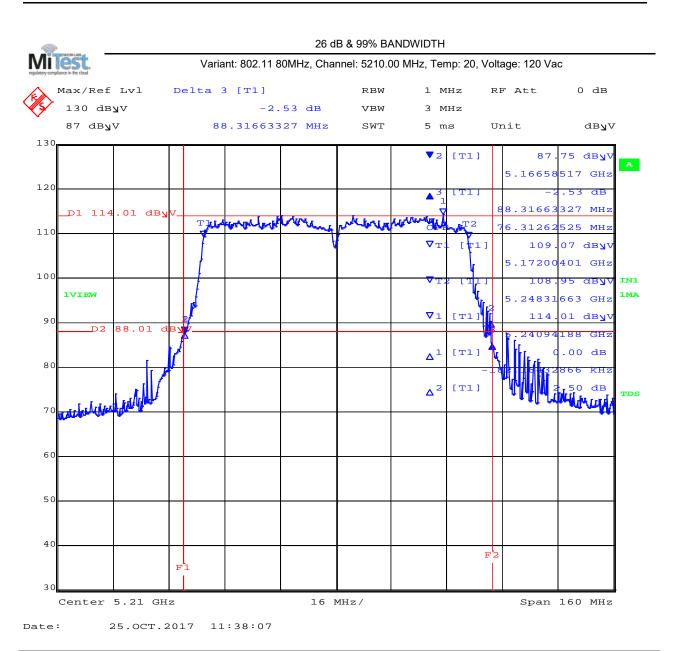
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:99 of 188


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5211.66333 MHz : 108.58 dBuV	Measured 26 dB Bandwidth: 45.15 MHz
Sweep Count = 0	T2 : 5248.53707 MHz : 109.78 dBuV	Measured 99% Bandwidth: 36.87 MHz
RF Atten (dB) = 0	OBW : 36.87 MHz	
Trace Mode = MAX HOLD		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

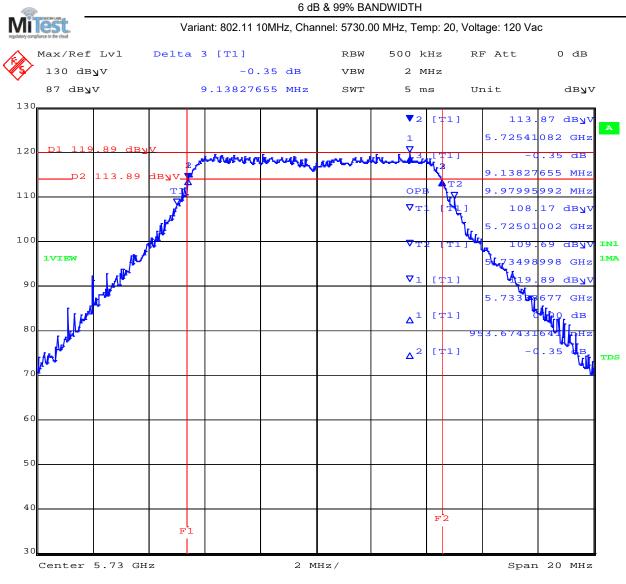
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:100 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5156.00401 MHz : 108.22 dBuV	Measured 26 dB Bandwidth: 87.03 MHz
Sweep Count = 0	T2 : 5232.31663 MHz : 108.96 dBuV	Measured 99% Bandwidth: 76.31 MHz
RF Atten (dB) = 0	OBW : 76.31 MHz	
Trace Mode = MAX HOLD		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:101 of 188

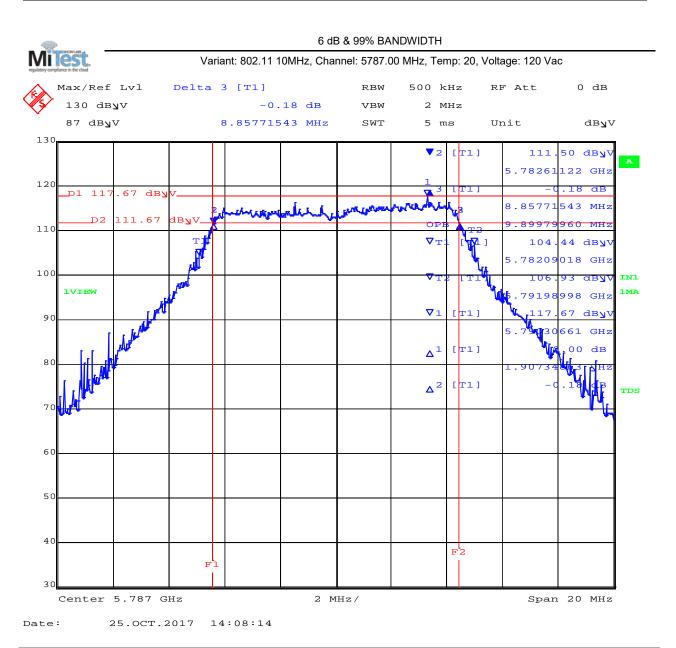

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
		Measured 26 dB Bandwidth: 88.32 MHz
		Measured 99% Bandwidth: 76.31 MHz
RF Atten (dB) = 0	OBW : 76.31 MHz	
Trace Mode = MAX HOLD		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.2. 6 dB & 99% Bandwidth

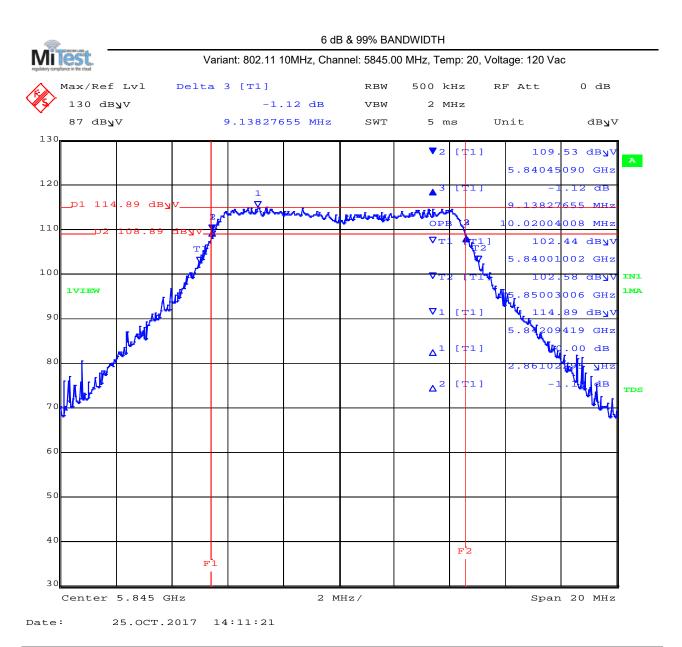
Date: 25.0CT.2017 14:06:00


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5725.01002 MHz : 108.17 dBuV	Measured 6 dB Bandwidth: 9.14 MHz
Sweep Count = 0	T2 : 5734.98998 MHz : 109.69 dBuV	Measured 99% Bandwidth: 9.98 MHz
RF Atten (dB) = 0	OBW : 9.98 MHz	
Trace Mode = MAX HOLD		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

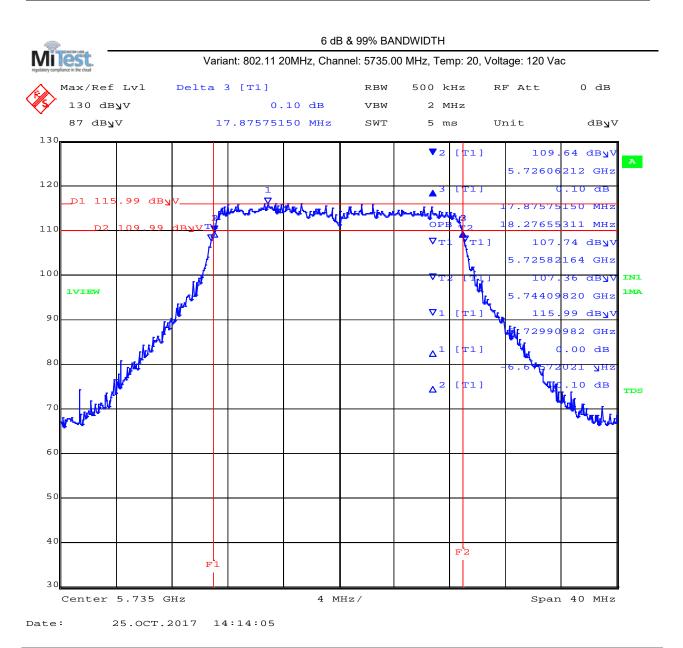
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 103 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5782.09018 MHz : 104.44 dBuV	Measured 6 dB Bandwidth: 8.86 MHz
Sweep Count = 0	T2 : 5791.98998 MHz 106.93 dBuV	Measured 99% Bandwidth: 9.90 MHz
RF Atten (dB) = 0	OBW : 9.90 MHz	
Trace Mode = MAX HOLD		

back to matrix

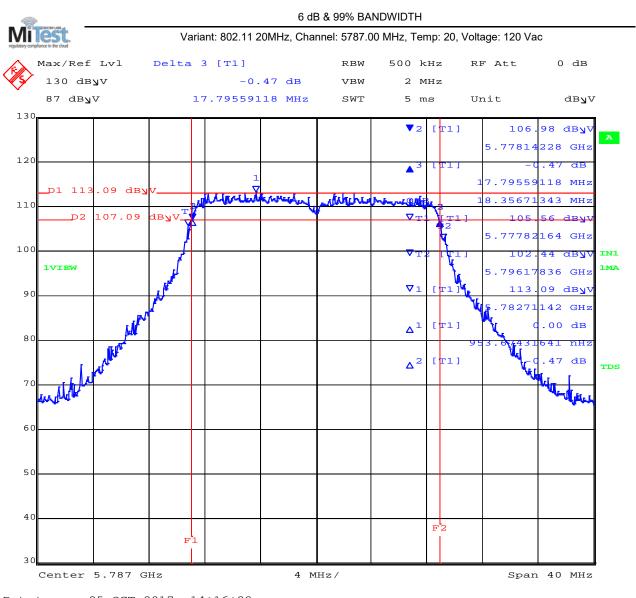
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:104 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5840.01002 MHz : 102.44 dBuV	Measured 6 dB Bandwidth: 9.14 MHz
Sweep Count = 0	T2 : 5850.03006 MHz : 102.58 dBuV	Measured 99% Bandwidth: 10.02 MHz
RF Atten (dB) = 0	OBW : 10.02 MHz	
Trace Mode = MAX HOLD		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:105 of 188

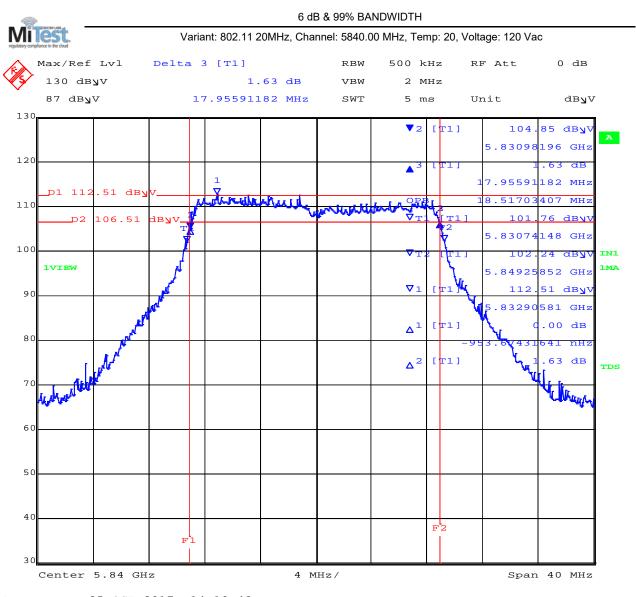


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5725.82164 MHz : 107.74 dBuV	Measured 6 dB Bandwidth: 17.88 MHz
Sweep Count = 0	T2 : 5744.09820 MHz : 107.36 dBuV	Measured 99% Bandwidth: 18.28 MHz
RF Atten (dB) = 0	OBW : 18.28 MHz	
Trace Mode = MAX HOLD		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:106 of 188

Date:

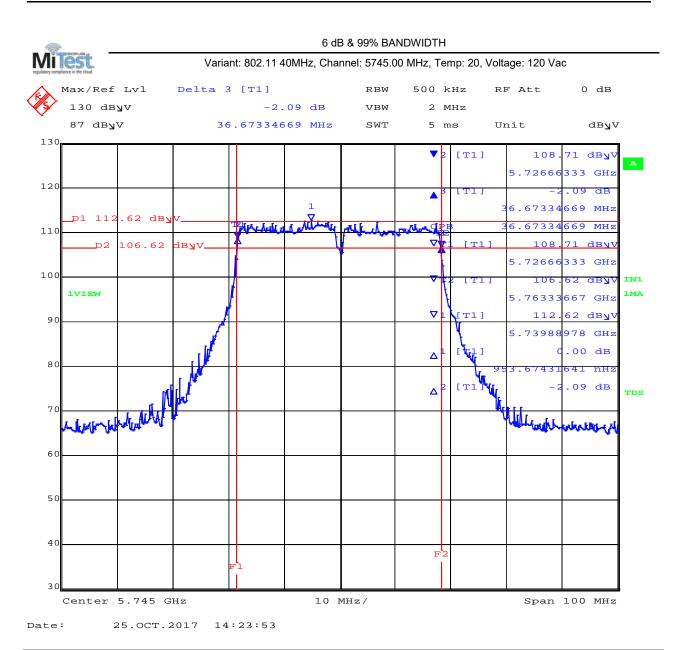

25.OCT.2017 14:16:28

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5777.82164 MHz : 105.56 dBuV	Measured 6 dB Bandwidth: 17.80 MHz
Sweep Count = 0	T2 : 5796.17836 MHz : 102.44 dBuV	Measured 99% Bandwidth: 18.36 MHz
RF Atten (dB) = 0	OBW : 18.36 MHz	
Trace Mode = MAX HOLD		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:107 of 188

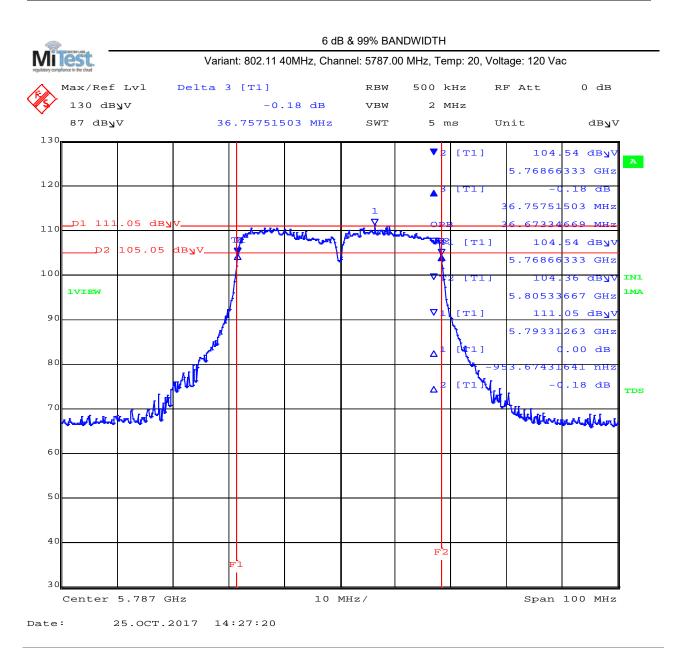
Date:


25.OCT.2017 14:19:48

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5830.74148 MHz : 101.76 dBuV	Measured 6 dB Bandwidth: 17.96 MHz
Sweep Count = 0	T2 : 5849.25852 MHz : 102.24 dBuV	Measured 99% Bandwidth: 18.52 MHz
RF Atten (dB) = 0	OBW : 18.52 MHz	
Trace Mode = MAX HOLD		

back to matrix

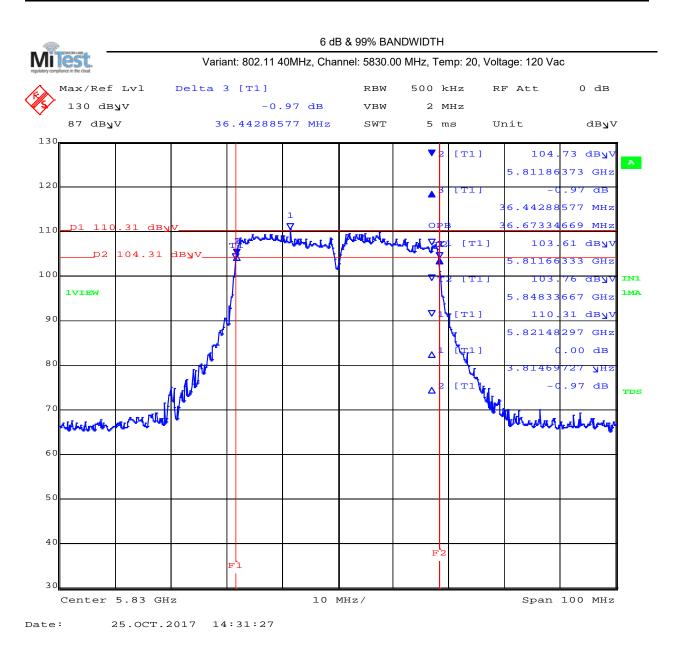
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:108 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5726.66333 MHz : 108.71 dBuV	Measured 6 dB Bandwidth: 36.67 MHz
Sweep Count = 0	T2 : 5763.33667 MHz : 106.62 dBuV	Measured 99% Bandwidth: 36.67 MHz
RF Atten (dB) = 0	OBW : 36.67 MHz	
Trace Mode = MAX HOLD		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:109 of 188



Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5768.66333 MHz : 104.54 dBuV	Measured 6 dB Bandwidth: 36.76 MHz
Sweep Count = 0	T2 : 5805.33667 MHz : 104.36 dBuV	Measured 99% Bandwidth: 36.67 MHz
RF Atten (dB) = 0	OBW : 36.67 MHz	
Trace Mode = MAX HOLD		

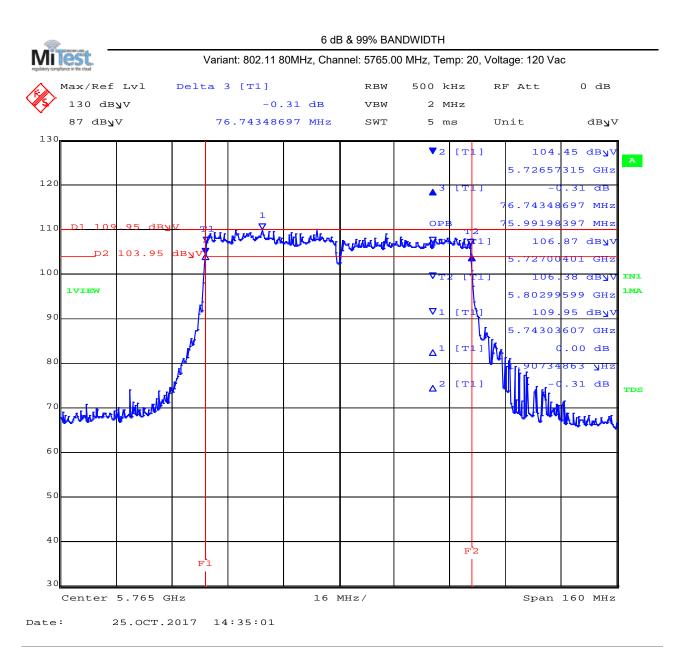
back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:110 of 188

 Analyzer Setup
 Marker:Frequency:Amplitude
 Test Results

 Detector = MAX PEAK
 T1 : 5811.66333 MHz : 103.61 dBuV
 Measured 6 dB Bandwidth: 36.44 MHz

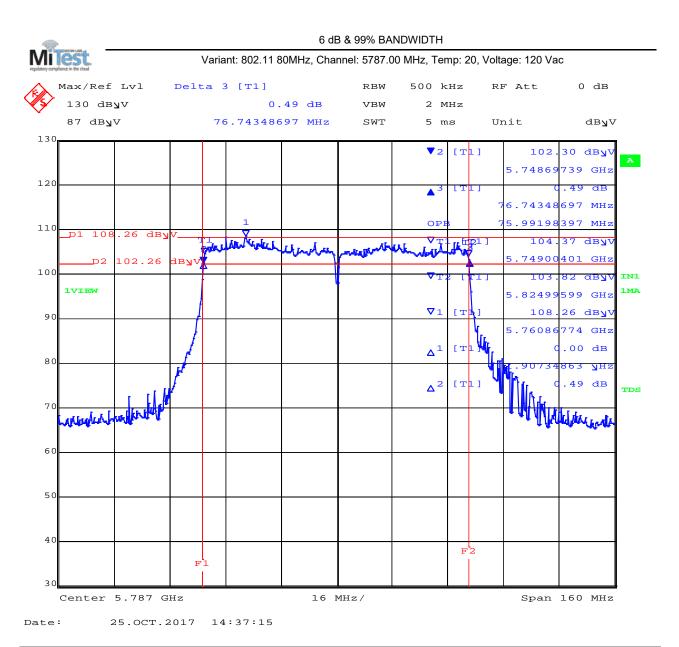
 Sweep Count = 0
 T2 : 5848.33667 MHz : 103.76 dBuV
 Measured 99% Bandwidth: 36.67 MHz


 RF Atten (dB) = 0
 OBW : 36.67 MHz
 0BW : 36.67 MHz

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

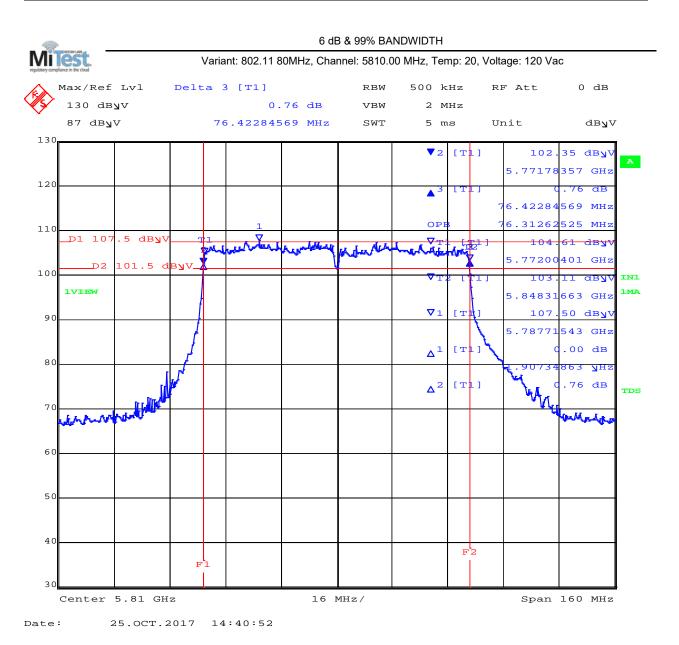
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:111 of 188


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5727.00401 MHz : 106.87 dBuV	Measured 6 dB Bandwidth: 76.74 MHz
Sweep Count = 0	T2 : 5802.99599 MHz : 106.38 dBuV	Measured 99% Bandwidth: 75.99 MHz
RF Atten (dB) = 0	OBW : 75.99 MHz	
Trace Mode = MAX HOLD		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:112 of 188


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = MAX PEAK	T1 : 5749.00401 MHz : 104.37 dBuV	Measured 6 dB Bandwidth: 76.74 MHz
Sweep Count = 0	T2 : 5824.99599 MHz : 103.82 dBuV	Measured 99% Bandwidth: 75.99 MHz
RF Atten (dB) = 0	OBW : 75.99 MHz	
Trace Mode = MAX HOLD		

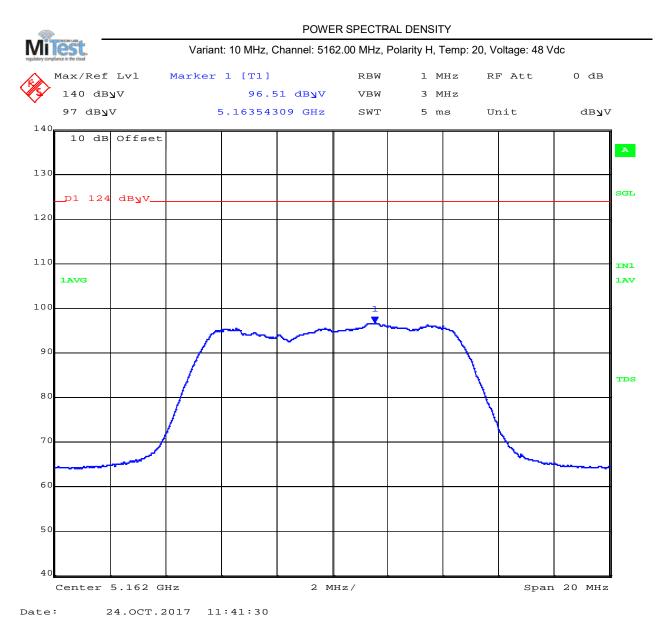
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:113 of 188

 Analyzer Setup
 Marker:Frequency:Amplitude
 Test Results

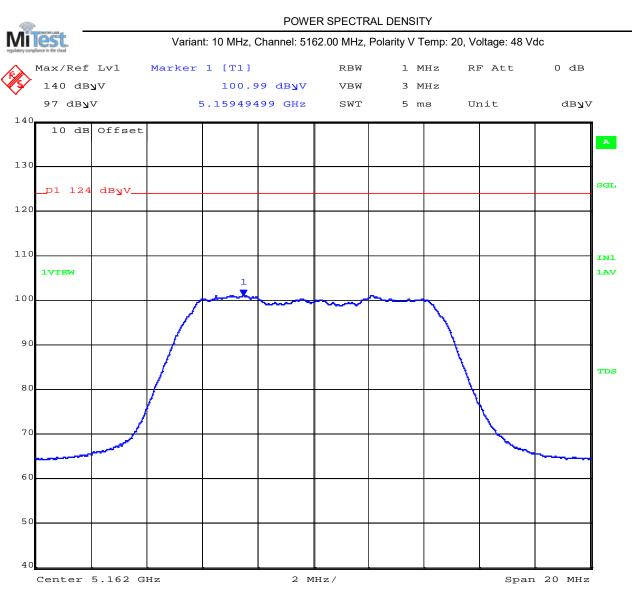
 Detector = MAX PEAK
 T1 : 5772.00401 MHz : 104.61 dBuV
 Measured 6 dB Bandwidth: 76.42 MHz


 Sweep Count = 0
 T2 : 5848.31663 MHz : 103.11 dBuV
 Measured 99% Bandwidth: 76.31 MHz

 RF Atten (dB) = 0
 OBW : 76.31 MHz
 OBW : 76.31 MHz

back to matrix

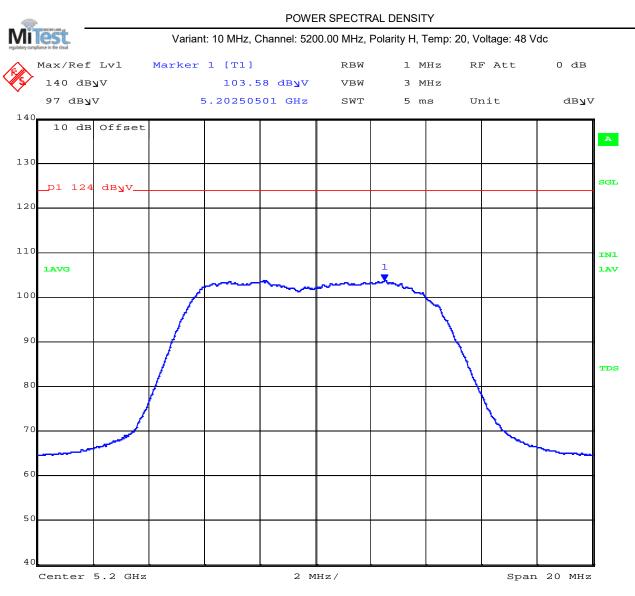
A.3. Power Spectral Density


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5163.54 MHz : 96.51 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:115 of 188


Date: 24.0CT.2017 11:33:08

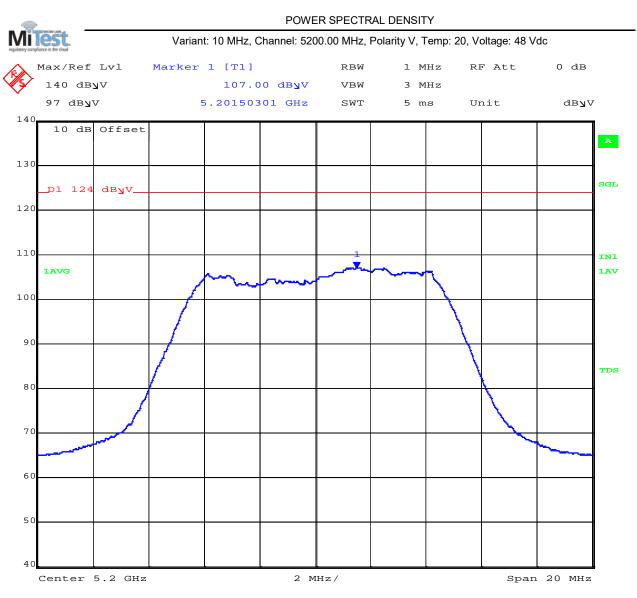
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5159.49 MHz :100.99 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 116 of 188

Date:

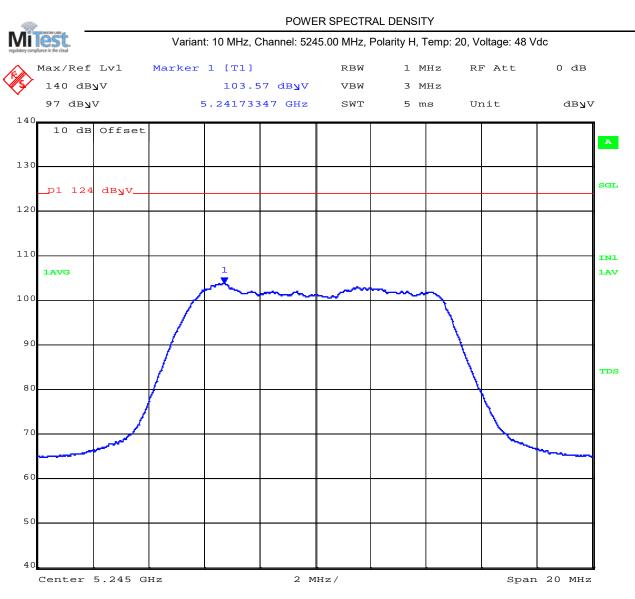
24.OCT.2017 11:49:40


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5202.51 MHz : 103.58 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 117 of 188

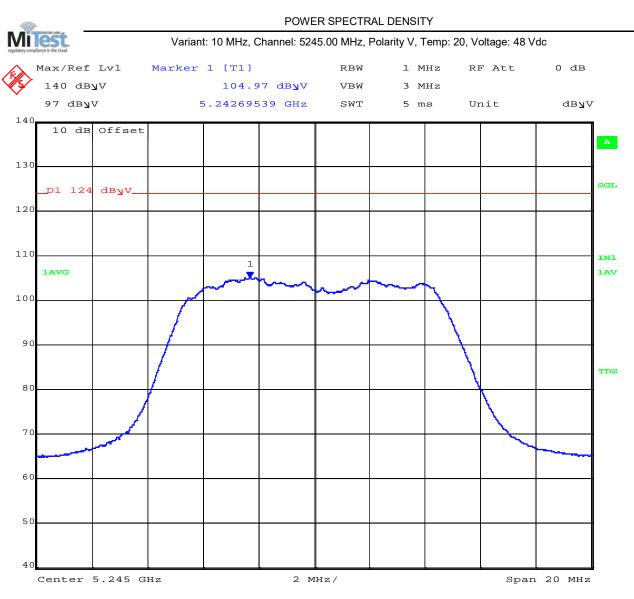

Date: 24.0CT.2017 12:03:04

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
5	M1 : 5201.50 MHz : 107.00 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:118 of 188

Date: 24.0CT.2017 12:06:11


001.2017 12.00.11

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5241.73 MHz : 103.57 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:119 of 188

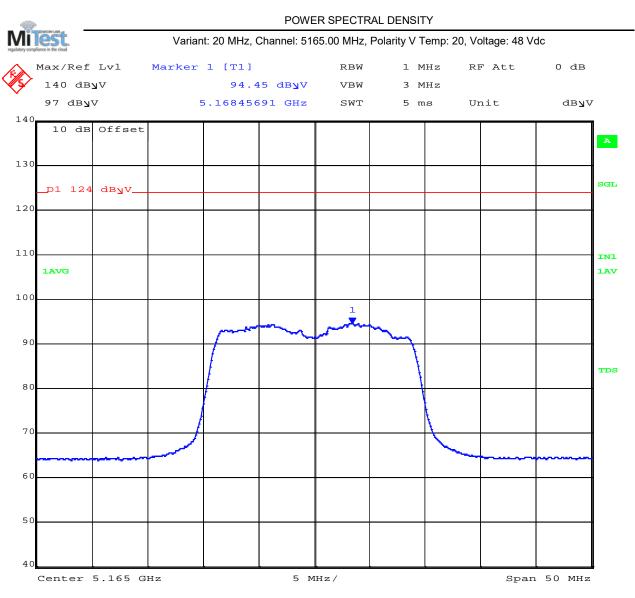
Date:

24.OCT.2017 12:04:59

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5242.70 MHz : 104.97 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

compliance in the cloud	Varian	:: 20 MHz, C	Channel: 516	5.00 MHz,	Polarity F	I, Temp:	20, Voltage: 48 V	′dc
Max/Ref Lvl	Marker	1 [T1]		RBW	1	MHz	RF Att	0 dB
V_140 dB		90.3	0 dB <mark>y</mark> V	VBW	3	MHz		
97 dByv	5	.172765	53 GHz	SWT	5	ms	Unit	db⊿v
10 dB Offset								
30								
D1 124 dbyV								
20								
0								
00								
90		-06			1			
			\sim					
30						ł		
70								
50								
50								
ŧ0.								
Center 5.165 G	Hz		5 M	Hz/			Spar	1 50 MHz


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5172.77 MHz : 90.30 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

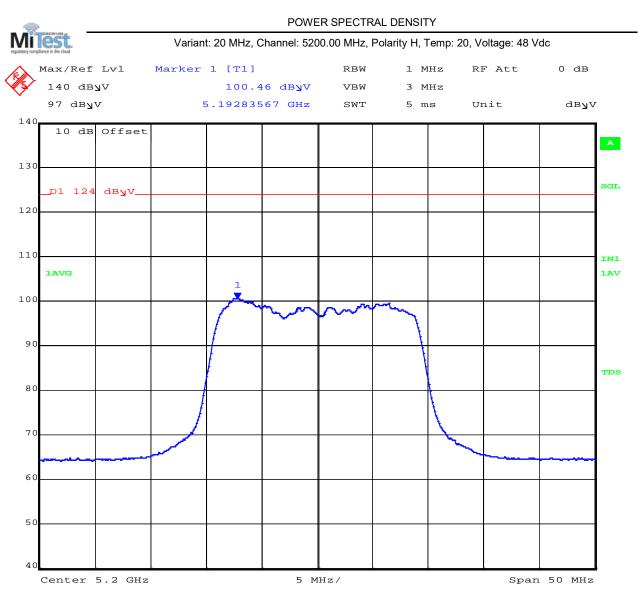
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:121 of 188

Date:

24.OCT.2017 12:12:23

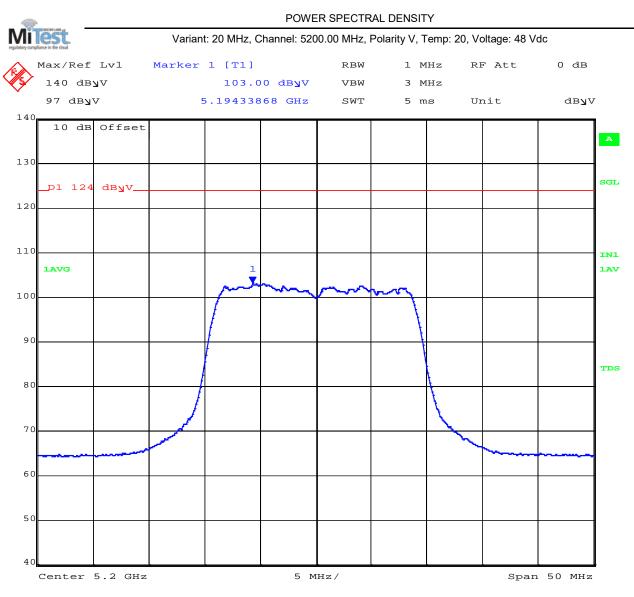

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5168.46 MHz :94.45 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:122 of 188

Date: 24.00

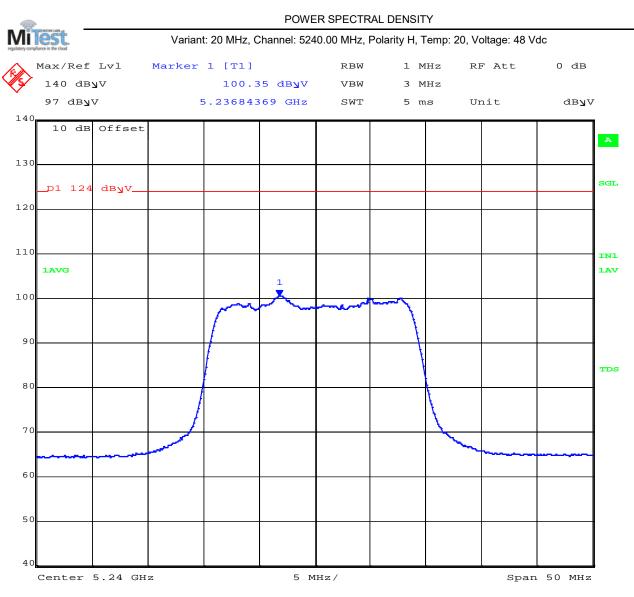

24.0CT.2017 12:16:41

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5192.84 MHz : 100.46 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 123 of 188

Date: 24.0CT.2


24.OCT.2017 12:15:42

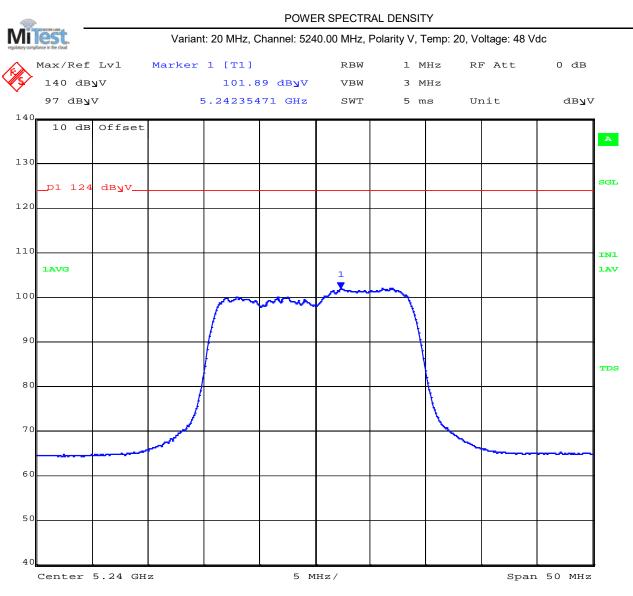
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5194.34 MHz : 103.00 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:124 of 188

Date:

24.OCT.2017 12:18:11


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5236.84 MHz : 100.35 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:125 of 188

Date: 24.0CT.2

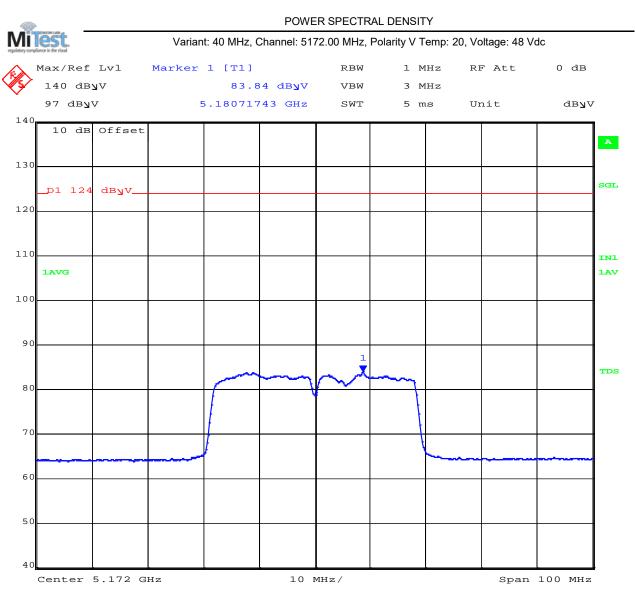
24.OCT.2017 12:19:04

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5242.35 MHz : 101.89 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

y compliance in the cloud	Variant: 40 MHz, Channel:	5172.00 MHz, Po	plarity H, Temp:	20, Voltage: 48 V	dc
Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz	RF Att	0 dB
140 dByv	79.64 dBy	V VBW	3 MHz		
97 dBJV	5.18051703 GH	z SWT	5 ms	Unit	db y v
10 dB Offset					
30					
D1 124 dByV					
2 0					
L 0					
lavg					
00					
90					<u> </u>
		1			
30		- internet	~		
		\sim			
70					
50					
50					
40 Center 5.172 () MHz/			100 MHz

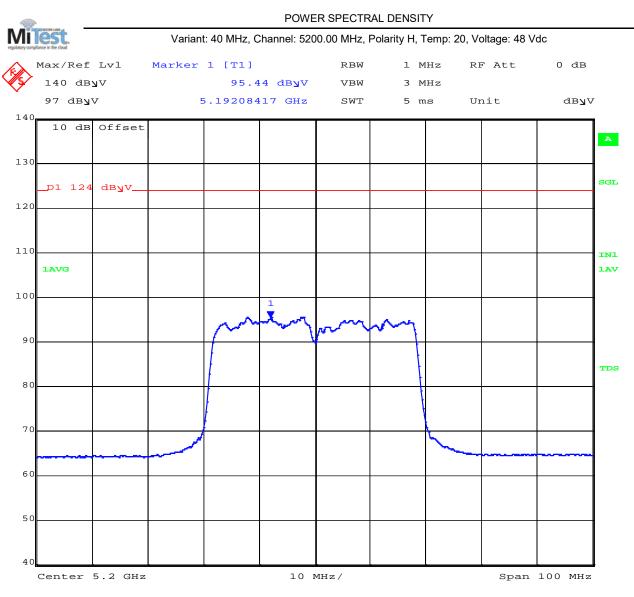

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5180.52 MHz : 79.64 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 127 of 188

Date: 24.0CT.2


24.OCT.2017 12:23:05

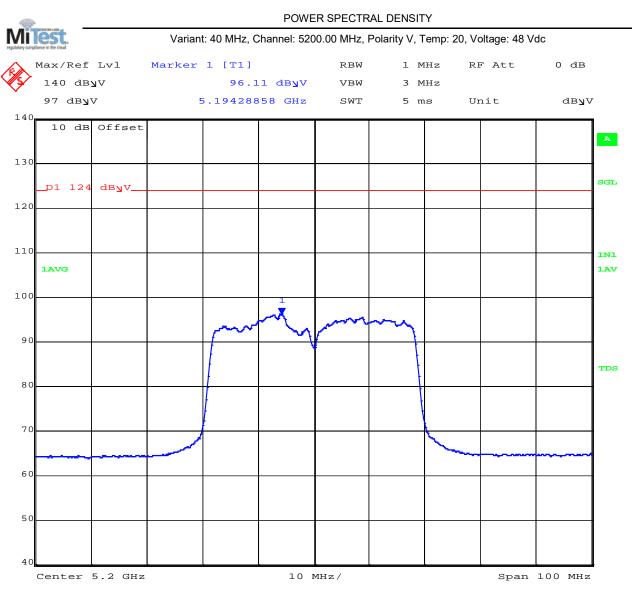
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5180.72 MHz :83.84 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:128 of 188

Date: 24.00

24.OCT.2017 12:30:08


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5192.08 MHz : 95.44 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

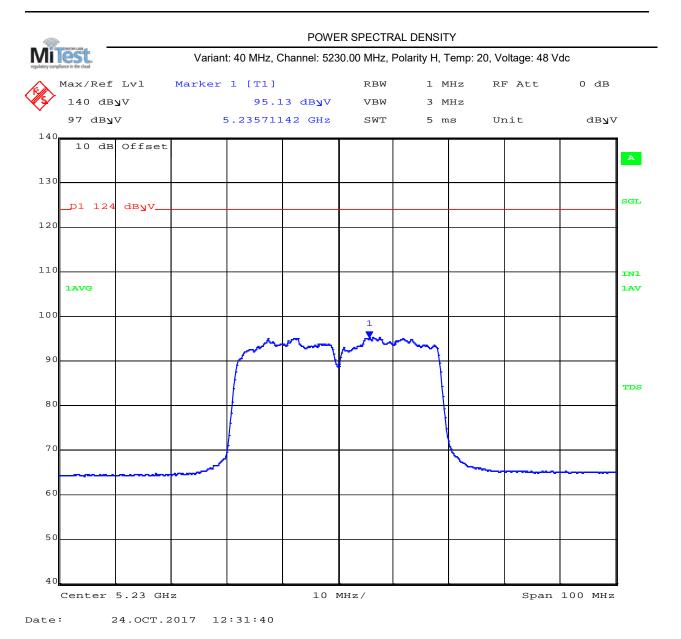
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:129 of 188

Date: 24.0CT.2017 12:27:47

001.2017 12.27.47

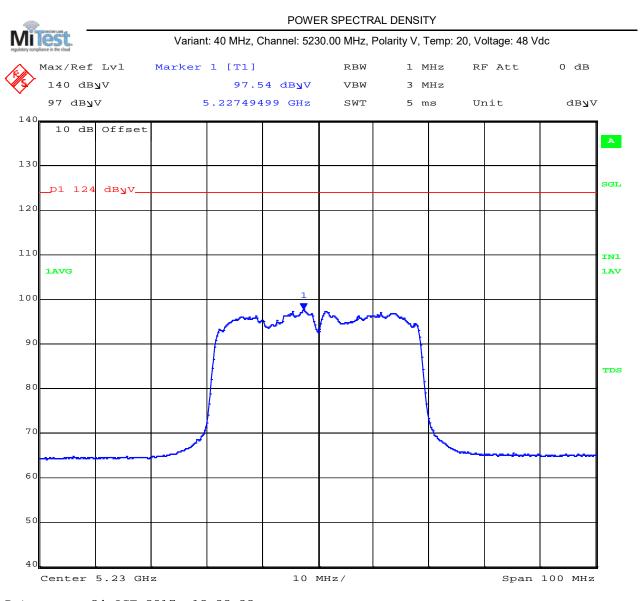

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5194.29 MHz : 96.11 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:130 of 188

 Analyzer Setup
 Marker:Frequency:Amplitude
 Test Results


 Detector = Average
 M1 : 5235.71 MHz : 95.13 dBuV/m
 Limit: ≤ 17.00 dBm, 124 dBuVm

 Sweep Count = 100
 RF Atten (dB) = 0
 Trace Mode = VIEW

back to matrix

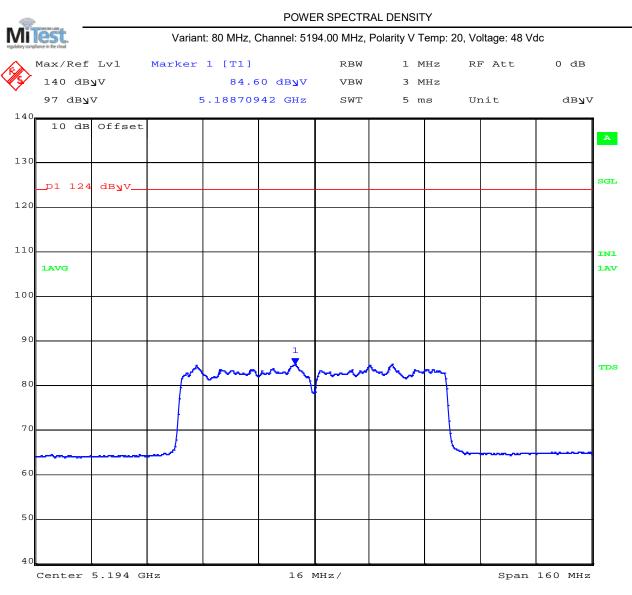
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:131 of 188

Date: 24.0CT.2017 12:32:32

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5227.49 MHz : 97.54 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

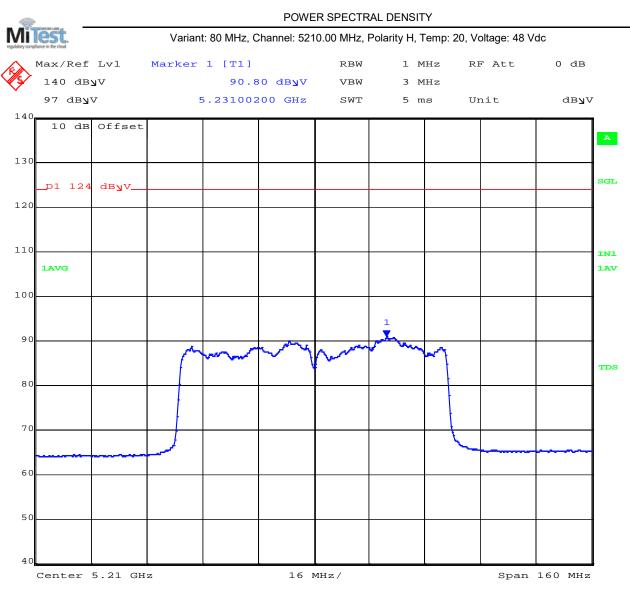
	POWE	ER SPECTRAL	DENSITY	
subtory compliance in the cloud	Variant: 80 MHz, Channel: 519	94.00 MHz, Po	larity H, Temp: 20, Voltage: 4	8 Vdc
Max/Ref Lvl	Marker 1 [T1]	RBW	1 MHz RF Att	0 dB
140 dByV	82.19 dB <mark>y</mark> V	VBW	3 MHz	
97 dB y V	5.22237675 GHz	SWT	5 ms Unit	db y v
140 10 dB Offse	t			<u> </u>
				<u></u>
130				
D1 124 dbyv				sg
120				
110				IN
lavg				12
100				
90				
				TI
80	- m			
		f I		
70				
			har	
60				
50				
40				
Center 5.194	GHz 16	MHz/	Spa	in 160 MHz
ate: 24.0CT	.2017 12:36:43			


Analyzer SetupMarker:Frequency:AmplitudeTest ResultsDetector = Average
Sweep Count = 100
RF Atten (dB) = 0
Trace Mode = VIEWM1 : 5222.37 MHz : 82.19 dBuV/mLimit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

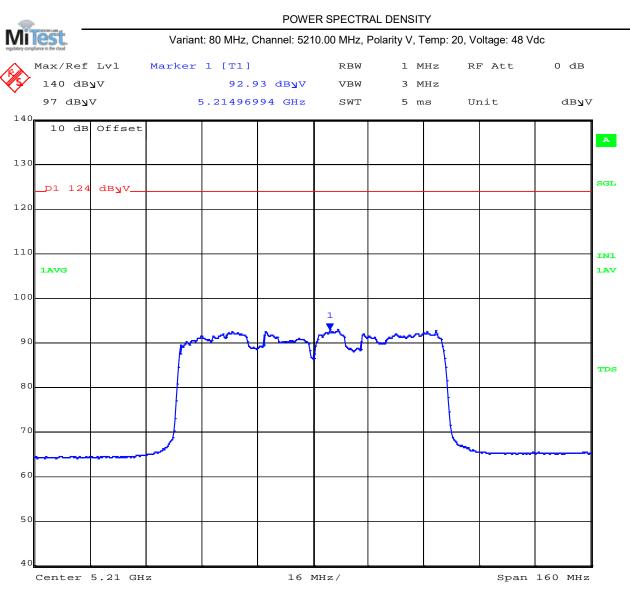
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 133 of 188 Page:


24.OCT.2017 12:36:00 Date:

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5188.71 MHz : 84.60 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix

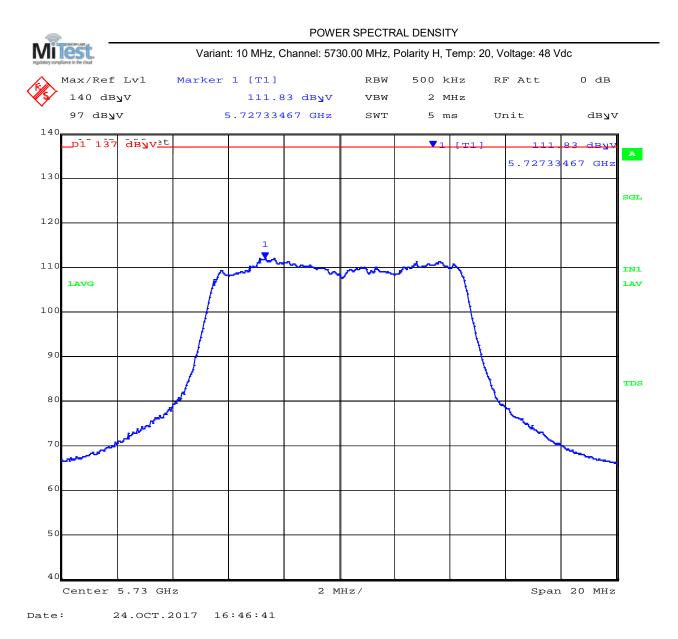
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) **Issue Date:** 30th November 2017 134 of 188 Page:


24.OCT.2017 12:38:27 Date:

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5231.00 MHz : 90.80 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

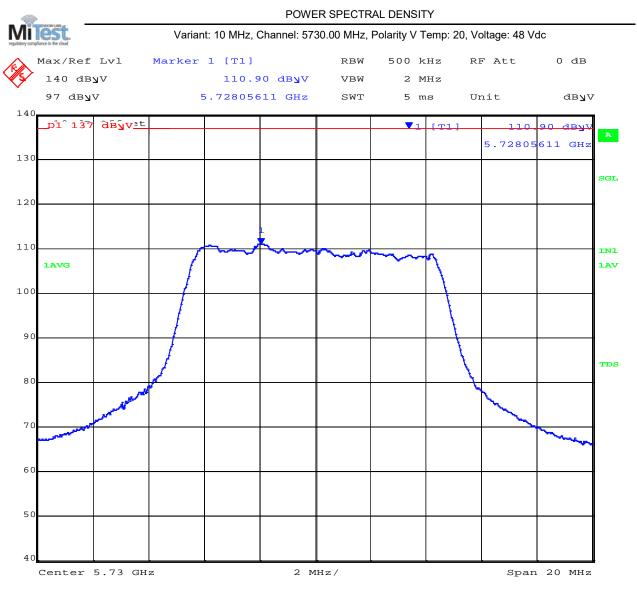
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:135 of 188


Date:

24.OCT.2017 12:39:35

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5214.50 MHz : 92.93 dBuV/m	Limit: ≤ 17.00 dBm, 124 dBuVm

back to matrix


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5261.71 MHz : 111.83 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

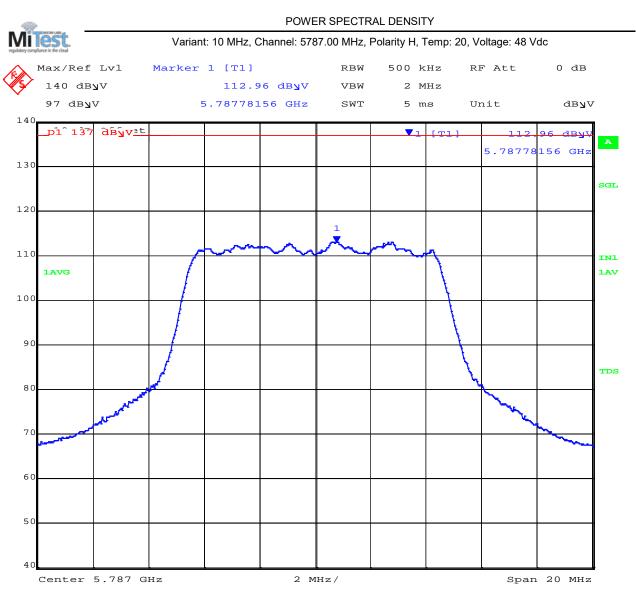
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 137 of 188

Date: 2

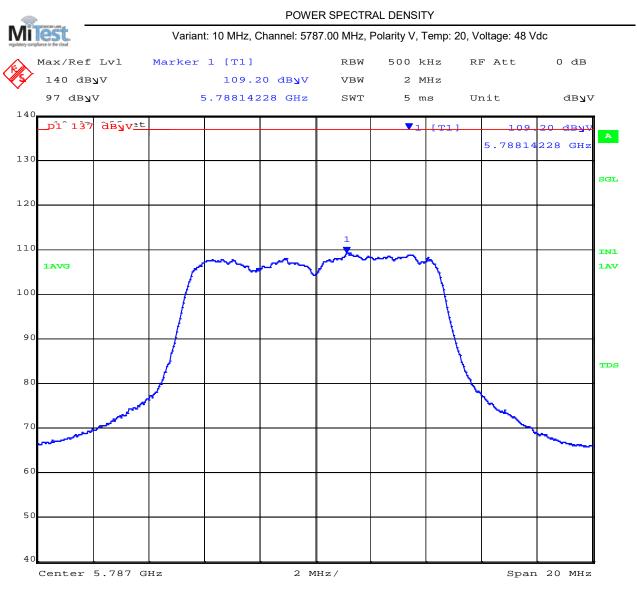
24.0CT.2017 16:53:52


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5257.34 MHz :110.90 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 138 of 188


Date: 24.0CT.2017 17:03:00

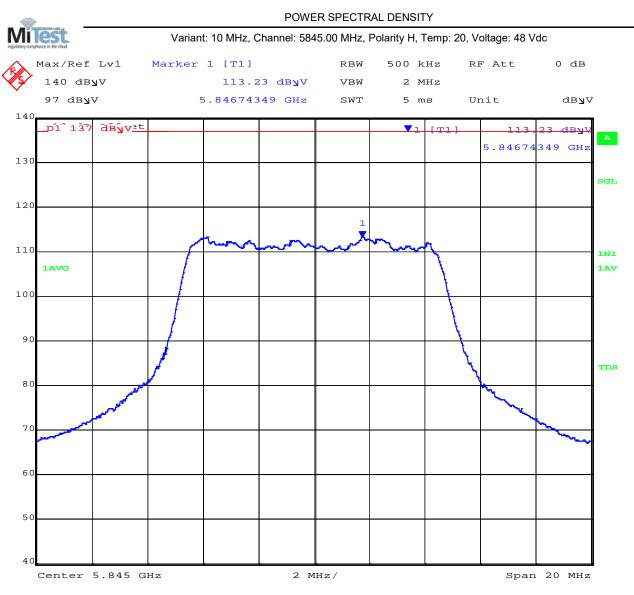
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5296.57 MHz :112.96 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) **Issue Date:** 30th November 2017 139 of 188 Page:

Date:

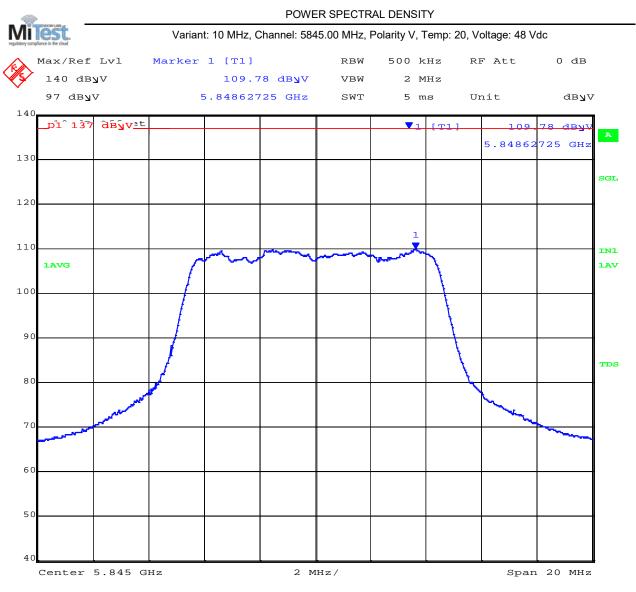
24.OCT.2017 16:59:33


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5301.70 MHz : 109.20 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 140 of 188

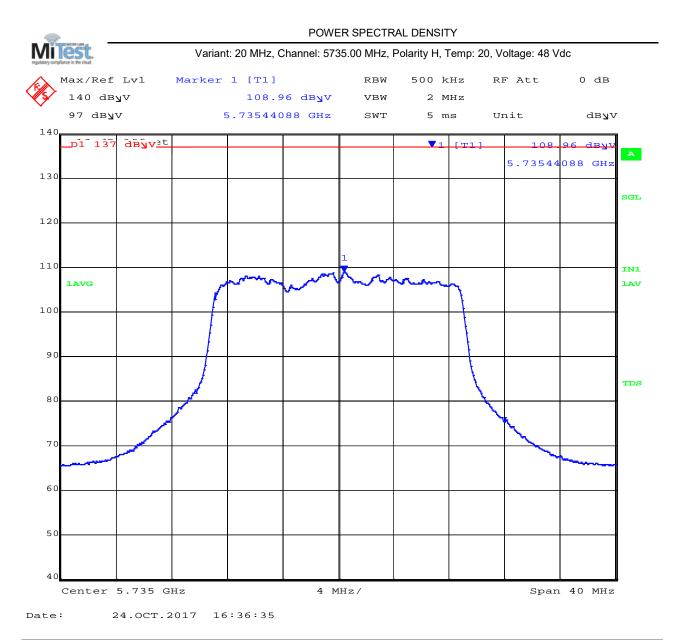

Date: 24.0CT.2017 17:04:41

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5339.2 MHz : 113.23 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 141 of 188

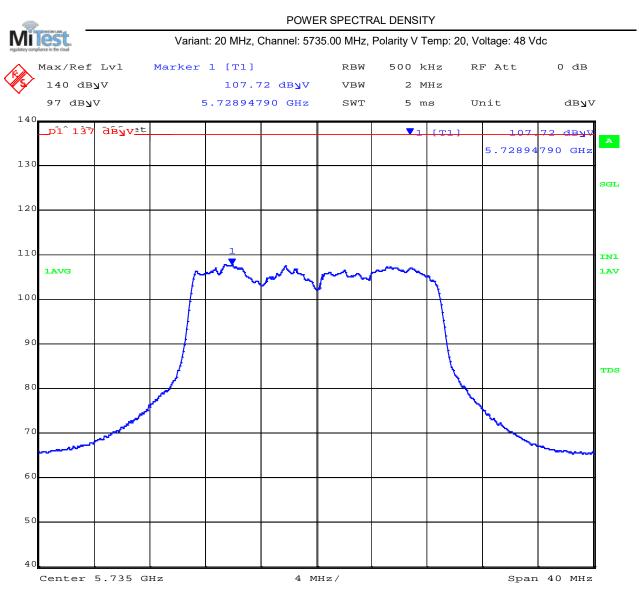
Date:


24.OCT.2017 17:05:36

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5339.22 MHz : 109.78 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

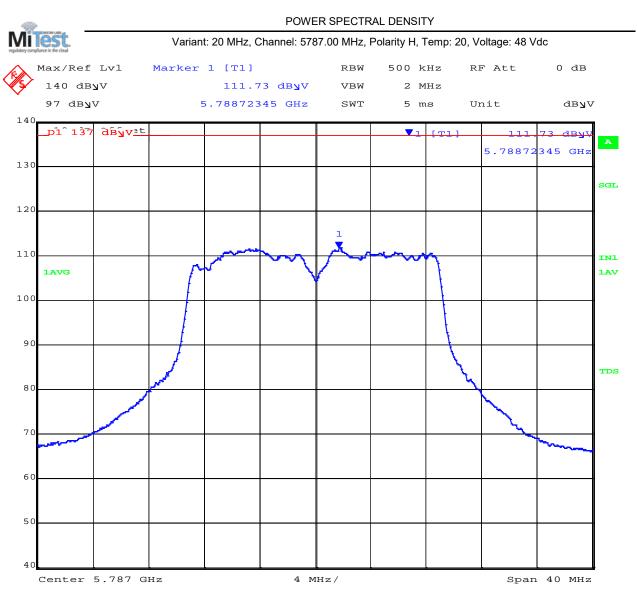
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5265.72 MHz : 108.96 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

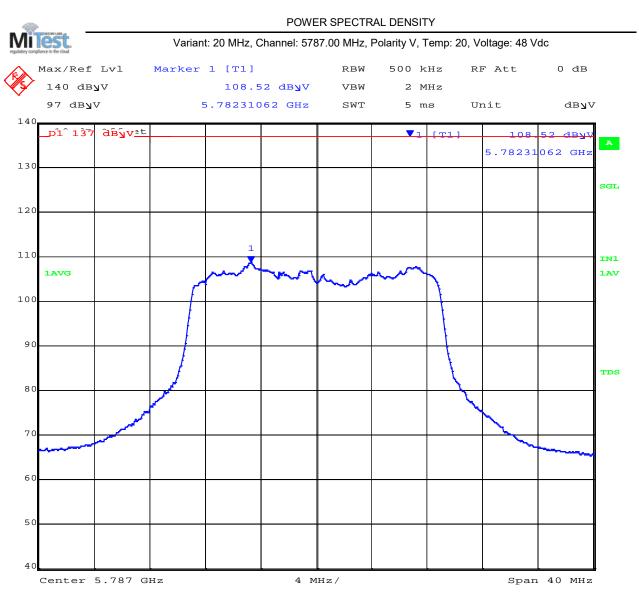
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 143 of 188 Page:


24.OCT.2017 16:38:31 Date:

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5271.58 MHz :107.72 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

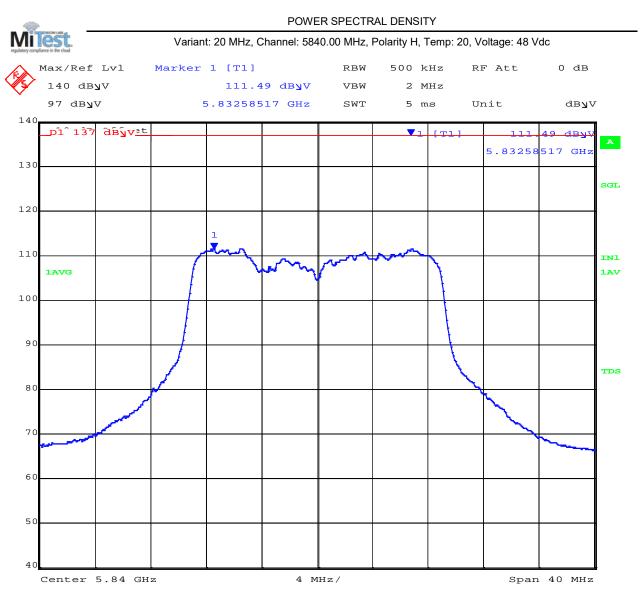
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 144 of 188


Date: 24.0CT.2017 17:10:09

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5295.55 MHz : 111.73 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 145 of 188

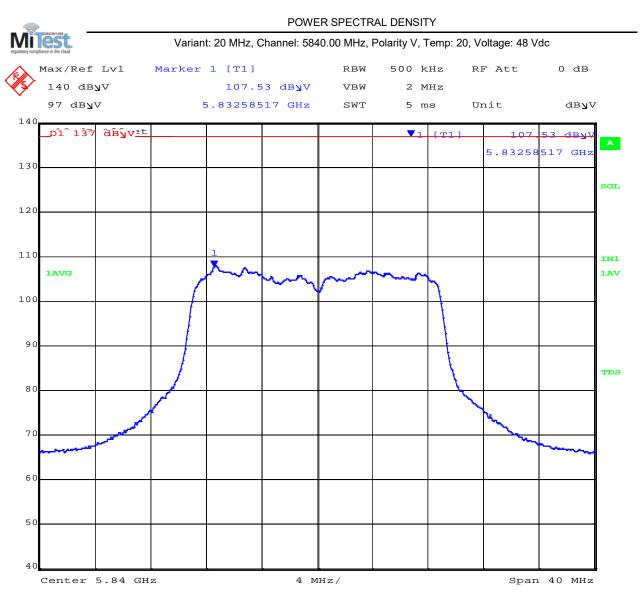

Date: 24.0CT.2017 17:09:00

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5293.07 MHz : 108.52 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 146 of 188

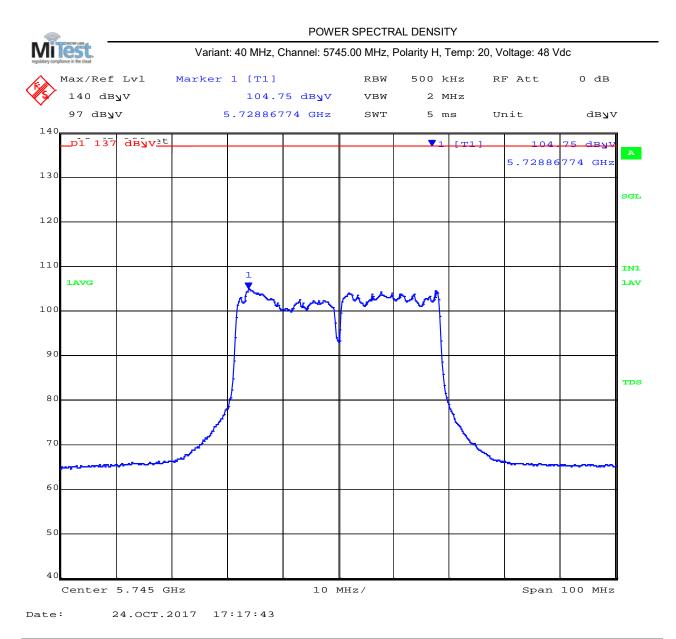
Date:


24.OCT.2017 17:12:56

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5342.29 MHz : 111.48 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

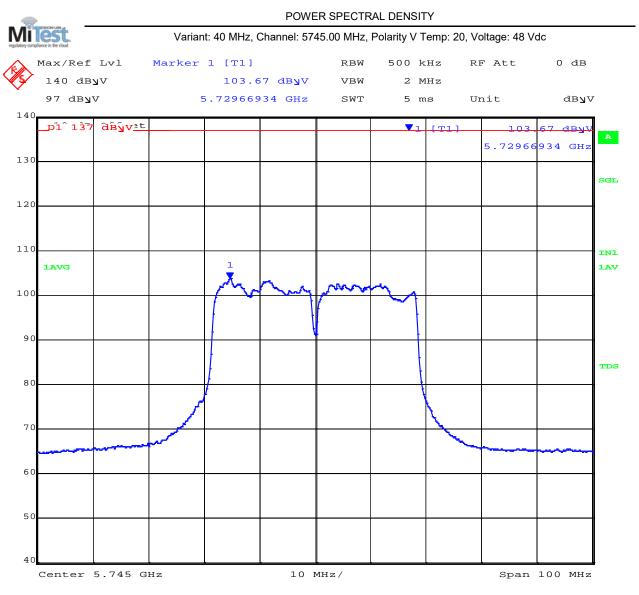
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) **Issue Date:** 30th November 2017 147 of 188 Page:


Date:

24.OCT.2017 17:14:37

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5332.99 MHz : 107.53 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

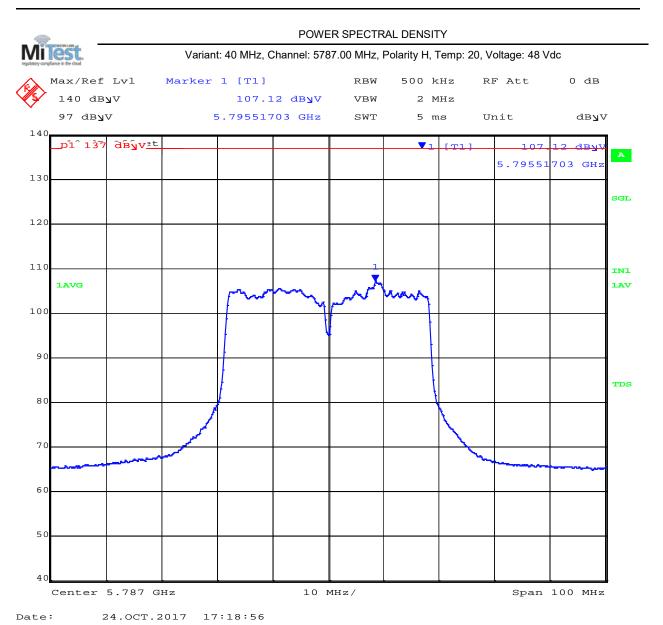

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5280.31 MHz : 104.74 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 149 of 188

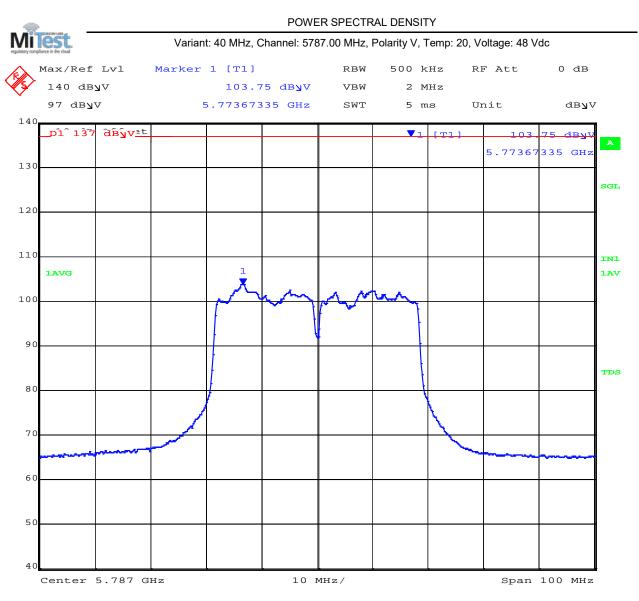
Date:


24.OCT.2017 17:16:49

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5285.52 MHz :103.67 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:150 of 188

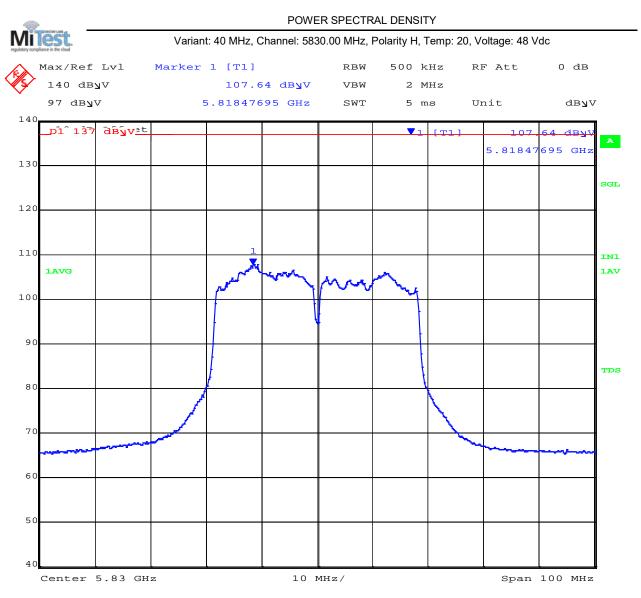

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5307.72 MHz : 107.12 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:151 of 188

Date: 24.OCT.

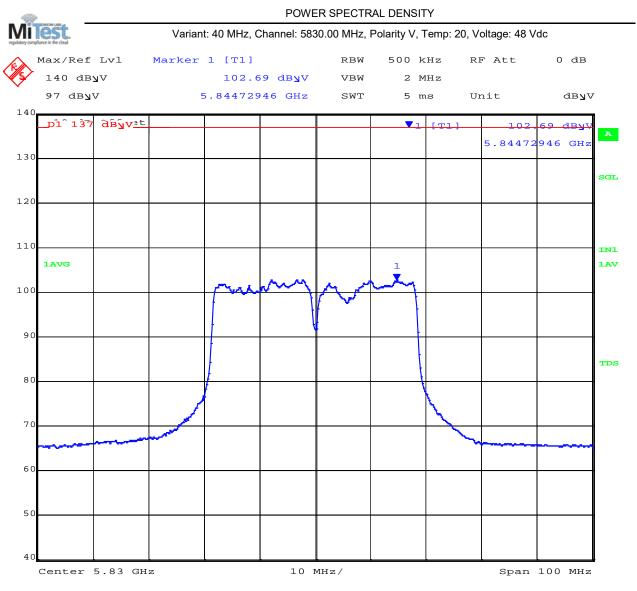

24.OCT.2017 17:19:56

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5312.92 MHz : 103.75 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) **Issue Date:** 30th November 2017 152 of 188 Page:

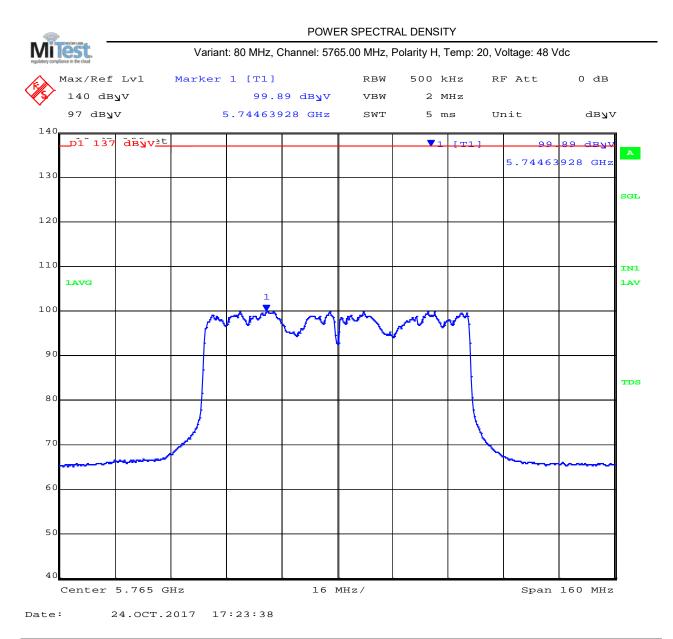
Date:


24.OCT.2017 17:22:03

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5335.12 MHz : 107.64 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

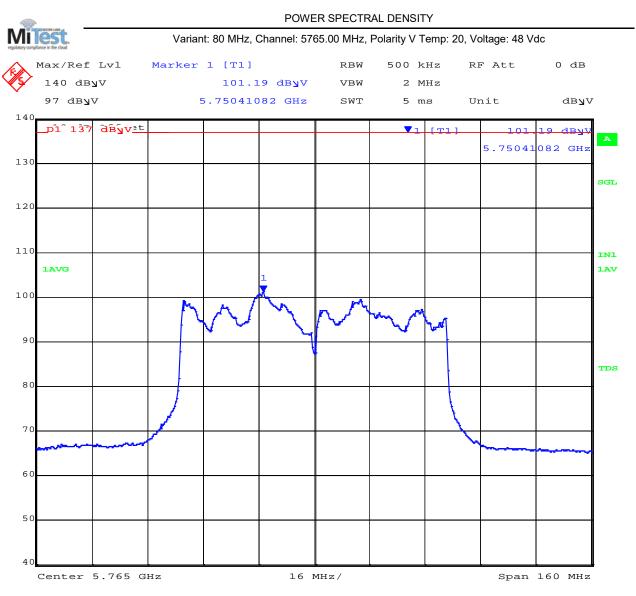
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 153 of 188



Date: 24.0CT.2017 17:21:17

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5318.48 MHz : 102.69 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5323.19 MHz : 99.89 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

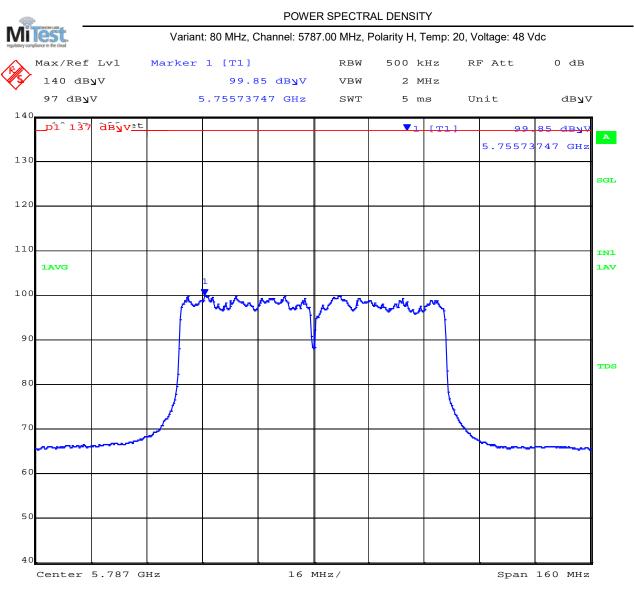
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) **Issue Date:** 30th November 2017 155 of 188 Page:

Date:

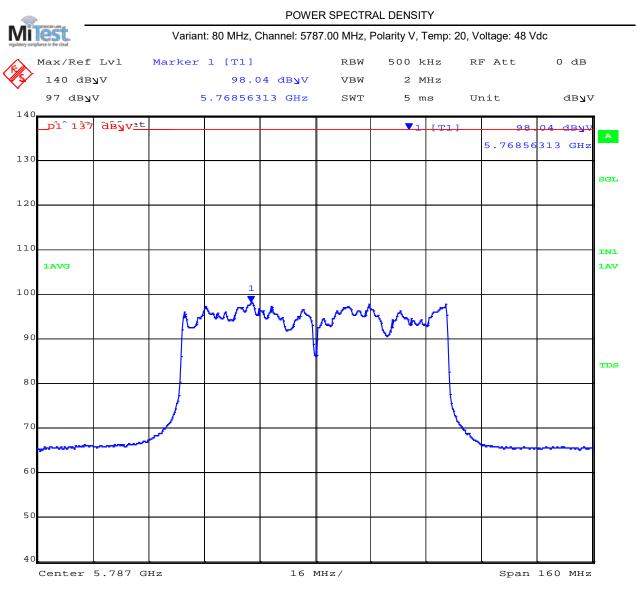
24.OCT.2017 17:24:24


Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5304.91 MHz :101.18 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

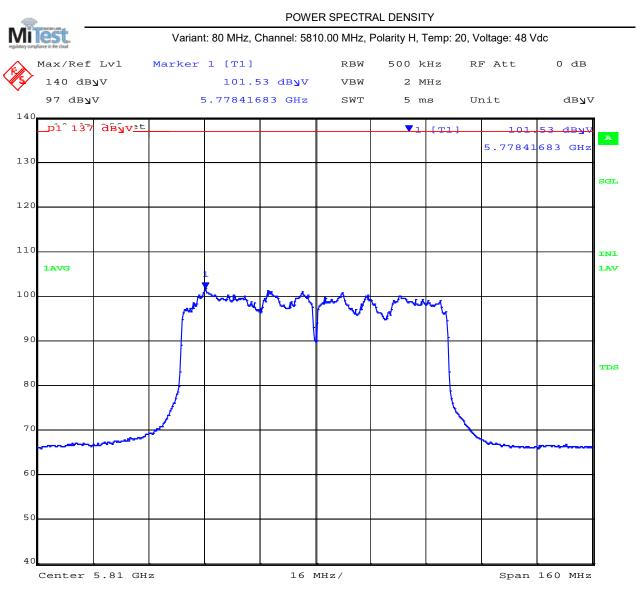
Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:156 of 188


Date: 24.0CT.2017 17:26:23

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5312.99 MHz : 99.85 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

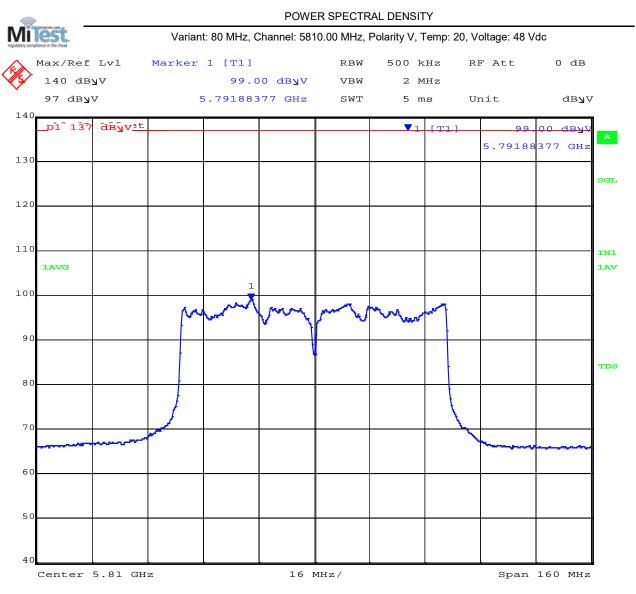
Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 157 of 188


Date: 24.0CT.2017 17:25:36

Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average	M1 : 5297.27 MHz : 98.04 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm
Sweep Count = 100		
RF Atten (dB) = 0		
Trace Mode = VIEW		

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:158 of 188


Date: 24.0CT.2017 17:27:31

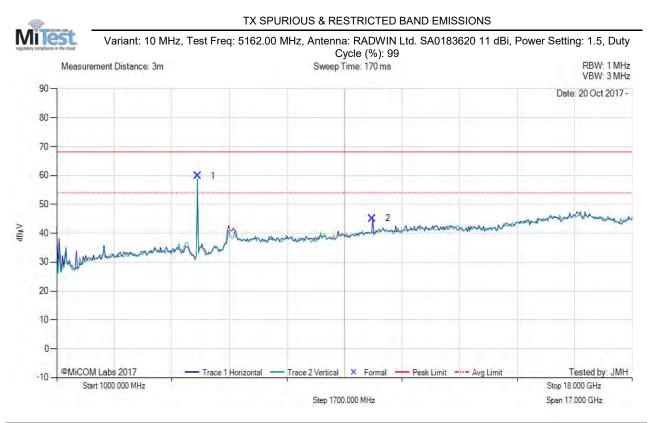
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5330.41 MHz : 101.53 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm

back to matrix

Title: RADWIN 2000 JET, RADWIN 5000 JET To: FCC Part 15.407 & ISED RSS-247 Serial #: RDWN47-U4 Rev B (non-DFS Bands) Issue Date: 30th November 2017 Page: 159 of 188

Date: 24.0CT.2017 17:28:35

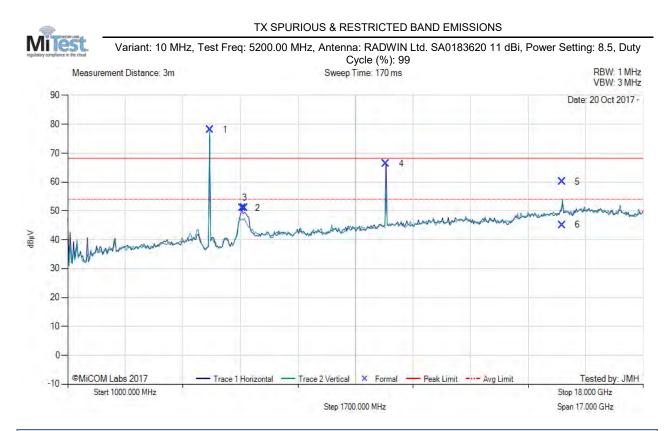
Analyzer Setup	Marker:Frequency:Amplitude	Test Results
Detector = Average Sweep Count = 100 RF Atten (dB) = 0 Trace Mode = VIEW	M1 : 5287.49 MHz : 99.00 dBuV/m	Limit: ≤ 6.00 dBm, 113 dBuVm


back to matrix

A.4. Radiated

A.4.1. TX Spurious & Restricted Band Emissions

A.4.1.1. RADWIN Ltd. SA0183620 11 dBi

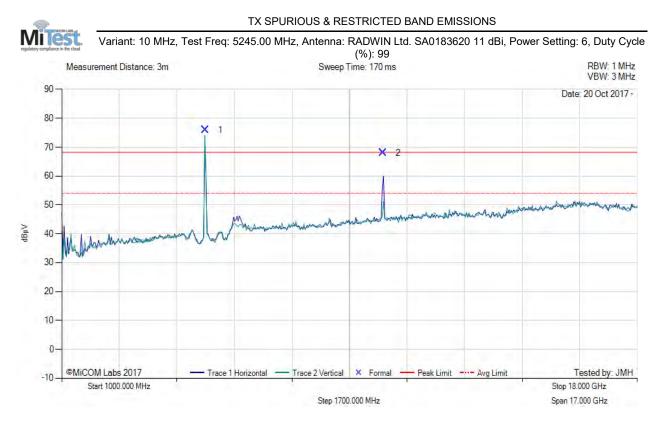

					1000.	.00 - 18000.00 N	/IHz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5165.52	71.15	3.08	-14.39	59.84	Fundamental	Vertical	151	8		-	
2	10324.28	40.61	4.44	0.11	45.16	Peak (NRB)	Horizontal	151	0			Pass

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:161 of 188

	1000.00 - 18000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5202.67	89.18	3.09	-14.25	78.02	Fundamental	Vertical	151	0						
2	6163.52	59.82	3.20	-11.97	51.05	Peak (NRB)	Horizontal	151	0			Pass			
3	6216.44	59.51	3.26	-11.81	50.96	Peak (NRB)	Horizontal	151	0		-	Pass			
4	10402.63	61.94	4.41	0.00	66.35	Max Peak	Horizontal	165	50	68.2	-1.9	Pass			
5	15601.96	53.29	5.58	1.30	60.17	Max Peak	Vertical	162	34	68.2	-8.1	Pass			
6	15601.96	38.24	5.58	1.30	45.12	Max Avg	Vertical	162	34	54.0	-8.9	Pass			

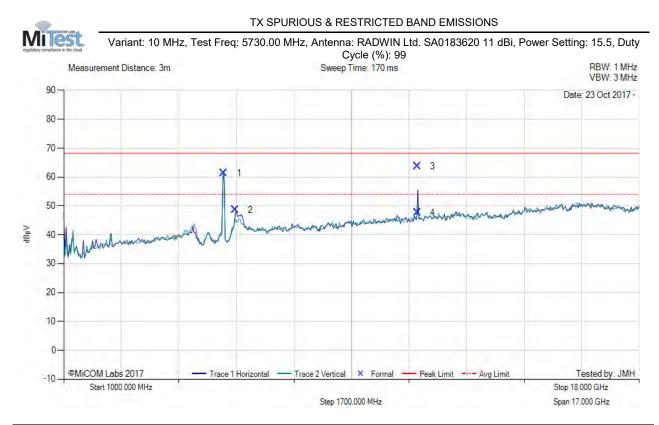

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:162 of 188

	1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	5245.12	87.14	3.15	-14.40	75.89	Fundamental	Vertical	151	9		-			
2	10490.94	63.16	4.46	0.33	67.95	Max Peak	Horizontal	158	26	68.2	-0.3	Pass		

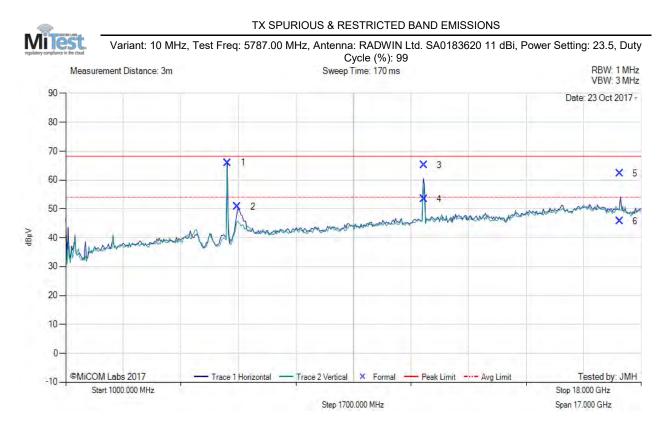

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:163 of 188

	1000.00 - 18000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5726.82	71.01	3.16	-12.86	61.31	Fundamental	Vertical	150	0						
2	6068.05	57.35	3.24	-11.92	48.67	Peak (NRB)	Horizontal	150	0		-	Pass			
3	11453.49	59.90	4.64	-0.80	63.74	Max Peak	Horizontal	167	48	68.2	-4.5	Pass			
4	11453.49	43.79	4.64	-0.80	47.63	Max Avg	Horizontal	167	48	54.0	-6.4	Pass			

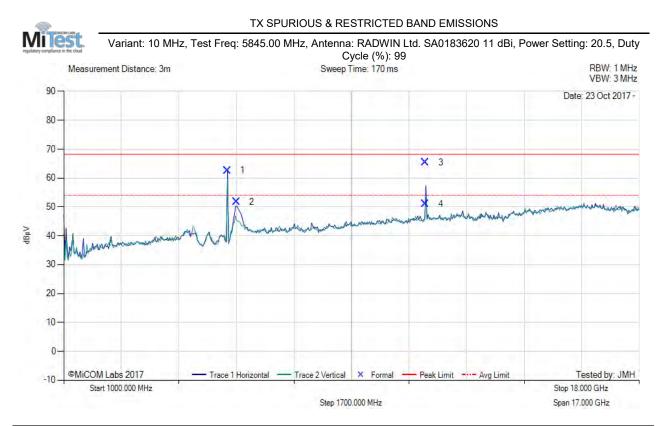

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:164 of 188

	1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	5787.78	75.59	3.21	-12.78	66.02	Fundamental	Horizontal	151	0					
2	6072.79	59.32	3.25	-11.75	50.82	Peak (NRB)	Horizontal	151	0			Pass		
3	11574.29	61.03	4.56	-0.46	65.13	Max Peak	Horizontal	162	44	68.2	-3.1	Pass		
4	11574.29	49.30	4.56	-0.46	53.40	Max Avg	Horizontal	162	44	54.0	-0.6	Pass		
5	17363.87	55.45	5.99	0.79	62.23	Max Peak	Horizontal	151	70	68.2	-6.0	Pass		
6	17363.87	39.01	5.99	0.79	45.79	Max Avg	Horizontal	151	70	54.0	-8.2	Pass		


Test Notes: EUT powered by POE and connected to laptop outside chamber

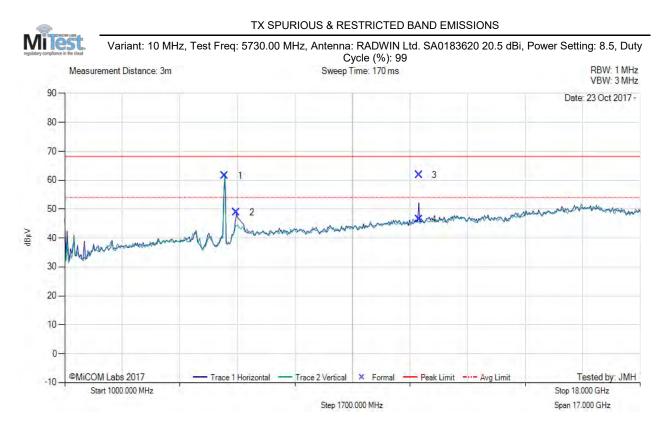
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:165 of 188

	1000.00 - 18000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5841.37	72.41	3.22	-13.00	62.63	Fundamental	Horizontal	151	0						
2	6101.68	60.32	3.24	-11.89	51.67	Peak (NRB)	Horizontal	151	0			Pass			
3	11685.48	60.91	4.95	-0.46	65.40	Max Peak	Horizontal	154	82	68.2	-2.8	Pass			
4	11685.48	46.48	4.95	-0.46	50.97	Max Avg	Horizontal	154	82	54.0	-3.0	Pass			

Test Notes: EUT powered by POE and connected to laptop outside chamber

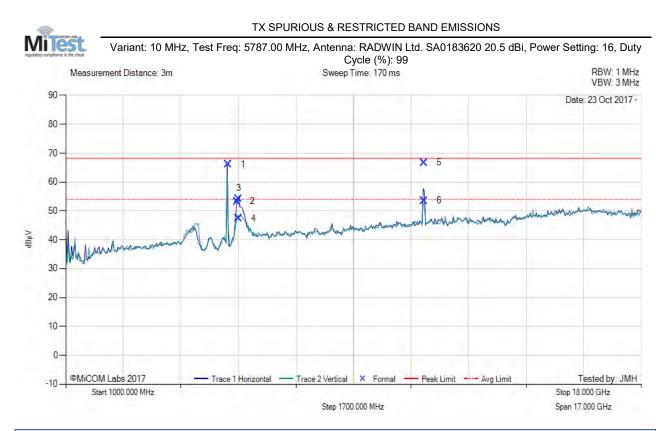

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:166 of 188

A.4.1.2. RADWIN Ltd. SA0183620 20.5 dBi

	1000.00 - 18000.00 MHz													
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail		
1	5729.26	71.19	3.17	-12.84	61.52	Fundamental	Vertical	151	8					
2	6072.79	57.33	3.25	-11.75	48.83	Peak (NRB)	Horizontal	151	8			Pass		
3	11461.84	57.89	4.62	-0.78	61.73	Max Peak	Horizontal	174	324	68.2	-6.5	Pass		
4	11461.84	42.67	4.62	-0.78	46.51	Max Avg	Horizontal	174	324	54.0	-7.5	Pass		

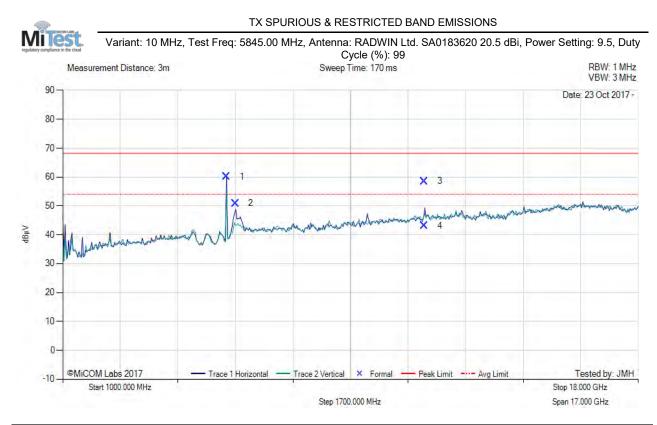

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:167 of 188

	1000.00 - 18000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5789.10	75.74	3.21	-12.79	66.16	Fundamental	Horizontal	151	7						
2	6070.25	61.85	3.25	-11.84	53.26	Peak (NRB)	Horizontal	151	7			Pass			
3	6103.72	62.82	3.24	-11.84	54.22	Peak (NRB)	Horizontal	150	0		-	Pass			
4	6103.72	56.05	3.24	-11.84	47.45	Max Avg	Horizontal	160	12	54.0	-6.6	Pass			
5	11573.85	62.63	4.54	-0.48	66.69	Max Peak	Horizontal	154	324	68.2	-1.5	Pass			
6	11573.85	49.48	4.54	-0.48	53.54	Max Avg	Horizontal	154	324	54.0	-0.5	Pass			


Test Notes: EUT powered by POE and connected to laptop outside chamber

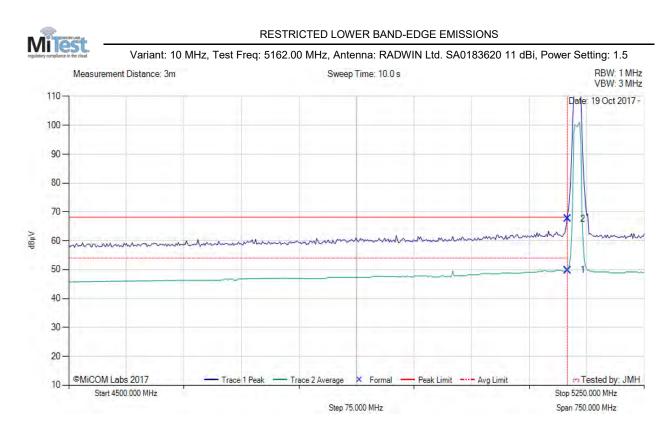
back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:168 of 188

					1000.	.00 - 18000.00 N	1Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5844.29	69.66	3.21	-12.82	60.05	Fundamental	Horizontal	151	9		-	
2	6099.58	59.54	3.24	-11.94	50.84	Peak (NRB)	Horizontal	151	9		-	Pass
3	11686.91	54.02	4.98	-0.48	58.52	Max Peak	Horizontal	149	59	68.2	-9.7	Pass
4	11686.91	38.62	4.98	-0.48	43.12	Max Avg	Horizontal	149	59	54.0	-10.9	Pass

Test Notes: EUT powered by POE and connected to laptop outside chamber

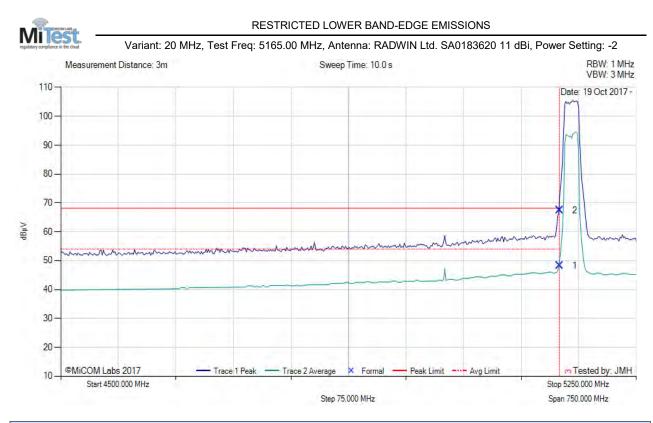

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.4.2. Restricted Edge & Band-Edge Emissions

A.4.2.3. RADWIN Ltd. SA0183620 11 dBi

					4500	.00 - 5250.00 MH	łz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5150.00	11.35	3.06	35.40	49.81	Max Avg	Vertical	155	8	54.0	-4.2	Pass
2	5150.00	29.26	3.06	35.40	67.72	Max Peak	Vertical	155	8	68.2	-0.5	Pass
3	5150.00					Restricted- Band						

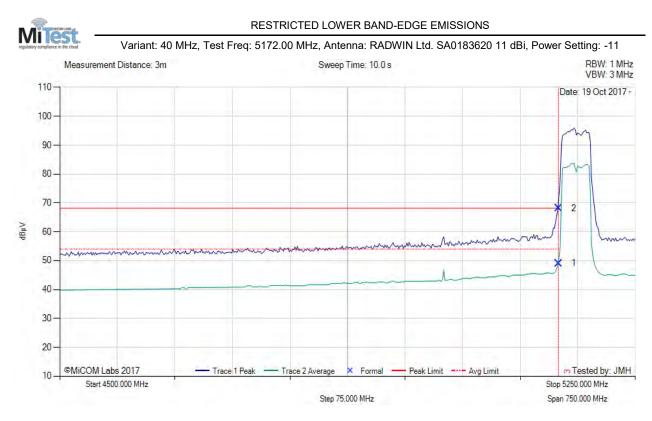

Test Notes: EUt powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:170 of 188

	4500.00 - 5250.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5150.00	9.78	3.06	35.40	48.24	Max Avg	Vertical	155	8	54.0	-5.8	Pass			
2	5150.00	29.02	3.06	35.40	67.48	Max Peak	Vertical	155	8	68.2	-0.8	Pass			
3	5150.00		-			Restricted- Band									


Test Notes: EUt powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:171 of 188

	4500.00 - 5250.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5150.00	10.61	3.06	35.40	49.07	Max Avg	Vertical	155	8	54.0	-4.9	Pass			
2	5150.00	29.73	3.06	35.40	68.19	Max Peak	Vertical	155	8	68.2	0.0	Pass			
3	5150.00			-		Restricted- Band									

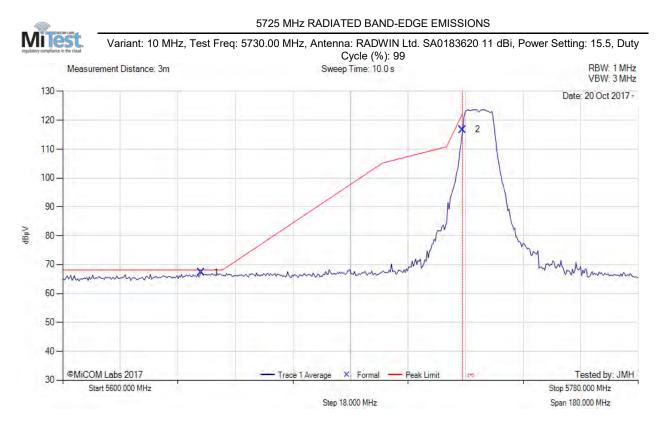

Test Notes: EUt powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:172 of 188

	4500.00 - 5250.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5150.00	10.12	3.06	35.40	48.58	Max Avg	Vertical	155	8	54.0	-5.4	Pass			
2	5150.00	28.51	3.06	35.40	66.97	Max Peak	Vertical	155	8	68.2	-1.3	Pass			
3	5150.00					Restricted- Band									

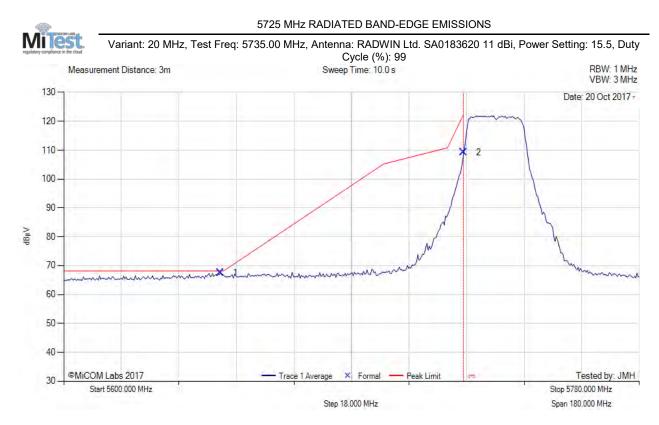

Test Notes: EUt powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:173 of 188

					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5643.22	27.82	3.18	36.30	67.30	Max Peak	Horizontal	155	11	68.2	-0.9	Pass
2	5725.00	77.12	3.17	36.50	116.79	Max Peak	Horizontal	155	11	122.2	-5.4	Pass
3	5725.00					Band-Edge						

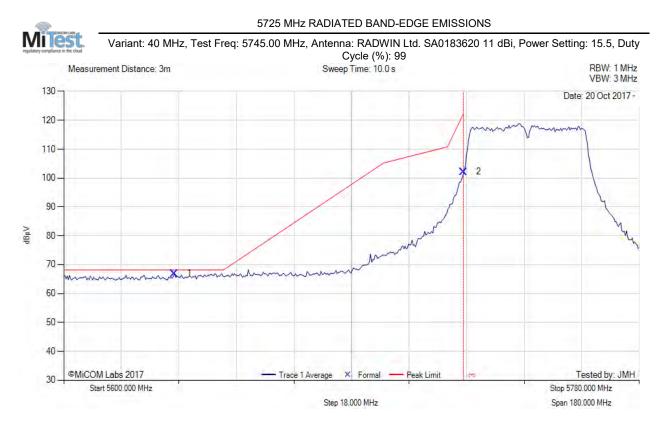

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:174 of 188

					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5648.99	28.07	3.21	36.30	67.58	Max Peak	Horizontal	155	11	68.2	-0.7	Pass
2	5725.00	69.55	3.17	36.50	109.22	Max Peak	Horizontal	155	11	122.2	-13.0	Pass
3	5725.00					Band-Edge						

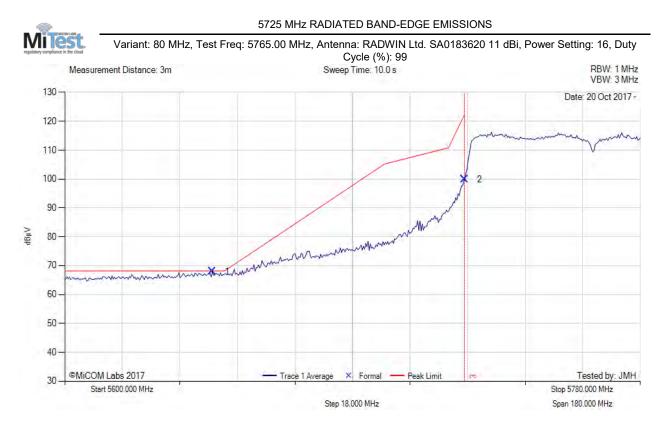

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:175 of 188

					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5634.63	27.39	3.20	36.30	66.89	Max Peak	Horizontal	155	11	68.2	-1.3	Pass
2	5725.00	62.44	3.17	36.50	102.11	Max Peak	Horizontal	155	11	122.2	-20.1	Pass
3	5725.00					Band-Edge						

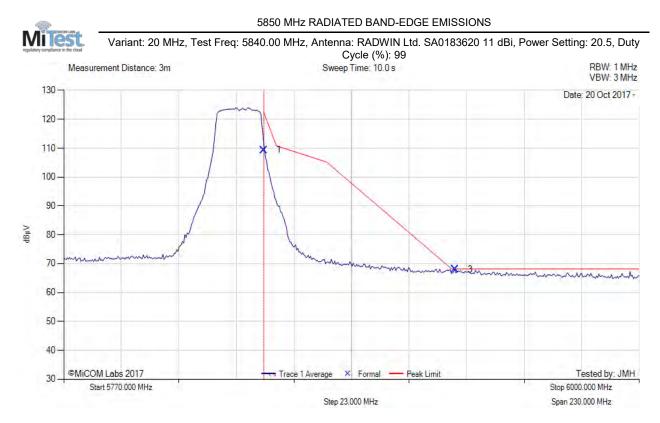

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:176 of 188

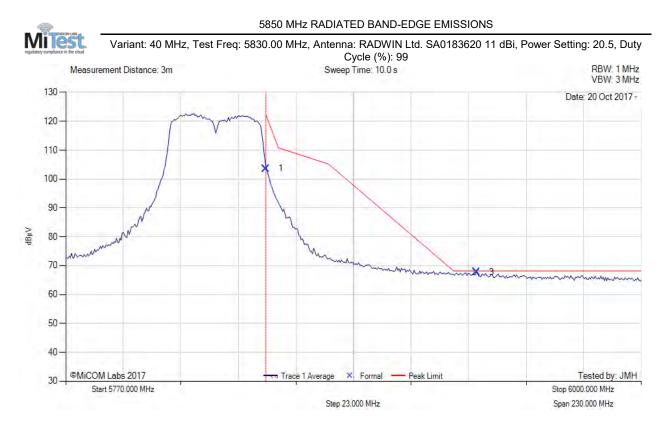
					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5646.10	28.43	3.20	36.30	67.93	Max Avg	Horizontal	155	11	68.2	-0.3	Pass
2	5725.00	60.13	3.17	36.50	99.80	Max Avg	Horizontal	155	11	122.2	-22.4	Pass
3	5725.00					Band-Edge						


Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:177 of 188

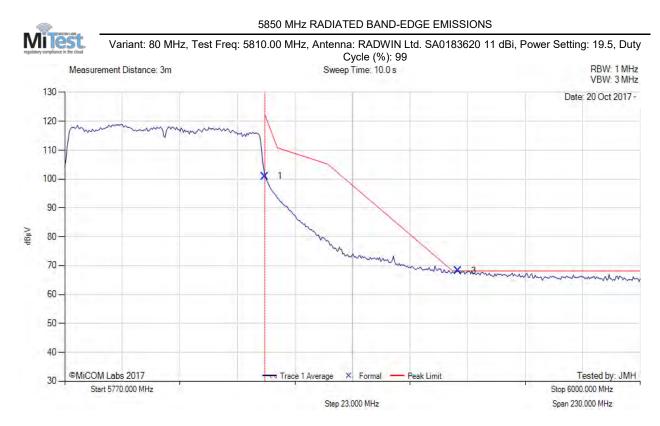

					5770	.00 - 6000.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5850.00	69.44	3.20	36.70	109.34	Max Peak	Horizontal	155	11	122.2	-12.9	Pass
3	5926.37	28.00	3.19	36.80	67.99	Max Peak	Horizontal	155	11	68.2	-0.2	Pass
2	5850.00					Band-Edge						

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:178 of 188

					5770	.00 - 6000.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5850.00	63.68	3.20	36.70	103.58	Max Peak	Horizontal	155	11	122.2	-18.7	Pass
3	5934.21	27.80	3.19	36.80	67.79	Max Peak	Horizontal	155	11	68.2	-0.4	Pass
2	5850.00					Band-Edge						

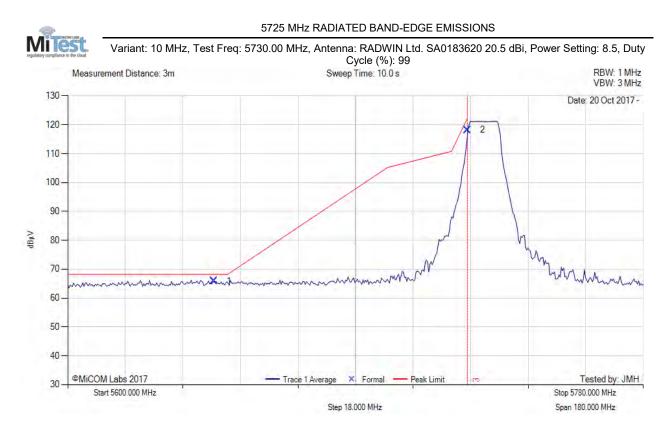

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:179 of 188

					5770	.00 - 6000.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5850.00	61.03	3.20	36.70	100.93	Max Peak	Horizontal	155	11	68.2	-21.3	Pass
3	5927.29	28.19	3.19	36.80	68.18	Max Peak	Horizontal	155	11	68.2	-0.1	Pass
2	5850.00					Band-Edge			-			-

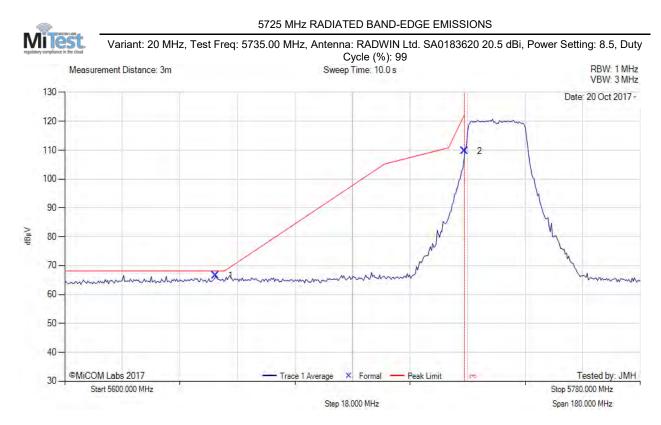

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

A.4.2.4. RADWIN Ltd. SA0183620 20.5 dBi

					5600	.00 - 5780.00 M	Hz					
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5645.74	26.29	3.20	36.30	65.79	Max Peak	Horizontal	155	11	68.2	-2.4	Pass
2	5725.00	78.51	3.17	36.50	118.18	Max Peak	Horizontal	155	11	122.2	-4.0	Pass
3	5725.00					Band-Edge						

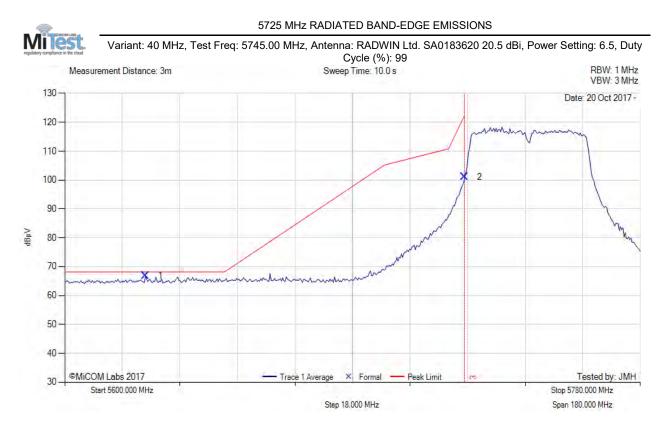

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:181 of 188

	5600.00 - 5780.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5647.18	27.00	3.20	36.30	66.50	Max Peak	Horizontal	155	11	68.2	-1.7	Pass			
2	5725.00	70.06	3.17	36.50	109.73	Max Peak	Horizontal	155	11	122.2	-12.5	Pass			
3	5725.00					Band-Edge									

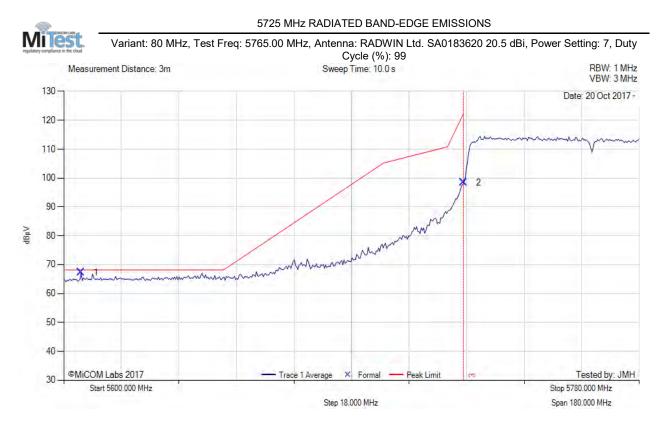

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:182 of 188

	5600.00 - 5780.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5625.18	27.25	3.19	36.30	66.74	Max Peak	Horizontal	155	11	68.2	-1.5	Pass			
2	5725.00	61.43	3.17	36.50	101.10	Max Peak	Horizontal	155	11	122.2	-21.1	Pass			
3	5725.00					Band-Edge									

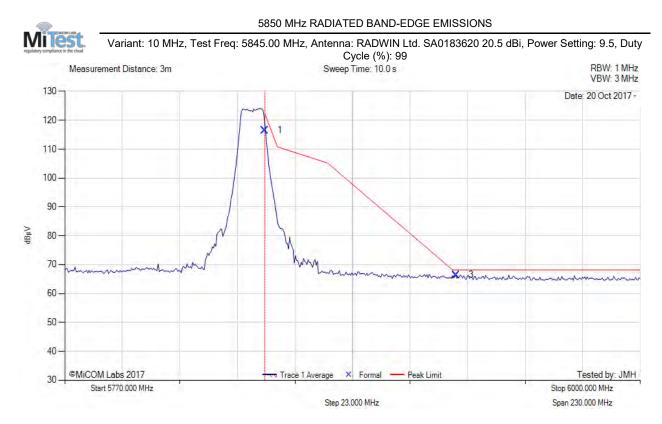

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:183 of 188

	5600.00 - 5780.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5605.34	27.69	3.24	36.30	67.23	Max Peak	Horizontal	155	11	68.2	-1.0	Pass			
2	5725.00	58.79	3.17	36.50	98.46	Max Peak	Horizontal	155	11	122.2	-23.7	Pass			
3	5725.00					Band-Edge									

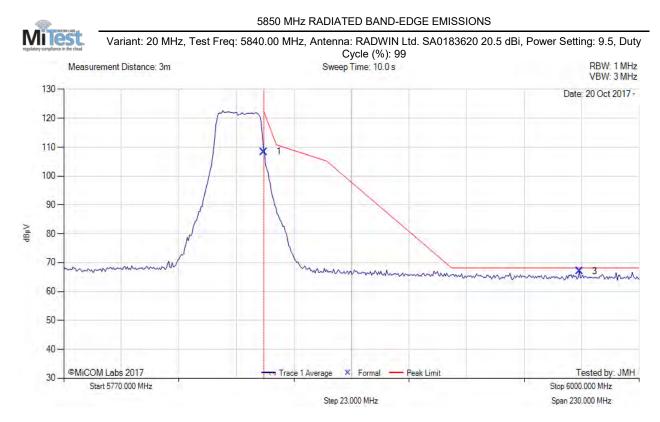

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:184 of 188

	5770.00 - 6000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5850.00	76.59	3.20	36.70	116.49	Max Peak	Horizontal	155	11	122.2	-5.7	Pass			
3	5926.37	26.42	3.19	36.80	66.41	Max Peak	Horizontal	155	11	68.2	-1.8	Pass			
2	5850.00					Band-Edge									

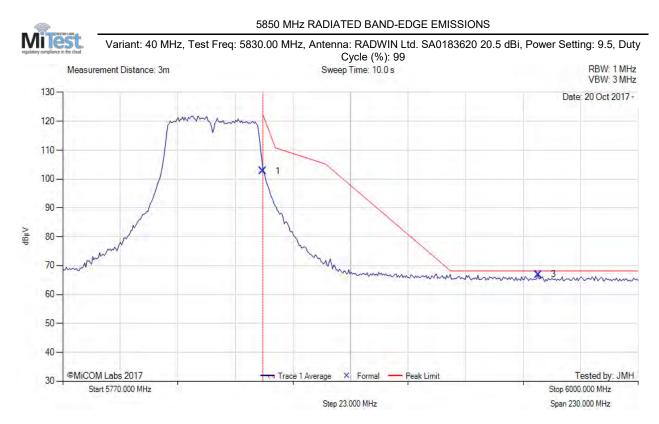

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:185 of 188

	5770.00 - 6000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5850.00	68.49	3.20	36.70	108.39	Max Peak	Horizontal	155	11	68.2	-13.8	Pass			
3	5976.15	26.81	3.28	36.90	66.99	Max Peak	Horizontal	155	11	68.2	-1.2	Pass			
2	5850.00					Band-Edge									

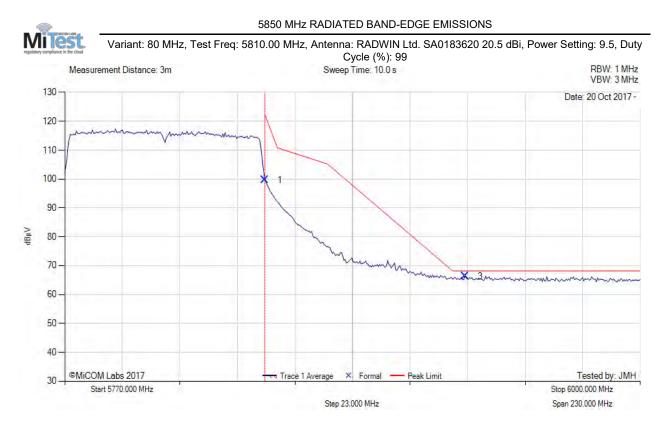

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:186 of 188

	5770.00 - 6000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5850.00	62.87	3.20	36.70	102.77	Max Peak	Horizontal	155	11	68.2	-19.5	Pass			
3	5960.02	26.83	3.26	36.80	66.89	Max Peak	Horizontal	155	11	68.2	-1.3	Pass			
2	5850.00					Band-Edge									


Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Title:RADWIN 2000 JET, RADWIN 5000 JETTo:FCC Part 15.407 & ISED RSS-247Serial #:RDWN47-U4 Rev B (non-DFS Bands)Issue Date:30th November 2017Page:187 of 188

	5770.00 - 6000.00 MHz														
Num	Frequency MHz	Raw dBµV	Cable Loss dB	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail			
1	5850.00	59.70	3.20	36.70	99.60	Max Peak	Horizontal	155	11	122.2	-22.6	Pass			
3	5930.06	26.42	3.18	36.80	66.40	Max Peak	Horizontal	155	11	68.2	-1.8	Pass			
2	5850.00					Band-Edge									

Test Notes: EUT powered by POE and connected to laptop outside chamber

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com