Company: Radwin Ltd

Test of: AP0158770 RF Wireless Module

To: FCC CFR 47 Part 15 Subpart E 15.407 & Industry Canada RSS-247 Issue 1

Report No.: RDWN39-U9b Radiated Rev A

RADIATED TEST REPORT

Test of: Radwin Ltd AP0158770 RF Wireless Module to

To: FCC CFR 47 Part 15 Subpart E 15.407 & Industry Canada RSS-247 Issue 1

Test Report Serial No.: RDWN39-U9b Radiated Rev A

This report supersedes: NONE

Applicant: Radwin Ltd 27 Habarzel Street Tel Aviv 69710 Israel Product Function: 5 GHz Wireless Module

Issue Date: 4th December 2015

This Test Report is Issued Under the Authority of:

MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 3 of 141

Table of Contents

1. ACCREDITATION, LISTINGS & RECOGNITION	4
1.1. TESTING ACCREDITATION	4
1.2. RECOGNITION	5
1.3. PRODUCT CERTIFICATION	6
2. DOCUMENT HISTORY	7
3. TEST RESULT CERTIFICATE	8
4. REFERENCES AND MEASUREMENT UNCERTAINTY	9
4.1. Normative References	9
4.2. Test and Uncertainty Procedure	10
5. PRODUCT DETAILS AND TEST CONFIGURATIONS	11
5.1. Technical Details	11
5.2. Scope Of Test Program	12
5.3. Equipment Model(s) and Serial Number(s)	13
5.4. Antenna Details	13
5.5. Cabling and I/O Ports	14
5.6. Test Configurations	14
5.7. Equipment Modifications	14
5.8. Deviations from the Test Standard	14
7. TEST EQUIPMENT CONFIGURATION(5)	
8 MEASUDEMENT AND DESENTATION OF TEST DATA	
0. MEASOREMENT AND FRESENTATION OF TEST DATA	10
9 1 Radiated	19
9.1.1. Restricted Band Emissions	
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002.	<i>23</i> 23
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002.	23 23 26
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001	23 23 26 28
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001 9.1.1.4. Antenna RW-9732-4958	23 23 26 28 31
 9.1.1. Restricted Band Emissions	23 23 26 28 31 40
 9.1.1. Restricted Band Emissions	23 23 26 28 31 40 40
 9.1.1. Restricted Band Emissions	23 23 26 28 31 40 40 40 45
 9.1.1. Restricted Band Emissions	23 23 26 28 31 40 40 40 45 51
 9.1.1. Restricted Band Emissions	23 23 26 31 40 40 40 45 51 57
 9.1.1. Restricted Band Emissions	23 26 28 31 40 40 40 45 51 57 64
 9.1.1. Restricted Band Emissions	23 26 28 31 40 40 40 45 51 57 64 67
 9.1.1. Restricted Band Emissions	23 28 28 31 40 40 40 40 45 51 57 64 68
 9.1.1. Restricted Band Emissions	23 23 26 28 31 40 40 40 40 40 45 51 57 64 68 68
 9.1.1. Restricted Band Emissions	23 23 26 28 31 40 40 40 40 40 40 61 64 68 68 68
 9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001 9.1.1.4. Antenna RW-9732-4958 9.1.2. Restricted Band-Edge Emissions 9.1.2.5. Antenna RW-9061-5002 9.1.2.6. Antenna RW-9401-5002 9.1.2.7. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9732-4958 9.1.3. Digital Emissions 9.1.3. Digital Emissions A.1. Restricted Band Emissions A.1. Restricted Band Emissions A.1.1. Antenna RW-9061-5002 A.1.2. Antenna RW-9061-5002 A.1.2. Antenna RW-9061-5002 	23 23 26 28 31 40 45 64 64 68 68 68 68 68
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001 9.1.1.4. Antenna RW-9732-4958 9.1.2. Restricted Band-Edge Emissions 9.1.2.5. Antenna RW-9061-5002 9.1.2.6. Antenna RW-9401-5002 9.1.2.7. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9732-4958 9.1.3. Digital Emissions A. APPENDIX - GRAPHICAL IMAGES A.1. Radiated A.1.1. Antenna RW-9061-5002 A.1.1.2. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002	
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001 9.1.1.4. Antenna RW-9732-4958 9.1.2. Restricted Band-Edge Emissions 9.1.2.5. Antenna RW-9061-5002 9.1.2.6. Antenna RW-9401-5002 9.1.2.7. Antenna RW-9401-5002 9.1.2.8. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9732-4958 9.1.3. Digital Emissions A.1.7. GRAPHICAL IMAGES A.1.1. Restricted Band Emissions A.1.1.1. Antenna RW-9061-5002 A.1.1.2. Antenna RW-9061-5002 A.1.1.3. Antenna RW-90622-5001 A.1.1.4. Antenna RW-9732-4958	
 9.1.1. Restricted Band Emissions	
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001 9.1.1.4. Antenna RW-9732-4958 9.1.2. Restricted Band-Edge Emissions 9.1.2.5. Antenna RW-9061-5002 9.1.2.6. Antenna RW-9061-5002 9.1.2.7. Antenna RW-9061-5002 9.1.2.8. Antenna RW-9622-5001 9.1.2.9. Antenna RW-9732-4958 9.1.3. Digital Emissions A.1.7. Restricted Band Emissions A.1.1. Restricted Band Emissions A.1.1. Antenna RW-9061-5002 A.1.1.1. Antenna RW-9061-5002 A.1.1.2. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002 A.1.1.4. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002 A.1.1.4. Antenna RW-9061-5002 A.1.1.5. Antenna RW-9061-5002 A.1.1.4. Antenna RW-9061-5002 A.1.1.5. Antenna RW-9061-5002 B.1.1. Festricted Band-Edge Emissions B.1.1.5. Antenna RW-9061-5002 B.1.1.5. Antenna RW-9061-5002	
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001 9.1.1.4. Antenna RW-9732-4958 9.1.2. Restricted Band-Edge Emissions 9.1.2.5. Antenna RW-9061-5002 9.1.2.6. Antenna RW-9601-5002 9.1.2.7. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9732-4958 9.1.3. Digital Emissions A.1 Radiated A.1. Restricted Band Emissions A.1.1. Restricted Band Emissions A.1.1. Restricted Band Emissions A.1.1.1. Antenna RW-9061-5002 A.1.1.2. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002 A.1.1.4. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9732-4958 B.1.1. Restricted Band-Edge Emissions B.1.1.5. Antenna RW-9732-4958 B.1.1. Restricted Band-Edge Emissions B.1.1.5. Antenna RW-9061-5002 B.1.1.6. Antenna RW	
9.1.1. Restricted Band Emissions 9.1.1.1. Antenna RW-9061-5002 9.1.1.2. Antenna RW-9401-5002 9.1.1.3. Antenna RW-9622-5001 9.1.1.4. Antenna RW-9732-4958 9.1.2. Restricted Band-Edge Emissions 9.1.2.5. Antenna RW-9061-5002 9.1.2.6. Antenna RW-9061-5002 9.1.2.7. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9622-5001 9.1.2.8. Antenna RW-9622-5001 9.1.3. Digital Emissions 9.1.3. Digital Emissions A.1. Radiated A.1. Radiated A.1.1. Antenna RW-9061-5002 A.1.1.2. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002 A.1.1.4. Antenna RW-9061-5002 A.1.1.3. Antenna RW-9061-5002 A.1.1.4. Antenna RW-9061-5002 A.1.1.5. Antenna RW-9061-5002 B.1.1. Restricted Band-Edge Emissions B.1.1.5. Antenna RW-9061-5002 B.1.1.6. Antenna RW-9061-5002 B.1.1.7. Antenna RW-9061-5002 B.1.1.7. Antenna RW-9061-5002 B.1.1.6. Antenna RW-9062-5001	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 4 of 141

1. ACCREDITATION, LISTINGS & RECOGNITION

1.1. TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard ISO/IEC 17025:2005. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 5 of 141

1.2. RECOGNITION

MiCOM Labs, Inc has widely recognized wireless testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA countries. MiCOM Labs test reports are accepted globally.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2 4143A-3
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

EU MRA – European Union Mutual Recognition Agreement.

NB – Notified Body

APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement. Recognition

agreement under which test lab is accredited to regulatory standards of the APEC member countries. Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 6 of 141

1.3. PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard ISO/IEC 17065:2012. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

United States of America – Telecommunication Certification Body (TCB) Industry Canada – Certification Body, CAB Identifier – US0159 Europe – Notified Body (NB), NB Identifier - 2280 Japan – Recognized Certification Body (RCB), RCB Identifier - 210

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 7 of 141

2. DOCUMENT HISTORY

Document History					
Revision	Date	Comments			
Draft	2 nd December 2015	Added additional antenna AM0156430			
Rev A	4 th December 2015	Second Release			
This report was originally is	ssued under RDWN34-PCA	A_3.2 U3b			
Rev A	5 th August 2015	Initial Release			

In the above table the latest report revision will replace all earlier versions.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 8 of 141

3. TEST RESULT CERTIFICATE

Manufacturer: Radwin Ltd 27 Habarzel Street Tel Aviv 69710 Israel

Model: AP0158770 Type Of Equipment: 5 GHz Wireless Module

S/N's: Prototype

Test Date(s): 13th – 17rd July + 11th Nov 2015

Tested By: MiCOM Labs, Inc. 575 Boulder Court Pleasanton California 94566 USA

Telephone: +1 925 462 0304 Fax: +1 925 462 0306

Website: www.micomlabs.com

STANDARD(S)

FCC CFR 47 Part 15 Subpart E 15.407 Industry Canada RSS-247 Issue 1

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

1. This document reports conditions under which testing was conducted and the results of testing performed.

2. Details of test methods used have been recorded and kept on file by the laboratory.

3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs, Inc.

ACCREDITED TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 9 of 141

4. REFERENCES AND MEASUREMENT UNCERTAINTY

4.1. Normative References

REF.	PUBLICATION	YEAR	TITLE	
I	KDB 662911	Oct 31 2013	Guidance for measurement of output emission of devices that employ single transmitter with multiple outputs or systems with multiple transmitters operating simultaneously in the same frequency ba	
п	KDB 905462 D07 v01	10th June 2015	Test guidance to demonstrate compliance for U-NII devices subject to DFS requirements.	
ш	KDB 926956 DO1 v01r02	17th October 2014	U-NII Device Transition Plan	
IV	KDB 789033 D02 v01	6th June 2014	General UNII Test Procedures New Rules V01	
V	A2LA	June 2015	R105 - Requirement's When Making Reference to A2LA Accreditation Status	
VI	ANSI C63.10	2013	American National Standard for Testing Unlicensed Wireless Devices	
VII	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low- Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
VIII	CISPR 22	2008	Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement	
іх	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics	
Х	FCC 06-96	Jun 3 2006	Memorandum Opinion and Order	
XI	FCC 47 CFR Part 15.407	2014	Radio Frequency Devices; Subpart E –Unlicensed National Information Infrastructure Devices	
XII	ICES-003	Issue 5 2012	Spectrum Management and Telecommunications; Interference-Causing Equipment Standard. Information Technology Equipment (ITE) – Limits and methods of measurement.	
ХШ	M 3003	Edition 3 Nov. 2012	Expression of Uncertainty and Confidence in Measurements	
XIV	RSS-247, Issue 1	May 2015	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices	
XV	RSS-Gen, Issue 4	Nov 2014	General Requirements and Information for the Certification of Radiocommunication Equipment	
XVI	KDB 644545 D03 v01	August 14th 2014	Guidance for IEEE 802.11ac New Rules	
XVII	FCC 47 CFR Part 2.1033	2014	FCC requirements and rules regarding photographs and test setup diagrams.	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

4.2. Test and Uncertainty Procedure

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 Page: 11 of 141

5. PRODUCT DETAILS AND TEST CONFIGURATIONS

5.1. Technical Details

Details	Description
Purpose:	Test of the Radwin Ltd AP0158770 to FCC CFR 47 Part 15
	Subpart E 15.407 & Industry Canada RSS-247 Issue 1
	Radio Frequency Devices; Subpart E – Unlicensed National
	Information Infrastructure Devices
Applicant:	Radwin Ltd
	27 Habarzel Street
Manufacturar	Tel AVIV 69/10 Israel
	AS Applicant
Laboratory performing the tests:	MICOM Labs, Inc. 575 Deulder Court
	575 Douidei Coult Pleasanton California 04566 LISA
Test report reference number:	RDWN39-I I9h Radiated
Date FLIT received:	luly 6th 2015
Standard(s) applied:	ECC CEP 47 Part 15 Subpart E 15 407 8 PSS 247
Dates of test (from to):	12th - 17th luby 2015 + 11th luby 2015
Dates of test (110111 - to).	15 ¹⁰ - 17 ¹⁰ July 2015 + 11 ¹⁰ July 2015
	T
I ype of Equipment:	5 GHZ WIREless Module 2x2 Spatial Multiplexing MIMO
Broduct Ecmily Name:	
Flouder Family Name.	
	AF0156770 Outdoor
	Outdoor DES Danda: 5250 5250 5470 5725 MUT
Declared Frequency Range(s).	DFS Ballus. 5250 – 5550, 5470 - 5725 MIRZ
Primary function of equipment.	RF module for transmitting and receiving data
Secondary function of equipment.	
I ype of Modulation:	Per 802.11n/ac BPSK, QPSK, 16QAM, 64QAM, 256 QAM, 0FDM
EUT Modes of Operation:	Bandwidths 5, 10, 20, 40, 80 MHz
Declared Nominal Output Power (Ave):	5250 – 5350 and 5470 – 5725 MHz
Transmit/Dessive Oneration	+20 dBm
I ransmit/Receive Operation:	
Rated Input Voltage and Current:	
Operating Temperature Range:	Declared Range -35°C to 60°C
IIU Emission Designator:	5 MHz 5M00W /W
	40 MH_{7} $40 \text{M}_{1}/7 \text{W}$
	80 MHz 80M0W7W
Equipment Dimensions:	1.9" X 2.0" x 0.3"
Weight:	0.042 lb (19a)
Hardware Rev	Prototype
Software Rev	Prototype
Date EUT received: Standard(s) applied: Dates of test (from - to): No of Units Tested: Type of Equipment: Product Family Name: Model(s): Location for use: Declared Frequency Range(s): Primary function of equipment: Secondary function of equipment: Type of Modulation: EUT Modes of Operation: Declared Nominal Output Power (Ave): Transmit/Receive Operation: Rated Input Voltage and Current: Operating Temperature Range: ITU Emission Designator: Equipment Dimensions: Weight: Hardware Rev: Software Rev:	July 6th 2015 FCC CFR 47 Part 15 Subpart E 15.407 & RSS-247 13 th – 17 th July 2015 + 11 th July 2015 1 5 GHz Wireless Module 2x2 Spatial Multiplexing MIMO configuration 5.x DPLUS RF Module AP0158770 Outdoor DFS Bands: 5250 – 5350, 5470 - 5725 MHz RF module for transmitting and receiving data None Provided Per 802.11n/ac BPSK, QPSK, 16QAM, 64QAM, 256 QAM, OFDM Bandwidths 5, 10, 20, 40, 80 MHz 5250 – 5350 and 5470 – 5725 MHz +20 dBm Time Division Duplex POE: 55Vdc 1A Declared Range -35°C to 60°C 5 MHz 5M00W7W 10 MHz 10M0W7W 20 MHz 20M0W7W 40 MHz 40M0W7W 40 MHz 40M0W7W 80 MHz 80M0W7W 1.9" X 2.0" x 0.3" 0.042 lb. (19g) Prototype Prototype

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 **Page:** 12 of 141

5.2. Scope Of Test Program

Radwin AP0158770 5 GHz Wireless Module

The scope of the test program was to test the Radwin AP0158770 wireless module in the frequency ranges 5250 - 5350 & 5470 - 5725 MHz for compliance against the following specification(s):

FCC CFR 47 Part 15 Subpart E 15.407

Radio Frequency Devices; Subpart E – Unlicensed National Information Infrastructure Devices

Industry Canada RSS-247 Issue 1

Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

Radwin AP0158770 5 GHz Wireless Module

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 Page: 13 of 141

5.3. Equipment Model(s) and Serial Number(s)

Equipment Type	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	5 GHz Wireless Module	RADWIN Ltd	AP0158770	Prototype
Support	Laptop PC	DELL	LATITUDE D530	None

5.4. Antenna Details

Туре	Manufacturer	Model	Family	Gain (dBi)	BF Gain	Dir BW	X-Pol	Frequency Band (MHz)
Integrated	RADWIN Ltd	MT0128930	Sector	11.0	-	120	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9061- 5004	Sector	11.0	-	120	Yes	5250 – 5350 5470 - 5725
Integrated	RADWIN Ltd	AM0135060	Sector	12.0	-	95	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9061- 5001	Sector	14.0	-	90	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9061- 5002	Sector	15.5	-	60	Yes	5250 – 5350 5470 - 5725
Integrated	RADWIN Ltd	MT0125250	Sector	13.0	-	90	Yes	5250 – 5350 5470 - 5725
Integrated	RADWIN Ltd	AM0119960	Panel	16.0	-	35	Yes	5250 – 5350 5470 - 5725
Integrated	RADWIN Ltd	AM0111760	Panel (Pt-Pt)	16.5	-	35	Yes	5250 – 5350 5470 - 5725
Integrated Smart Flat Panel	RADWIN Ltd	AM0156430	Panel	20.5	-	9.4	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9612- 5001	Panel	23.0	-	8	Yes	5250 – 5350 5470 - 5725
Integrated	RADWIN Ltd	MT0070760	Panel (Pt- Pt)	23.5	-	8	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9622- 5001	Panel (Pt- Pt)	29.0	-	5	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9721- 5158	Parabolic	28.0	-	5.5	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9732- 4958	Parabolic (Pt-Pt)	32.0	-	4	Yes	5250 – 5350 5470 - 5725
external	RADWIN Ltd	RW-9401- 5002	OMNI	12.5	-	50	Yes	5250 - 5350 5470 - 5725
BF Gain - I Dir BW - D	Beamforming G irectional Beam	ain Width						

X-Pol - Cross Polarization

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 Page: 14 of 141

5.5. Cabling and I/O Ports

Port Type	Max Cable Length	# Of Ports	Screened	Conn Type	Data Type
Ethernet	100	1	Y	RJ-45	Packet

5.6. Test Configurations

Results for the following configurations are provided in this report:

Operational Mode(s)	Data Rate with Highest Power		Channel Frequency (MHz)	
(802.11a/b/g/n/ac)	MBit/s	Low Mid		High
		5250 - 5350 MHz		
5 MHz	16.25		5,300.00	
10 MHz	32.50		5,300.00	5,341.00
20 MHz	65.00	5,264.00	5,300.00	5,336.00
40 MHz	180.00		5,300.00	5,326.00
80 MHz	390.00		5,300.00	5,310.00

5.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance: 1. NONE

5.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program: 1. NONE

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 15 of 141

6. TEST SUMMARY

List of Measurements		
Test Header	Result	Data Link
(b)(2) Radiated	Complies	-
i) Restricted Band Emissions	Complies	View Data
ii) Restricted Band-Edge Emissions	Complies	View Data
iv) Digital Emissions	Complies	View Data

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 16 of 141

7. TEST EQUIPMENT CONFIGURATION(S)

7.1. Radiated Emissions - 3m Chamber

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 10.1 Spurious Emissions
- 2. Section 10.2 Restricted Band-Edge Emissions
- 3. Section 10.3. Digital Emissions

Radiated Emission Test Setup

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 17 of 141

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	01 Dec 2016
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	15 Aug 2016
377	Band Rejection Filter 5150 to 5880MHz	Microtronics	BRM50716	034	18 Aug 2016
378	Rohde & Schwarz 40 GHz Receiver with Generator	Rhode & Schwarz	ESIB40	100107/040	04 Aug 2016
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	08 Oct 2016
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	24 Feb 2016
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Dec 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	28 May 2016
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
447	Rad Emissions Test Software	MiCOM	Version 1.0.73	447	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	25 Feb 2016
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	25 Feb 2016
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	25 Feb 2016
480	Cable - Bulkhead to Amp	SRC Haverhill	157-157- 3050360	480	11 Aug 2016
481	Cable - Bulkhead to Receiver	SRC Haverhill	151-151- 3050787	481	11 Aug 2016
482	Cable - Amp to Antenna	SRC Haverhill	157-157- 3051574	482	11 Aug 2016
502	Test Software for Radiated Emissions	EMISoft	Vasona	Version 5 Build 59	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 18 of 141

8. MEASUREMENT AND PRESENTATION OF TEST DATA

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "<u>MiTest</u>" Automated Test System" (Patent Pending)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 19 of 141

9. TEST RESULTS

9.1. Radiated

Radia	Radiated Test Conditions for Radiated Spurious and Band-Edge Emissions							
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	20.0 - 24.5					
Test Heading:	Radiated Spurious and Band- Edge Emissions	Rel. Humidity (%):	32 - 45					
Standard Section(s):	15.407 (b), 15.205, 15.209	Pressure (mBars):	999 - 1001					
Reference Document(s):	See Normative References							
Test Procedure for Radiated Spurious and Band-Edge Emissions Radiated emissions for restricted bands above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned. Measurements on any restricted band frequency or frequencies above 1 GHz are based on the use of measurement instrumentation employing peak and average detectors. All measurements were performed using a resolution bandwidth of 1 MHz. Test configuration and setup for Undesirable Measurement were per the Radiated Test Set-up specified in this document. 15.407 (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of								
(1) For transmitters operatin e.i.r.p. of −27 dBm/MHz.	ng in the 5.15-5.25 GHz band: All (emissions outside of the 5.15-5.35	GHz band shall not exceed an					
(2) For transmitters operatin e.i.r.p. of -27 dBm/MHz.	ng in the 5.25-5.35 GHz band: All (emissions outside of the 5.15-5.35	GHz band shall not exceed an					
(3) For transmitters operatin an e.i.r.p. of −27 dBm/MHz	ng in the 5.47-5.725 GHz band: All	l emissions outside of the 5.47-5.7	25 GHz band shall not exceed					
(4) For transmitters operatin MHz above or below the bab below the band edge, emis	ng in the 5.725-5.85 GHz band: Al and edge shall not exceed an e.i.r.j sions shall not exceed an e.i.r.p. o	l emissions within the frequency ra p. of –17 dBm/MHz; for frequencie f –27 dBm/MHz.	ange from the band edge to 10 s 10 MHz or greater above or					
(5) The emission measuren bandwidth may be employe total power over 1 MHz.	nents shall be performed using a n ad near the band edge, when nece	ninimum resolution bandwidth of 1 ssary, provided the measured ene	MHz. A lower resolution rgy is integrated to show the					
(6) Unwanted emissions be devices using an AC power	low 1 GHz must comply with the g line are required to comply also w	eneral field strength limits set forth vith the conducted limits set forth ir	n in §15.209. Further, any U-NII n §15.207.					
(7) The provisions of §15.2	05 apply to intentional radiators op	perating under this section.						
(8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.								
Limits for Restricted Bands (15.205, 15.209) Peak emission: 74 dBuV/m Average emission: 54 dBuV/m								
Field Strength Calculation The field strength is calculated by reading. All factors are included i	y adding the Antenna Factor and C n the reported data.	Cable Loss, and subtracting Amplif	ier Gain from the measured					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 20 of 141

FS = R + AF + CORR - FO

where:

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor

NFL = Notch Filter Loss or Waveguide Loss

Example:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength (dBµV/m);

 $E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m$ where P is the EIRP in Watts

Therefore: -27 dBm/MHz equates to 68.23 dBuV/m

Conversion between dBmV/m (or dBmV) and mV/m (or mV) are as follows: Level (dBmV/m) = 20 * Log (level (mV/m))

40 dBmV/m = 100 mV/m 48 dBmV/m = 250 mV/m

Restricted Bands of Operation (15.205)

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 21 of 141

FCC Restricted Bands

	Freque	ncy Band	
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

(b) Except as provided in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

(c) Except as provided in paragraphs (d) and (e) of this section, regardless of the field strength limits specified elsewhere in this subpart, the provisions of this section apply to emissions from any intentional radiator.

(d) The following devices are exempt from the requirements of this section:

(1) Swept frequency field disturbance sensors operating between 1.705 and 37 MHz provided their emissions only sweep through the bands listed in paragraph (a) of this section, the sweep is never stopped with the fundamental emission within the bands listed in paragraph (a) of this section, and the fundamental emission is outside of the bands listed in paragraph (a) of this section more than 99% of the time the device is actively transmitting, without compensation for duty cycle.

(2) Transmitters used to detect buried electronic markers at 101.4 kHz which are employed by telephone companies.

(3) Cable locating equipment operated pursuant to §15.213.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 22 of 141

(4) Any equipment operated under the provisions of §15.253, 15.255, and 15.256 in the frequency band 75-85 GHz, or §15.257 of this part.

(5) Biomedical telemetry devices operating under the provisions of §15.242 of this part are not subject to the restricted band 608-614 MHz but are subject to compliance within the other restricted bands.

(6) Transmitters operating under the provisions of subparts D or F of this part.

(7) Devices operated pursuant to §15.225 are exempt from complying with this section for the 13.36-13.41 MHz band only.

(8) Devices operated in the 24.075-24.175 GHz band under §15.245 are exempt from complying with the requirements of this section for the 48.15-48.35 GHz and 72.225-72.525 GHz bands only, and shall not exceed the limits specified in §15.245(b).

(9) Devices operated in the 24.0-24.25 GHz band under §15.249 are exempt from complying with the requirements of this section for the 48.0-48.5 GHz and 72.0-72.75 GHz bands only, and shall not exceed the limits specified in §15.249(a).

(e) Harmonic emissions appearing in the restricted bands above 17.7 GHz from field disturbance sensors operating under the provisions of §15.245 shall not exceed the limits specified in §15.245(b).

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 23 of 141

9.1.1. Restricted Band Emissions

9.1.1.1. Antenna RW-9061-5002

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5264.00	Data Rate:	QAM 64
Power Setting:	1	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1279.91	38.70	2.90	-15.03	26.57	Max Avg	Horizontal	107	47	54.0	-27.4	Pass
#2	1279.91	49.63	2.90	-15.03	37.50	Max Peak	Horizontal	107	47	74.0	-36.5	Pass
#3	7018.72	39.79	7.20	-7.41	39.58	Max Avg	Horizontal	101	35	54.0	-14.4	Pass
#4	7018.72	46.03	7.20	-7.41	45.82	Max Peak	Horizontal	101	35	74.0	-28.2	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5300.00	Data Rate:	QAM 64
Power Setting:	1	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1250.25	29.83	2.86	-15.45	17.24	Max Avg	Vertical	196	203	54.0	-36.8	Pass
#2	1250.25	43.50	2.86	-15.45	30.91	Max Peak	Vertical	196	203	74.0	-43.1	Pass
#3	13321.85	28.56	10.53	-6.18	32.91	Max Avg	Vertical	125	19	54.0	-21.1	Pass
#4	13321.85	40.62	10.53	-6.18	44.97	Max Peak	Vertical	125	19	74.0	-29.0	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 24 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	1	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1280.05	43.08	2.90	-15.03	30.95	Max Avg	Horizontal	109	35	54.0	-23.1	Pass
#2	1280.05	51.51	2.90	-15.03	39.38	Max Peak	Horizontal	109	35	74.0	-34.6	Pass
#3	3749.67	32.57	5.09	-10.84	26.82	Max Avg	Vertical	100	192	54.0	-27.2	Pass
#4	3749.67	45.84	5.09	-10.84	40.09	Max Peak	Vertical	100	192	74.0	-33.9	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emission	ns
--	----

Antenna:	Antenna RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	3	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1256.53	29.77	2.87	-15.35	17.29	Max Avg	Vertical	106	207	54.0	-36.7	Pass
#2	1256.53	45.79	2.87	-15.35	33.31	Max Peak	Vertical	106	207	74.0	-40.7	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 25 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5590.00	Data Rate:	QAM 64
Power Setting:	2.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1275.93	30.00	2.90	-15.08	17.82	Max Avg	Vertical	111	216	54.0	-36.2	Pass
#2	1275.93	46.92	2.90	-15.08	34.74	Max Peak	Vertical	111	216	74.0	-39.3	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5706.00	Data Rate:	QAM 64
Power Setting:	2.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1280.15	30.98	2.90	-15.03	18.85	Max Avg	Vertical	100	203	54.0	-35.2	Pass
#2	1280.15	47.16	2.90	-15.03	35.03	Max Peak	Vertical	100	203	74.0	-39.0	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 26 of 141

9.1.1.2. Antenna RW-9401-5002

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5264.00	Data Rate:	QAM 64
Power Setting:	9	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	7018.50	28.29	7.20	-7.41	28.08	Max Avg	Horizontal	144	65	54.0	-25.9	Pass
#2	7018.50	39.50	7.20	-7.41	39.29	Max Peak	Horizontal	144	65	74.0	-34.7	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5300.00	Data Rate:	QAM 64
Power Setting:	8	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	7066.47	27.73	7.22	-7.34	27.61	Max Avg	Vertical	106	99	54.0	-26.4	Pass
#2	7066.47	38.88	7.22	-7.34	38.76	Max Peak	Vertical	106	99	74.0	-35.2	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	3	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	3751.14	29.49	5.09	-10.84	23.74	Max Avg	Horizontal	119	12	54.0	-30.3	Pass
#2	3751.14	42.53	5.09	-10.84	36.78	Max Peak	Horizontal	119	12	74.0	-37.2	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 27 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	7	Tested By:	SB

Test Measurement Results

Click here to view measurement data...

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5590.00	Data Rate:	QAM 64
Power Setting:	6.5	Tested By:	SB

Test Measurement Results

Click here to view measurement data...

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5706.00	Data Rate:	QAM 64
Power Setting:	5	Tested By:	SB

Test Measurement Results

Click here to view measurement data...

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 28 of 141

9.1.1.3. Antenna RW-9622-5001

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5264.00	Data Rate:	QAM 64
Power Setting:	-7.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1256.64	29.46	2.87	-15.35	16.98	Max Avg	Vertical	100	186	54.0	-37.0	Pass
#2	1256.64	45.64	2.87	-15.35	33.16	Max Peak	Vertical	100	186	74.0	-40.8	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5300.00	Data Rate:	QAM 64
Power Setting:	-8.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1280.09	38.10	2.90	-15.03	25.97	Max Avg	Horizontal	105	124	54.0	-28.0	Pass
#2	1280.09	49.78	2.90	-15.03	37.65	Max Peak	Horizontal	105	124	74.0	-36.4	Pass
#3	7061.92	26.54	7.22	-7.34	26.42	Max Avg	Vertical	144	338	54.0	-27.6	Pass
#4	7061.92	38.79	7.22	-7.34	38.67	Max Peak	Vertical	144	338	74.0	-35.3	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 29 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	-7.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1282.02	28.86	2.91	-15.00	16.77	Max Avg	Vertical	138	188	54.0	-37.2	Pass
#2	1282.02	43.07	2.91	-15.00	30.98	Max Peak	Vertical	138	188	74.0	-43.0	Pass
#3	6080.93	30.84	6.64	-9.58	27.90	Max Avg	Vertical	108	23	54.0	-26.1	Pass
#4	6080.93	43.21	6.64	-9.58	40.27	Max Peak	Vertical	108	23	74.0	-33.7	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 30 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	-9.5	Tested By:	SB

Test Measurement Results

Click here to view measurement data...

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5590.00	Data Rate:	QAM 64
Power Setting:	-10	Tested By:	SB

Test Measurement Results

Click here to view measurement data...

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5706.00	Data Rate:	QAM 64
Power Setting:	-11.5	Tested By:	SB

Test Measurement Results

Click here to view measurement data...

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 31 of 141

9.1.1.4. Antenna RW-9732-4958

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5264.00	Data Rate:	QAM 64
Power Setting:	-10.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1249.99	50.22	2.86	-15.45	37.63	Max Avg	Vertical	110	164	54.0	-16.4	Pass
#2	1249.99	54.44	2.86	-15.45	41.85	Max Peak	Vertical	110	164	74.0	-32.2	Pass
#3	3756.91	28.05	5.09	-10.84	22.30	Max Avg	Vertical	100	185	54.0	-31.7	Pass
#4	3756.91	40.80	5.09	-10.84	35.05	Max Peak	Vertical	100	185	74.0	-39.0	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5300.00	Data Rate:	QAM 64
Power Setting:	-10.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1279.83	30.77	2.90	-15.03	18.64	Max Avg	Vertical	115	154	54.0	-35.4	Pass
#2	1279.83	49.34	2.90	-15.03	37.21	Max Peak	Vertical	115	154	74.0	-36.8	Pass
#3	7066.71	44.84	7.22	-7.34	44.72	Max Avg	Vertical	100	353	54.0	-9.3	Pass
#4	7066.71	51.26	7.22	-7.34	51.14	Max Peak	Vertical	100	353	74.0	-22.9	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 32 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	-10.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1238.95	28.55	2.85	-15.58	15.82	Max Avg	Horizontal	105	115	54.0	-38.2	Pass
#2	1238.95	42.46	2.85	-15.58	29.73	Max Peak	Horizontal	105	115	74.0	-44.3	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	-10.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1280.15	30.72	2.90	-15.03	18.59	Max Avg	Vertical	100	108	54.0	-35.4	Pass
#2	1280.15	47.11	2.90	-15.03	34.98	Max Peak	Vertical	100	108	74.0	-39.0	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 33 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5590.00	Data Rate:	QAM 64
Power Setting:	-10.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1280.25	30.01	2.90	-15.03	17.88	Max Avg	Vertical	127	155	54.0	-36.1	Pass
#2	1280.25	48.20	2.90	-15.03	36.07	Max Peak	Vertical	127	155	74.0	-37.9	Pass
#3	3774.41	27.52	5.10	-10.85	21.77	Max Avg	Vertical	153	164	54.0	-32.2	Pass
#4	3774.41	40.35	5.10	-10.85	34.60	Max Peak	Vertical	153	164	74.0	-39.4	Pass

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	Antenna RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5706.00	Data Rate:	QAM 64
Power Setting:	-10.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	1317.25	28.43	2.93	-14.90	16.46	Max Avg	Horizontal	123	46	54.0	-37.5	Pass
#2	1317.25	41.12	2.93	-14.90	29.15	Max Peak	Horizontal	123	46	74.0	-44.9	Pass
#3	6181.64	33.13	6.79	-9.03	30.89	Max Avg	Vertical	100	353	54.0	-23.1	Pass
#4	6181.64	45.68	6.79	-9.03	43.44	Max Peak	Vertical	100	353	74.0	-30.6	Pass
#5	10661.83	25.03	9.14	-3.92	30.25	Max Avg	Vertical	122	262	54.0	-23.8	Pass
#6	10661.83	36.74	9.14	-3.92	41.96	Max Peak	Vertical	122	262	74.0	-32.0	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 34 of 141

9.1.1.5. Antenna AM0156430

Equipme	ent Configuration for Radiated S	purious - Restricted Band Emissions									
Antenna: AM0156430 Variant: 5MHz											
Antenna Gain (dBi): 20.5 Modulation: OFDM											
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99								
Channel Frequency (MHz):	5253.5	Data Rate:	6mbit/s								
Power Setting:	max	Tested By:	SB								

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5254.15	75.85	3.64	-11.32	68.17	Peak (FUND)	Vertical					
4	10505.85	49.14	5.51	-4.28	50.37	Peak (NRB)	Horizontal	151	1			Pass

NRB - Non-Restricted Band

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 35 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	AM0156430	Variant:	5MHz
Antenna Gain (dBi):	20.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5300.00	Data Rate:	6mbit/s
Power Setting:	max	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5298.96	73.50	3.81	-11.09	66.22	Peak (FUND)	Vertical	148	1			Pass
2	10602.52	40.21	5.57	-3.93	41.85	Max Avg	Horizontal	165	15	54.0	-12.2	Pass
3	10602.52	58.31	5.57	-3.93	59.95	Max Peak	Horizontal	165	15	68.2	-8.3	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 36 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	AM0156430	Variant:	5MHz
Antenna Gain (dBi):	20.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5465.5	Data Rate:	6mbit/s
Power Setting:	max	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5722.65	53.79	3.80	-10.72	46.87	Peak (FUND)	Horizontal	164	0			Pass
2	11442.81	36.75	5.38	-4.92	37.21	Max Avg	Horizontal	166	308	54.0	-16.8	Pass
3	11442.81	51.12	5.38	-4.92	51.58	Max Peak	Horizontal	166	308	68.2	-16.7	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 37 of 141

Equipme	Equipment Configuration for Radiated Spurious - Restricted Band Emissions									
Antenna:	AM0156430	Variant:	5MHz							
Antenna Gain (dBi):	20.5	Modulation:	OFDM							
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99							
Channel Frequency (MHz):	5478.5	Data Rate:	6mbit/s							
Power Setting:	max	Tested By:	SB							

Test Measurement Results

There are no emissions found within 6dB of the limit line.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 38 of 141

Equipment Configuration for Radiated Spurious - Restricted Band Emissions

Antenna:	AM0156430	Variant:	5MHz
Antenna Gain (dBi):	20.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5595.0	Data Rate:	6mbit/s
Power Setting:	max	Tested By:	SB

Test Measurement Results

There are no emissions found within 6dB of the limit line.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 39 of 141

Equipment Configuration for Radiated Spurious - Restricted Band En
--

Antenna:	AM0156430	Variant:	5MHz
Antenna Gain (dBi):	20.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5721.5	Data Rate:	6mbit/s
Power Setting:	max	Tested By:	SB

Test Measurement Results

Frequency Azt Raw Cable AF Level Measurement Hgt Limit Margin Pass Num Pol dBµV/m MHz dBµV Loss dB dBµV/m Туре cm Deg dB /Fail 1 5722.65 53.79 3.80 -10.72 46.87 Peak (FUND) Horizontal Pass 164 0 ------2 11442.81 36.75 5.38 -4.92 37.21 Max Avg Horizontal 166 308 54.0 -16.8 Pass 3 11442.81 51.12 5.38 -4.92 51.58 Max Peak Horizontal 166 308 68.2 -16.7 Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 Page: 40 of 141

9.1.2. Restricted Band-Edge Emissions

9.1.2.6. Antenna RW-9061-5002

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

RW-90	61-5002	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
10 MHz	5341.00	5350.00	70.67	53.76	-1.00
20 MHz	5336.00	5350.00	70.51	52.82	-1.00
40 MHz	5326.00	5350.00	71.16	53.11	2.00
5 MHz	5346.50	5350.00	72.37	50.32	-5.00
80 MHz	5310.00	5350.00	72.71	52.81	-2.50

Antenna RV	N-9061-5002	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
10 MHz	5484.00	5470.00	55.34	41.61	1.50
20 MHz	5489.00	5470.00	54.73	41.56	3.00
40 MHz	5499.00	5470.00	57.00	41.31	4.50
5 MHz	5478.50	5470.00	51.70	39.19	0.00
80 MHz	5520.00	5470.00	64.07	46.49	4.00

Click on the links to view the data.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 41 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9061-5002	Variant:	10 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5341.00	Data Rate:	QAM 64
Power Setting:	-1	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	58.62	6.16	-11.02	53.76	Max Avg	Vertical	96	5	54.0	-0.2	Pass
#2	5351.32	75.54	6.16	-11.03	70.67	Max Peak	Vertical	96	5	74.0	-3.3	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	-1	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	75.37	6.16	-11.02	70.51	Max Peak	Vertical	96	5	74.0	-3.5	Pass
#2	5350.22	57.68	6.16	-11.02	52.82	Max Avg	Vertical	96	5	54.0	-1.2	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9061-5002	Variant:	40 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5326.00	Data Rate:	QAM 256
Power Setting:	2	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	57.97	6.16	-11.02	53.11	Max Avg	Vertical	96	5	54.0	-0.9	Pass
#2	5351.10	76.03	6.16	-11.03	71.16	Max Peak	Vertical	96	5	74.0	-2.8	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 42 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9061-5002	Variant:	5 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5346.50	Data Rate:	QAM 64
Power Setting:	-5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	55.18	6.16	-11.02	50.32	Max Avg	Vertical	96	5	54.0	-3.7	Pass
#2	5350.00	77.23	6.16	-11.02	72.37	Max Peak	Vertical	96	5	74.0	-1.6	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9061-5002	Variant:	80 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5310.00	Data Rate:	QAM 256
Power Setting:	-2.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	57.67	6.16	-11.02	52.81	Max Avg	Vertical	96	5	54.0	-1.2	Pass
#2	5350.00	77.57	6.16	-11.02	72.71	Max Peak	Vertical	96	5	74.0	-1.3	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 43 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9061-5002	Variant:	10 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5484.00	Data Rate:	QAM 64
Power Setting:	1.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5437.29	46.60	6.22	-11.21	41.61	Max Avg	Horizontal	96	4	54.0	-12.4	Pass
#2	5439.06	60.33	6.23	-11.22	55.34	Max Peak	Horizontal	96	4	74.0	-18.7	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9061-5002	Variant:	20 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	3	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5438.40	59.71	6.23	-11.21	54.73	Max Peak	Horizontal	96	4	74.0	-19.3	Pass
#2	5452.51	46.54	6.25	-11.23	41.56	Max Avg	Horizontal	96	4	54.0	-12.4	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 44 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9061-5002	Variant:	40 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5499.00	Data Rate:	QAM 256
Power Setting:	4.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5452.06	46.29	6.25	-11.23	41.31	Max Avg	Horizontal	96	4	54.0	-12.7	Pass
#2	5460.00	61.96	6.26	-11.22	57.00	Max Peak	Horizontal	96	4	74.0	-17.0	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9061-5002	Variant:	5 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5478.50	Data Rate:	QAM 64
Power Setting:	0	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5435.09	56.69	6.22	-11.21	51.70	Max Peak	Horizontal	96	4	74.0	-22.3	Pass
#2	5435.97	44.18	6.22	-11.21	39.19	Max Avg	Horizontal	96	4	54.0	-14.8	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9061-5002	Variant:	80 MHz
Antenna Gain (dBi):	15.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5520.00	Data Rate:	QAM 256
Power Setting:	4	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5458.02	69.04	6.26	-11.23	64.07	Max Peak	Horizontal	96	4	74.0	-9.9	Pass
#2	5459.56	51.45	6.26	-11.22	46.49	Max Avg	Horizontal	96	4	54.0	-7.5	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 **Page:** 45 of 141

9.1.2.7. Antenna RW-9401-5002

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

RW-94	01-5002	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Fower Setting
10 MHz	5341.00	5350.00	73.09	50.99	0.00
20 MHz	5336.00	5350.00	71.48	52.21	3.00
40 MHz	5326.00	5350.00	72.39	53.63	3.50
5 MHz	5346.50	5350.00	73.50	48.48	-8.00
80 MHz	5310.00	5350.00	73.93	52.44	-3.00

Antenna RV	V-9401-5002	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
10 MHz	5484.00	5470.00	53.67	40.11	5.50
20 MHz	5489.00	5470.00	55.09	41.29	7.00
40 MHz	5499.00	5470.00	64.23	45.51	8.50
5 MHz	5478.50	5470.00	50.64	38.71	4.00
80 MHz	5520.00	5470.00	66.02	50.16	8.00

Click on the links to view the data.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 46 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9401-5002	Variant:	10 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5341.00	Data Rate:	QAM 64
Power Setting:	0	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	55.85	6.16	-11.02	50.99	Max Avg	Vertical	99	32	54.0	-3.0	Pass
#2	5350.44	77.95	6.16	-11.02	73.09	Max Peak	Vertical	99	32	74.0	-0.9	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	3	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	57.07	6.16	-11.02	52.21	Max Avg	Vertical	99	32	54.0	-1.8	Pass
#2	5350.00	76.34	6.16	-11.02	71.48	Max Peak	Vertical	99	32	74.0	-2.5	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9401-5002	Variant:	40 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5326.00	Data Rate:	QAM 256
Power Setting:	3.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.22	58.49	6.16	-11.02	53.63	Max Avg	Vertical	99	32	54.0	-0.4	Pass
#2	5350.88	77.26	6.16	-11.03	72.39	Max Peak	Vertical	99	32	74.0	-1.6	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 47 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9401-5002	Variant:	5 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5346.50	Data Rate:	QAM 64
Power Setting:	-8	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.44	53.34	6.16	-11.02	48.48	Max Avg	Vertical	99	32	54.0	-5.5	Pass
#2	5350.44	78.36	6.16	-11.02	73.50	Max Peak	Vertical	99	32	74.0	-0.5	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9401-5002	Variant:	80 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5310.00	Data Rate:	QAM 256
Power Setting:	-3	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	57.30	6.16	-11.02	52.44	Max Avg	Vertical	99	32	54.0	-1.6	Pass
#2	5350.00	78.79	6.16	-11.02	73.93	Max Peak	Vertical	99	32	74.0	-0.1	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 48 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9401-5002	Variant:	10 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5484.00	Data Rate:	QAM 64
Power Setting:	5.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5441.26	58.66	6.23	-11.22	53.67	Max Peak	Vertical	108	32	74.0	-20.3	Pass
#2	5443.47	45.10	6.23	-11.22	40.11	Max Avg	Vertical	108	32	54.0	-13.9	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9401-5002	Variant:	20 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	7	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5452.73	46.27	6.25	-11.23	41.29	Max Avg	Vertical	108	32	54.0	-12.7	Pass
#2	5452.73	60.07	6.25	-11.23	55.09	Max Peak	Vertical	108	32	74.0	-18.9	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 49 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9401-5002	Variant:	40 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5499.00	Data Rate:	QAM 256
Power Setting:	8.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5448.32	69.22	6.24	-11.23	64.23	Max Peak	Vertical	108	32	74.0	-9.8	Pass
#2	5448.76	50.50	6.24	-11.23	45.51	Max Avg	Vertical	108	32	54.0	-8.5	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9401-5002	Variant:	5 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5478.50	Data Rate:	QAM 64
Power Setting:	4	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5433.11	55.62	6.22	-11.20	50.64	Max Peak	Vertical	108	32	74.0	-23.4	Pass
#2	5434.21	43.70	6.22	-11.21	38.71	Max Avg	Vertical	108	32	54.0	-15.3	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 50 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9401-5002	Variant:	80 MHz
Antenna Gain (dBi):	12.5	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5520.00	Data Rate:	QAM 256
Power Setting:	8	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5458.90	70.98	6.26	-11.22	66.02	Max Peak	Vertical	108	32	74.0	-8.0	Pass
#2	5460.00	55.12	6.26	-11.22	50.16	Max Avg	Vertical	108	32	54.0	-3.8	Pass

Title: To: Serial #:

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A **Issue Date:** 4th December 2015 **Page:** 51 of 141

9.1.2.8. Antenna RW-9622-5001

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

RW-96	22-5001	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	r ower octaing	
10 MHz	5341.00	5350.00	58.61	45.04	-9.50	
20 MHz	5336.00	5350.00	58.21	45.05	-7.50	
40 MHz	5326.00	5350.00	58.03	46.56	-9.00	
5 MHz	5346.50	5350.00	73.68	52.90	-18.00	
80 MHz	5310.00	5350.00	60.32	47.87	-9.00	

Antenna RV	V-9622-5001	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	i ower octang	
10 MHz	5484.00	5470.00	58.65	45.25	-11.00	
20 MHz	5489.00	5470.00	58.79	45.03	-9.50	
40 MHz	5499.00	5470.00	58.76	45.03	-8.00	
5 MHz	5478.50	5470.00	59.35	45.38	-12.50	
80 MHz	5520.00	5470.00	58.73	43.66	-8.50	

Click on the links to view the data.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 52 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9622-5001	Variant:	10 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5341.00	Data Rate:	QAM 64
Power Setting:	-9.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	49.90	6.16	-11.02	45.04	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
#2	5375.57	63.50	6.19	-11.08	58.61	Max Peak	Horizontal	102	24	74.0	-15.4	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	-7.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	49.91	6.16	-11.02	45.05	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
#2	5374.25	63.10	6.19	-11.08	58.21	Max Peak	Horizontal	102	24	74.0	-15.8	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 53 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9622-5001	Variant:	40 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5326.00	Data Rate:	QAM 256
Power Setting:	-9	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.22	51.42	6.16	-11.02	46.56	Max Avg	Horizontal	102	24	54.0	-7.4	Pass
#2	5376.45	62.92	6.19	-11.08	58.03	Max Peak	Horizontal	102	24	74.0	-16.0	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9622-5001	Variant:	5 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5346.50	Data Rate:	QAM 64
Power Setting:	-18	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	57.76	6.16	-11.02	52.90	Max Avg	Horizontal	102	24	54.0	-1.1	Pass
#2	5350.00	78.54	6.16	-11.02	73.68	Max Peak	Horizontal	102	24	74.0	-0.3	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9622-5001	Variant:	80 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5310.00	Data Rate:	QAM 256
Power Setting:	-9	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	65.18	6.16	-11.02	60.32	Max Peak	Horizontal	102	24	74.0	-13.7	Pass
#2	5350.22	52.73	6.16	-11.02	47.87	Max Avg	Horizontal	102	24	54.0	-6.1	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 54 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9622-5001	Variant:	10 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5484.00	Data Rate:	QAM 64
Power Setting:	-11	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5376.89	50.15	6.19	-11.09	45.25	Max Avg	Horizontal	102	24	54.0	-8.8	Pass
#2	5378.44	63.54	6.20	-11.09	58.65	Max Peak	Horizontal	102	24	74.0	-15.4	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9622-5001	Variant:	20 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	-9.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5376.23	49.92	6.19	-11.08	45.03	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
#2	5377.33	63.69	6.19	-11.09	58.79	Max Peak	Horizontal	102	24	74.0	-15.2	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 55 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9622-5001	Variant:	40 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5499.00	Data Rate:	QAM 256
Power Setting:	-8	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5375.57	49.92	6.19	-11.08	45.03	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
#2	5450.52	63.74	6.25	-11.23	58.76	Max Peak	Horizontal	102	24	74.0	-15.2	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9622-5001	Variant:	5 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5478.50	Data Rate:	QAM 64
Power Setting:	-12.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5373.15	64.25	6.18	-11.08	59.35	Max Peak	Horizontal	102	24	74.0	-14.7	Pass
#2	5376.45	50.27	6.19	-11.08	45.38	Max Avg	Horizontal	102	24	54.0	-8.6	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 56 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9622-5001	Variant:	80 MHz
Antenna Gain (dBi):	29	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5520.00	Data Rate:	QAM 256
Power Setting:	-8.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5365.21	63.62	6.17	-11.06	58.73	Max Peak	Horizontal	102	24	74.0	-15.3	Pass
#2	5376.89	48.56	6.19	-11.09	43.66	Max Avg	Horizontal	102	24	54.0	-10.3	Pass

Title: To: Serial #:

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A **Issue Date:** 4th December 2015 Page: 57 of 141

9.1.2.9. Antenna RW-9732-4958

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

RW-97	32-4958	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m		
10 MHz	5341.00	5350.00	53.43	39.07	-14.00	
20 MHz	5336.00	5350.00	53.58	39.99	-14.00	
40 MHz	5326.00	5350.00	53.93	40.63	-14.00	
5 MHz	5346.50	5350.00	73.60	52.75	-14.00	
80 MHz	5320.00	5350.00	58.46	45.42	-11.50	

Antenna RV	N-9732-4958	Band-Edge Freq	Peak (Limit 74.0dBµV/m)	Average (Limit 54.0dBµV/m)	Power Setting
Operational Mode	Operating Frequency (MHz)	MHz	dBµV/m	dBµV/m	Power Setting
10 MHz	5484.00	5470.00	58.75	45.44	-14.00
20 MHz	5489.00	5470.00	58.84	45.30	-12.50
40 MHz	5499.00	5470.00	59.21	44.89	-11.00
5 MHz	5478.50	5470.00	57.68	44.78	-15.50
80 MHz	5520.00	5470.00	58.46	45.42	-11.50

Click on the links to view the data.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 58 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9732-4958	Variant:	10 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5341.00	Data Rate:	QAM 64
Power Setting:	-14	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	58.29	6.16	-11.02	53.43	Max Peak	Horizontal	110	343	74.0	-20.6	Pass
#2	5350.22	43.93	6.16	-11.02	39.07	Max Avg	Horizontal	110	343	54.0	-14.9	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5336.00	Data Rate:	QAM 64
Power Setting:	-14	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	44.85	6.16	-11.02	39.99	Max Avg	Horizontal	110	343	54.0	-14.0	Pass
#2	5350.00	58.44	6.16	-11.02	53.58	Max Peak	Horizontal	110	343	74.0	-20.4	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 59 of 141

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9732-4958	Variant:	40 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5326.00	Data Rate:	QAM 256
Power Setting:	-14	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	58.79	6.16	-11.02	53.93	Max Peak	Horizontal	110	343	74.0	-20.1	Pass
#2	5350.22	45.49	6.16	-11.02	40.63	Max Avg	Horizontal	110	343	54.0	-13.4	Pass

Equipment Configuration for Restricted Upper Band-Edge Emissions

Antenna:	RW-9732-4958	Variant:	5 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5346.50	Data Rate:	QAM 64
Power Setting:	-14	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	78.46	6.16	-11.02	73.60	Max Peak	Horizontal	110	343	74.0	-0.4	Pass
#2	5350.22	57.61	6.16	-11.02	52.75	Max Avg	Horizontal	110	343	54.0	-1.3	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 60 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9732-4958	Variant:	10 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5484.00	Data Rate:	QAM 64
Power Setting:	-14	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	50.30	6.16	-11.02	45.44	Max Avg	Horizontal	110	351	54.0	-8.6	Pass
#2	5394.53	63.66	6.23	-11.14	58.75	Max Peak	Horizontal	110	351	74.0	-15.3	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9732-4958	Variant:	20 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5489.00	Data Rate:	QAM 64
Power Setting:	-12.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	50.16	6.16	-11.02	45.30	Max Avg	Horizontal	110	351	54.0	-8.7	Pass
#2	5356.83	63.72	6.17	-11.05	58.84	Max Peak	Horizontal	110	351	74.0	-15.2	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 61 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9732-4958	Variant:	40 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5499.00	Data Rate:	QAM 256
Power Setting:	-11	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	49.75	6.16	-11.02	44.89	Max Avg	Horizontal	110	351	54.0	-9.1	Pass
#2	5356.39	64.09	6.16	-11.04	59.21	Max Peak	Horizontal	110	351	74.0	-14.8	Pass

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9732-4958	Variant:	5 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5478.50	Data Rate:	QAM 64
Power Setting:	-15.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.00	49.64	6.16	-11.02	44.78	Max Avg	Horizontal	110	351	54.0	-9.2	Pass
#2	5419.22	62.62	6.24	-11.18	57.68	Max Peak	Horizontal	110	351	74.0	-16.3	Pass

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 62 of 141

Equipment Configuration for Restricted Lower Band-Edge Emissions

Antenna:	Antenna RW-9732-4958	Variant:	80 MHz
Antenna Gain (dBi):	32	Modulation:	OFDM
Beam Forming Gain (Y):	Not Applicable	Duty Cycle (%):	99
Channel Frequency (MHz):	5520.00	Data Rate:	QAM 256
Power Setting:	-11.5	Tested By:	SB

Test Measurement Results

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
#1	5350.22	50.28	6.16	-11.02	45.42	Max Avg	Horizontal	110	351	54.0	-8.6	Pass
#2	5413.93	63.39	6.25	-11.18	58.46	Max Peak	Horizontal	110	351	74.0	-15.5	Pass

Title: To: Serial #:

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A **Issue Date:** 4th December 2015 Page: 63 of 141

9.1.2.10. Antenna AM0156430

RESULTS SUMMARY FOR RADIATED BAND-EDGE EMISSIONS

AM01	56430	Band-Edge Freq	Peak (Limit 74 dBuV)	Peak (Limit 54 dBuV)	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBm	dBm	i ower betting	
5 MHz	5346.50	5350.00	<u>71.07</u>	<u>53.00</u>	-15.0	
10 MHz	5341.00	5350.00	<u>73.38</u>	<u>45.60</u>	-14.0	
20 MHz	5336.00	5350.00	<u>73.16</u>	<u>47.94</u>	-12.0	
40 MHz	5326.00	5350.00	<u>72.79</u>	<u>50.06</u>	-12.0	
80 MHz	5310.00	5350.00	<u>73.77</u>	<u>50.38</u>	-8.0	

AM01	56430	Band-Edge Freq	Peak (Limit 74 dBuV)	Average (Limit 54 dBuV)	Power Setting	
Operational Mode	Operating Frequency (MHz)	MHz	dBm	dBm	i ower ootting	
5 MHz	5478.50	5460.00	<u>59.10</u>	<u>46.0</u>	5.0	
10 MHz	5484.00	5460.00	<u>61.73</u>	<u>47.88</u>	7.0	
20 MHz	5489.00	5460.00	<u>65.38</u>	<u>50.25</u>	9.0	
40 MHz	5499.00	5460.00	<u>67.93</u>	<u>51.96</u>	9.0	
80 MHz	5520.00	5460.00	<u>69.55</u>	<u>52.90</u>	8.5	

Click on the links to view the data.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 64 of 141

9.1.3. Digital Emissions

FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 65 of 141

Тез	t Freg	ΝΔ							Fngineer	ІМН		
100	Variant	Digital F	mission					т		20		
Frog	Pango	30_1000	MH7	2				Pol	Hum (%)	56		
Bower	Sotting	NA				Pross (mBars) 848						
r ower -	ntonna	32 dBi						FIESS	. (110413)	040		
Tost		52 UDI										
Tost	lotos 2											
Test Notes 2												
MiceMLabs dBuV/m Vasona by EMISoft 08 Dec 14 19:14 600 600 600 600 600 600 600 6												
Frequency MHz	Raw dBuV	Cable	AF dB	Level dBuV/m	Measurement	Pol	Hgt	Azt	Limit dBuV/m	Margin dB	Pass /Fail	Comments
319.999	45.4	5.2	-16.7	33.9	Quasi Max	Н	99	179	46.0	-12.1	Pass	
240.015	56.0	4.8	-19.0	41.9	Quasi Max	Н	100	157	46	-4.2	Pass	
30.251	43.5	3.5	-9.9	37.1	Quasi Max	V	224	18	40	-2.9	Pass	
34.975	45.3	3.6	-13.6	35.3	Quasi Max	V	142	12	40	-4.7	Pass	
120.005	48.6	4.2	-17.5	35.3	Quasi Max	Н	209	204	43.5	-8.2	Pass	
360.008	42.9	5.3	-15.4	32.8	Quasi Max	Н	217	152	46	-13.2	Pass	
399.995	49.0	5.5	-14.8	39.7	Quasi Max	н	160	202	46	-6.3	Pass	
66.934	50.9	3.8	-23.3	31.4	Quasi Max	V	108	313	40	-8.6	Pass	
44.815	45.7	3.6	-20.7	28.7	Quasi Max	V	130	349	40	-11.4	Pass	
919.995	42.0	7.2	-7.7	41.4	Quasi Max	Н	109	181	46	-4.6	Pass	
	1		L	1		I	1	1				
Legend:	TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental Frequency											
	ETGIN	ETSI Vid Avg Type = 100 kHz RBW, 100 kHz VBW, Peak Detector, Video Average, 100 Sweeps										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 66 of 141

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB
-------------------------	---------------

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 67 of 141

A. APPENDIX - GRAPHICAL IMAGES

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 68 of 141

A.1. Radiated

A.1.1. Restricted Band Emissions

A.1.1.1. Antenna RW-9061-5002

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1279.91	38.70	2.90	-15.03	26.57	Max Avg	Horizontal	107	47	54.0	-27.4	Pass
2	1279.91	49.63	2.90	-15.03	37.50	Max Peak	Horizontal	107	47	74.0	-36.5	Pass
3	7018.72	39.79	7.20	-7.41	39.58	Max Avg	Horizontal	101	35	54.0	-14.4	Pass
4	7018.72	46.03	7.20	-7.41	45.82	Max Peak	Horizontal	101	35	74.0	-28.2	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 69 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1250.25	29.83	2.86	-15.45	17.24	Max Avg	Vertical	196	203	54.0	-36.8	Pass
2	1250.25	43.50	2.86	-15.45	30.91	Max Peak	Vertical	196	203	74.0	-43.1	Pass
3	13321.85	28.56	10.53	-6.18	32.91	Max Avg	Vertical	125	19	54.0	-21.1	Pass
4	13321.85	40.62	10.53	-6.18	44.97	Max Peak	Vertical	125	19	74.0	-29.0	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 70 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1280.05	43.08	2.90	-15.03	30.95	Max Avg	Horizontal	109	35	54.0	-23.1	Pass
2	1280.05	51.51	2.90	-15.03	39.38	Max Peak	Horizontal	109	35	74.0	-34.6	Pass
3	3749.67	32.57	5.09	-10.84	26.82	Max Avg	Vertical	100	192	54.0	-27.2	Pass
4	3749.67	45.84	5.09	-10.84	40.09	Max Peak	Vertical	100	192	74.0	-33.9	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 71 of 141

A.1.1.2. Antenna RW-9401-5002

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	7018.50	28.29	7.20	-7.41	28.08	Max Avg	Horizontal	144	65	54.0	-25.9	Pass
2	7018.50	39.50	7.20	-7.41	39.29	Max Peak	Horizontal	144	65	74.0	-34.7	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 72 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	7066.47	27.73	7.22	-7.34	27.61	Max Avg	Vertical	106	99	54.0	-26.4	Pass
2	7066.47	38.88	7.22	-7.34	38.76	Max Peak	Vertical	106	99	74.0	-35.2	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 73 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	3751.14	29.49	5.09	-10.84	23.74	Max Avg	Horizontal	119	12	54.0	-30.3	Pass
2	3751.14	42.53	5.09	-10.84	36.78	Max Peak	Horizontal	119	12	74.0	-37.2	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 74 of 141

A.1.1.3. Antenna RW-9622-5001

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1256.64	29.46	2.87	-15.35	16.98	Max Avg	Vertical	100	186	54.0	-37.0	Pass
2	1256.64	45.64	2.87	-15.35	33.16	Max Peak	Vertical	100	186	74.0	-40.8	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 75 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1280.09	38.10	2.90	-15.03	25.97	Max Avg	Horizontal	105	124	54.0	-28.0	Pass
2	1280.09	49.78	2.90	-15.03	37.65	Max Peak	Horizontal	105	124	74.0	-36.4	Pass
3	7061.92	26.54	7.22	-7.34	26.42	Max Avg	Vertical	144	338	54.0	-27.6	Pass
4	7061.92	38.79	7.22	-7.34	38.67	Max Peak	Vertical	144	338	74.0	-35.3	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 76 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1282.02	28.86	2.91	-15.00	16.77	Max Avg	Vertical	138	188	54.0	-37.2	Pass
2	1282.02	43.07	2.91	-15.00	30.98	Max Peak	Vertical	138	188	74.0	-43.0	Pass
3	6080.93	30.84	6.64	-9.58	27.90	Max Avg	Vertical	108	23	54.0	-26.1	Pass
4	6080.93	43.21	6.64	-9.58	40.27	Max Peak	Vertical	108	23	74.0	-33.7	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 77 of 141

A.1.1.4. Antenna RW-9732-4958

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1249.99	50.22	2.86	-15.45	37.63	Max Avg	Vertical	110	164	54.0	-16.4	Pass
2	1249.99	54.44	2.86	-15.45	41.85	Max Peak	Vertical	110	164	74.0	-32.2	Pass
3	3756.91	28.05	5.09	-10.84	22.30	Max Avg	Vertical	100	185	54.0	-31.7	Pass
4	3756.91	40.80	5.09	-10.84	35.05	Max Peak	Vertical	100	185	74.0	-39.0	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 78 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1279.83	30.77	2.90	-15.03	18.64	Max Avg	Vertical	115	154	54.0	-35.4	Pass
2	1279.83	49.34	2.90	-15.03	37.21	Max Peak	Vertical	115	154	74.0	-36.8	Pass
3	7066.71	44.84	7.22	-7.34	44.72	Max Avg	Vertical	100	353	54.0	-9.3	Pass
4	7066.71	51.26	7.22	-7.34	51.14	Max Peak	Vertical	100	353	74.0	-22.9	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 79 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1238.95	28.55	2.85	-15.58	15.82	Max Avg	Horizontal	105	115	54.0	-38.2	Pass
2	1238.95	42.46	2.85	-15.58	29.73	Max Peak	Horizontal	105	115	74.0	-44.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 80 of 141

B. Antenna RW-9061-5002

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1256.53	29.77	2.87	-15.35	17.29	Max Avg	Vertical	106	207	54.0	-36.7	Pass
2	1256.53	45.79	2.87	-15.35	33.31	Max Peak	Vertical	106	207	74.0	-40.7	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module
FCC 15.407 & Industry Canada RSS-247 Issue 1
RDWN39-9b Radiated Rev A
4th December 2015
81 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1275.93	30.00	2.90	-15.08	17.82	Max Avg	Vertical	111	216	54.0	-36.2	Pass
2	1275.93	46.92	2.90	-15.08	34.74	Max Peak	Vertical	111	216	74.0	-39.3	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module
FCC 15.407 & Industry Canada RSS-247 Issue 1
RDWN39-9b Radiated Rev A
4th December 2015
82 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1280.15	30.98	2.90	-15.03	18.85	Max Avg	Vertical	100	203	54.0	-35.2	Pass
2	1280.15	47.16	2.90	-15.03	35.03	Max Peak	Vertical	100	203	74.0	-39.0	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 83 of 141

Antenna RW-9401-5002

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 84 of 141

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 85 of 141

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 86 of 141

Antenna RW-9622-5001

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 87 of 141

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 88 of 141

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 89 of 141

Antenna RW-9732-4958

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1280.15	30.72	2.90	-15.03	18.59	Max Avg	Vertical	100	108	54.0	-35.4	Pass
2	1280.15	47.11	2.90	-15.03	34.98	Max Peak	Vertical	100	108	74.0	-39.0	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 90 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1280.25	30.01	2.90	-15.03	17.88	Max Avg	Vertical	127	155	54.0	-36.1	Pass
2	1280.25	48.20	2.90	-15.03	36.07	Max Peak	Vertical	127	155	74.0	-37.9	Pass
3	3774.41	27.52	5.10	-10.85	21.77	Max Avg	Vertical	153	164	54.0	-32.2	Pass
4	3774.41	40.35	5.10	-10.85	34.60	Max Peak	Vertical	153	164	74.0	-39.4	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 91 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	1317.25	28.43	2.93	-14.90	16.46	Max Avg	Horizontal	123	46	54.0	-37.5	Pass
2	1317.25	41.12	2.93	-14.90	29.15	Max Peak	Horizontal	123	46	74.0	-44.9	Pass
3	6181.64	33.13	6.79	-9.03	30.89	Max Avg	Vertical	100	353	54.0	-23.1	Pass
4	6181.64	45.68	6.79	-9.03	43.44	Max Peak	Vertical	100	353	74.0	-30.6	Pass
5	10661.83	25.03	9.14	-3.92	30.25	Max Avg	Vertical	122	262	54.0	-23.8	Pass
6	10661.83	36.74	9.14	-3.92	41.96	Max Peak	Vertical	122	262	74.0	-32.0	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 92 of 141

B.1.1. Restricted Band-Edge Emissions

B.1.1.5. Antenna RW-9061-5002

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	58.62	6.16	-11.02	53.76	Max Avg	Vertical	96	5	54.0	-0.2	Pass
2	5351.32	75.54	6.16	-11.03	70.67	Max Peak	Vertical	96	5	74.0	-3.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 93 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	75.37	6.16	-11.02	70.51	Max Peak	Vertical	96	5	74.0	-3.5	Pass
2	5350.22	57.68	6.16	-11.02	52.82	Max Avg	Vertical	96	5	54.0	-1.2	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 94 of 141

I	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	5350.00	57.97	6.16	-11.02	53.11	Max Avg	Vertical	96	5	54.0	-0.9	Pass
	2	5351.10	76.03	6.16	-11.03	71.16	Max Peak	Vertical	96	5	74.0	-2.8	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 95 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	55.18	6.16	-11.02	50.32	Max Avg	Vertical	96	5	54.0	-3.7	Pass
2	5350.00	77.23	6.16	-11.02	72.37	Max Peak	Vertical	96	5	74.0	-1.6	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 96 of 141

I	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	5350.00	57.67	6.16	-11.02	52.81	Max Avg	Vertical	96	5	54.0	-1.2	Pass
	2	5350.00	77.57	6.16	-11.02	72.71	Max Peak	Vertical	96	5	74.0	-1.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 97 of 141

B.1.1.6. Antenna RW-9401-5002

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	55.85	6.16	-11.02	50.99	Max Avg	Vertical	99	32	54.0	-3.0	Pass
2	5350.44	77.95	6.16	-11.02	73.09	Max Peak	Vertical	99	32	74.0	-0.9	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 98 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	57.07	6.16	-11.02	52.21	Max Avg	Vertical	99	32	54.0	-1.8	Pass
2	5350.00	76.34	6.16	-11.02	71.48	Max Peak	Vertical	99	32	74.0	-2.5	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 99 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.22	58.49	6.16	-11.02	53.63	Max Avg	Vertical	99	32	54.0	-0.4	Pass
2	5350.88	77.26	6.16	-11.03	72.39	Max Peak	Vertical	99	32	74.0	-1.6	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 100 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.44	53.34	6.16	-11.02	48.48	Max Avg	Vertical	99	32	54.0	-5.5	Pass
2	5350.44	78.36	6.16	-11.02	73.50	Max Peak	Vertical	99	32	74.0	-0.5	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 101 of 141

74.0

-0.1

Pass

73.93

Max Peak

Vertical

99

32

hack	r to	ma	triv
Daur	ιu	ma	111

5350.00

78.79

6.16

-11.02

2

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 102 of 141

B.1.1.7. Antenna RW-9622-5001

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	49.90	6.16	-11.02	45.04	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
2	5375.57	63.50	6.19	-11.08	58.61	Max Peak	Horizontal	102	24	74.0	-15.4	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 103 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	49.91	6.16	-11.02	45.05	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
2	5374.25	63.10	6.19	-11.08	58.21	Max Peak	Horizontal	102	24	74.0	-15.8	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 104 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.22	51.42	6.16	-11.02	46.56	Max Avg	Horizontal	102	24	54.0	-7.4	Pass
2	5376.45	62.92	6.19	-11.08	58.03	Max Peak	Horizontal	102	24	74.0	-16.0	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 105 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	57.76	6.16	-11.02	52.90	Max Avg	Horizontal	102	24	54.0	-1.1	Pass
2	5350.00	78.54	6.16	-11.02	73.68	Max Peak	Horizontal	102	24	74.0	-0.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 106 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	65.18	6.16	-11.02	60.32	Max Peak	Horizontal	102	24	74.0	-13.7	Pass
2	5350.22	52.73	6.16	-11.02	47.87	Max Avg	Horizontal	102	24	54.0	-6.1	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 107 of 141

B.1.1.8. Antenna RW-9732-4958

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	58.29	6.16	-11.02	53.43	Max Peak	Horizontal	110	343	74.0	-20.6	Pass
2	5350.22	43.93	6.16	-11.02	39.07	Max Avg	Horizontal	110	343	54.0	-14.9	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 108 of 141

Νι	um	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
-	1	5350.00	44.85	6.16	-11.02	39.99	Max Avg	Horizontal	110	343	54.0	-14.0	Pass
2	2	5350.00	58.44	6.16	-11.02	53.58	Max Peak	Horizontal	110	343	74.0	-20.4	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 109 of 141

I	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	5350.00	58.79	6.16	-11.02	53.93	Max Peak	Horizontal	110	343	74.0	-20.1	Pass
	2	5350.22	45.49	6.16	-11.02	40.63	Max Avg	Horizontal	110	343	54.0	-13.4	Pass

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 110 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	78.46	6.16	-11.02	73.60	Max Peak	Horizontal	110	343	74.0	-0.4	Pass
2	5350.22	57.61	6.16	-11.02	52.75	Max Avg	Horizontal	110	343	54.0	-1.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module
FCC 15.407 & Industry Canada RSS-247 Issue 1
RDWN39-9b Radiated Rev A
4th December 2015
111 of 141

Antenna RW-9061-5002

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5437.29	46.60	6.22	-11.21	41.61	Max Avg	Horizontal	96	4	54.0	-12.4	Pass
2	5439.06	60.33	6.23	-11.22	55.34	Max Peak	Horizontal	96	4	74.0	-18.7	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 112 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5438.40	59.71	6.23	-11.21	54.73	Max Peak	Horizontal	96	4	74.0	-19.3	Pass
2	5452.51	46.54	6.25	-11.23	41.56	Max Avg	Horizontal	96	4	54.0	-12.4	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module
FCC 15.407 & Industry Canada RSS-247 Issue 1
RDWN39-9b Radiated Rev A
4th December 2015
113 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5452.06	46.29	6.25	-11.23	41.31	Max Avg	Horizontal	96	4	54.0	-12.7	Pass
2	5460.00	61.96	6.26	-11.22	57.00	Max Peak	Horizontal	96	4	74.0	-17.0	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 114 of 141

I	Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	5435.09	56.69	6.22	-11.21	51.70	Max Peak	Horizontal	96	4	74.0	-22.3	Pass
	2	5435.97	44.18	6.22	-11.21	39.19	Max Avg	Horizontal	96	4	54.0	-14.8	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 115 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5458.02	69.04	6.26	-11.23	64.07	Max Peak	Horizontal	96	4	74.0	-9.9	Pass
2	5459.56	51.45	6.26	-11.22	46.49	Max Avg	Horizontal	96	4	54.0	-7.5	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 116 of 141

Antenna RW-9401-5002

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5441.26	58.66	6.23	-11.22	53.67	Max Peak	Vertical	108	32	74.0	-20.3	Pass
2	5443.47	45.10	6.23	-11.22	40.11	Max Avg	Vertical	108	32	54.0	-13.9	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 117 of 141

> Pass Pass

Num	MHz	dBµV	Loss	dB	dBµV/m	Туре	POI	cm	Deg	dBµV/m	dB
1	5452.73	46.27	6.25	-11.23	41.29	Max Avg	Vertical	108	32	54.0	-12.7
2	5452.73	60.07	6.25	-11.23	55.09	Max Peak	Vertical	108	32	74.0	-18.9

back to matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 118 of 141

-9.8

-8.5

Pass

Pass

		αBμι		ä	abann	1996			Dog	abath
1	5448.32	69.22	6.24	-11.23	64.23	Max Peak	Vertical	108	32	74.0
2	5448.76	50.50	6.24	-11.23	45.51	Max Avg	Vertical	108	32	54.0

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 119 of 141

54.0

-15.3

Pass

Max Avg

Vertical

108

32

back to matrix

5434.21

43.70

6.22

-11.21

38.71

2

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 120 of 141

54.0

-3.8

Pass

Max Avg

Vertical

108

32

back to matrix

2

5460.00

55.12

6.26

-11.22

50.16

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 121 of 141

Antenna RW-9622-5001

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5376.89	50.15	6.19	-11.09	45.25	Max Avg	Horizontal	102	24	54.0	-8.8	Pass
2	5378.44	63.54	6.20	-11.09	58.65	Max Peak	Horizontal	102	24	74.0	-15.4	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 122 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5376.23	49.92	6.19	-11.08	45.03	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
2	5377.33	63.69	6.19	-11.09	58.79	Max Peak	Horizontal	102	24	74.0	-15.2	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 123 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5375.57	49.92	6.19	-11.08	45.03	Max Avg	Horizontal	102	24	54.0	-9.0	Pass
2	5450.52	63.74	6.25	-11.23	58.76	Max Peak	Horizontal	102	24	74.0	-15.2	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 124 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5373.15	64.25	6.18	-11.08	59.35	Max Peak	Horizontal	102	24	74.0	-14.7	Pass
2	5376.45	50.27	6.19	-11.08	45.38	Max Avg	Horizontal	102	24	54.0	-8.6	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 125 of 141

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5365.21	63.62	6.17	-11.06	58.73	Max Peak	Horizontal	102	24	74.0	-15.3	Pass
2	5376.89	48.56	6.19	-11.09	43.66	Max Avg	Horizontal	102	24	54.0	-10.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 126 of 141

Antenna RW-9732-4958

Num	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1	5350.00	50.30	6.16	-11.02	45.44	Max Avg	Horizontal	110	351	54.0	-8.6	Pass
2	5394.53	63.66	6.23	-11.14	58.75	Max Peak	Horizontal	110	351	74.0	-15.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 127 of 141

N	um	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	5350.00	50.16	6.16	-11.02	45.30	Max Avg	Horizontal	110	351	54.0	-8.7	Pass
	2	5356.83	63.72	6.17	-11.05	58.84	Max Peak	Horizontal	110	351	74.0	-15.2	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 128 of 141

N	lum	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	5350.00	49.75	6.16	-11.02	44.89	Max Avg	Horizontal	110	351	54.0	-9.1	Pass
	2	5356.39	64.09	6.16	-11.04	59.21	Max Peak	Horizontal	110	351	74.0	-14.8	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 129 of 141

Nu	m	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
1		5350.00	49.64	6.16	-11.02	44.78	Max Avg	Horizontal	110	351	54.0	-9.2	Pass
2		5419.22	62.62	6.24	-11.18	57.68	Max Peak	Horizontal	110	351	74.0	-16.3	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 130 of 141

Νι	um	Frequency MHz	Raw dBµV	Cable Loss	AF dB	Level dBµV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBµV/m	Margin dB	Pass /Fail
	1	5350.22	50.28	6.16	-11.02	45.42	Max Avg	Horizontal	110	351	54.0	-8.6	Pass
2	2	5413.93	63.39	6.25	-11.18	58.46	Max Peak	Horizontal	110	351	74.0	-15.5	Pass

back to matrix

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 Page: 131 of 141

B.1.1.9. Antenna AM0156430

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 132 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 133 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 Page: 134 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 135 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 136 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 137 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 138 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 Page: 139 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

Radwin Ltd AP0158770 RF Wireless Module FCC 15.407 & Industry Canada RSS-247 Issue 1 RDWN39-9b Radiated Rev A 4th December 2015 140 of 141

Back to Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. All changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: +1 (925) 462 0304 Fax: +1 (925) 462 0306 www.micomlabs.com