Test of: Radwin Ltd AP0158770 Wireless Module

To: FCC 47 CFR Part 90, Subpart Y; IC RSS-111

Test Report Serial No.: RDWN34-U9 Rev A

Test of Radwin Ltd AP0158770 Wireless Module

To FCC 47 CFR Part 90, Subpart Y; IC RSS-111

Test Report Serial No.: RDWN34-U9 Rev A

This report supersedes NONE

Manufacturer: RADWIN Ltd 27 Habarzel Street Tel Aviv, 69710 Israel

Product Function: 5 GHz Wireless Module

Copy No: pdf Issue Date: 21st September 2015

This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com

MiCOM Labs is an ISO 17025 Accredited Testing Laboratory

MiceMLabs	Title:	Radwin Ltd AP0158770 Wireless Module
	To:	FCC 47 CFR Part 90, Subpart Y; IC RSS-111
IVII C VILADS	Serial #:	RDWN34-U9 Rev A
\mathcal{C}	Issue Date:	21st September 2015
	Page:	3 of 118

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:4 of 118

TABLE OF CONTENTS

AC	CREDITATION, LISTINGS & RECOGNITION	5
	TESTING ACCREDITATION	5
	RECOGNITION	
	PRODUCT CERTIFICATION	
1.	TEST RESULT CERTIFICATE	9
2.	REFERENCES AND MEASUREMENT UNCERTAINTY	10
	2.1. Normative References	
	2.2. Test and Uncertainty Procedures	11
3.	PRODUCT DETAILS AND TEST CONFIGURATIONS	12
	3.1. Technical Details	
	3.2. Scope of Test Program	
	3.3. Equipment Model(s) and Serial Number(s)	
	3.4. Antenna Details	
	3.5. Cabling and I/O Ports3.6. Test Configurations	
	3.7. Equipment Modifications	
	3.8. Deviations from the Test Standard	17
	3.9. Subcontracted Testing or Third Party Data	17
4.	TEST SUMMARY	18
4. 5.		
	TEST SUMMARY TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up	19
	TEST EQUIPMENT CONFIGURATION(S)	19 19
	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up	19 19 21
	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up 5.2. Radiated Emission Test Set-Up	19 19 21 23
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up. 5.2. Radiated Emission Test Set-Up. 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics	19 21 23 24 24
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up. 5.2. Radiated Emission Test Set-Up. 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics	19 21 23 24 24
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up. 5.2. Radiated Emission Test Set-Up. 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics 6.1.1. Occupied Bandwidth and Emission Mask	19 21 23 24 24 24 24 24
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up. 5.2. Radiated Emission Test Set-Up. 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics	19 21 23 24 24 24 45 50
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up. 5.2. Radiated Emission Test Set-Up. 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics	19 21 23 24 24 24 24 45 50 70
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up. 5.2. Radiated Emission Test Set-Up. 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics	19 21 23 24 24 24 24 45 50 70
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up. 5.2. Radiated Emission Test Set-Up. 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics 6.1.1. Occupied Bandwidth and Emission Mask 6.1.2. Peak Output Power. 6.1.3. Peak Power Spectral Density (PPSD). 6.1.4. Maximum Permissible Exposure. 6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations 6.1.6. Spurious Emissions at Antenna Terminals - Transmitter.	19 21 23 24 24 24 24 50 70 72 91
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up 5.2. Radiated Emission Test Set-Up 5.3. ac Wireline Emission Test Set-up TEST RESULTS 6.1. Device Characteristics 6.1.1. Occupied Bandwidth and Emission Mask 6.1.2. Peak Output Power 6.1.3. Peak Power Spectral Density (PPSD) 6.1.4. Maximum Permissible Exposure 6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations 6.1.6. Spurious Emissions at Antenna Terminals - Transmitter 6.1.7. Radiated Spurious Emissions 6.1.8. Digital Emissions (0.03 – 1 GHz)	19 21 23 24
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up 5.2. Radiated Emission Test Set-Up 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics 6.1.1. Occupied Bandwidth and Emission Mask 6.1.2. Peak Output Power. 6.1.3. Peak Power Spectral Density (PPSD) 6.1.4. Maximum Permissible Exposure 6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations 6.1.6. Spurious Emissions at Antenna Terminals - Transmitter. 6.1.7. Radiated Spurious Emissions 6.1.8. Digital Emissions (0.03 – 1 GHz) 6.1.9. Receiver Radiated Spurious Emissions (above 1 GHz)	19 21 23 24 24 24 24 24 24 50 70 70 72 91 99 99
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up 5.2. Radiated Emission Test Set-Up 5.3. ac Wireline Emission Test Set-up TEST RESULTS 6.1. Device Characteristics 6.1.1. Occupied Bandwidth and Emission Mask 6.1.2. Peak Output Power 6.1.3. Peak Power Spectral Density (PPSD) 6.1.4. Maximum Permissible Exposure 6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations 6.1.6. Spurious Emissions at Antenna Terminals - Transmitter 6.1.7. Radiated Spurious Emissions 6.1.8. Digital Emissions (0.03 – 1 GHz)	19 21 23 24 24 24 24 24 24 50 70 70 72 91 99 99
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up 5.2. Radiated Emission Test Set-Up 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics 6.1.1. Occupied Bandwidth and Emission Mask 6.1.2. Peak Output Power. 6.1.3. Peak Power Spectral Density (PPSD) 6.1.4. Maximum Permissible Exposure 6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations 6.1.6. Spurious Emissions at Antenna Terminals - Transmitter. 6.1.7. Radiated Spurious Emissions 6.1.8. Digital Emissions (0.03 – 1 GHz) 6.1.9. Receiver Radiated Spurious Emissions (above 1 GHz)	19 21 23 24 24 24 24 24 24 50 70 70 70 70 91 99 . 104 . 106 . 110
5.	TEST EQUIPMENT CONFIGURATION(S) 5.1. Conducted Test Set-Up 5.2. Radiated Emission Test Set-Up 5.3. ac Wireline Emission Test Set-up. TEST RESULTS 6.1. Device Characteristics 6.1.1. Occupied Bandwidth and Emission Mask 6.1.2. Peak Output Power. 6.1.3. Peak Power Spectral Density (PPSD) 6.1.4. Maximum Permissible Exposure 6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations 6.1.6. Spurious Emissions at Antenna Terminals - Transmitter 6.1.7. Radiated Spurious Emissions 6.1.8. Digital Emissions (0.03 – 1 GHz) 6.1.9. Receiver Radiated Spurious Emissions (above 1 GHz) 6.1.10. ac Wireline Emissions	19 21 23 24 24 24 45 50 70 72 91 99 . 104 . 106 . 110 .114

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:5 of 118

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:6 of 118

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	CAB	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:7 of 118

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC Guide 65. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

<u>United States of America – Telecommunication Certification Body (TCB)</u> TCB Identifier – US0159

Industry Canada – Certification Body

CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:8 of 118

DOCUMENT HISTORY

Document History		
Revision	Date	Comments
Draft	24 th August 2015	
Draft #2	26 th August 2015	
Rev A	21 st September 2015	Initial Release

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:9 of 118

1. TEST RESULT CERTIFICATE

RADWIN Ltd	Tested By:	MiCOM Labs, Inc.
27 Habarzel Street		575 Boulder Court
Γel Aviv, 69710		Pleasanton
srael		California, 94566, USA
RF Module operating in the 4.9 – 5.8 GHz bands.	Telephone:	+1 925 462 0304
AP0158770	Fax:	+1 925 462 0306
Prototype		
27th to 31st July 2015	Website:	www.micomlabs.com
2 7 8 8 7 7 7	7 Habarzel Street el Aviv, 69710 srael F Module operating in the 4.9 – .8 GHz bands. P0158770 rototype	7 Habarzel Street el Aviv, 69710 srael F Module operating in the 4.9 – Telephone: .8 GHz bands. P0158770 Fax: rototype

STANDARD(S)	TEST RESULTS
FCC 47 CFR Part 90, Subpart Y; IC RSS-111	EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

ACCREDITED TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:10 of 118

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

REF.	PUBLICATION	YEAR	TITLE
(i)	FCC 47 CFR Part 90	2015	Code of Federal Regulations
(ii)	RSS-111 Issue 5	Sept 2014	Broadband Public Safety Equipment Operating in the Band 4940-4990 MHz
(iii)	ANSI C63.4	2014	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
(iv)	CISPR 22/ EN 55022	2008 / 2010	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment
(v)	M 3003	Nov. 2012 Edition 3	Expression of Uncertainty and Confidence in Measurements
(vi)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing
(vii)	ETSI TR 100 028	2001-12	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics
(viii)	A2LA	June 2015	Reference to A2LA Accreditation Status – A2LA Advertising Policy

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:11 of 118

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:12 of 118

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

.1. Technical Details	
Details	Description
Purpose:	Test of RADWIN Ltd AP0158770 to FCC Part 90
	SubPart Y and IC RSSS-111 regulations
Applicant:	RADWIN Ltd
	27 Habarzel Street
	Tel Aviv, 69710, Israel
Manufacturer:	As applicant
Laboratory performing the tests:	MiCOM Labs, Inc.
	575 Boulder Court
	Pleasanton, California 94566 USA
Test report reference number:	RDWN34-U9 Rev A
Date EUT received:	14 th July 2015
Standard(s) applied:	FCC 47 CFR Part 90 Subpart Y and IC RSS-111
Dates of test (from - to):	27th to 31st July 2015
No of Units Tested:	One
Type of Equipment:	5 GHz Wireless Module 2x2 Spatial Multiplexing MIMO
	configuration
Manufacturers Trade Name:	Wireless Module
Model(s):	AP0158770
Location for use:	Indoor and Outdoor
Declared Frequency Range(s):	4,940 – 4,990 MHz MHz
Hardware Rev	Prototype
Software Rev	Radwin Art GUI
EUT Modes of Operation:	802.11n: 5, 10, 20 MHz
	802.11ac: 5, 10, 20 MHz
Type of Modulation:	Per 802.11n/ac BPSK, QPSK, 16QAM, 64QAM, 256
	QAM, OFDM
Declared Nominal Average	5 MHz: +27.0 dBm
Output Power:	10 MHz: +30.0 dBm
	20 MHz: +33.0 dBm
Transmit/Receive Operation:	Time Division Duplex
System Beam Forming:	AP0158770 has no beam-forming capability
Rated Input Voltage and Current:	POE 55 Vdc 1 A
Operating Temperature Range:	Declared range -35° to +60°C
ITU Emission Designator:	5 MHz 5M00W7W
	10 MHz 10M0W7W
	20 MHz 20M0W7W
Equipment Dimensions:	1.9" X 2.0" x 0.3"
Weight:	0.042 lb. (19g)
Primary function of equipment:	RF module for transmitting and receiving data

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:13 of 118

3.2. Scope of Test Program

AP0158770 RF Testing

The scope of the test program was to test the AP0158770 5 GHz wireless module configurations in the frequency range 4,940 to 4,990 MHz for compliance against FCC 47 CFR Part 90 Subpart Y and Industry Canada RSS-111 specifications.

RADWIN Ltd AP0158770 Wireless Module

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:14 of 118

RADWIN Ltd AP0158770 Wireless Module (Rear)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:15 of 118

3.3. Equipment Model(s) and Serial Number(s)

Type (EUT/ Support)	Equipment Description (Including Brand Name)	Manufacturer	Model No.	Serial No.
EUT	5 GHz Wireless Module	RADWIN Ltd	AP0158770	Prototype
Support	POE 55 Vdc	RADWIN Ltd	CPU55A-270-1	
Support	Laptop PC	IBM	Thinkpad	None

3.4. Antenna Details

Radiated emissions testing were performed in the mode with the highest spectral density to verify compliance. Radiated emissions were performed on the highest gain of each type of antenna as identified in the table below;-

Radiated Emission Results (Antenna #)	Antenna Type	Manufacturer	Model Number	Antenna Gain(dBi) 4900-5000 MHz
1	Sector Dual Pole Integrated 120 Deg	RADWIN Ltd.	MT0128930	11
Not Tested	Sector Dual Pole 120 Deg	RADWIN Ltd.	RW-9061-5004	11
2	Sector Dual Pole Integrated 95 Deg	RADWIN Ltd.	AM0135060	12
3	Shark Fin Monopole	RADWIN Ltd	RW-9401-5002	12.5
Not Tested	Sector Dual Pole Integrated 90 Deg	RADWIN Ltd.	MT0125250	13
Not Tested	Sector Dual Pole 90 Deg	RADWIN Ltd.	RW-9061-5001	14
Not Tested	Flat Panel Dual Pole Integrated	RADWIN Ltd.	AM0119960	14
5	Flat Panel Dual Pole Integrated	RADWIN Ltd.	AM0111760	16
Not Tested	Flat Panel Dual Pole External	RADWIN Ltd.	RW-9612-5001	23

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:16 of 118

6	Flat Panel Dual Pole Integrated	RADWIN Ltd.	MT0070760	21
7	Flat Panel Dual Pole External	RADWIN Ltd.	RW-9622-5001	29
Not Tested	Dual Pole Dish	RADWIN Ltd.	RW-9721-5158	28
8	Dual Pole Dish	RADWIN Ltd.	RW-9732-4958	30

The "Not Tested" antennas were covered by testing higher gain antennas of the same family

3.5. Cabling and I/O Ports

Number and type of I/O ports

1. 1 x 10/100/1000 Ethernet (includes POE +55 Vdc)

3.6. Test Configurations

Matrix of test configurations

Parameter	Operational Mode	Test Conditions	Bandwidths (MHz)
Occupied BW & Emission Mask	Modulated	Ambient	5, 10, 20
Peak Output power	Modulated	Ambient	5, 10, 20
Peak Power Spectral Density	Modulated	Ambient	5, 10, 20
Frequency Stability	Modulated	Temperature Variations and Voltage Variations	20
Conducted Emissions	Modulated	Ambient	5, 10, 20
Radiated Emissions	Modulated	Ambient	5, 10, 20

Only worst case plots are provided for each test parameter are identified within this report. Plots not included are held on file by the test laboratory and available upon request with client permission.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:17 of 118

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:18 of 118

4. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 90, Subpart Y (except Section 5.1.4) and Industry Canada RSS-111; Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
2.1049; 90.210(m) 5.3 4.6	26 dB Occupied BW & Emission Mask	Emission mask and bandwidth measurement(s)	Conducted	Complies	6.1.1
2.1046; 90.1215 (a) 5.3 4.8	Peak Output Power	Modulated Output Power	Conducted	Complies	6.1.2
2.1046; 90.1215 (a) 4.2	Peak Power Spectral Density	Maximum Spectral Density	Conducted	Complies	6.1.3
Subpart C 90.1217 5.6	Maximum Permissible Exposure	Exposure to radio frequency energy levels	Radiated	Complies	6.1.4
2.1055(a)(1); 90.213 5.2 4.7	Frequency Stability	Includes temperature and voltage variations	Conducted	Complies	6.1.5
2.1051; 90.210(m) 5.4 4.9	Conducted Spurious Emissions at Antenna Port	Emissions from the antenna port 30 MHz – 40 GHz	Conducted	Complies	6.1.6
2.1053; 90.210(m) 5.3 4.9	Radiated Spurious Emissions	Spurious emissions 30 MHz – 40 GHz	Radiated	Complies	6.1.7
4.10 6	Radiated Receiver Emissions			Complies	6.1.8

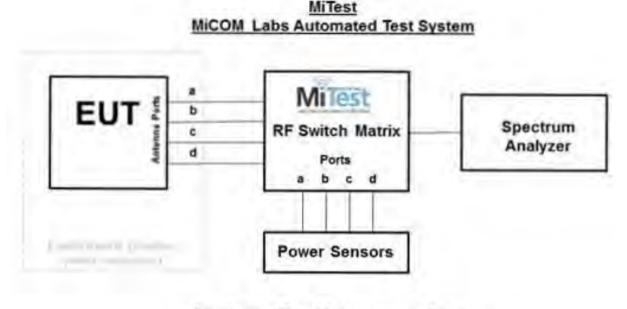
Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:19 of 118


5. TEST EQUIPMENT CONFIGURATION(S)

5.1. Conducted Test Set-Up

Conducted RF Emission Test Set-up(s).

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Occupied Bandwidth and Emission Mask
- 2. Peak Output Power
- 3. Peak Power Spectral Density
- 4. Frequency Stability
- 5. Spurious Emissions at Antenna Terminals Transmitter

Conducted Test Measurement Setup

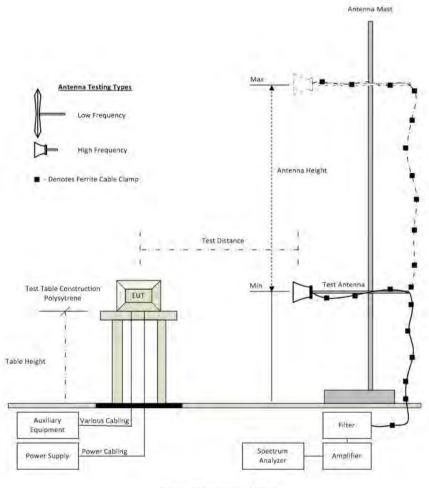
A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:20 of 118

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
248	Resistance Thermometer	Thermotronics	GR2105-02	9340 #1	30 Oct 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Aug 2015
376	USB 10MHz - 18GHz Average Power Sensor	Agilent	U2000A	MY51440005	28 Oct 2015
381	4x4 RF Switch Box	MiCOM Labs	MiTest RF Switch Box	MIC002	20 Dec 2015
419	Laptop with Labview Software	Lenova	W520	TS02	Not Required
420	USB to GPIB Interface	National Instruments	GPIB-USB HS	1346738	Not Required
435	USB Wideband Power Sensor	Boonton	55006	8730	31 Aug 2015
440	USB Wideband Power Sensor	Boonton	55006	9178	25 Sep 2015
441	USB Wideband Power Sensor	Boonton	55006	9179	25 Sep 2015
442	USB Wideband Power Sensor	Boonton	55006	9181	25 Sep 2015
460	Dell Computer with installation of MiTest executable.	Dell	Optiplex330	BC944G1	Not Required
74	Environmental Chamber	Tenney	TTC	12808-1	30 Sep 2015
RF#2 GPIB#1	GPIB cable to Power Supply	HP	GPIB	None	Not Required
RF#2 SMA#1	EUT to Mitest box port 1	Flexco	SMA Cable port1	None	20 Dec 2015
RF#2 SMA#2	EUT to Mitest box port 2	Flexco	SMA Cable port2	None	20 Dec 2015
RF#2 SMA#3	EUT to Mitest box port 3	Flexco	SMA Cable port3	None	20 Dec 2015
RF#2 SMA#4	EUT to Mitest box port 3	Flexco	SMA Cable port4	None	20 Dec 2015
RF#2 SMA#SA	Mitest box to SA	Flexco	SMA Cable SA	None	20 Dec 2015
RF#2 USB#1	USB Cable to Mitest Box	Dynex	USB Cable	None	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:21 of 118

5.2. Radiated Emission Test Set-Up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Radiated Spurious Emissions
- 2. Radiated Digital Emissions (0.03 1 GHz)
- 3. Receiver Spurious Emissions

Radiated Emission Test Setup

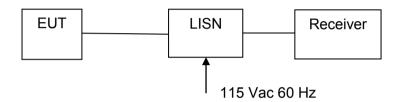
A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Radwin Ltd AP0158770 Wireless Module To: FCC 47 CFR Part 90, Subpart Y; IC RSS-111 Serial #: RDWN34-U9 Rev A Issue Date: 21st September 2015 **Page:** 22 of 118

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
170	Video System Controller for Semi Anechoic Chamber	Panasonic	WV-CY101	04R08507	Not Required
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2016
310	SMA Cable	Micro-Coax	UFA210A-0- 0787- 3G03G0	209089-001	30 Oct 2015
338	Sunol 30 to 3000 MHz Antenna	Sunol	JB3	A052907	14 Aug 2016
393	DC - 1050 MHz Low Pass Filter	Microcircuits	VLFX-1050	N/A	08 Oct 2015
397	Amp 10 - 2500MHz	MiCOM Labs	Amp 10 - 2500 MHz	NA	23 Oct 2015
399	ETS 1-18 GHz Horn Antenna	ETS	3117	00154575	10 Oct 2015
406	Amplifier for Radiated Emissions	MiCOM Labs	40dB 1 to 18GHz Amp	0406	28 May 2016
410	Desktop Computer	Dell	Inspiron 620	WS38	Not Required
411	Mast/Turntable Controller	Sunol Sciences	SC98V	060199-1D	Not Required
412	USB to GPIB Interface	National Instruments	GPIB-USB HS	11B8DC2	Not Required
413	Mast Controller	Sunol Science	TWR95-4	030801-3	Not Required
415	Turntable Controller	Sunol Sciences	Turntable Controller	None	Not Required
416	Gigabit ethernet filter	ETS-Lingren	Gigafoil 260366	None	Not Required
462	Schwarzbeck cable from Antenna to Amplifier.	Schwarzbeck	AK 9513	462	25 Aug 2016
463	Schwarzbeck cable from Amplifier to Bulkhead.	Schwarzbeck	AK 9513	463	25 Aug 2016
464	Schwarzbeck cable from Bulkhead to Receiver	Schwarzbeck	AK 9513	464	25 Aug 2016
465	Low Pass Filter DC- 1000 MHz	Mini-Circuits	NLP-1200+	VUU01901402	25 Aug 2016

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:23 of 118

5.3. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. ac Wireline Conducted Emissions

Test Measurement Set up

Measurement set up for AC Wireline Conducted Emissions Test

A full system calibration was performed on the test station and any resulting system losses (or gains) were taken into account in the production of all final measurement data.

Traceability of Test Equipment Utilized for ac Wireline Emission Testing

Asset#	Description	Manufacturer	Model#	Serial#	Calibration Due Date
158	Barometer/Thermometer	Control Company	4196	E2846	04 Dec 2015
184	Pulse Limiter	Rhode & Schwarz	ESH3Z2	357.8810.52	Cal when used
190	LISN (two-line V- network)	Rhode & Schwarz	ESH3Z5	836679/006	12 Sep 2015
287	Rohde & Schwarz 40 GHz Receiver	Rhode & Schwarz	ESIB40	100201	31 Jul 2016
316	Dell desktop computer workstation with Vasona	Dell	Desktop	WS04	Not Required

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:24 of 118

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Occupied Bandwidth and Emission Mask

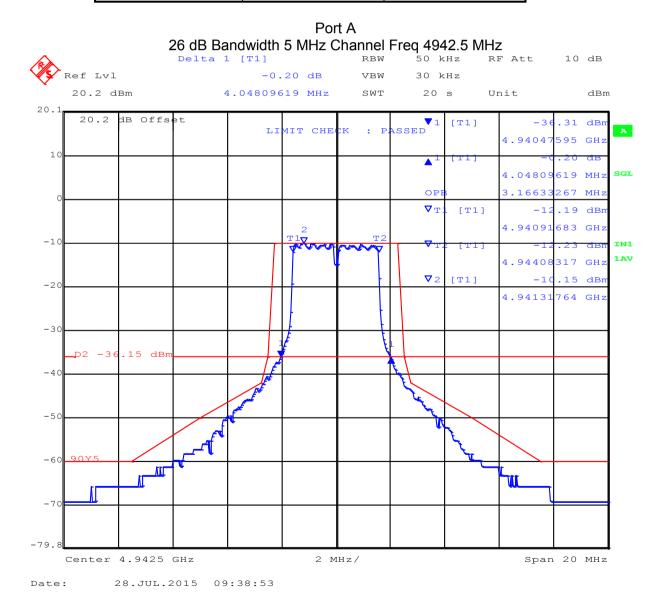
FCC 47 CFR Part 90, Subpart Y; 2.1049; §90.210(m)

Test Procedure

The transmitter terminal of EUT was connected to the input of the spectrum analyzer set to measure the 26 dB occupied bandwidth and emission mask for the radio. The system highest power setting was selected with modulation ON and duty cycle set for 100% i.e. continuous operation at all times.

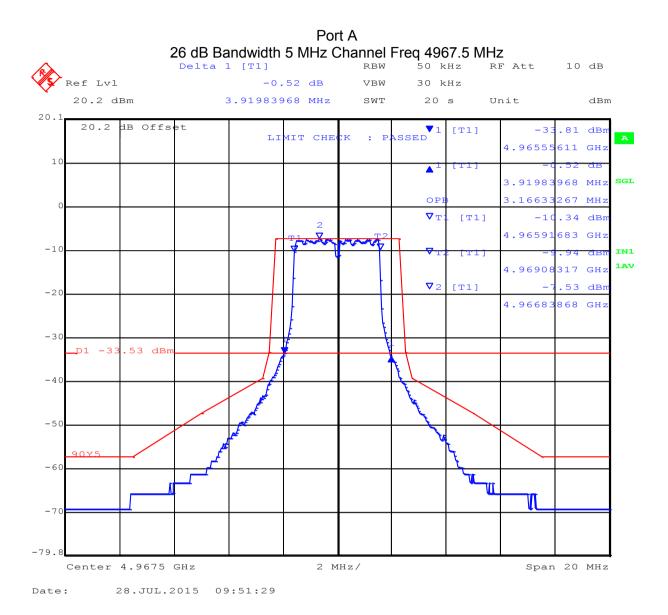
For emission masks the zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz.

Ambient conditions. Temperature: 19 to 26 °C Relative humidity: 31 to 57 % Pressure: 999 to 1009 mbar

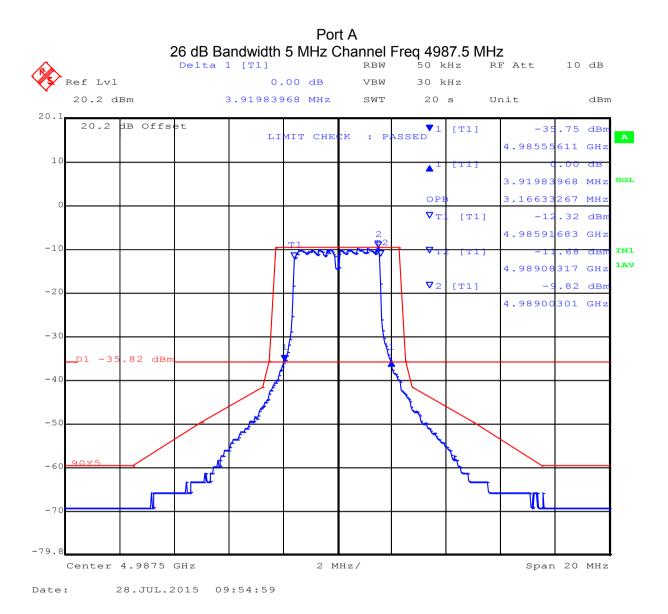

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:25 of 118

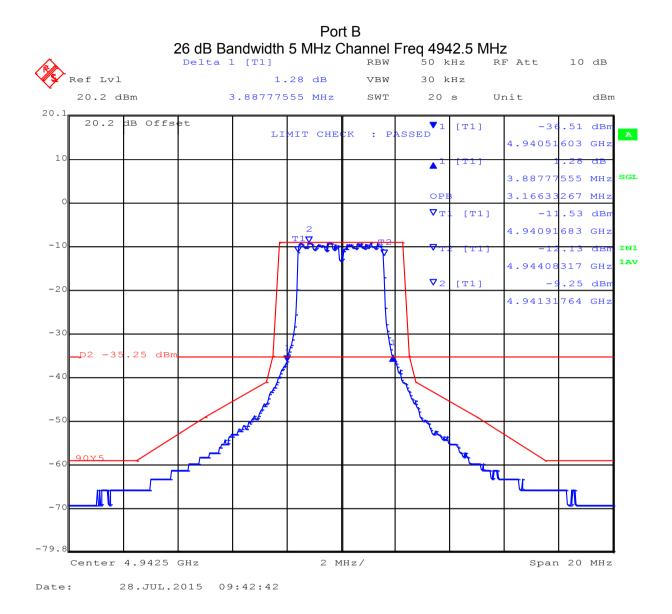
TABLE OF RESULTS – 5 MHz 26 dB Bandwidth(s)


Center Frequency	26 dB Bandwidth (MHz)		
(MHz)	Port A	Port B	
4942.5	4.04	3.88	
4967.5	3.91	3.87	
4987.5	3.91	3.87	

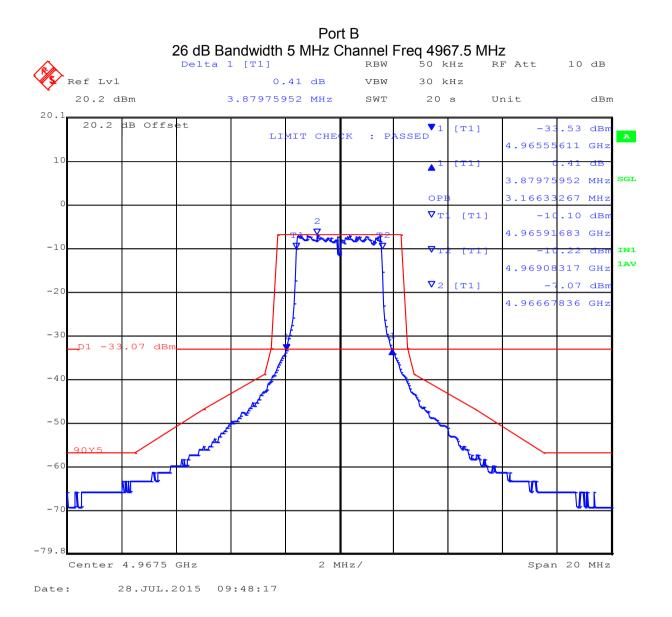
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:26 of 118

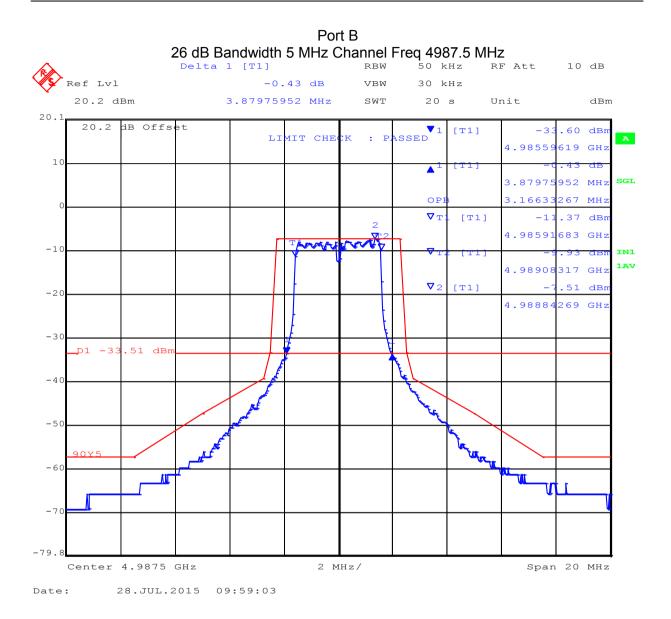
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:27 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

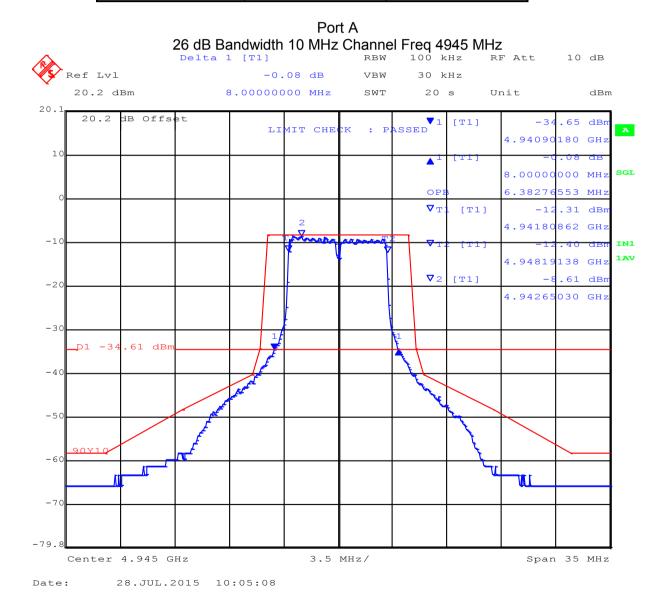

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:28 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:29 of 118

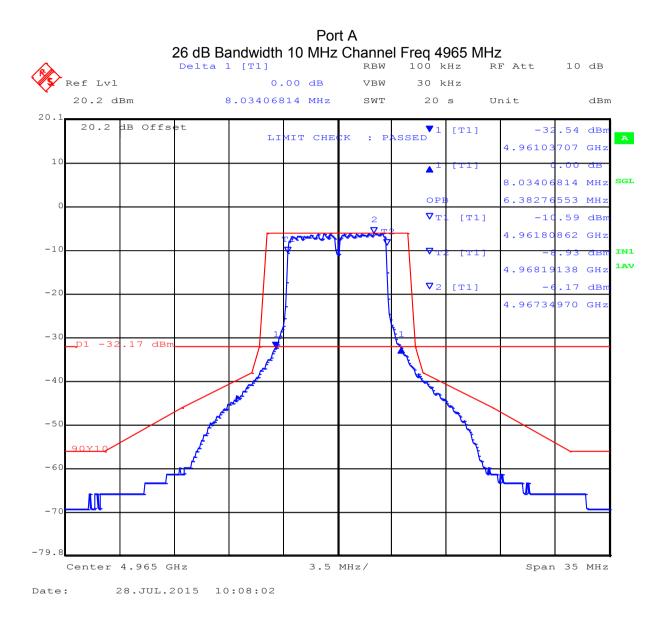
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:30 of 118

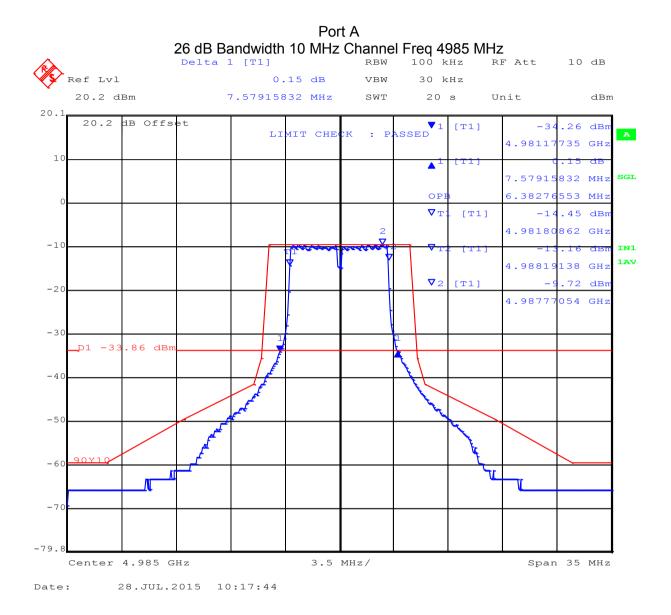

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:31 of 118

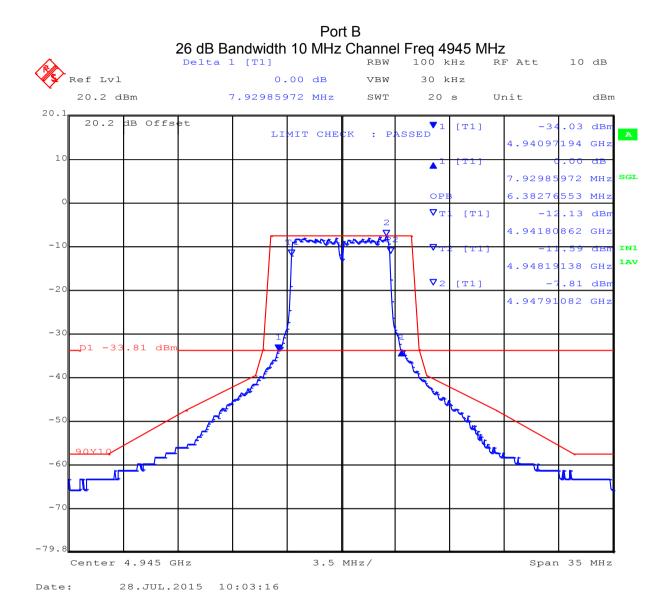
TABLE OF RESULTS – 10 MHz 26 dB Bandwidth(s)


Center Frequency	26 dB Bandwidth (MHz)		
(MHz)	Port A	Port B	
4945	8.00	7.29	
4965	8.03	8.03	
4985	7.57	8.00	

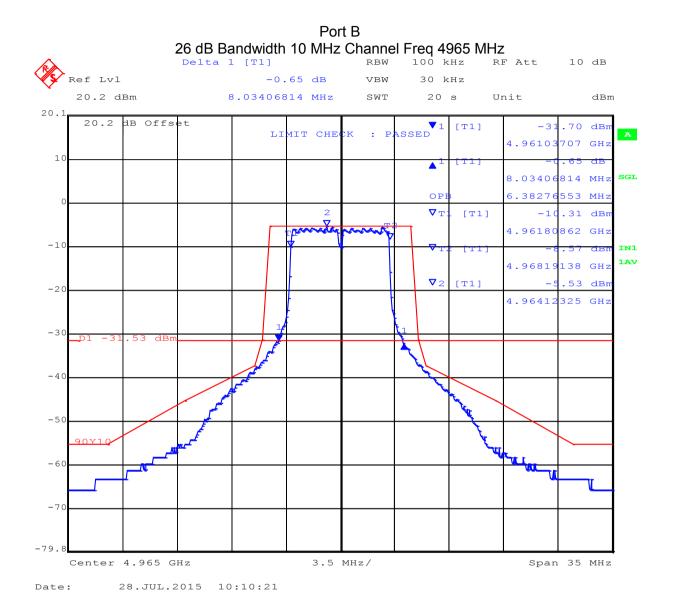
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:32 of 118

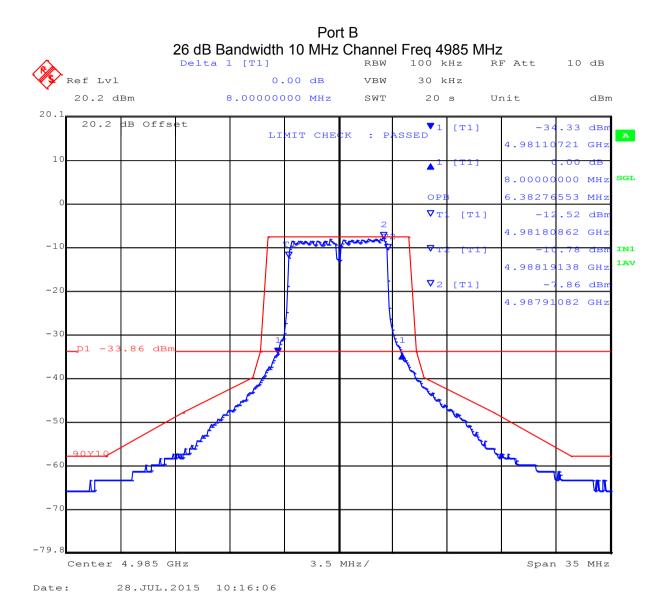
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:33 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

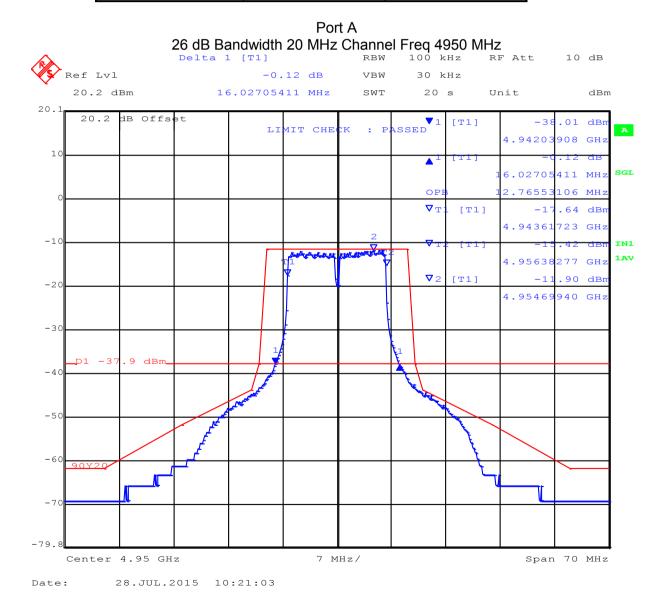

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:34 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:35 of 118

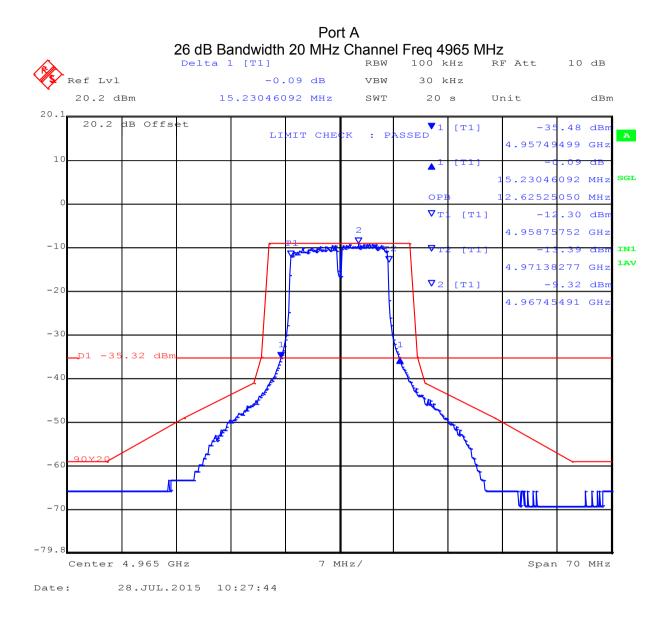
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:36 of 118

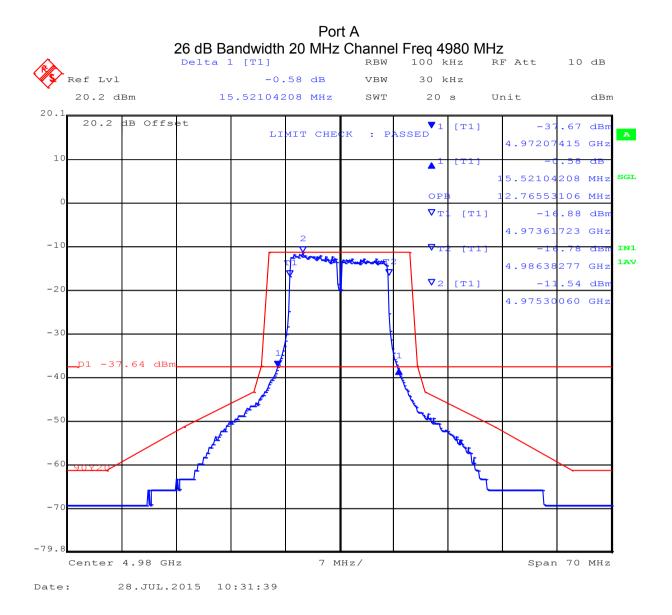

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:37 of 118

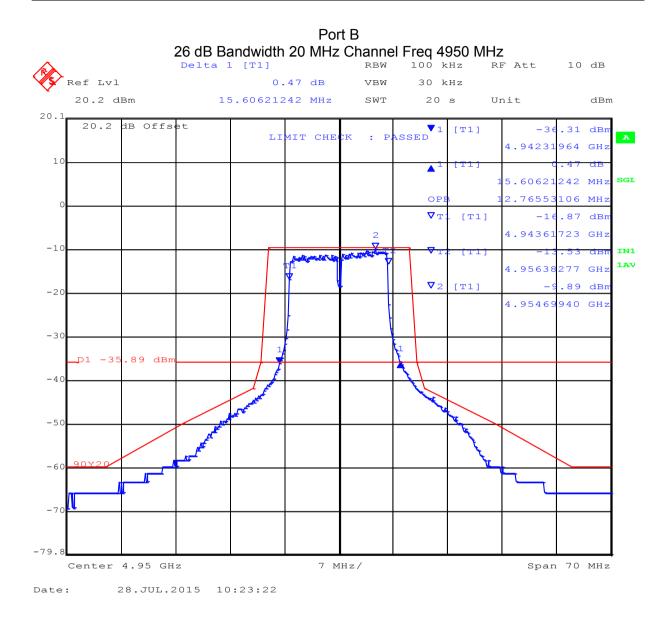
TABLE OF RESULTS - 20 MHz 26 dB Bandwidth(s)


Center Frequency	26 dB Bandwidth (MHz)	
(MHz)	Port A	Port B
4950	16.02	15.60
4965	15.23	15.51
4980	15.52	15.80

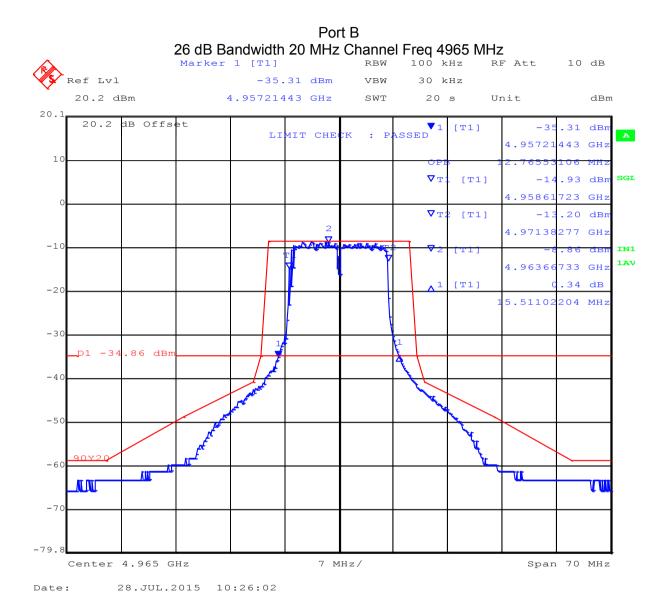
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:38 of 118

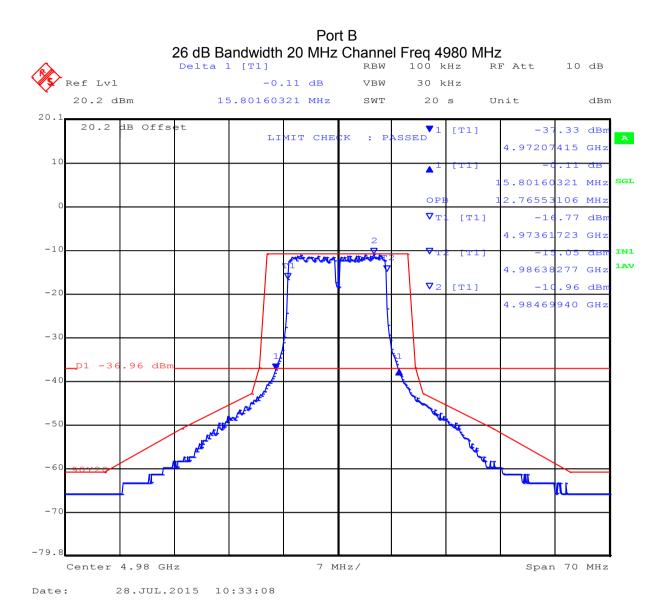
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:39 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:40 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:41 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:42 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:43 of 118

Specification Limits FCC Part §90.210

Limits for Authorized Bandwidth

Frequency Band (MHz) and Related Documents	Spectrum Masks with Audio Filter	Without Audio Filter
4950 – 4990 MHz	L or M	L or M

Reference to the emission masks are provided below

Limits Emission Masks 90.210(L)

Emission Mask L. For low power transmitters (20 dBm or less) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

(1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.

(2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 219 log (% of (BW)/45) dB.

(3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: $10 + 242 \log (\% \text{ of } (BW)/50) \text{ dB}.$

(4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: $20 + 31 \log (\% \text{ of (BW)}/55) \text{ dB}$ attenuation.

(5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: 28 + 68 log (% of (BW)/100) dB attenuation.

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 40 dB.

(7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:44 of 118

Limits Emission Masks (continued) 90.210(M),

(m) *Emission Mask M.* For high power transmitters (greater than 20 dBm) operating in the 4940-4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

(1) On any frequency removed from the assigned frequency between 0-45% of the authorized bandwidth (BW): 0 dB.

(2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 568 log (% of (BW)/45) dB.

(3) On any frequency removed from the assigned frequency between 50-55% of the authorized bandwidth: 26 + 145 log (% of BW/50) dB.

(4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: $32 + 31 \log (\% \text{ of } (BW)/55) \text{ dB}.$

(5) On any frequency removed from the assigned frequency between 100-150% of the authorized bandwidth: $40 + 57 \log (\% \text{ of } (BW)/100) \text{ dB}.$

(6) On any frequency removed from the assigned frequency between above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

(7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

NOTE TO PARAGRAPH (m): Low power devices may as an option, comply with paragraph (m).

Laboratory Measurement Uncertainty for Power Measurements

Measurement uncertainty	±1.33 dB
-------------------------	----------

Traceability

Method

Measurements were made per work instruction WI-03

'Measurement of RF Spectrum Mask'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:45 of 118

6.1.2. Output Power

FCC 47 CFR Part 90, Subpart Y; §90.1215

Test Procedure

Average power measurements were measured with the use of an average power head. Peak power measurements were recorded via the spectrum analyzer. The system highest power setting was selected with modulation ON. Should the device implement a duty cycle then this is added to the measured power as a Duty Cycle Correction Factor (DCCF).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:46 of 118

TABLE OF RESULTS – 5 MHZ BANDWIDTH MODULATED CARRIER

5 MHz Duty Cycle Correction factor 62.0%

Center Frequency	Peak Transm (+dB		Total Power + DCCF (dBm)
(MHz)	Port A	Port B	Calculated
4942.5	21.71	21.67	26.78
4967.5	21.91	20.87	26.69
4987.5	21.62	21.79	26.97

TABLE OF RESULTS – 10 MHz Bandwidth Modulated Carrier

10 MHz Duty Cycle Correction factor 60.2%

Center Frequency	Peak Transmitter Power (+dBm)		Total Power + DCCF (dBm)
(MHz)	Port A	Port B	Calculated
4945	21.29	22.10	26.93
4965	22.33	20.47	26.71
4985	21.33	22.78	27.41

TABLE OF RESULTS – 20 MHz Bandwidth Modulated Carrier

20 MHz Duty Cycle Correction factor 60.2%

Center Frequency	Peak Transmitter Power (+dBm)		Total Power + DCCF (dBm)
(MHz)	Port A	Port B	Calculated
4950	20.62	20.17	25.86
4965	22.57	23.08	28.24
4980	21.86	22.92	27.84

DCCF – Duty Cycle Correction Factor

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:47 of 118

Specification Limits

FCC Part §90.1215

Power limits.

The transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

Channel Bandwidth (MHz)	Low Transmitter Power (dBm)	High Transmitter Power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

(a)(1) The maximum conducted output power should not exceed:

(2) High power devices are also limited to a peak power spectral density of 21 dBm per one MHz. High power devices using channel bandwidths other than those listed above are permitted; however, they are limited to peak power spectral density of 21 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi. However, high power point-to-point and point-to-multipoint operations (both fixed and temporary-fixed rapid deployment) may employ transmitting antennas with directional gain up to 26 dBi without any corresponding reduction in the maximum conducted output power and peak power spectral density. Corresponding reduction in the maximum conducted output power and peak power spectral density should be the amount in decibels that the directibels that the directional gain of the antenna exceeds 26 dBi.

(b) Low power devices are also limited to a peak power spectral density of 8 dBm per one MHz. Low power devices using channel bandwidths other than those listed above are permitted; however, they are limited to a peak power spectral density of 8 dBm/MHz. If transmitting antennas of directional gain greater than 9 dBi are used, both the maximum conducted output power and the peak power spectral density should be reduced by the amount in decibels that the directional gain of the antenna exceeds 9 dBi.

(c) The maximum conducted output power is measured as a conducted emission over any interval of continuous transmission using instrumentation calibrated in terms of an RMS-equivalent voltage. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity, etc., so as to obtain a true maximum conducted output power measurement conforming to the definitions in this paragraph for the emission in question.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:48 of 118

(d) The peak power spectral density is measured as conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements are made over a bandwidth of one MHz or the 26 dB emission bandwidth of the device, whichever is less. A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected to account for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

(e) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:49 of 118

Laboratory Measurement Uncertainty for Power Measurement

Measurement uncertainty ±1.33 dB

Traceability

Method Measurements were made per work instruction WI-03

'Measurement of RF Output Power'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

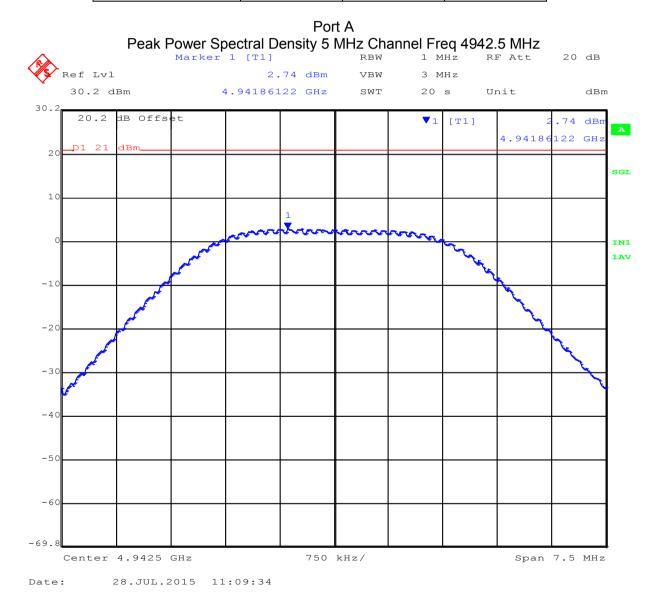
Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:50 of 118

6.1.3. Peak Power Spectral Density (PPSD)

FCC 47 CFR Part 90, Subpart Y; §90.1215

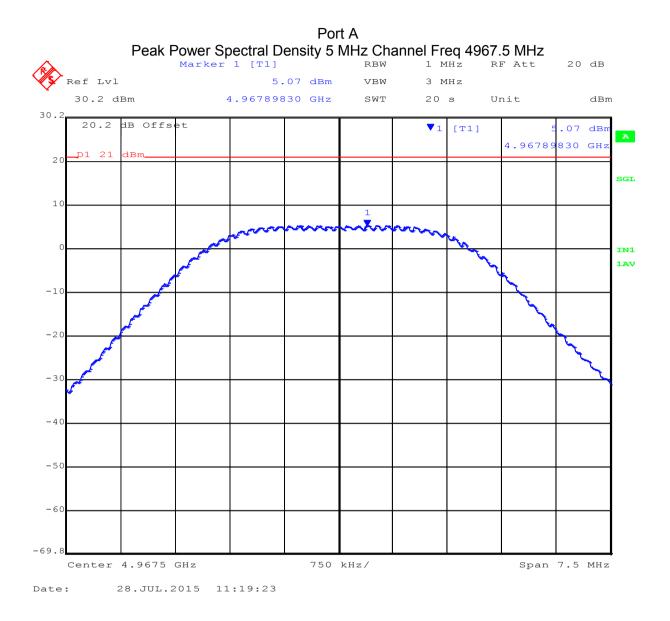
Test Procedure

The test methodology used for this measurement was determined to provide the highest possible PPSD readings.

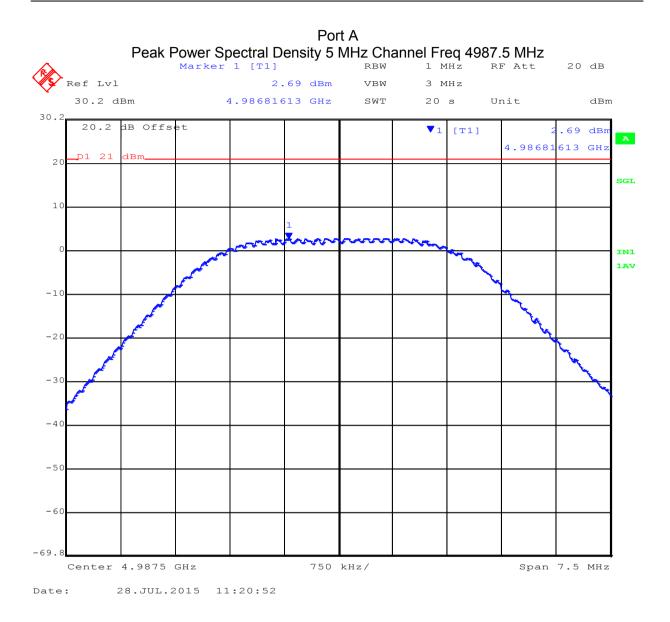

Peak power spectral density measurements were performed via the spectrum analyzer and plots were recorded. Modulation was ON and the system duty cycle was set for 100% i.e. continuous operation at all times. The system highest power setting was selected with modulation ON and duty cycle set for 100% i.e. continuous operation at all times.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:51 of 118

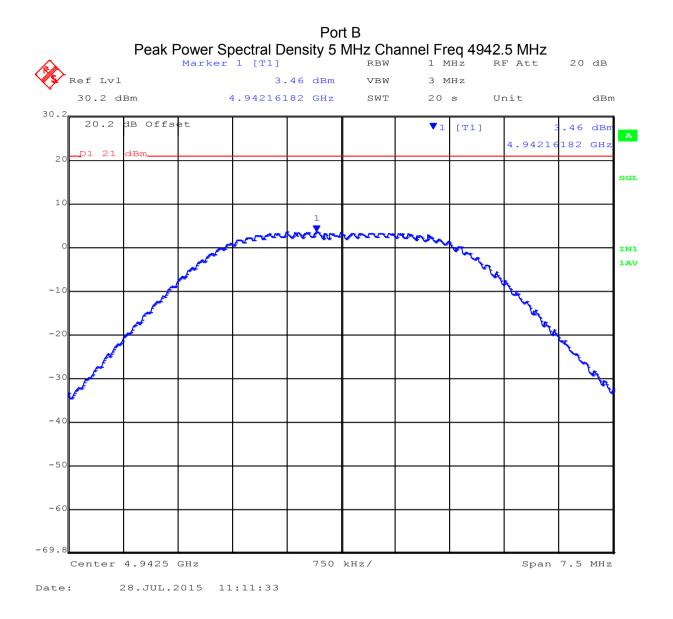
TABLE OF RESULTS – 5 MHz Peak Power Spectral Density


Center Frequency	Peak Power Spectral Density (dBm/MHz)		
(MHz)	Port A	Port B	Total
4942.5	2.74	3.46	8.34
4967.5	5.07	5.67	10.61
4987.5	2.69	4.81	9.11

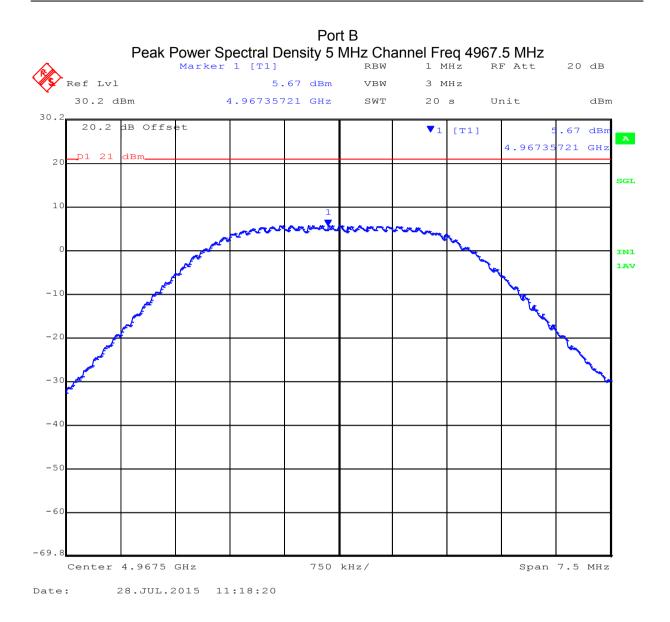
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:52 of 118

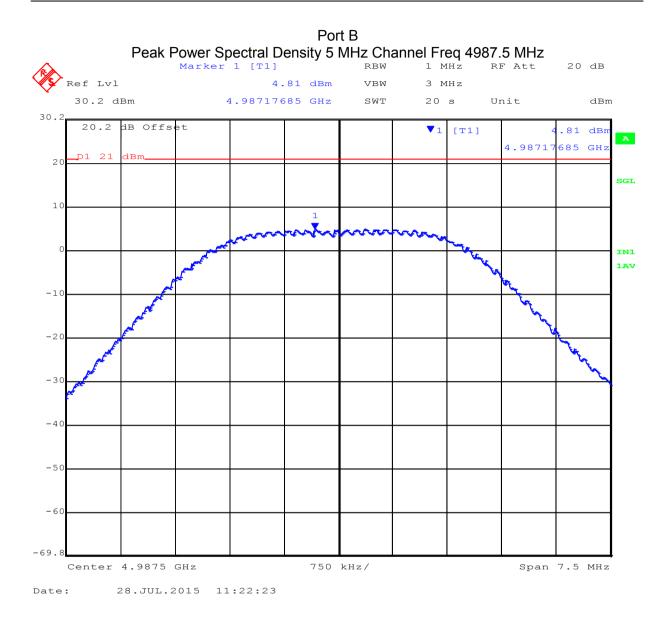
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:53 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

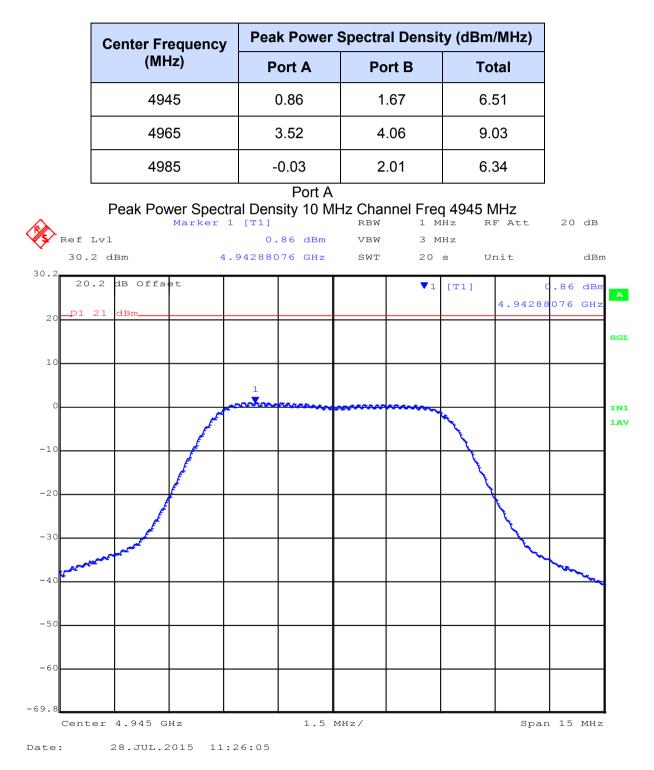

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:54 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:55 of 118

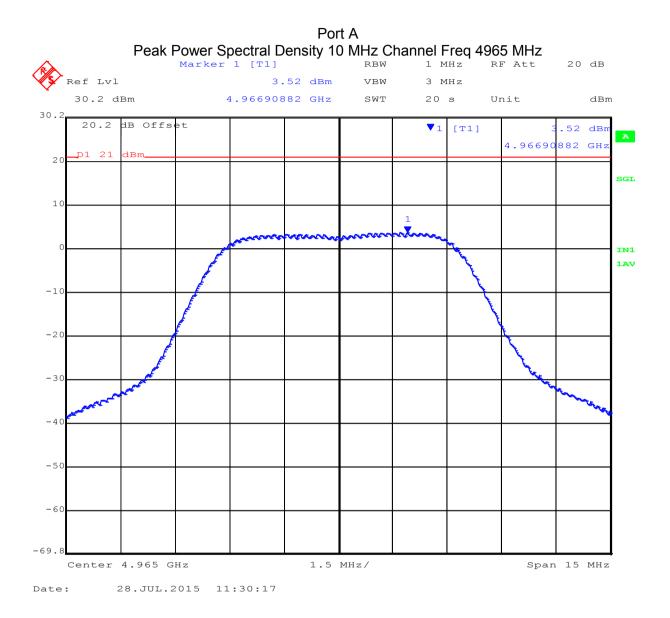
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:56 of 118

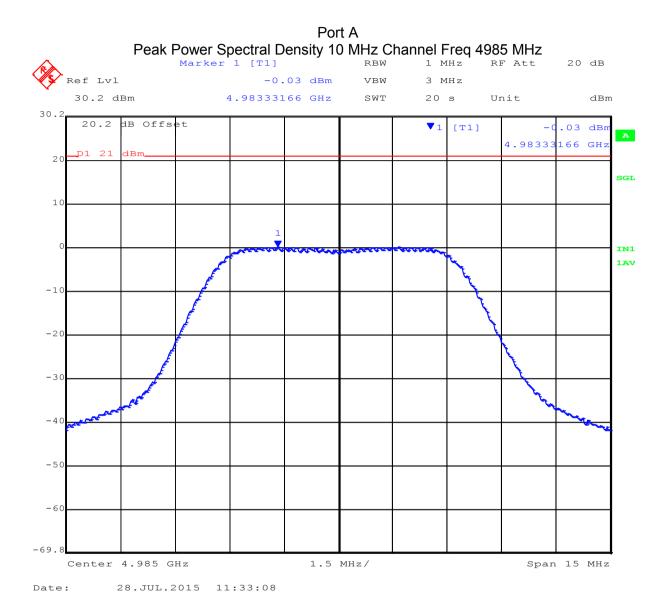


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

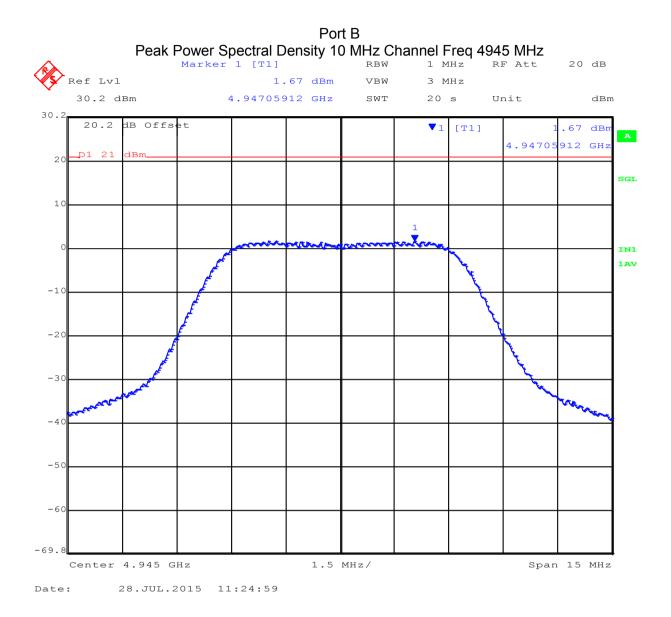
Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:57 of 118


TABLE OF RESULTS – 10 MHz Peak Power Spectral Density(s)

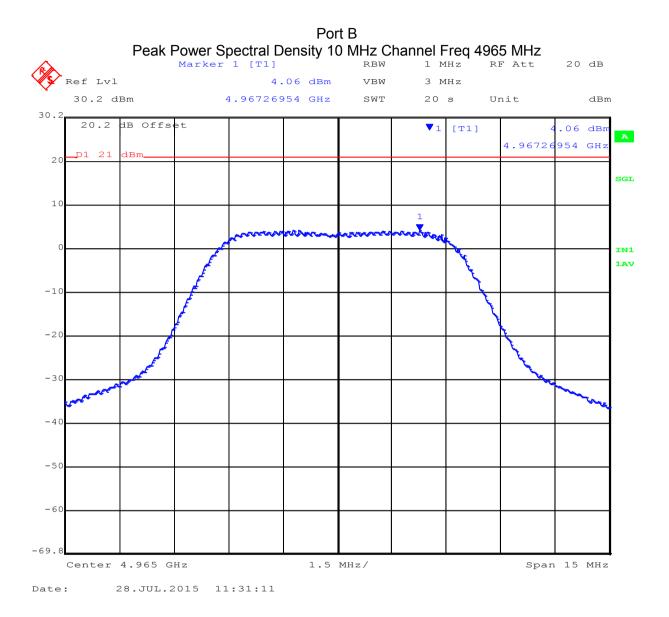
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:58 of 118

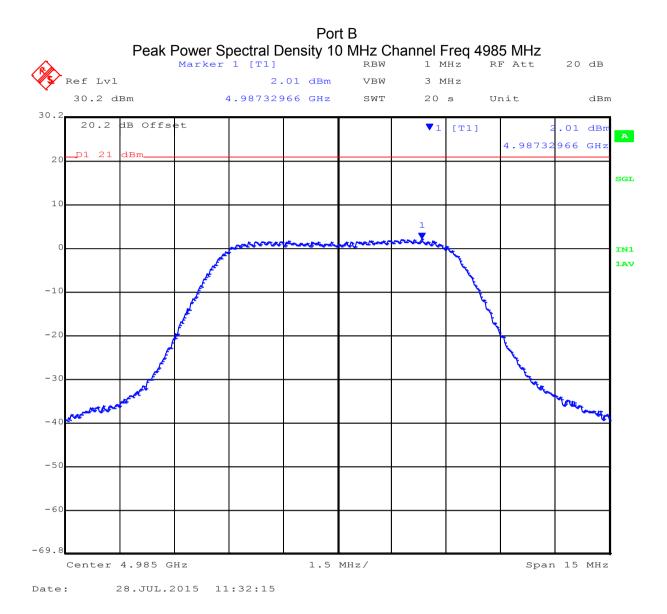
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:59 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

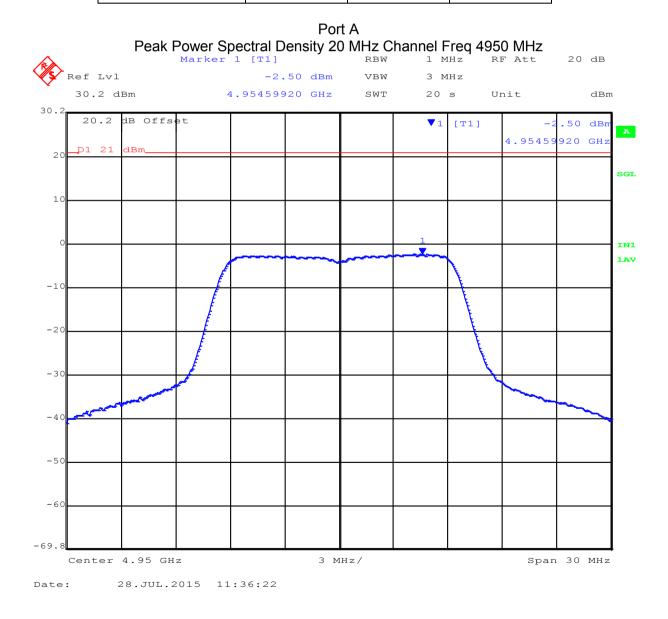

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:60 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:61 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:62 of 118

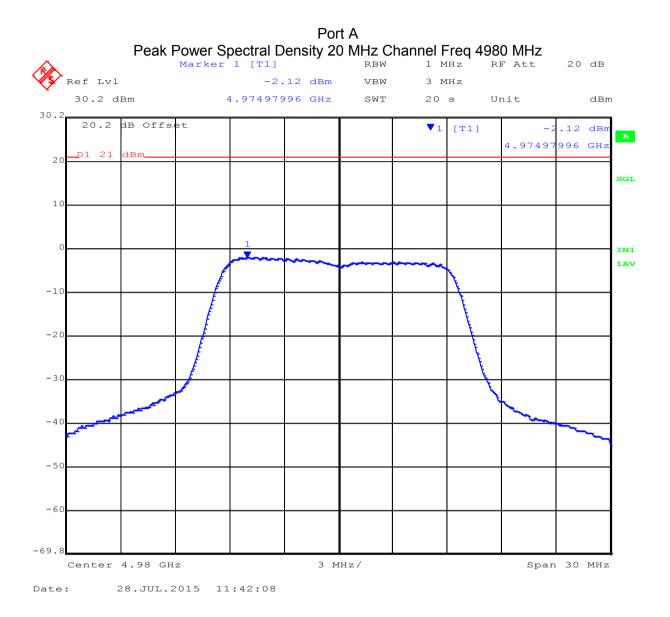

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:63 of 118

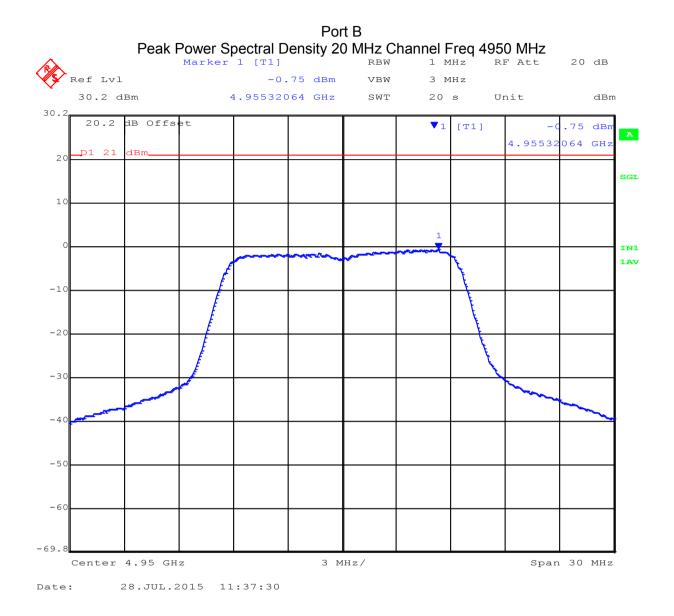
TABLE OF RESULTS – 20 MHz Peak Power Spectral Density(s)

Center Frequency	Peak Power Spectral Density (dBm/MHz)		
(MHz)	Port A	Port B	Total
4950	-2.50	-0.75	3.69
4965	0.26	0.77	5.75
4980	-2.12	-1.54	3.41

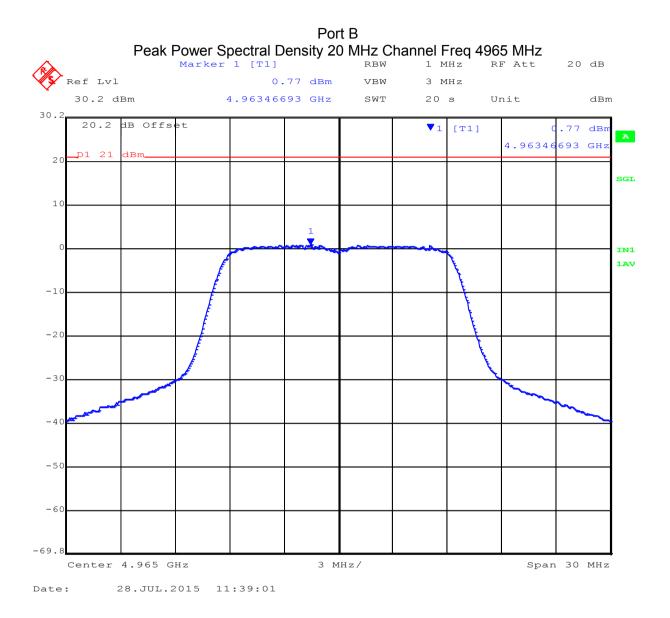
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:64 of 118

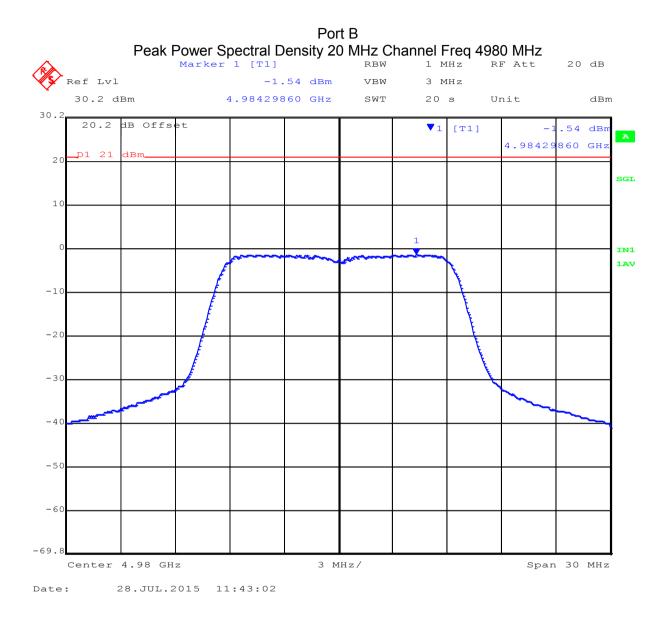
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:65 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:66 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:67 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:68 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:69 of 118

Specification Limits FCC Part §90.1215

Refer to the Power Limits Specification in Section 6.1.2 of this report.

Laboratory Measurement Uncertainty for Power Measurement

Measurement uncertainty	±1.33 dB

Traceability

Method
Measurements were made per work instruction WI-03
'Measurement of RF Output Power'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:70 of 118

6.1.4. <u>Maximum Permissible Exposure</u>

FCC, Part 90 Subpart C §90.1217 Industry Canada RSS-Gen §5.6

Calculations for Maximum Permissible Exposure Levels

Power Density = Pd (mW/cm²) = EIRP/($4\pi d^2$) EIRP = P * G P = Peak output power (mW) G = Antenna numeric gain (numeric) d = Separation distance (cm) Numeric Gain = 10 ^ (G (dBi)/10)

Because the EUT belongs to the General Population/Uncontrolled Exposure the limit of power density is 1.0 $\rm mW/cm^2$

Note: for mobile or fixed location transmitters the minimum separation distance is 20cm, even if calculations indicate the MPE distance to be less.

Specification

Maximum Permissible Exposure Limits

§90.1217

Licensees and manufacturers are subject to the radiofrequency radiation exposure requirements specified in §§ 1.1307(b), 2.1091 and 2.1093 of this chapter, as appropriate. Applications for equipment authorization of mobile or portable devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

FCC §1.1310 Limit = 1mW / cm² from 1.310 Table 1

RSS-Gen §5.6 Category I and Category II equipment shall comply with the applicable requirements of RSS-102.

Laboratory Measurement Uncertainty for Power Measurements

	Measurement uncertainty	±1.33dB
--	-------------------------	---------

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Radwin Ltd AP0158770 Wireless Module To: FCC 47 CFR Part 90, Subpart Y; IC RSS-111 Serial #: RDWN34-U9 Rev A **Issue Date:** 21st September 2015 **Page:** 71 of 118

4940 – 4990 MHz

Antenna Model	Туре	Ant Gain (dBi)	Numeric Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Calculated Safe Distance @ 1mW/cm ² Limit(cm)	Power Density @ 20cm (mW/cm ²)
MT0128930	Sector Dual Pole Integrated 120 Deg	11	13	23.08	203.2	14.3	0.51
RW-9061- 5004	Sector Dual Pole 120 Deg	11	13	23.08	203.2	14.3	0.51
AM0135060	Sector Dual Pole Integrated 95 Deg	12	16	23.08	203.2	16.0	0.64
RW-9401- 5002	Shark Fin Monopole	12.5	17.78	23.06	203.2	16.9	0.72
MT0125250	Sector Dual Pole Integrated 90 Deg	13	20	23.08	203.2	18.0	0.81
RW-9061- 5001	Sector Dual Pole 90 Deg	14	25	23.08	203.2	20.20	1.02
AM0119960	Flat Panel Dual Pole Integrated	14	25	23.08	203.2	20.20	1.02
RW-9061- 5002	Sector Dual Pole 60 Deg	15	35	23.08	203.2	22.6	1.28
AM0111760	Flat Panel Dual Pole Integrated	16	40	23.08	203.2	25.4	1.61
MT0070760	Flat Panel Dual Pole Integrated	21	224	23.08	203.2	45.1	5.09
RW-9612- 5001	Flat Panel Dual Pole External	23	200	23.08	203.2	56.80	8.07
RW-9721- 5158	Dual Pole Dish	28	631	21.08	128.2	80.20	16.10
RW-9622- 5001	Flat Panel Dual Pole External	29	794	20.08	101.9	80.20	16.10
RW-9732- 4958	Dual Pole Dish	30	1585	19.08	80.9	80.20	16.10

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:72 of 118

6.1.5. Frequency Stability; Temperature Variations, and Voltage Variations

FCC 47 CFR Part 90, Subpart Y; §90.213

Test Procedure

The transmitter output was connected to a spectrum analyzer and the frequency stability was measured in either modulated or unmodulated state. Frequency stability was measured through the extremes of temperature on the selected channel only. Prior to a taking a frequency / temperature measurement the device is powered off and the temperature changed. The device is left to stabilize at the new temperature for 15 mins then switched on before any measurement is taken.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:73 of 118

Ambient conditions.

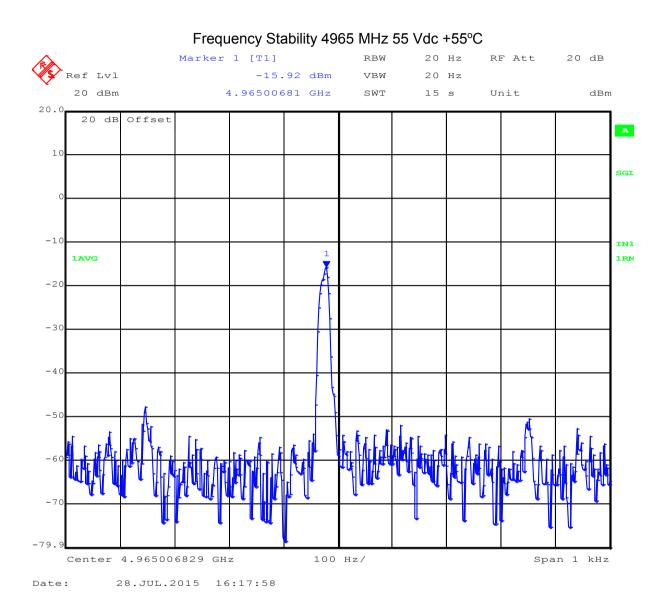
Temperature: 19 to 26 °C Relative humidity: 31 to 57 % Pressure: 999 to 1009 mbar

TABLE OF RESULTS Frequency Stability;-

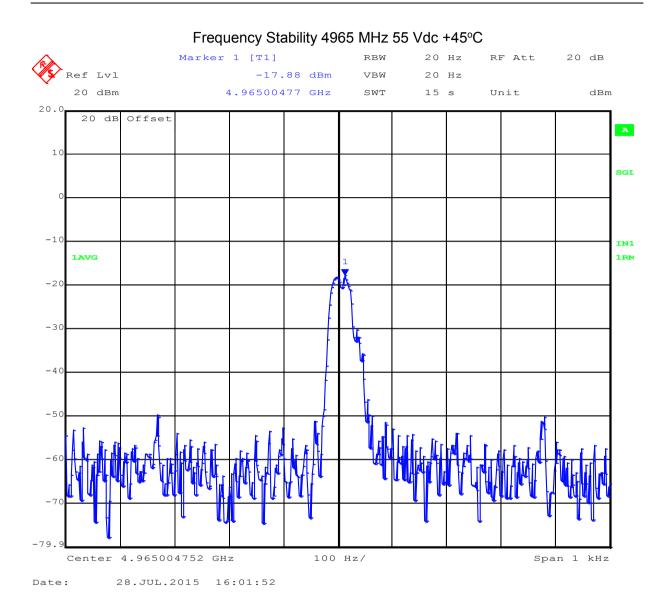
Voltage (dc)	Temperature	Measured Frequency (Hz) Channel 4965 MHz	Delta (kHz)	Drift (ppm)	
	60	4965007170.00	7.17	0.144	
	55	4965006810.00	6.81	0.137	
	45	4965004770.00	4.77	0.096	
	35	4965003750.00	3.75	0.076	
	25	4965003530.00	3.53	0.071	
55	15	4965002920.00	2.92	0.059	
	5	4965001540.00	1.54	0.031	
	-5	4965000180.00	0.18	0.004	
	-15	4964999980.00	-0.02	0.000	
	-25	4965000220.00	0.22	0.004	
	-35	4965000960.00	0.96	0.019	

Modulated carrier breakthrough was used to measure frequency stability.

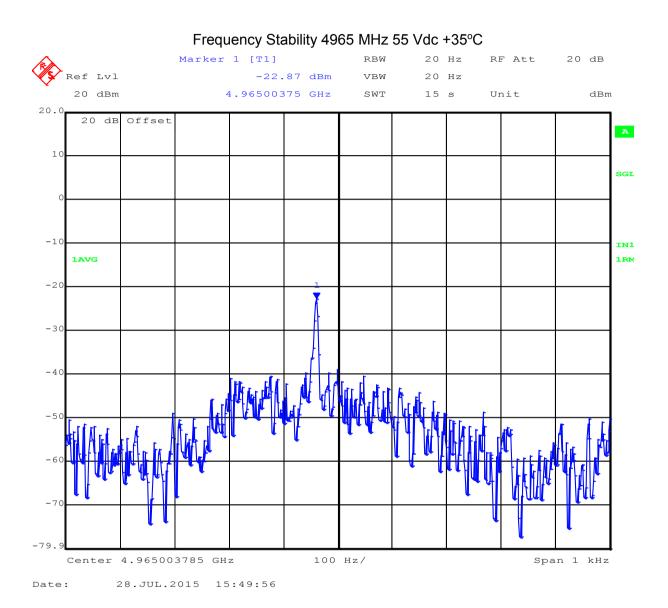
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:74 of 118

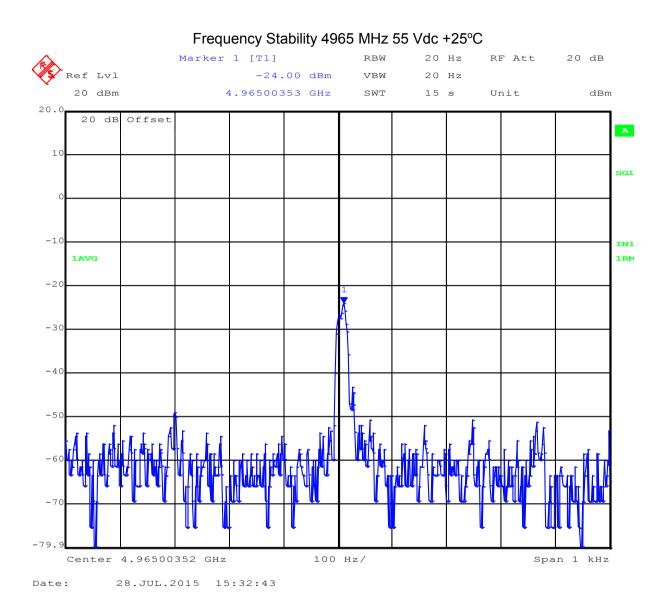
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:75 of 118

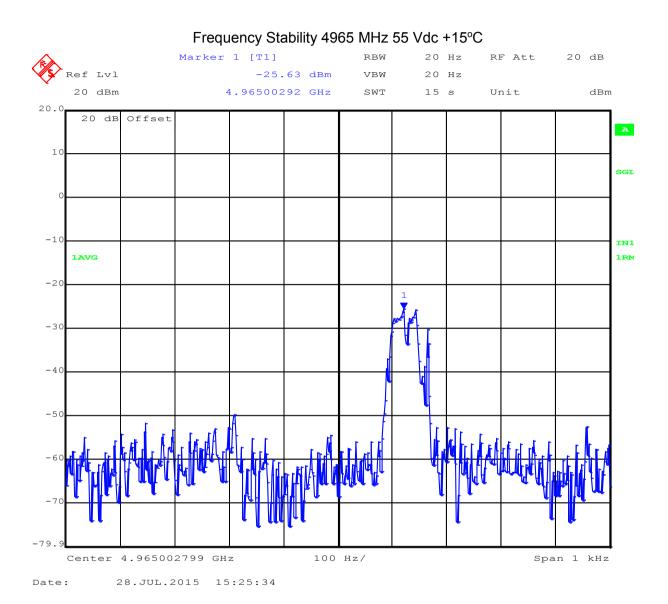
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:76 of 118

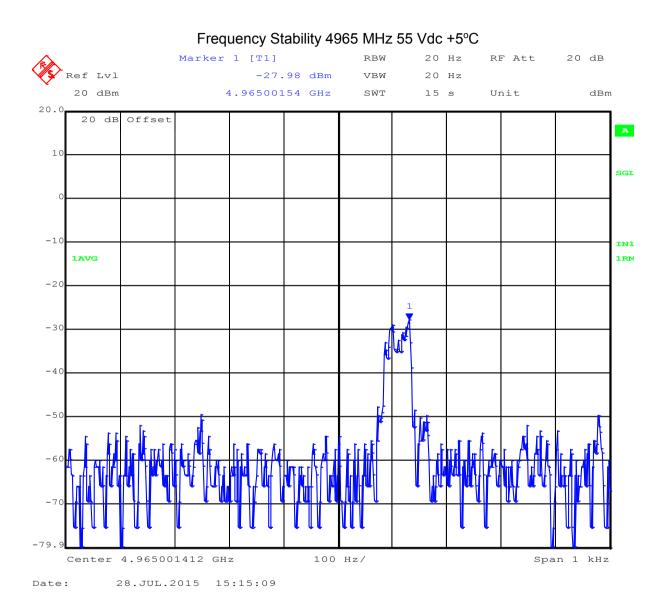
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:77 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:78 of 118

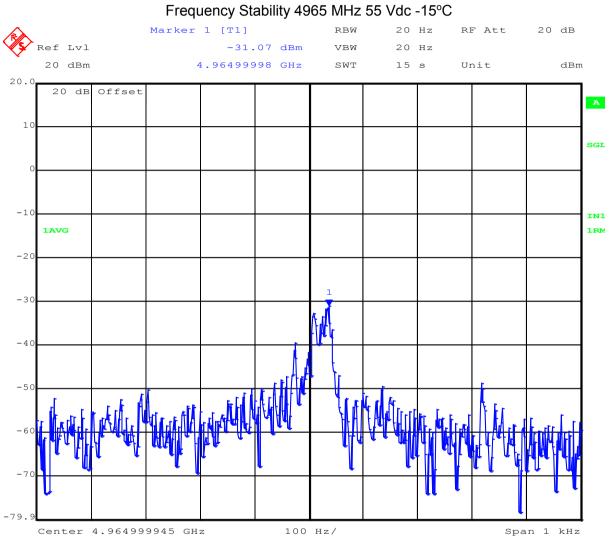
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:79 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

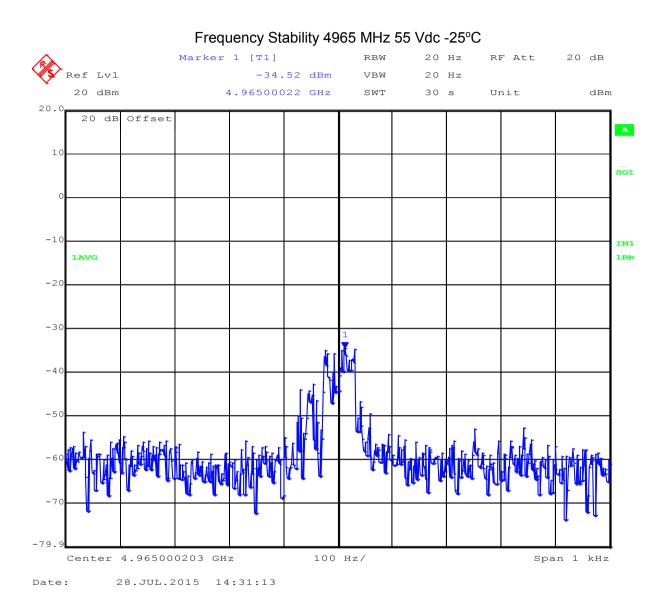
Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:80 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:81 of 118

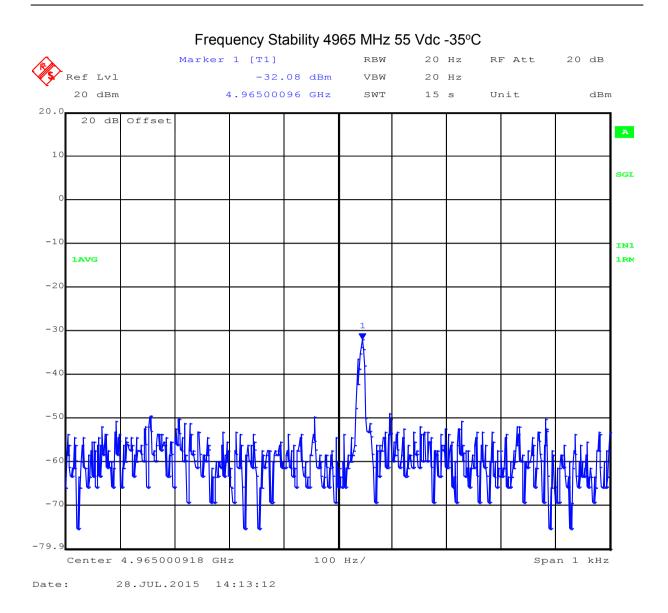
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:82 of 118


Date:

28.JUL.2015 14:42:15

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:83 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:84 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:85 of 118

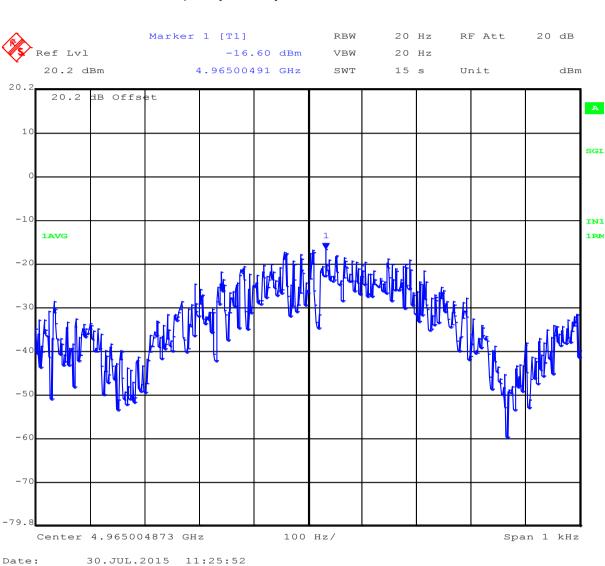
TABLE OF RESULTS Frequency Stability;-

Voltage	Variations	at Ambient
---------	------------	------------

Temperature	Voltage	FREQUENCY Delta (kHz)	Drift
Temperature	(Vac, 60 Hz)	Channel 4965 MHz	ppm
Ambient	+43.2	4.91	0.099
	+55.0	3.53	0.071
	+59.0	5.08	0.102

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

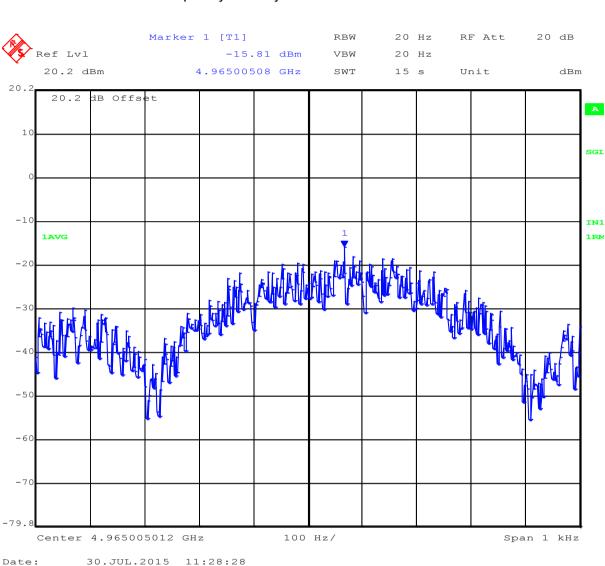
Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:86 of 118


Marker 1 [T1] RBW 20 Hz RF Att 20 dB VBW Ref Lvl -24.00 dBm 20 Hz 20 dBm 4.96500353 GHz SWT 15 s dBm Unit 20.0 20 dB Offset A 10 SGL -10 IN1 1AVG 1RM -20 -30 -40 -50 _ -7 -79. Center 4.96500352 GHz 100 Hz/ Span 1 kHz Date: 28.JUL.2015 15:32:43

Frequency Stability 4965 MHz 55.0 Vdc +23°C

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:87 of 118



Frequency Stability 4965 MHz 43.2 Vdc +23°C

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:88 of 118

Frequency Stability 4965 MHz 60.0 Vdc +23°C

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:89 of 118

Specification Limits – Frequency stability

FCC Part §90.213

(a) Unless noted elsewhere, transmitters used in the services governed by this part must have a minimum frequency stability as specified in the following table.

Minimum Frequency Stability

[Parts per million (ppm)]

Eroquonov rango	Fixed and base	Mobile stations					
Frequency range (MHz)	stations		2 watts or less output				
Below 25	^{1,2,3} 100	100	200				
25-50	20	20	50				
72-76	5		50				
150-174	^{5,11} 5	⁶ 5	^{4,6} 50				
216-220	1.0		1.0				
220-222 ¹²	0.1	1.5	1.5				
421-512	^{7,11,14} 2.5	⁸ 5	⁸ 5				
806-809	¹⁴ 1.0	1.5	1.5				
809-824	¹⁴ 1.5	2.5	2.5				
851-854	1.0	1.5	1.5				
854-869	1.5	2.5	2.5				
896-901	¹⁴ 0.1	1.5	1.5				
902-928	2.5	2.5	2.5				
902-928 ¹³	2.5	2.5	2.5				
929-930	1.5						
935-940	0.1	1.5	1.5				
1427-1435	⁹ 300	300	300				
Above 2450 ¹⁰							

¹⁰ Except for DSRCS equipment in the 5850-5925 MHz band, frequency stability is to be specified in the station authorization. Frequency stability for DSRCS equipment in the 5850-5925 MHz band is specified in subpart M of this part.

Manufacturers Specification for Frequency Stability

As no apparent frequency stability limits were provided the manufacturer's specification was used ±20 ppm.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:90 of 118

Laboratory Measurement Uncertainty for Frequency Stability

Measurement uncertainty	±0.866 ppm
-------------------------	------------

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-02 'Frequency Measurement'	0070, 0116, 0158, 0193, 0252, 0313, 0314.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:91 of 118

6.1.6. Spurious Emissions at Antenna Terminals - Transmitter

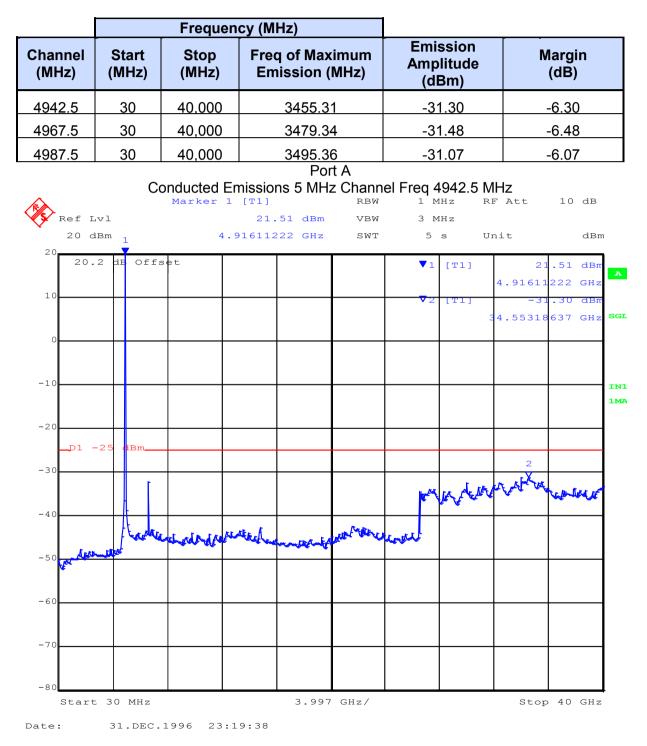
FCC 47 CFR Part 90, Subpart Y; §90.210(m)

Test Procedure

Transmitter conducted spurious emissions were measured for each bandwidth. Measurement were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency, 100% duty cycle and maximum power at all times. Conducted spurious emissions were measured to 40 GHz.

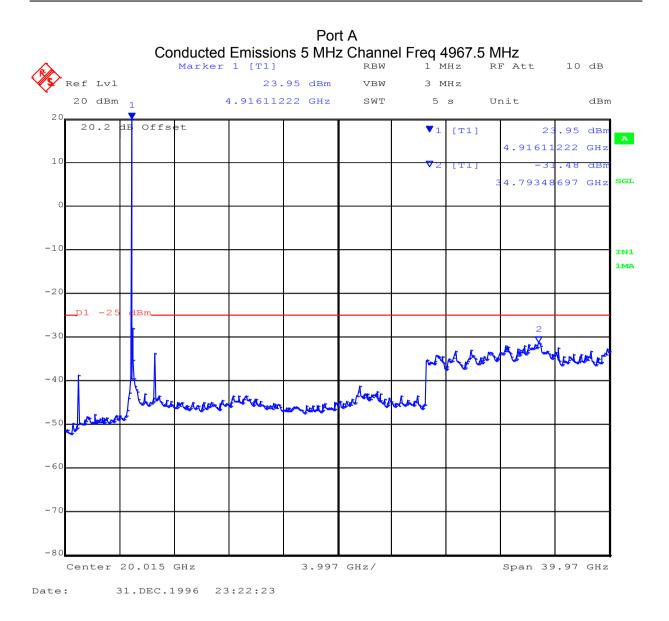
Conducted spurious emissions' testing was performed only in the configuration with the highest spectral density.

From FCC Part 90.210 (m)

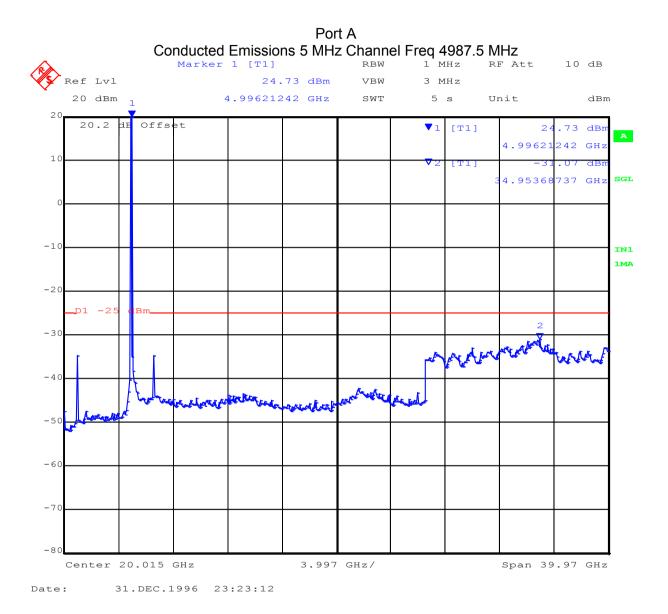

On any frequency removed from the assigned frequency between above 150 % of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, (P in Watts) whichever is the lesser attenuation.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:92 of 118

TABLE OF RESULTS – 5 MHz Bandwidth

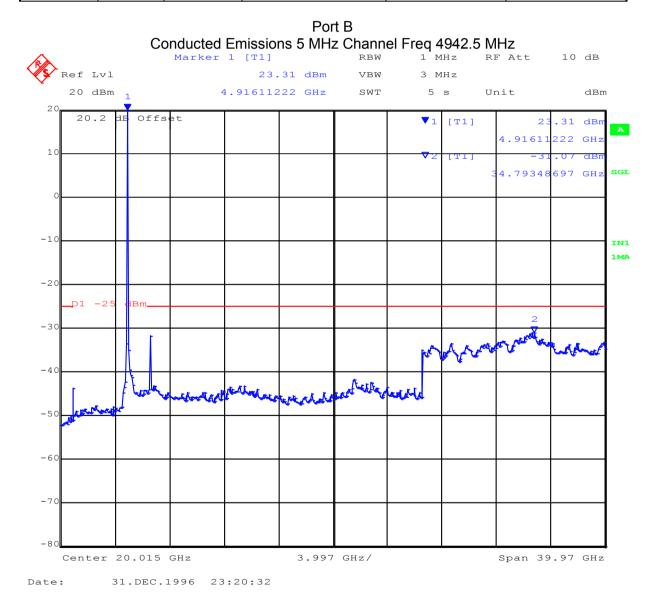

PORT A Limit: -25 dBm

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:93 of 118

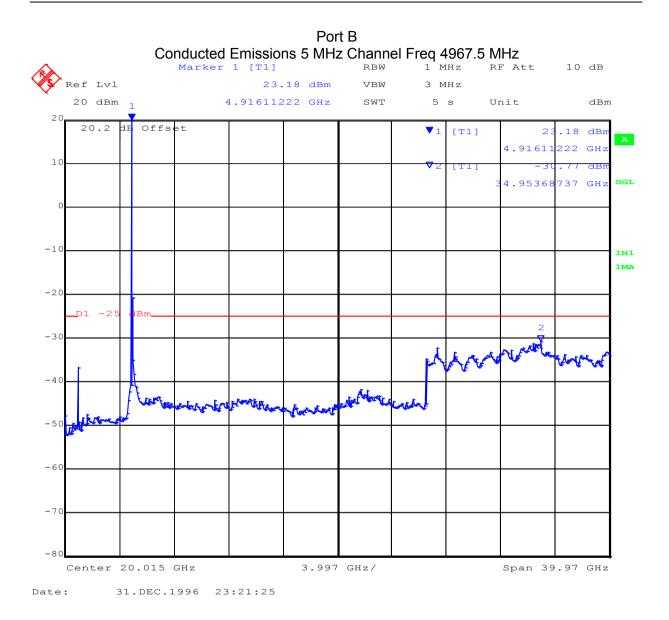
This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:94 of 118

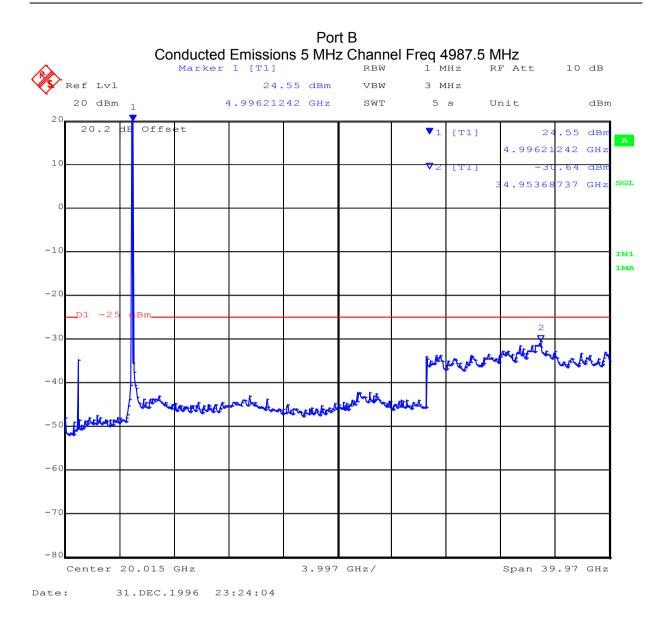

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:95 of 118

PORT B Limit: -25 dBm


		Frequen	cy (MHz)		
Channel (MHz)	Start (MHz)	Stop (MHz)	Freq of Maximum Emission (MHz)	Emission Amplitude (dBm)	Margin (dB)
4942.5	30	40,000	3479.34	-31.07	-6.07
4967.5	30	40,000	3495.36	-30.77	-5.77
4987.5	30	40,000	3495.36	-30.64	5.64

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:96 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:97 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:98 of 118

Specification Limits

Conducted Spurious Emission at Antenna Terminals – Transmitter Limits FCC Part §90.210

Emission Mask (m)

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 50 dB or 55 + 10*Log (P) dB, whichever is the lesser attenuation.

Laboratory Measurement Uncertainty for Conducted Spurious Emissions

Measurement uncertainty	±2.37 dB

Traceability

Method
Measurements were made per work instruction WI-05

'Measurement of Spurious Emissions'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:99 of 118

6.1.7. Radiated Spurious Emissions

FCC 47 CFR Part 90, §90.210(m)

Test Procedure

Measurements were made while EUT was operating in a modulated transmit mode of operation, at the appropriate center frequency, 100% duty cycle and maximum power at all times. Radiated spurious emissions were measured to 40 GHz. Substitution was performed on any emissions observed. The antenna port was attenuated with 50 dB attenuation plus a 50 Ω terminator.

The measurement equipment was set to measure in peak hold mode. The emissions were measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode.

The highest emissions relative to the limit are listed for each frequency spanned.

Measurements below 1 GHz utilized 100 KHz RBW, measurements above 1 GHz were performed using a minimum RBW of 1 MHz.

From FCC Part 90.210 (m)

On any frequency removed from the assigned frequency between above 150 % of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

Radiated emissions' testing was performed only in the configuration with the highest spectral density.

Attenuation

55 + 10 log (P) dB for 5 MHz bandwidth = 49.1 dB attenuation (P is in Watts)

Therefore maximum attenuation for any channel spacing is = 49.1 dB

5 MHz bandwidth limit: +24.1 – 49.1 = -25 dBm (82 dBuV)

Emission measurements were performed to the 10th harmonic of the transmitter. No emissions were found.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:100 of 118

Tes	st Freq.	4942.5 N	1Hz					E	ngineer	SB		
	Variant	5 MHz					Temp (°C)			18		
Freq.	Range	1 - 18 Gł	Ηz					Rel. I	Hum.(%)	42		
Power	Setting	Maximun	n (+27 d	lBm)			l	Press.	(mBars)	1003		
А	ntenna	50 ohm l	oad					Duty C	ycle (%)	100%		
Test I	Notes 1											
Test I	Notes 2											
		dBm -10.0 -20.0 -30.0 -40.0 -50.0 -50.0 -70.0 -70.0 -70.0 -70.0 Radi Filen	ated Emi ame: c:\v	man	Vasona by EM		ate: ETS	10000.0 11 TX 853 -18.emi	5000	31 Jul 15 09 (1) Hk (2) Vs (2) Vs (prizonta ertical g t 3m 3m	
Formally m		[[1		
Frequency MHz	Raw dBm	Cable Loss	AF dB	Level dBm	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBm	Margin dB	Pass /Fail	Comments
4917.836	-19.1	5.7	1.6	-11.7	Peak [Scan]	Н	100	0				FUND
			F unia e i e		D: 11)A/: d a la ava		ion
Legend:	TX = T	ransmitter	Emissio	ns; DIG =	Digital Emissions	S; FUN	D = Fu	ndame	ntai; vvB =	= wideban		

The emission breaking the limit line is the transmitter fundamental.

dBm to dBuV Conversion: dBuV = dBm + 107.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:101 of 118

										1		
Tes	st Freq.	4967.5 M	Hz					E	ngineer	SB		
	Variant	5 MHz					Temp (°C) 18					
Freq.	Range	1 - 18 GHz						Rel. H	-lum.(%)	42		
Power	Setting	Maximum	n (+27 d	lBm)				Press.	(mBars)	1003		
Α	ntenna	50 ohm le	bad					Duty C	ycle (%)	100%		
Test I	Notes 1											
Test I	Notes 2											
					Vasona by EM		ate: ETS	10000.0 U TX 893 I-18.emi	18		orizonta ertical nt 3 3 3m 3m	
Formally m	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass	Comments
MHz	dBm	Loss	dB	dBm	Туре	1.01	cm	Deg	dBm	dB	/Fail	
4951.904	-19.7	5.7	1.5	-12.4	Peak [Scan]	V	100	0				FUND
Legend:	TX = T	ransmitter	Emissio	ns; DIG =	Digital Emissions	s; FUN	D = Fu	ndamei	ntal; WB =	= Wideban	d Emiss	ion

The emission breaking the limit line is the transmitter fundamental.

dBm to dBuV Conversion: dBuV = dBm + 107.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:102 of 118

		·								1		
Те	st Freq.	4987.5 MHz							ngineer	SB		
	Variant	5 MHz					Temp (°C) 18					
Freq	. Range	1 - 18 GH	1 - 18 GHz					Rel. I	-lum.(%)	42		
Power	Setting	Maximum	n (+27 d	lBm)				Press.	(mBars)	1003		
A	Antenna	50 ohm le	oad					Duty C	ycle (%)	100%		
Test	Notes 1											
Test	Notes 2											
					Vasona by EM		ate: ETS	10000.0 ii TX 893 1-18.em	5 5 1 1 1 1 1 1		prizonta entical g t 3m 3m	
Formally n	Raw	Cable Loss	AF	Level	Measurement	Pol	Hgt	Azt	Limit dBm	Margin dB	Pass /Fail	Comments
Frequency	ubiii	LUSS	ub	ubili	Туре		cm 100	Deg 0	ubili	uв	/Faii	
MHz	10.2	E O	15	11.0	Dook [Soon]							
	-18.2	5.8	1.5	-11.0	Peak [Scan]	V	100	0				FUND
MHz	-				Peak [Scan] Digital Emissions			-	ntal; WB =	- Wideban	d Emiss	

The emission breaking the limit line is the transmitter fundamental.

dBm to dBuV Conversion: dBuV = dBm + 107.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:103 of 118

Radiated Spurious Emission Limits;

Transmitter Limits FCC Part §90.210 (m)

Emission Mask M

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth: 50 dB or 55 + 10 log(P) dB, whichever is the lesser attenuation.

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method
Measurements were made per work instruction WI-03
'Measurement of Radiated Emissions'

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:104 of 118

6.1.8. Digital Emissions (0.03 – 1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

$$FS = R + AF + CORR$$

where:

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of $51.5dB\mu V$; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dRuV/m = 100 uV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:105 of 118

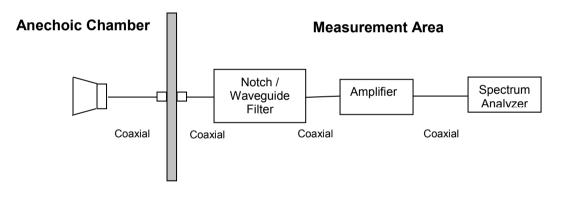
Tes	t Freq. NA					Engineer			ЈМН			
١	Variant Digital Emissions					Temp (°C) 20						
Freq.	Freq. Range 30-1000 MHz				Rel. Hum.(%) 56							
Power	Setting	NA						Press	. (mBars)	848		
A	ntenna	32 dBi										
Test N	lotes 1	SN# No	Serial nu	umber on ur	nit							
Test N	lotes 2											
WICENESS dBuV/m Vasona by EMISoft 08 Dec 14 19:14 09 EV Vertical 09 Dec 14 19:14 09 EV Vertical 00 Dec 14 19:14 00 Dec 14 19:14												
Formally r	neasui	red emi	ssion	peaks								
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measuremen t Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
319.999487	45.4	5.2	-16.7	33.9	Quasi Max	Н	99	179	46.0	-12.1	Pass	
240.015	56.0	4.8	-19.0	41.9	Quasi Max	Н	100	157	46	-4.2	Pass	
30.251	43.5	3.5	-9.9	37.1	Quasi Max	V	224	18	40	-2.9	Pass	
34.975	45.3	3.6	-13.6	35.3	Quasi Max	V	142	12	40	-4.7	Pass	
120.005	48.6	4.2	-17.5	35.3	Quasi Max	Н	209	204	43.5	-8.2	Pass	
360.008	42.9	5.3	-15.4	32.8	Quasi Max	Н	217	152	46	-13.2	Pass	
399.995	49.0	5.5	-14.8	39.7	Quasi Max	Н	160	202	46	-6.3	Pass	
Legend:		49.0 5.5 -14.8 39.7 Quasi Max H 160 202 46 -6.3 Pass TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental Frequency ETSI Vid Avg Type = 100 kHz RBW, 100 kHz VBW, Peak Detector, Video Average, 100 Sweeps										

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:106 of 118

6.1.9. <u>Receiver Radiated Spurious Emissions (above 1 GHz)</u>

Industry Canada RSS-Gen §4.10, §6


Test Procedure

Radiated emissions above 1 GHz are measured in the anechoic chamber at a 3-meter distance on every azimuth in both horizontal and vertical polarities. The emissions are recorded and maximized as a function of azimuth by rotation through 360° with a spectrum analyzer in peak hold mode. Depending on the frequency band spanned a notch filter and waveguide filter was used to remove the fundamental frequency. The highest emissions relative to the limit are listed for each frequency spanned.

All measurements on any frequency or frequencies over 1 MHz are based on the use of measurement instrumentation employing an average detector function. All measurements above 1 GHz were performed using a minimum resolution bandwidth of 1 MHz.

All Sectors of the EUT were tested simultaneously

Test Measurement Set up

Measurement set up for Radiated Emission Test

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

$$FS = R + AF + CORR - FO$$

where: FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:107 of 118

For example:

Given receiver input reading of 51.5 dB μ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 \text{ dB}\mu\text{V/m}$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level $(dB\mu V/m) = 20 * Log (level (\mu V/m))$

40 dB μ V/m = 100 μ V/m 48 dB μ V/m = 250 μ V/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:108 of 118

Specification

Radiated Receiver Spurious Emissions

RSS-Gen §4.10 the search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (e.g., local oscillator, intermediate or carrier frequency), or 30 MHz, whichever is higher, to at least 3 times the highest tunable or local oscillator frequency, whichever is higher, without exceeding 40 GHz.

For emissions below 1000 MHz, measurements shall be performed using a CISPR quasi-peak detector and the related measurement bandwidth. As an alternative to CISPR quasi-peak measurement, compliance with the emission limit can be demonstrated using measuring equipment employing a peak detector function properly adjusted for factors such as pulse desensitization as required, with an equal or greater measurement bandwidth relative to the applicable CISPR quasi-peak bandwidth.

Above 1000 MHz, measurements shall be performed using an average detector with a minimum resolution bandwidth of 1 MHz.

RSS-Gen §6 Receiver Spurious Radiated Limits Spurious emissions from receivers shall not exceed the radiated limits shown in the table below:

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

RSS-Gen Spurious Emissions Limits

Traceability:

Test Equipment Used
0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:109 of 118

Receiver Radiated Spurious Emissions above 1 GHz

Tes	t Freg.	4967.5 N	Hz						Engineer	SB		
	Variant	5 MHz						emp (°C)	18			
	Range	1 - 18 GHz					Rel. Hum.(%)		,	42		
Power S	-	Maximun		IPm)					. (mBars)	1003		
				ып)					. ,			
	ntenna	50 ohm le	bad					Duty	Cycle (%)	100%		
	lotes 1											
Test N	lotes 2											
MiC®MLa	LS	dBuV/m 80.0 70.0 60.0 50.0 40.0 20.0 20.0 10.0 1000.0 Radia Filen	ated Emil		/asona by EMi		te: FCC	10000.0 RE 1-1	Pk 4/	Jul 15 09:4 (1) Hori 2) Vert 2) Vert - Av Lmt + Debug Meas Dist 3 Spec Dist 3 squency: M	ronti ical m m	
Formally m	Raw	Cable	AF	Level	Measurement	Pol	Hgt	Azt	Limit	Margin	Pass	Comments
MHz	dBuV	Loss	dB	dBuV/m	Туре	,	cm	Deg	dBuV/m	dB	/Fail	
17182.365	38.0	12.4	0.4	50.8	Peak [Scan]	Н	100					Noise
Legend:					Digital Emissions							on
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits p	per 15.205	5	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:110 of 118

6.1.10. ac Wireline Emissions

FCC, Part 15 Subpart C §15.207

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:111 of 118

Measurement Results for ac Wireline Conducted Emissions (150 kHz – 30 MHz)

163	st Freq.	N/A					Engineer	GMH		
	Variant	DC Line Emissions Temp (°C) 20								
Freq.	Range	0.150 MHz - 30 MHz Rel. Hum.(%)						75		
Power	Setting	NA				Pres	s. (mBars)	999		
Δ	ntenna	N/A								
			nro 115\/o		E V do					
	Notes 1		npro 115Va							
Test	Notes 2	POE Mo	del #: CPU	55A-270-1						
Micem	abs	dBu√ 70.0 50.0 40.0 + 30.0 20.0	Å. • • • •	va t	sona by EMiSc	nt + +	\/	[2] Qpł Aw Aw	Live Neutral (Int Unt Jug mal	
		10.0 0.15 Powe Filen	er Line Condu ame: c:\prog	1.0 ucted Emiss ram files ver) sions misoft - vasonalves	10. Terr ults'rdwn34 - a		30.0		
Formally n	neasui Raw dBuV	Filen		ucted Emiss ram files\ei				30.0		Comments
Frequency MHz	Raw dBuV	red emis Cable Loss	SSION PE	aks Level dBuV	sions misoft - vasona'res Measurement Type	Ten ults'rdwn34 - : Line	Limit dBuV	Margin dB	Pass /Fail	Comments
Frequency	Raw	red emis	ssion pe	ram files ver ram files ver raks Level	sions misoft - vasonalves Measurement	Terr ults'vdwn34 - :	pplate: CISPR: ap0158770\RD	0.0 228 ACMair WN34 - 114 Margin	Pass	Comments
Frequency MHz 0.155	Raw dBuV 34.1	red emis Cable Loss 9.9	Factors dB 0.1	aks Level dBuV 44.1	sions misoft - vasonalves Measurement Type Average	Terr utts'vrdwn34 - a Line Neutral	Limit dBuV 55.75	Margin dB -11.7	Pass /Fail Pass	Comments
Frequency MHz 0.155 0.155	Raw dBuV 34.1 43.1	red emis Cable Loss 9.9 9.9	Factors dB 0.1 0.1	aks Level dBuV 44.1 53.1	sions misoft - vasonalves Measurement Type Average Quasi Peak	Terr utts'vrdwn34 - a Line Neutral Neutral	Limit dBuV 55.75 65.75	Margin dB -11.7 -12.6	Pass /Fail Pass Pass	Comments
Frequency MHz 0.155 0.155 0.187	Raw dBuV 34.1 43.1 38.1	red emis Cable Loss 9.9 9.9 9.9	Factors 0.1 0.1 0.1	aks Level dBuV 44.1 53.1 48.1	sions misoft - vasona\res Measurement Type Average Quasi Peak Quasi Peak	Line Neutral Neutral Neutral Neutral	Limit dBuV 55.75 65.75 64.19	Margin dB -11.7 -12.6 -16.1	Pass /Fail Pass Pass Pass	Comments
Frequency MHz 0.155 0.155 0.187 0.187	Raw dBuV 34.1 43.1 38.1 29.2	red emis Cable Loss 9.9 9.9 9.9 9.9 9.9	Factors dB 0.1 0.1 0.1 0.1 0.1	aks Level dBuV 44.1 53.1 48.1 39.1	sions misoft - vasona\res Measurement Type Average Quasi Peak Quasi Peak Average	Line Neutral Neutral Neutral Neutral Neutral	Limit dBuV 55.75 65.75 64.19 54.19	Margin dB -11.7 -15.1	Pass /Fail Pass Pass Pass Pass	Comments
Frequency MHz 0.155 0.155 0.155 0.187 0.187 0.217	Raw dBuV 34.1 43.1 38.1 29.2 34.7	red emis Cable Loss 9.9 9.9 9.9 9.9 9.9 9.9 9.9	Factors 0.1 0.1 0.1 0.1 0.1	Level Heising dBuV 44.1 53.1 48.1 39.1 44.7	sions misoft - vasonalves Measurement Type Average Quasi Peak Quasi Peak Average Quasi Peak	Line Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	Limit dBuV 55.75 65.75 64.19 54.19 62.92	Margin dB -11.7 -12.6 -16.1 -15.1 -18.2	Pass /Fail Pass Pass Pass Pass Pass Pass	Comments
Frequency MHz 0.155 0.155 0.187 0.187 0.217 0.217	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4	Cable Loss 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.	Factors dB 0.1 0.1 0.1 0.1 0.1	Level Heising dBuV 44.1 53.1 48.1 39.1 44.7 36.3 30.3	sions misoft - vasonalves Measurement Type Average Quasi Peak Average Quasi Peak Average Quasi Peak Average	Line Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral	Limit dBuV 55.75 65.75 64.19 62.92 52.92	Margin dB -11.7 -12.6 -16.1 -15.1 -18.2 -16.6	Pass /Fail Pass Pass Pass Pass Pass Pass Pass	Comments
Frequency MHz 0.155 0.155 0.187 0.187 0.217 0.217 0.440	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8	Cable Loss 9.9	Factors 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level Heising dBuV 44.1 53.1 48.1 39.1 44.7 44.8 44.8	sions misoft - vasonalves Measurement Type Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak	Line Neutral Neutral Neutral Neutral Neutral Neutral Neutral Neutral Live	Limit dBuV 55.75 65.75 64.19 54.19 62.92 52.92 57.06	Margin dB -11.7 -15.1 -15.1 -16.6 -12.3	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 0.155 0.155 0.187 0.187 0.217 0.217 0.440	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8 27.2	Cable Loss 9.9	Factors 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level Heister dBuV 44.1 53.1 48.1 39.1 44.7 36.3 44.8 37.2 37.2	sions misoft - vasona'ves Measurement Type Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average	Line Neutral Neutral Neutral Neutral Neutral Neutral Neutral Live Live	Limit dBuV 55.75 65.75 64.19 52.92 52.92 57.06 47.06	Margin dB -11.7 -12.6 -16.1 -15.1 -15.1 -16.6 -12.3 -9.8	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 0.155 0.155 0.187 0.217 0.217 0.440 0.440	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8 27.2 26.4	Cable Loss 9.9	Factors 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	Level Heister dBuV 44.1 53.1 48.1 39.1 44.7 36.3 44.8 37.2 36.4	sions misoft - vasona'ves Measurement Type Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak	Line Neutral Neutral Neutral Neutral Neutral Neutral Neutral Live Live	Limit dBuV 55.75 65.75 64.19 54.19 62.92 57.06 47.06 47.06	Margin WN34 - 112 WN34 - 112 WN34 - 112 WN34 - 112 WN34 - 112 WN34 - 112 Margin dB -11.7 -12.6 -16.1 -15.1 -15.1 -15.1 -15.1 -15.2 -16.6 -12.3 -9.8 -10.7	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 0.155 0.155 0.155 0.187 0.217 0.217 0.440 0.440 0.440 0.440 0.440	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8 27.2 26.4 34.8 27.2 26.4	Cable Loss 9.9	Factors dB 0.1	Level dBuV 44.1 53.1 48.1 39.1 44.7 36.3 44.8 37.2 36.4 44.3	sions misoft - vasonalves Measurement Type Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak	Line Line Neutral Neutral Neutral Neutral Neutral Neutral Live Live Live Live Live Live	Limit dBuV 55.75 65.75 65.75 64.19 54.19 62.92 52.92 57.06 47.06 47.06 57.06	Margin dB -11.7 -12.6 -16.1 -15.1 -15.1 -15.2 -16.6 -12.3 -9.8 -10.7 -12.8	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 0.155 0.155 0.187 0.217 0.217 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.442	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8 27.2 26.4 34.3 28.4	Cable Cable Loss 9.9	Factors dB 0.1	Level Heiss dBuV 44.1 53.1 48.1 39.1 44.7 36.3 44.8 37.2 36.4 38.4 38.4	sions misoft - vasonalves Measurement Type Average Quasi Peak Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Quasi Peak	Line Neutral Neutral Neutral Neutral Neutral Neutral Live Live Live Live Live Live	Limit dBuV 55.75 65.75 65.75 64.19 54.19 62.92 52.92 57.06 47.06 47.06 57.06 55.76	Margin dB -11.7 -12.6 -16.1 -15.1 -18.2 -16.6 -12.3 -9.8 -10.7 -12.8 -18.1	Pass /Fail Pass Pass Pass Pass Pass Pass Pass Pas	Comments
Frequency MHz 0.155 0.155 0.187 0.217 0.217 0.440 0.440 0.440 0.440 0.442 0.440 0.440	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8 27.2 26.4 34.3 28.4 21.0	Cable Loss 9.9	Factors dB 0.1	Level Herei dBuV 44.1 53.1 48.1 39.1 44.7 36.3 44.8 37.2 36.4 38.4 31.0	Measurement Type Average Quasi Peak Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Quasi Peak Quasi Peak Quasi Peak Quasi Peak	Line Neutral Neutral Neutral Neutral Neutral Neutral Live Live Live Live Live Live Live Live	Limit dBuV 55.75 65.75 64.19 54.19 62.92 52.92 57.06 47.06 47.06 57.06 56.47 46.47	Margin dB -11.7 -12.6 -16.1 -15.1 -18.2 -16.6 -12.3 -9.8 -10.7 -12.8 -10.7 -12.8 -18.1 -15.5	Pass Pass Pass Pass Pass Pass Pass Pass	Comments
Frequency MHz 0.155 0.155 0.187 0.217 0.217 0.440 0.440 0.440 0.440 0.442 0.440 0.440 0.472 0.472 0.578	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8 27.2 26.4 34.3 28.4 21.0 28.8	Cable Loss 9.9	Factors dB 0.1	Level Herei dBuV 44.1 53.1 48.1 39.1 44.7 36.3 44.8 37.2 36.4 44.3 38.4 31.0 38.9	inisoft - vasonaves misoft - vasonaves Measurement Type Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Quasi Peak Quasi Peak Quasi Peak	Line Neutral Neutral Neutral Neutral Neutral Neutral Live Live Live Live Live Live Live Neutral	Limit dBuV 55.75 65.75 64.19 62.92 52.92 57.06 47.06 57.06 57.06 56.47 46.47 56	Margin dB -11.7 -12.6 -16.1 -15.1 -16.1 -16.2 -16.6 -12.3 -9.8 -10.7 -12.8 -10.7 -12.8 -18.1 -15.5 -17.2	Pass Pass Pass Pass Pass Pass Pass Pass	Comments
Frequency MHz 0.155 0.155 0.187 0.217 0.217 0.440 0.440 0.440 0.442 0.472 0.578 0.578	Raw dBuV 34.1 43.1 38.1 29.2 34.7 26.4 34.8 27.2 26.4 34.3 28.4 21.0 28.8 21.9	Powe Filen Cable Loss 9.9	Factors dB 0.1	Level Hereit dBuV 44.1 53.1 48.1 39.1 44.7 36.3 44.8 37.2 36.4 44.3 38.4 31.0 38.9 31.9 31.9	sions misoft - vasonalves Measurement Type Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Average Quasi Peak Quasi Peak Average Quasi Peak Average Quasi Peak Average	Line Neutral Neutral Neutral Neutral Neutral Neutral Live Live Live Live Live Live Neutral Neutral	Limit dBuV 55.75 65.75 64.19 54.19 62.92 52.92 57.06 47.06 47.06 57.06 56.47 46.47 56 46	Margin dB -11.7 -12.6 -16.1 -15.1 -15.1 -16.6 -12.3 -9.8 -10.7 -12.8 -10.7 -12.8 -18.1 -15.5 -17.2 -14.1	Pass Pass Pass Pass Pass Pass Pass Pass	Comments

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

	MicoMLabs To: Serial #: Issue Date:		Radwin Ltd AP0158770 Wireless Module FCC 47 CFR Part 90, Subpart Y; IC RSS-111 RDWN34-U9 Rev A 21st September 2015 112 of 118
I	0.873 35.0 9.9	0.1 45.1 Quasi	Peak Neutral 56 -10.9 Pass

0.073	35.0	9.9	0.1	45.1	Quasi Peak	neutrai	00	-10.9	Pass	
0.876	30.1	9.9	0.1	40.2	Average	Live	46	-5.9	Pass	
0.876	35.5	9.9	0.1	45.5	Quasi Peak	Live	56	-10.5	Pass	
0.877	35.8	9.9	0.1	45.8	Quasi Peak	Live	56	-10.2	Pass	
0.877	31.2	9.9	0.1	41.2	Average	Live	46	-4.8	Pass	
1.189	28.2	9.9	0.1	38.2	Average	Neutral	46	-7.8	Pass	
1.189	34.6	9.9	0.1	44.6	Quasi Peak	Neutral	56	-11.4	Pass	
7.294	41.2	10.3	0.3	51.8	Quasi Peak	Live	60	-8.2	Pass	
7.294	32.0	10.3	0.3	42.6	Average	Live	50	-7.4	Pass	
8.379	39.2	10.3	0.3	49.9	Quasi Peak	Neutral	60	-10.1	Pass	
8.379	30.9	10.3	0.3	41.5	Average	Neutral	50	-8.5	Pass	
Legend:	DIG =	Digital Dev	vice Emissi	on; TX = T	ransmitter Emiss	ion; FUND =	Fundament	al Frequei	псу	
	NRB =	Non-Rest	ricted Ban	d, Limit is	20 dB below Fun	damental; RI	B = Restricte	d Band		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:113 of 118

Specification

Limits

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

§15.207 (a) Limit Matrix

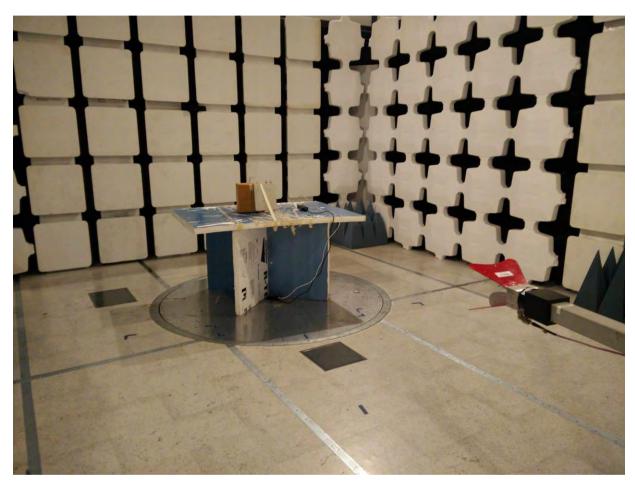
The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

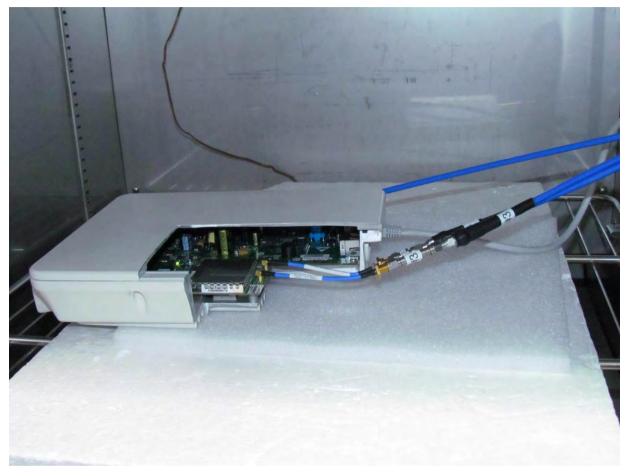
Measurement uncertainty	±2.64 dB


This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Radwin Ltd AP0158770 Wireless Module To: FCC 47 CFR Part 90, Subpart Y; IC RSS-111 Serial #: RDWN34-U9 Rev A Issue Date: 21st September 2015 Page: 114 of 118

7. TEST SET-UP PHOTOGRAPHS

Conducted Measurement Test Set-Up 7.1.



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:115 of 118

7.2. Conducted Test Program

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:116 of 118

7.3. Ac Wireline Test Program

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Radwin Ltd AP0158770 Wireless ModuleTo:FCC 47 CFR Part 90, Subpart Y; IC RSS-111Serial #:RDWN34-U9 Rev AIssue Date:21st September 2015Page:117 of 118

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com