



# DATE: 25 July 2017

# I.T.L. (PRODUCT TESTING) LTD. FCC/IC Radio Test Report for AeroScout

Equipment under test:

# WanderGuard Indoor Keypad

# WGB-KPD-K100-IN (125kHz Transmitter)

Tested by:

M. Zohar

Approved by: <u>\_\_\_\_\_\_</u> Y. Zucker

This report must not be reproduced, except in full, without the written permission of I.T.L. (Product Testing) Ltd. This report relates only to items tested.





# Measurement/Technical Report for AeroScout

# WanderGuard Indoor Keypad

# WGB-KPD-K100-IN

# FCC ID: Q3HWDKEYPAD

# IC: 5115A-WDKEYPAD

| This report concerns: | Original Grant: X                                       |              |
|-----------------------|---------------------------------------------------------|--------------|
|                       | Class I Change:                                         |              |
|                       | Class II Change:                                        |              |
|                       |                                                         |              |
| Equipment type:       | DCD - Part 15 Low Power Transmitter Be                  | low 1705 kHz |
|                       | Low Power Transmitter General Field Lim<br>(9kHz-30MHz) | nts          |
|                       | (SKIL SOMIL)                                            |              |
| Limits used:          | 47CFR15 Section 15.209                                  |              |
|                       | RSS-Gen, Issue 4, November 2014                         |              |
|                       |                                                         |              |

Measurement procedure used ANSI C.63.10 2013

| Application for Certification  | Applicant for this device:           |  |
|--------------------------------|--------------------------------------|--|
| prepared by:                   | (different from "prepared by")       |  |
| R. Pinchuck                    | Reuven Amsallem                      |  |
| ITL (Product Testing) Ltd.     | AeroScout                            |  |
| 1 Bat Sheva Street             | 2 Ilan Ramon St., Science Park       |  |
| Lod, 7116002                   | Ness-Ziona, 7403635, Israel          |  |
| Israel                         | Tel: +972-8-936-9393                 |  |
| e-mail Rpinchuck@itlglobal.org | Fax: +972-8-936-5977                 |  |
|                                | e-mail: reuven.amsalem@aeroscout.com |  |



# TABLE OF CONTENTS

| 1. | GENERA   | L INFORMATION                                             | <b>4</b>        |
|----|----------|-----------------------------------------------------------|-----------------|
|    | 1.1      | List of Accreditations                                    |                 |
|    | 1.2      | Product Description                                       | 6               |
|    | 1.4      | Test Methodology                                          | 6               |
|    | 1.5      | Test Facility                                             | 6               |
|    | 1.6      | Measurement Uncertainty                                   | 6               |
| 2. | SYSTEM   | TEST CONFIGURATION                                        | 7               |
|    | 2.1      | Justification                                             | 7               |
|    | 2.2      | EUT Exercise Software                                     | 7               |
|    | 2.3      | Special Accessories                                       | 7               |
|    | 2.4      | Equipment Modifications                                   | /               |
|    | 2.5      | Configuration of Tested System                            | /               |
| 3. | CONDUC   | TED & RADIATED MEASUREMENT TEST SETUP PHOTOS              | 8               |
| 4. | CONDUC   | TED EMISSION FROM AC MAINS                                | 10              |
|    | 4.1      | Test Specification                                        | 10              |
|    | 4.2      | Test Procedure                                            | 10              |
|    | 4.3      | l est Limit                                               | 10              |
|    | 4.4      | Lest Results                                              | 11              |
| _  | 4.5      |                                                           | 20              |
| 5. | FIELD ST | RENGTH OF FUNDAMENTAL                                     | 21              |
|    | 5.1      | Lest Specification                                        |                 |
|    | 5.Z      | Test Limit                                                | ∠⊺<br>21        |
|    | 5.0      | Test Results                                              |                 |
|    | 5.5      | Test Instrumentation Used: Field Strength of Fundamental  |                 |
| 6  |          | D EMISSION & KHZ - 30 MHZ                                 | 25              |
| 0. | 6 1      | Test Specification                                        | <b>23</b><br>25 |
|    | 6.2      | Test Procedure                                            | 25              |
|    | 6.3      | Test Limit                                                | 25              |
|    | 6.4      | Test Results                                              | 25              |
|    | 6.5      | Test Instrumentation Used; Radiated Measurements          | 27              |
|    | 6.6      | Field Strength Calculation                                | 27              |
| 7. | BANDWI   | DTH FOR 125 KHZ TRANSMITTER                               | 28              |
|    | 7.1      | Test Specification                                        | 28              |
|    | 7.2      | Test Procedure                                            | 28              |
|    | 7.3      | Test Limit                                                | 28              |
|    | 7.4      | I est Kesults                                             | 28              |
| _  | 1.5      |                                                           | 28              |
| 8. | ANTENN   | A INFORMATION/GAIN                                        | 29              |
| 9. | APPEND   | X A - CORRECTION FACTORS                                  | 30              |
|    | 9.1      | Correction factors for RF CABLE for Semi Anechoic Chamber | 30              |
|    | 9.2      | Correction factors for ACTIVE LOOP ANTENNA                | 31              |



# 1. General Information

# 1.1 Administrative Information

| Manufacturer:                                               | AeroScout                                                                                                 |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Manufacturer's Address:                                     | 2 Ilan Ramon St., Science Park<br>Ness-Ziona, 7403635, Israel<br>Tel: +972-936-9393<br>Fax: +972-936-5977 |
| Manufacturer's Representative:                              | Leonid Shikelman                                                                                          |
| Equipment Under Test (E.U.T):                               | WanderGuard Indoor Keypad                                                                                 |
| Equipment Serial No.:                                       | Not designated                                                                                            |
| HVIN                                                        | WGB-KPD-K100-IN                                                                                           |
| PMN                                                         | WGB-KPD-K100-IN                                                                                           |
| Date of Receipt of E.U.T:                                   | May 14, 2017, July 25, 2017*                                                                              |
| Start of Test:                                              | May 14, 2017, July 25, 2017*                                                                              |
| End of Test:                                                | July 11, 2017                                                                                             |
| Test Laboratory Location:                                   | I.T.L (Product Testing) Ltd.<br>1 Bat Sheva St.,<br>LOD 7120101<br>ISRAEL                                 |
| Test Specifications:<br>*Bandwidth testing was re-tested of | FCC Part 15, Subpart C, Section 15.209<br>RSS-Gen, Issue 4, November 2014<br>on July 25, 2017.            |



### 1.2 List of Accreditations

The EMC laboratory of I.T.L. is accredited by the following bodies:

- 1. The American Association for Laboratory Accreditation (A2LA) (U.S.A.), Certificate No. 1152.01.
- 2. The Federal Communications Commission (FCC) (U.S.A.), FCC Designation No. IL1005.
- 3. The Israel Ministry of the Environment (Israel), Registration No. 1104/01.
- 4. Industry Canada (Canada), IC File No.: 46405-4025; Sites No. IC 4025A-1, 4025A-2.

I.T.L. Product Testing Ltd. is accredited by the American Association for Laboratory Accreditation (A2LA) and the results shown in this test report have been determined in accordance with I.T.L.'s terms of accreditation unless stated otherwise in the report.



# 1.3 Product Description

The WanderGuard Indoor Keypad is part of WanderGuard system, located inside the controlled area. The Indoor Keypad enables staff (or visitors) to exit through the door (unique codes enable cancelling any existing system alarms).

| Model name                | WGB-KPD-K100-IN                                 |
|---------------------------|-------------------------------------------------|
| Working voltage           | 12.0VDC with 2 optional types of AC/DC          |
|                           | adapters and via DC-DC converter (24V-12V) that |
|                           | is in place in the Exciter 5700                 |
| Mode of operation         | Transceiver                                     |
| Modulation                | OOK                                             |
| Operation Frequency Range | 125kHz                                          |
| Transmit power            | 8.7dBm                                          |
| Antenna gain              | N/A (air coil)                                  |
| Modulation BW             | 2.7Kbps                                         |

### 1.4 Test Methodology

Radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance of 3 meters.

### 1.5 Test Facility

Emissions tests were performed at I.T.L.'s testing facility in Lod, Israel. I.T.L.'s EMC Laboratory is accredited by A2LA, certificate No. 1152.01 and its FCC Designation No. IL1005.

### 1.6 Measurement Uncertainty

#### **Conducted Emission**

Conducted Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) 0.15 – 30 MHz: Expanded Uncertainty (95% Confidence, K=2): ± 3.44 dB

### **Radiated Emission**

Radiated Emission (CISPR 11, EN 55011, CISPR 22, EN 55022, ANSI C63.4) for open site 30-1000MHz:

Expanded Uncertainty (95% Confidence, K=2):  $\pm 4.98 \text{ dB}$ 



# 2. System Test Configuration

### 2.1 Justification

The E.U.T contains a LF 125kHz transceiver. Testing was performed while the E.U.T was transmitting continuously at 125kHz with modulation in installation position as described by the customer. For AC line conducted emission testing, 2 types of AC/DC adapters were tested.

2.2 EUT Exercise Software

No special exercise software was needed.

### 2.3 Special Accessories

2 types of AC/DC adapters were used during testing:

- Type 1:Manufacturer: MG Electronics; Model No: ST242A
- Type 2: Manufacturer: ALTRONIX CORP; Model No: AL175UL

### 2.4 Equipment Modifications

No equipment modifications were required to achieve compliance.

### 2.5 Configuration of Tested System



Figure 1. Configuration of Tested System



# 3. Conducted & Radiated Measurement Test Setup Photos



Figure 2. Conducted Emission from AC Mains (AC/DC adapter type 1) Test Setup



Figure 3. Conducted Emission from AC Mains (AC/DC adapter type 2) Test Setup





Figure 4. Radiated Emission Test Setup



# 4. Conducted Emission From AC Mains

### 4.1 Test Specification

FCC Part 15, Subpart C, Section 15.207 RSS-Gen, Issue 4: 2014, Section 8.8

### 4.2 Test Procedure

(Temperature (22°C)/ Humidity (60%RH))

The E.U.T operation mode and test setup are as described in Section 2 of this report. In order to minimize background noise interference, the conducted emission testing was performed inside a shielded room, with the E.U.T placed on a 0.8 meter high wooden table, 0.4 meter from the room's vertical wall. In the case of a floor-standing E.U.T., it was placed on the horizontal ground plane.

The E.U.T was powered from 115 V AC / 60 Hz via 50 Ohm / 50  $\mu$ Hn Line Impedance Stabilization Network (LISN) on the phase and neutral lines. The LISN's were grounded to the shielded room ground plane (floor), and were kept at least 0.8 meters from the nearest boundary of the E.U.T

The center of the E.U.T.'s AC cable was folded back and forth, in order to form a bundle less than 0.40 meters and a total cable length of 1 meter.

The effect of varying the position of the cables was investigated to find the configuration that produces maximum emission.

The emission voltages at the LISN's outputs were measured using a computerized receiver, complying with CISPR 16 requirements. The specification limits are loaded to the receiver and are displayed on the receiver's spectrum display.

The E.U.T was tested while transmitting 125 kHz.

A frequency scan between 0.15 and 30 MHz was performed at 9 kHz I.F. band width, using peak detection.

The spectral components having the highest level on each line were measured using a quasi-peak and average detector.

### 4.3 Test Limit

| Frequency of emission (MHz) | Conducted limit (dBµV) |               |
|-----------------------------|------------------------|---------------|
|                             | Quasi-peak             | Average       |
| 0.15-0.5                    | 66.0 to 56.0*          | 56.0 to 46.0* |
| 0.5-5.0                     | 56.0                   | 46.0          |
| 5.0-30.0                    | 60.0                   | 50.0          |

\* Decreases with the logarithm of the frequency.



# 4.4 Test Results

JUDGEMENT:

Passed by 12.91 dB

The margin between the emission levels and the specification limit is, in the worst case, 5.82dB for the phase line at 0.298 MHz and 2.19dB at 0.99 MHz for the neutral line.

The EUT met the F.C.C. Part 15, Subpart C and RSS-Gen, Issue 4: 2014, Section 8.8 specification requirements.

The details of the highest emissions are given in *Figure 5* to *Figure 12*.



|             | E.U.T Descriptio | n WanderGuard Indoor Keypad                                                   |
|-------------|------------------|-------------------------------------------------------------------------------|
|             | Туре             | WGB-KPD-K100-IN                                                               |
|             | Serial Number:   | Not designated                                                                |
| Specificati | on:              | FCC Part 15, Subpart C, Section 15.207<br>RSS-Gen, Issue 4: 2014, Section 8.8 |
| Lead:       |                  | Phase                                                                         |
| Detectors:  | :                | Quasi-peak, Average                                                           |
| Voltage su  | pply type:       | Type 1                                                                        |

|     | EDI        | T PEAK LIST (Fina | il Measurement Re | sults)         |
|-----|------------|-------------------|-------------------|----------------|
| Tra | icel:      | CE22BQP           |                   |                |
| Tra | ide2:      | CE22BAP           |                   |                |
| Tra | ide3:      |                   |                   |                |
|     | TRACE      | FREQUENCY         | LEVEL dBµV        | DELTA LIMIT de |
| 2   | Average    | 250 kHz           | 36.63             | -15.12         |
| 1   | Quasi Peak | 254 kHz           | 54.57             | -7.05          |
| 1   | Quasi Peak | 298 kHz           | 54.47             | -5.82          |
| 2   | Average    | 366 kHz           | 19.68             | -28.90         |
| 1   | Quasi Peak | 434 kHz           | 46.74             | -10.42         |
| 2   | Average    | 498 kHz           | 38.35             | -7.68          |
| 1   | Quasi Peak | 994 kHz           | 43.93             | -12.06         |
| 2   | Average    | 998 kHz           | 35.53             | -10.46         |
| 1   | Quasi Peak | 1.738 MHz         | 38.94             | -17.05         |
| 2   | Average    | 1.738 MHz         | 38.43             | -7.56          |
| 2   | Average    | 2.482 MHz         | 38.45             | -7.54          |
| 1   | Quasi Peak | 2.974 MHz         | 37.40             | -18.59         |
| 1   | Quasi Peak | 4.462 MHz         | 37.09             | -18.90         |
| 2   | Average    | 4.466 MHz         | 35.49             | -10.50         |
| 2   | Average    | 6.702 MHz         | 35.85             | -14.14         |
| 1   | Quasi Peak | 9.914 MHz         | 39.25             | -20.74         |
| 1   | Quasi Peak | 17.626 MHz        | 44.71             | -15.29         |
| 2   | Average    | 17.626 MHz        | 38.01             | -11.98         |
| 1   | Quasi Peak | 18.094 MHz        | 49.66             | -10.33         |
| 2   | Average    | 18.094 MHz        | 36.60             | -13.39         |

Date: 11.JUL.2017 16:26:10

#### Figure 5. Detectors: Peak, Quasi-peak, Average

*Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.* 





Date: 11.JUL.2017 16:24:50

#### Figure 6. Detectors: Peak, Quasi-peak, Average



| E.U.T De                  | escription | WanderGuard Indoor Keypad                                                 |
|---------------------------|------------|---------------------------------------------------------------------------|
| Туре                      |            | WGB-KPD-K100-IN                                                           |
| Serial Nu                 | mber:      | Not designated                                                            |
| Specification:            | FCC        | C Part 15, Subpart C, Section 15.207<br>S-Gen, Issue 4: 2014, Section 8.8 |
| Lead:                     | Neu        | ıtral                                                                     |
| Detectors:                | Qua        | asi-peak, Average                                                         |
| Voltage supply type: Type |            | e 1                                                                       |

|     | EDI        | IT PEAK LIST (Fina | il Measurement F | (esults)       |
|-----|------------|--------------------|------------------|----------------|
| Tra | icel:      | CE22BQP            |                  |                |
| Tra | ide2:      | CE22BAP            |                  |                |
| Tra | ide3:      |                    |                  |                |
|     | TRACE      | FREQUENCY          | LEVEL dBµV       | DELTA LIMIT dB |
| 1   | Quasi Peak | 246 kHz            | 53.62            | -8.26          |
| 2   | Average    | 250 kHz            | 37.35            | -14.40         |
| 1   | Quasi Peak | 334 kHz            | 51.93            | -7.41          |
| 2   | Average    | 370 kHz            | 21.79            | -26.70         |
| 1   | Quasi Peak | 434 kHz            | 43.94            | -13.23         |
| 2   | Average    | 498 kHz            | 40.62            | -5.40          |
| 1   | Quasi Peak | 994 kHz            | 44.61            | -11.38         |
| 2   | Average    | 994 kHz            | 43.80            | -2.19          |
| 2   | Average    | 1.734 MHz          | 37.04            | -8.95          |
| 1   | Quasi Peak | 1.738 MHz          | 40.05            | -15.94         |
| 2   | Average    | 2.482 MHz          | 39.38            | -6.61          |
| 1   | Quasi Peak | 3.47 MHz           | 38.86            | -17.13         |
| 1   | Quasi Peak | 3.966 MHz          | 39.51            | -16.48         |
| 2   | Average    | 3.97 MHz           | 38.43            | -7.56          |
| 2   | Average    | 6.702 MHz          | 36.89            | -13.10         |
| 1   | Quasi Peak | 9.418 MHz          | 40.68            | -19.31         |
| 1   | Quasi Peak | 16.854 MHz         | 45.35            | -14.65         |
| 2   | Average    | 17.622 MHz         | 42.32            | -7.67          |
| 1   | Quasi Peak | 17.834 MHz         | 47.36            | -12.63         |
| 2   | Average    | 17.866 MHz         | 43.70            | -6.29          |

Date: 11.JUL.2017 16:35:13

#### Figure 7. Detectors: Peak, Quasi-peak, Average

*Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.* 





Date: 11.JUL.2017 16:32:57

150 kHz

W/I

#### Figure 8 Detectors: Peak, Quasi-peak, Average

30 MHz



| E.U.T D           | Description | WanderGuard Indoor Keypad            |
|-------------------|-------------|--------------------------------------|
| Туре              |             | WGB-KPD-K100-IN                      |
| Serial N          | umber:      | Not designated                       |
| Specification:    | FC          | C Part 15, Subpart C, Section 15.207 |
|                   | RS          | S-Gen, Issue 4: 2014, Section 8.8    |
| Lead:             | Pha         | se                                   |
| Detectors: :      | Qua         | asi-peak, Average                    |
| Voltage supply ty | уре: Тур    | e 2                                  |

|     | EDI        | T PEAK LIST (Fi | nal Measurement | Results)       |
|-----|------------|-----------------|-----------------|----------------|
| Tra | icel:      | CE22BQP         |                 |                |
| Tra | ide2:      | CE22BAP         |                 |                |
| Tra | ide3:      |                 |                 |                |
|     | TRACE      | FREQUENCY       | LEVEL dBµV      | DELTA LIMIT dB |
| 1   | Quasi Peak | 202 kHz         | 34.18           | -29.34         |
| 2   | Average    | 250 kHz         | 32.44           | -19.31         |
| 1   | Quasi Peak | 262 kHz         | 28.59           | -32.77         |
| 2   | Average    | 430 kHz         | 17.60           | -29.64         |
| 2   | Average    | 498 kHz         | 26.96           | -19.06         |
| 1   | Quasi Peak | 518 kHz         | 24.57           | -31.42         |
| 1   | Quasi Peak | 994 kHz         | 29.26           | -26.73         |
| 2   | Average    | 994 kHz         | 28.19           | -17.80         |
| 2   | Average    | 1.49 MHz        | 23.42           | -22.57         |
| 1   | Quasi Peak | 1.866 MHz       | 17.05           | -38.94         |
| 2   | Average    | 2.234 MHz       | 23.77           | -22.23         |
| 1   | Quasi Peak | 2.978 MHz       | 26.23           | -29.76         |
| 1   | Quasi Peak | 5.63 MHz        | 33.11           | -26.88         |
| 2   | Average    | 5.634 MHz       | 16.49           | -33.50         |
| 2   | Average    | 6.95 MHz        | 19.51           | -30.48         |
| 1   | Quasi Peak | 9.254 MHz       | 22.77           | -37.22         |
| 2   | Average    | 10.682 MHz      | 17.08           | -32.91         |
| 1   | Quasi Peak | 17.626 MHz      | 21.11           | -38.88         |
| 1   | Quasi Peak | 26.042 MHz      | 31.05           | -28.94         |
| 2   | Average    | 29.786 MHz      | 28.71           | -21.28         |

Date: 5.JUN.2017 09:55:11

#### Figure 9. Detectors: Peak, Quasi-peak, Average

*Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.* 



| E.U.T Description |
|-------------------|
| Туре              |
| Serial Number:    |

WanderGuard Indoor Keypad WGB-KPD-K100-IN Not designated

| Specification:       | FCC Part 15, Subpart C, Section 15.207 |
|----------------------|----------------------------------------|
|                      | RSS-Gen, Issue 4: 2014, Section 8.8    |
| Lead:                | Phase                                  |
| Detectors:           | Peak, Average                          |
| Voltage supply type: | Туре 2                                 |



Date: 5.JUN.2017 09:53:49

Figure 10. Detectors: Peak, Quasi-peak, Average



|            | E.U.T Description | WanderGuard Indoor Keypad              |
|------------|-------------------|----------------------------------------|
|            | Туре              | WGB-KPD-K100-IN                        |
|            | Serial Number:    | Not designated                         |
| Specificat | ion:              | FCC Part 15, Subpart C, Section 15.207 |
|            |                   | RSS-Gen, Issue 4: 2014, Section 8.8    |
| Lead:      |                   | Neutral                                |
|            |                   |                                        |

Type 2

Detectors: Voltage supply type:

Quasi-peak, Average

CE22BQP Tracel: Trace2: CE22BAP Trace3: FREQUENCY TRACE LEVEL dBuV DELTA LIMIT dB 1 Quasi Peak 182 kHz 36.07 -28.32 2 Average 246 kHz 32.40 2 Average 302 kHz 11.16 -19.48 2 Average -39.02 20.63 25.52 1 Quasi Peak 366 kHz -37.95 2 Average 494 kHz -20.57 2 Quasi Peak 498 kHz 1 Quasi Peak 994 kHz 2 Average 994 kHz 28.34 29.03 -27.68 -26.97 28.06 -17.93 1 Quasi Peak 1.266 MHz 2 Average 1.738 MHz 14.78 23.50 -41.21 -22.49 1 Quasi Peak 2.134 MHz 2 Average 2.234 MHz 17.78 24.21 -38.21 -21.78 
 2
 Average
 2.234 MHz

 1
 Quasi Peak
 5.994 MHz

 2
 Average
 5.998 MHz

 2
 Average
 6.122 MHz

 1
 Quasi Peak
 9.042 MHz
33.25 23.18 -26.74 -26.81 20.11 28.05 -29.88 -31.94 2 Average 10.59 MHz 1 Quasi Peak 13.334 MHz 22.49 -27.50 27.44 -32.55 1 Quasi Peak 27.986 MHz 30.58 -29.41 2 Average 29.998 MHz 22.36 -27.63

Date: 5.JUN.2017 10:10:27

#### Figure 11. Detectors: Peak, Quasi-peak, Average

*Note: QP Delta/Av Delta refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.* 







WanderGuard Indoor Keypad WGB-KPD-K100-IN Not designated

Specification:

Lead:

Detectors:

FCC Part 15, Subpart C, Section 15.207 RSS-Gen, Issue 4: 2014, Section 8.8 Neutral Peak, Average Type 2

Voltage supply type:



Date: 5.JUN.2017 10:09:11





| 4.5 | Test Equipment Used; Conducted Emission |
|-----|-----------------------------------------|
|-----|-----------------------------------------|

| Instrument           | Manufacturer       | Model        | Serial No. | Last Calibration<br>Date | Next Calibration<br>Due |
|----------------------|--------------------|--------------|------------|--------------------------|-------------------------|
| LISN                 | Fischer            | FCC-LISN-25A | 127        | June 23, 2016            | July 31, 2017           |
| Transient<br>Limiter | HP                 | 11947A       | 3107A03041 | June 15, 2016*           | June 30, 2017*          |
| EMI Receiver         | Rohde &<br>Schwarz | ESCI7        | 100724     | February 28, 2017        | February 28, 2018       |

\*Current calibration was performed on June 29, 2017 and next calibration due is June 29, 2018. This covers entire range of testing.

Figure 13 Test Equipment Used



# 5. Field Strength of Fundamental

### 5.1 Test Specification

Part 15, Subpart C, Section 15.209(a) RSS-Gen, Issue 4: 2014, Section 8.9

### 5.2 Test Procedure

(Temperature (20°C)/ Humidity (46%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report. The E.U.T. was placed in the chamber on a non-conductive table, 0.8 meters above the ground.

The distance between the E.U.T. and test antenna was 3 meters.

The turntable and antenna polarity were adjusted for maximum level reading on the EMI receiver.

The EMI receiver was set to the E.U.T. Fundamental Frequency and Peak Detection.

### 5.3 Test Limit

The emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field strength<br>(microvolts/meter) | Measurement<br>distance (meters) | Field strength<br>Limit<br>(dBµV/m) | Field strength*<br>Limit<br>(dBµV/m)@3m |
|--------------------|--------------------------------------|----------------------------------|-------------------------------------|-----------------------------------------|
| 0.009-0.490        | 2400/F(kHz)                          | 300                              | 48.5-13.8                           | 128.5-73.8                              |
| 0.490-1.705        | 24000/F(kHz)                         | 30                               | 33.8-23.0                           | 73.8-63.0                               |
| 1.705-30.0         | 30                                   | 30                               | 29.5                                | 69.5                                    |
| 30-88              | 100                                  | 3                                | 40.0                                | 40.0                                    |
| 88-216             | 150                                  | 3                                | 43.5                                | 43.5                                    |
| 216-960            | 200                                  | 3                                | 46.0                                | 46.0                                    |
| Above 960          | 500                                  | 3                                | 54.0                                | 54.0                                    |

\*The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

## 5.4 Test Results

| Frequency | Pol   | Peak<br>Reading | Avg Limit     | Margin |
|-----------|-------|-----------------|---------------|--------|
| (kHz)     | (V/H) | (dBµV/m)        | $(dB\mu V/m)$ | (dB)   |
| 125.0     | V     | 103.9           | 105.6         | -1.7   |
| 125.0     | Н     | 102.7           | 105.6         | -2.9   |

Figure 14. Field Strength of Fundamental Test Results

JUDGEMENT: Passed by 1.7 dB

The EUT met the FCC Part 15, Subpart C, Section 15.209 and RSS-Gen, Issue 4: 2014, Section 8.9 requirements.

The details of the highest emissions are given in *Figure 15* to *Figure 16*.



# **Field Strength of Fundamental**

E.U.T Description Model Number

Part Number:

WanderGuard Indoor Keypad WGB-KPD-K100-IN Not designated



Date: 14.MAY.2017 14:27:49





Date: 14.MAY.2017 14:36:02

Figure 16. Field Strength of Fundamental, Horizontal



| Instrument               | Manufacturer | Model | Serial No. | Last Calibration<br>Date | Next Calibration<br>Due |
|--------------------------|--------------|-------|------------|--------------------------|-------------------------|
| EMI Receiver             | R&S          | ESCI7 | 100724     | February 28, 2017        | February 28, 2018       |
| Loop Antenna             | EMCO         | 6502  | 2950       | September 12, 2016       | September 12, 2017      |
| Semi Anechoic<br>Chamber | ETS          | S81   | SL 11643   | NCR                      | NCR                     |

## 5.5 Test Instrumentation Used; Field Strength of Fundamental

| Figure 17. | Test E | quipment | Used |
|------------|--------|----------|------|
|------------|--------|----------|------|



# 6. Radiated Emission, 9 kHz – 30 MHz

### 6.1 Test Specification

Part 15, Subpart C, Section 209(c) RSS-Gen, Issue 4: 2014, Section 8.9

### 6.2 Test Procedure

(Temperature (20°C)/ Humidity (46%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report. The E.U.T. was placed in the chamber on a non-conductive table, 0.8 meters above the ground.

The distance between the E.U.T. and test antenna was 3 meters.

The turntable and antenna polarity were adjusted for maximum level reading on the EMI receiver.

The EMI receiver was set to the E.U.T. Fundamental Frequency and Peak Detection.

The frequency range 9 kHz-30 MHz was scanned.

### 6.3 Test Limit

The level of any unwanted emissions from an intentional radiator shall not exceed the level of the fundamental emission .in addition the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

| Frequency<br>(MHz) | Field strength<br>(microvolts/meter) | Measurement<br>distance (meters) | Field strength<br>(dBµV/m) | Field strength*<br>(dBµV/m)@3m |
|--------------------|--------------------------------------|----------------------------------|----------------------------|--------------------------------|
| 0.009-0.490        | 2400/F(kHz)                          | 300                              | 48.5-13.8                  | 128.5-73.8                     |
| 0.490-1.705        | 24000/F(kHz)                         | 30                               | 33.8-23.0                  | 73.8-63.0                      |
| 1.705-30.0         | 30                                   | 30                               | 29.5                       | 69.5                           |
| 30-88              | 100                                  | 3                                | 40.0                       | 40.0                           |
| 88-216             | 150                                  | 3                                | 43.5                       | 43.5                           |
| 216-960            | 200                                  | 3                                | 46.0                       | 46.0                           |
| Above 960          | 500                                  | 3                                | 54.0                       | 54.0                           |

\*The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. For average radiated emission measurements above 1000 MHz, there is also a limit corresponding to 20 dB above the indicated values in the table is specified when measuring with peak detector function.

### 6.4 Test Results

JUDGEMENT:

Passed by 15.3 dB

The EUT met the requirements of the F.C.C. Part 15, Subpart C, Section 209 and RSS-Gen, Issue 4: 2014, Section 8.9 specification.

See additional information in Figure 18.



# Radiated Emission 9 kHz – 30 MHz

E.U.T Description WanderGuard Indoor Keypad Model Number Part Number:

WGB-KPD-K100-IN Not designated

Specification: FCC, Part 15, Subpart C; RSS-Gen, Issue 4: 2014, Section 8.9

Antenna Polarization: Horizontal/Vertical **Test Distance: 3 meters Operation Frequencies: 125kHz** 

Frequency range: 9 kHz to 30.0 MHz **Detector: Peak** 

| Frequency | Polarity | Peak<br>Reading | Limit    | Margin |
|-----------|----------|-----------------|----------|--------|
| (kHz)     | (V/H)    | $(dB\mu V/m)$   | (dBµV/m) | (dB)   |
| 250.0     | V        | 60.3            | 99.6     | -39.3  |
|           | Н        | 60.8            | 99.6     | -38.8  |
| 375.0     | V        | 57.9            | 96.1     | -38.2  |
|           | Н        | 66.1            | 96.1     | -30.0  |
| 625.0     | V        | 51.0            | 71.7     | -20.7  |
|           | Н        | 56.4            | 71.7     | -15.3  |

Figure 18. Radiated Emission

Margin refers to the test results obtained minus specified requirement; thus a positive number indicates failure, and a negative result indicates that the product passes the test.



### 6.5 Test Instrumentation Used; Radiated Measurements

| Instrument               | Manufacturer | Model | Serial No. | Last Calibration<br>Date | Next Calibration<br>Due |
|--------------------------|--------------|-------|------------|--------------------------|-------------------------|
| EMI Receiver             | R&S          | ESCI7 | 100724     | February 28, 2017        | February 28, 2018       |
| Loop Antenna             | EMCO         | 6502  | 2950       | September 12, 2016       | September 12, 2017      |
| Semi Anechoic<br>Chamber | ETS          | S81   | SL 11643   | NCR                      | NCR                     |

#### Figure 19. Test Equipment Used

### 6.6 Field Strength Calculation

The field strength is calculated directly by the EMI Receiver software, and a "Correction Factors" data disk, using the following equation:

FS = RA + AF + CF

| FS: | Field Strength [dBµv/m]                    |
|-----|--------------------------------------------|
| RA: | Receiver Amplitude [dBµv]                  |
| AF: | Receiving Antenna Correction Factor [dB/m] |
| CF: | Cable Attenuation Factor [dB]              |

Example:  $FS = 30.7 dB\mu V (RA) + 14.0 dB/m (AF) + 0.9 dB (CF) = 45.6 dB\mu V$ 

No external pre-amplifiers are used.



# 7. Bandwidth for 125 kHz Transmitter

### 7.1 Test Specification

FCC, Part 2, Section 2.1049 RSS-Gen, Issue 4: 2014, Section 6.6

### 7.2 Test Procedure

(Temperature (20°C)/ Humidity (46%RH))

The E.U.T. operation mode and test set-up are as described in Section 2 of this report. The E.U.T. was placed in the chamber on a non-conductive table, 0.8 meters above the ground.

The distance between the E.U.T. and test antenna was 3 meters.

The transmitter unit was operated with normal modulation. The spectrum analyzer span was set to  $\sim 3$  times the OBW. The spectrum bandwidth of the transmitter unit was measured and recorded.

99% OBW function was set "on".

### 7.3 Test Limit

N/A

### 7.4 Test Results

| FREQUENCY | READING |
|-----------|---------|
| (kHz)     | (kHz)   |
| 125.0     | 1.8     |

Figure 20. Bandwidth Test Results

### 7.5 Test Equipment Used; Bandwidth

| Instrument               | Manufacturer | Model | Serial No. | Last Calibration<br>Date | Next Calibration<br>Due |
|--------------------------|--------------|-------|------------|--------------------------|-------------------------|
| EMI Receiver             | R&S          | ESCI7 | 100724     | February 28, 2017        | February 28, 2018       |
| Loop Antenna             | ЕМСО         | 6502  | 2950       | September 12, 2016       | September 12, 2017      |
| Semi Anechoic<br>Chamber | ETS          | S81   | SL 11643   | NCR                      | NCR                     |

Figure 21 Test Equipment Used



# 8. ANTENNA INFORMATION/GAIN

Air coil.

|     | CUSTOMER<br>AEROSCOUT    | CUSTOMER CODE |                  |           | <b>PART DESCRIPTION</b><br>Air coil 380 μH ± 5% @ 125 kHz ID:32 mm ED: 38<br>mm e: 2.2 mm |                                |                    |
|-----|--------------------------|---------------|------------------|-----------|-------------------------------------------------------------------------------------------|--------------------------------|--------------------|
| PRE | INTERNAL CO<br>P-658-008 | DE            | DATE<br>25/10/05 | EDIT<br>1 | ION                                                                                       | DOCUMENT NAME<br>E658008_1.doc | <b>PAGE</b><br>1/2 |

C/Severo Ochoa 33 - Parque Tecnológico de Andalucía. 29590 Campanillas .Málaga (Spain) Phone +34 951 231 320 Fax +34 951 231 321 E-mail: mar.villarrubia@grupopremo.com Web http://www.grupopremo.com



# 9. APPENDIX A - CORRECTION FACTORS

9.1 Correction factors for RF CABLE for Semi Anechoic Chamber

| FREQ    | LOSS |
|---------|------|
| (MHz)   | (dB) |
| 1000.0  | 1.5  |
| 2000.0  | 2.1  |
| 3000.0  | 2.7  |
| 4000.0  | 3.1  |
| 5000.0  | 3.5  |
| 6000.0  | 4.1  |
| 7000.0  | 4.6  |
| 8000.0  | 4.9  |
| 9000.0  | 5.7  |
| 10000.0 | 5.7  |
| 11000.0 | 6.1  |
| 12000.0 | 6.1  |
| 13000.0 | 6.2  |
| 14000.0 | 6.7  |
| 15000.0 | 7.4  |
| 16000.0 | 7.5  |
| 17000.0 | 7.9  |
| 18000.0 | 8.1  |
| 19000.0 | 8.8  |
| 20000.0 | 9.1  |



# 9.2 Correction factors for ACTIVE LOOP ANTENNA Model 6502 S/N 9506-2950

| f(MHz) | MAF(dBs/m) | AF(dB/m) |
|--------|------------|----------|
| 0.01   | -33.1      | 18.4     |
| 0.02   | -37.2      | 14.3     |
| 0.03   | -38.2      | 13.3     |
| 0.05   | -39.8      | 11.7     |
| 0.1    | -40.1      | 11.4     |
| 0.2    | -40.3      | 11.2     |
| 0.3    | -40.3      | 11.2     |
| 0.5    | -40.3      | 11.2     |
| 0.7    | -40.3      | 11.2     |
| 1      | -40.1      | 11.4     |
| 2      | -40        | 11.5     |
| 3      | -40        | 11.5     |
| 4      | -40.1      | 11.4     |
| 5      | -40.2      | 11.3     |
| 6      | -40.4      | 11.1     |
| 7      | -40.4      | 11.1     |
| 8      | -40.4      | 11.1     |
| 9      | -40.5      | 11       |
| 10     | -40.5      | 11       |
| 20     | -41.5      | 10       |
| 30     | -43.5      | 8        |