

Synapse Strategic Product Development LLC xBRv3x2 FCC 15.247:2012 FCC 15.207:2012

Report #: SYNA0103

Report Prepared By Northwest EMC Inc.

NORTHWEST EMC - (888) 364-2378 - www.nwemc.com

California – Minnesota – Oregon – New York – Washington

CERTIFICATE OF TEST

Last Date of Test: October 01, 2012 Synapse Strategic Product Development LLC Model: xBRv3x2

Emissions			
Test Description	Specification	Test Method	Pass/Fail
Occupied Bandwidth	FCC 15.247:2012	ANSI C63.10:2009	Pass
Output Power	FCC 15.247:2012	ANSI C63.10:2009	Pass
Band Edge Compliance	FCC 15.247:2012	ANSI C63.10:2009	Pass
Spurious Conducted Emissions	FCC 15.247:2012	ANSI C63.10:2009	Pass
Power Spectral Density	FCC 15.247:2012	ANSI C63.10:2009	Pass
Spurious Radiated Emissions	FCC 15.247:2012	ANSI C63.10:2009	Pass
AC Powerline Conducted Emissions	FCC 15.207:2012	ANSI C63.10:2009	Pass

Deviations From Test Standards

None

Approved By:

Tim O'Shea, Operations Manager

NVLAP Lab Code: 200630-0

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066 Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

REVISION HISTORY

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

ACCREDITATIONS AND AUTHORIZATIONS

United States

FCC - Designated by the FCC as a Telecommunications Certification Body (TCB). Certification chambers, Open Area Test Sites, and conducted measurement facilities are listed with the FCC.

A2LA - Accredited by A2LA to ISO / IEC Guide 65 as a product certifier. This allows Northwest EMC to certify transmitters to FCC and IC specifications.

NVLAP - Each laboratory is accredited by NVLAP to ISO 17025

Canada

IC - Recognized by Industry Canada as a Certification Body (CB). Certification chambers and Open Area Test Sites are filed with IC.

European Union

European Commission – Validated by the European Commission as a Conformity Assessment Body (CAB) under the EMC directive and as a Notified Body under the R&TTE Directive.

Australia/New Zealand

ACMA - Recognized by ACMA as a CAB for the acceptance of test data.

Korea

KCC / RRA - Recognized by KCC's RRA as a CAB for the acceptance of test data.

Japan

VCCI - Associate Member of the VCCI. Conducted and radiated measurement facilities are registered.

Taiwan

BSMI – Recognized by BSMI as a CAB for the acceptance of test data.

NCC - Recognized by NCC as a CAB for the acceptance of test data.

Singapore

IDA – Recognized by IDA as a CAB for the acceptance of test data.

Hong Kong

OFTA - Recognized by OFTA as a CAB for the acceptance of test data.

Vietnam

MIC – Recognized by MIC as a CAB for the acceptance of test data.

Russia

GOST – Accredited by Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC to perform EMC and Hygienic testing for Information Technology products to GOST standards.

SCOPE

For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

MEASUREMENT UNCERTAINTY

Measurement Uncertainty

When a measurement is made, the result will be different from the true or theoretically correct value. The difference is the result of tolerances in the measurement system that cannot be completely eliminated. To the extent that technology allows us, it has been our aim to minimize this error. Measurement uncertainty is a statistical expression of measurement error qualified by a probability distribution.

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty (K=2) for each test is on each data sheet. Our measurement data meets or exceeds the measurement uncertainty requirements of the applicable specification; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for estimating measurement uncertainty are based upon ETSI TR 100 028 (or CISPR 16-4-1 as applicable), and are available upon request.

The following table represents the Measurement Uncertainty (MU) budgets for each of the tests that may be contained in this report.

Test	+ MU	- MU
Frequency Accuracy (Hz)	0.12	-0.01
Amplitude Accuracy (dB)	0.49	-0.49
Conducted Power (dB)	0.41	-0.41
Radiated Power via Substitution (dB)	0.69	-0.68
Temperature (degrees C)	0.81	-0.81
Humidity (% RH)	2.89	-2.89
Field Strength (dB)	4.00	-4.00
AC Powerline Conducted Emissions (dB)	2.70	-2.70

LOCATIONS

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy, #400 Hillsboro, OR 97124 (503) 844-4066	California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918	New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796	Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281	Washington Labs SU01-SU07 14128 339 th Ave. SE Sultan, WA 98294 (360) 793-8675		
		VCCI				
A-0108	A-0029		A-0109	A-0110		
Industry Canada						
2834D-1, 2834D-2	2834B-1, 2834B-2, 2834B-3		2834E-1	2834C-1		

PRODUCT DESCRIPTION

Client and Equipment Under Test (EUT) Information

Company Name:	Synapse Strategic Product Development LLC
Address:	1511 6th Ave. 4th Floor
City, State, Zip:	Seattle, WA 98101
Test Requested By:	Jim Hite
Model:	xBRv3x2
First Date of Test:	October 01, 2012
Last Date of Test:	September 28, 2012
Receipt Date of Samples:	September 27, 2012
Equipment Design Stage:	Production
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

2.4 GHz transmitter with 0 dBm output.

Testing Objective:

To demonstrate compliance to FCC 15.247 requirements.

CONFIGURATIONS

Configuration SYNA0103-1

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
Wireless Location Device	Synapse Strategic Product Development LLC	xBRv3x2	00:91:FA:00:02:02 / 00:91:FA:00:02:03		

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Switch with PoE	Cisco	SFE2000P	D4D748C223E7		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
CAT-5e Ethernet x2	Yes	8.0m	No	Wireless Location Device	Switch with PoE
AC Power	No	1.8m	No	AC Mains	Switch with PoE
PA = Cable i	is permanei	ntly attached to the de	vice. Shielding	g and/or presence of ferrite may b	e unknown.

Configuration SYNA0103-2

EUT						
Description	Manufacturer	Model/Part Number	Serial Number			
Wireless Location Device	Synapse Strategic Product Development LLC	xBRv3x2	00:91:FA:00:02:02 / 00:91:FA:00:02:03			

Remote Equipment Outside of Test Setup Boundary					
Description Manufacturer Model/Part Number Serial Number					
Switch with PoE	Cisco	SFE2000P	D4D748C223E7		

Cables							
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2		
AC Power	No	1.8m	No	AC Mains	Switch with PoE		
Cat 5 Ethernet	No	1	No	Wireless Location Device	Switch with PoE		
PA = Cab	ole is permane	ntly attached to the de	vice. Shielding	g and/or presence of ferrite may b	e unknown.		

MODIFICATIONS

Equipment Modifications

Item	Date	Test	Modification	Note	Disposition of EUT
1	9/28/2012	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
2	10/1/2012	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
3	10/1/2012	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
4	10/1/2012	Output Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
5	10/1/2012	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
6	10/1/2012	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.
7	10/1/2012	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.

Duty Cycle

TEST DESCRIPTION

The Duty Cycle (x) were measured for each of the EUT operating modes. The measurements were made using a zero span on the spectrum analyzer to see the pulses in the time domain. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used

The duty cycle was calculated by dividing the transmission pulse duration (T) by the total period of a single on and total off time.

The EUT operates at 100% Duty Cycle.

EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

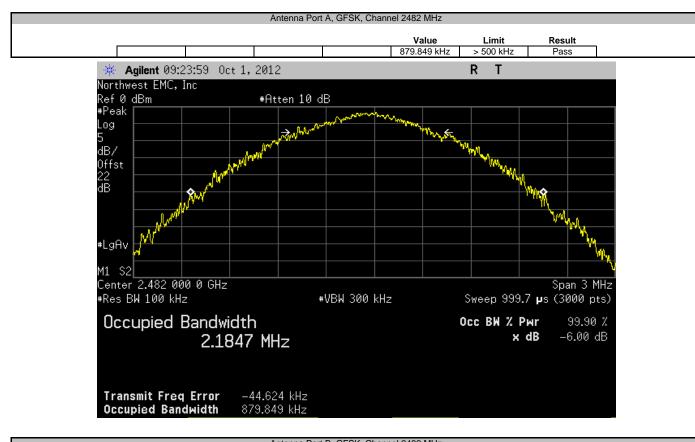
TEST	EQUIPME	:NT

Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

TEST DESCRIPTION

The 6dB occupied bandwidth was measured using 100 kHz resolution bandwidth and 300 kHz video bandwidth. The 26 dB (99.9%) emission bandwidth (EBW) was also measured at the same time.

The EUT was set to the single transmit frequency. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the modulation type listed in the datasheet.



XMit 2012.09.20
PsaTx 2012.09.10

	: xBRv3x2	Work Order:		
Serial Numbe	: 00:91:FA:00:02:02, 00:91:FA:00:02:03		10/01/12	
Custome	: Synapse Strategic Product Development LLC	Temperature:	23.62°C	
Attendee	: None	Humidity:		
Projec	: None	Barometric Pres.:	1025	
Tested b	: Brandon Hobbs and Rod Peloquin Power: PoE	Job Site:	EV06	
TEST SPECIFICA	TIONS Test Method			
FCC 15.247:2012	ANSI C63.10:2009			
COMMENTS				
The EUT was tran	smitting at 100% duty cycle.			
DEVIATIONS FRO	M TEST STANDARD			
None				
	lei Pl			
Configuration #	1 Rocky te Relengs			
	Signature			
		Value	Limit	Result
Antenna Port A				
	GFSK			
	Channel 2482 MHz	879.849 kHz	> 500 kHz	Pass
Antenna Port B				
	GFSK			
	Channel 2482 MHz	857.9 kHz	> 500 kHz	Pass

ENC

Output Power

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

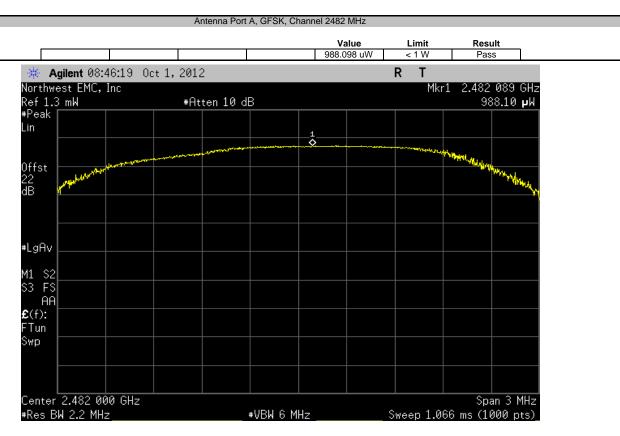
TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interva
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

TEST DESCRIPTION

The transmit frequency was set to the required channel in the band. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input.

Prior to measuring peak transmit power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain.


Method PK1 found in KDB 558074 DTS D01 Measurement Section 5.2.1.1 was used because the Emission Bandwidth was less than the RBW on the analyzer.

XMit 2012.09.20
PsaTx 2012.09.10

	: xBRv3x2								Work Order:	SYNA0103	
Serial Number	: 00:91:FA:00	:02:02, 00:91	:FA:00:02:03						Date:	10/01/12	
Customer	: Synapse St	rategic Produ	ict Developme	ent LLC					Temperature:	23.62°C	
Attendees	: None								Humidity:	35%	
Project	: None								Barometric Pres.:	1025	
Tested by	: Brandon Ho	bbs and Rod	Peloquin			Power:	PoE		Job Site:	EV06	
TEST SPECIFICAT	TIONS						Test Method				
FCC 15.245:2012							ANSI C63.10:2009				
COMMENTS											
The EUT was trans	smitting at 10	0% duty cycle	e.								
	•										
DEVIATIONS FRO	M TEST STAN	NDARD									
None											
					1	0 1	DO				
Configuration #		1			1000	in te	Releng				
_				Signature		\mathcal{O}	0				
									Value	Limit	Result
Antenna Port A											
	GFSK										
		Channel 248	2 MHz						988.098 uW	< 1 W	Pass
Antenna Port B											
	GFSK										
		Channel 248	2 MHz						1.14 mW	< 1 W	Pass

Antenna Port B, GFSK	, Channel 2482 MHz			
	Value	Limit	Pocult	
	1.14 mW	< 1 W	Pass	
2012		RT		
.012			2.482.116 GHz	
#Atten 10 dB				
	1			
			and the second s	
			The state of the second second	
			אמידיי	
			Snan 3 MHz	
#VBW 6	i MHz S	Sween 1.066	ms (1000 pts)	
	2012 *Atten 10 dB 	2012 #Atten 10 dB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Value Limit 1.14 mW <1 W	Value Limit Result 1.14 mW < 1W

EMC

Band Edge Compliance

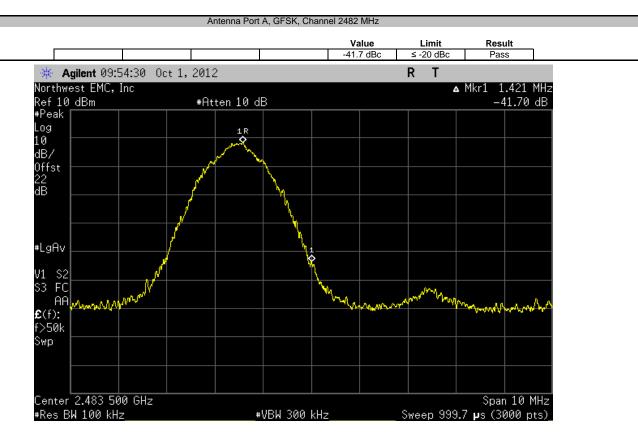
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

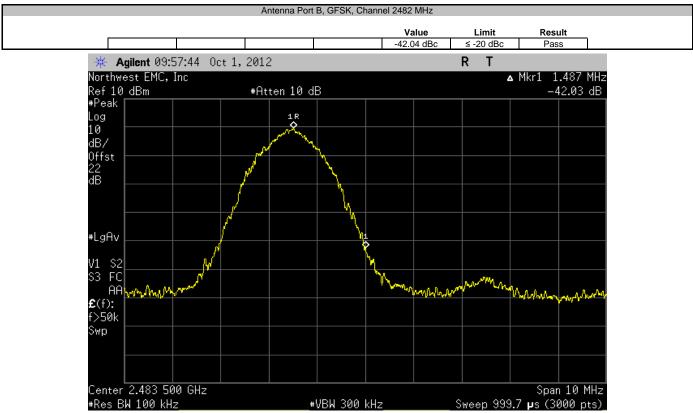
TEST E	EQUI	PMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

TEST DESCRIPTION

The spurious RF conducted emissions at the edge of the authorized band were measured with the EUT set high transmit frequency in each available band. The channel closest to the band edge was selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the modulation type listed in the datasheet.


The spectrum was scanned above the higher band edge.



	xBRv3x2	Work Order:		
	00:91:FA:00:02:02, 00:91:FA:00:02:03		10/01/12	
	Synapse Strategic Product Development LLC	Temperature		
Attendees:	None	Humidity		
Project:		Barometric Pres.	1025	
	Brandon Hobbs and Rod Peloquin Power: PoE	Job Site:	EV06	
TEST SPECIFICAT	DNS Test Method			
FCC 15.247:2012	ANSI C63.10:2009			
COMMENTS	-			
The EUT was trans	nitting at 100% duty cycle.			
DEVIATIONS FROM	TEST STANDARD			
None				
Configuration #	1 Signature			
		Value	Limit	Result
Antenna Port A	GFSK			
	Channel 2482 MHz	-41.7 dBc	≤ -20 dBc	Pass
Antenna Port B	GFSK			
	Channel 2482 MHz	-42.04 dBc	≤ -20 dBc	Pass

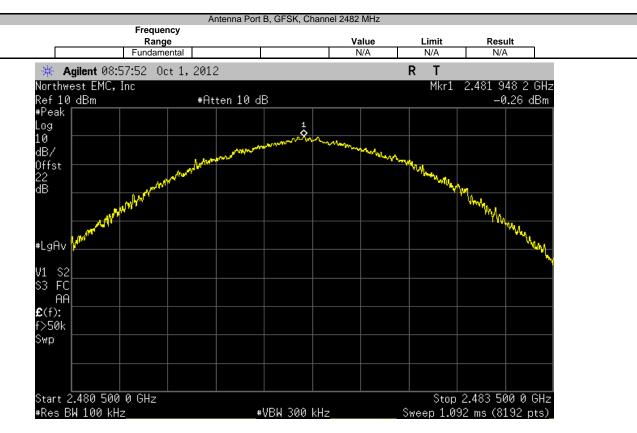
Spurious Conducted Emissions

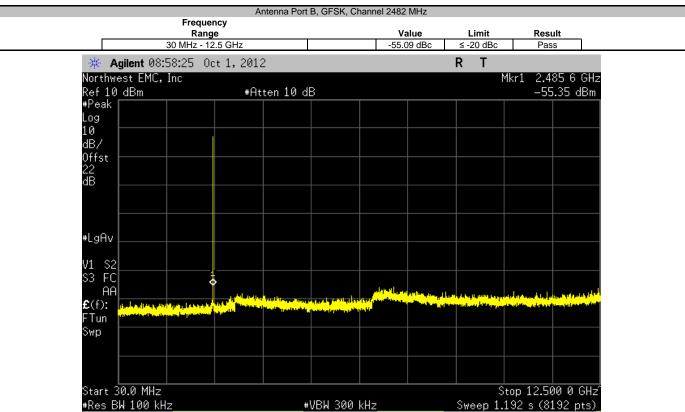
Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT

					1
Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

TEST DESCRIPTION


The spurious RF conducted emissions were measured with the EUT set the single transmit frequency. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the modulation type listed in the datasheet. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.



Spurious Conducted Emissions

	xBRv3x2			Work Order:					
	: 00:91:FA:00:02:02, 00:91:FA:00:02:03				10/01/12				
	: Synapse Strategic Product Development LLC			Temperature:					
Attendees	None			Humidity:					
Project					Barometric Pres.: 1025				
Tested by	Brandon Hobbs and Rod Peloquin	Power:	PoE	Job Site:	EV06				
FEST SPECIFICAT	TIONS		Test Method						
FCC 15.247:2012			ANSI C63.10:2009						
COMMENTS									
DEVIATIONS FRO	M TEST STANDARD								
	1 Signature	Rocky le	Reling						
	1 Signature	Roly le	Frequency						
Configuration #	1 Signature	Rocky te	0	Value	Limit	Result			
Configuration #	1 Signature	Pooling le	Frequency	Value	Limit	Result			
Configuration #	1 Signature	haling te	Frequency	Value	Limit	Result			
Configuration #		Poly le	Frequency	Value N/A	Limit	Result N/A			
	GFSK	U	Frequency Range						

	rt B, GFSK, Chanr	1el 2482 MHZ		
Frequency		Value	Limit	Result
Range 12.5 GHz - 25 GHz		-52.37 dBc	≤ -20 dBc	Pass
W Autor 00.E0.E0 0 1 0010			р т	
Agilent 08:58:56 Oct 1, 2012			RT	4 40.044 E CU
orthwest EMC, Inc	JD		Mkr	
ef 10 dBm #Atten 10 Peak				-52.63 dBm
0				
B/				
ffst				
ffst 2 B				
LgAv				
-5.00				
1 \$2 1				
3 FC 9		ditter and the	a daamaa waalaa ahaa aha	
		المركز المركز المركز المستخدم المركز المر	ورجع والمحافظ والمحافظ والمحافظ أتسرعه	
2(f):				
Tun wp				
mp				
			_	
tart 12.500 0 GHz				op 25.000 0 GHz
Res BW 100 kHz	#VBW 300 kHz	,		95 s (8192 pts)

ENC

Power Spectral Density

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

Description	Manufacturer	Model	ID	Last Cal.	Interval
40GHz DC Block	Miteq	DCB4000	AMD	6/25/2012	12
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	8/2/2012	12
Power Meter	Gigatronics	8651A	SPM	1/9/2012	24
MXG Vector Signal Generator	Agilent	N5182A	TIF	NCR	0
Attenuator, 'Precision N'	S.M. Electronics	SA18N-06/SM4032	REE	12/15/2011	12
Power Sensor	Gigatronics	80701A	SPL	7/8/2011	24
Spectrum Analyzer	Agilent	E4440A	AFD	7/5/2012	12
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

TEST DESCRIPTION

The maximum power spectral density measurements were measured with the EUT set to the required transmit frequency in the band. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the GFSK modulation type.

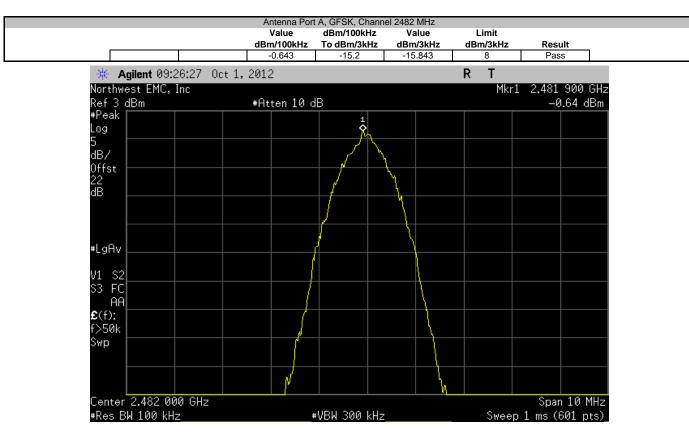
Per the procedure outlined in FCC KDB 558074 D01 DTS Measurement Section 5.3.1, the spectrum analyzer was used as follows:

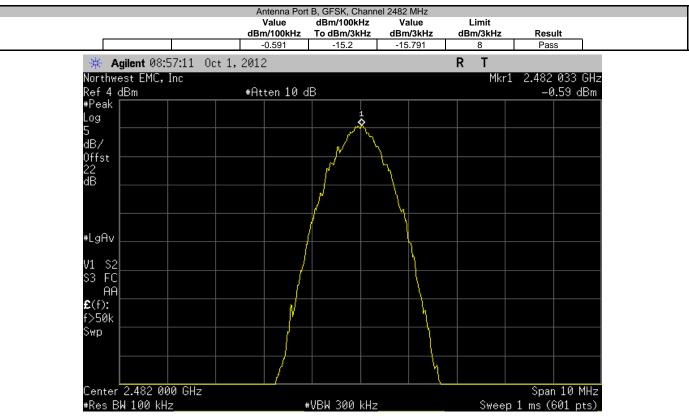
≻RBW = 100 kHz

≻VBW = 300 kHz

>Detector = Peak (to match method used for power measurement)

≻Trace = Max hold


The observed power level is then scaled to an equivalent value in 3 kHz by adding a Bandwidth Correction Factor (BWCF) where:


BWCF = 10*LOG (3 kHz / 100 kHz) = -15.2 dB

	: xBRv3x2									Work Order:			
Serial Number											10/01/12		
Customer	r: Synapse St	rategic Produ	ict Developm	ent LLC					Temperature: 23.62°C				
Attendees	s: None									Humidity:	35%		
Project	t: None									Barometric Pres.:	1025		
Tested by	: Brandon He	obbs and Rod	Peloquin			Power:	PoE			Job Site:	EV06		
TEST SPECIFICAT	TIONS						Test Method						
FCC 15.247:2012							ANSI C63.10:2009						
COMMENTS													
The EUT was tran	smitting at 10	0% duty cycl	e										
	Sinting at it	o /s duty cycl	. .										
DEVIATIONS FRO	M TEST STA												
None		12/11/2											
None					1	~	- 0						
Configuration #		1			16	chin la	Lelena						
Configuration #				Signature	20000	0	Reling						
				Signature			V	Value	dBm/100kHz	Value	Limit		
								dBm/100kHz	To dBm/3kHz	dBm/3kHz	dBm/3kHz	Result	
Antenna Port A													
	GFSK												
	GFSK	Channel 248	2 MHz					-0.643	-15.2	-15.843	8	Pass	
Antenna Port B		Channel 248	2 MHz					-0.643	-15.2	-15.843	8	Pass	
Antenna Port B	GFSK	Channel 248 Channel 248						-0.643	-15.2	-15.843	8	Pass	

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data. The test data represents the configuration / operating mode/ model that produced the highest emission levels as compared to the specification limit.

MODES OF OPERATION

Transmitting GFSK at 2482 Mhz, 100% duty cycle

POWER SETTINGS INVESTIGATED

PoE

CONFIGURATIONS INVESTIGATED

SYNA0103 - 1

FREQUENCY RANGE INVESTIGATED

Start Frequency 30 MHz

Stop Frequency 26.5 GHz

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
Cable	ESM Cable Corp.	KMKM-72	EVY	9/11/2012	12 mo
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	9/11/2012	12 mo
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0 mo
Pre-Amplifier	Miteq	AMF-6F-12001800-30-10P	AVD	2/28/2012	12 mo
Antenna, Horn	ETS	3160-08	AHV	NCR	0 mo
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	2/28/2012	12 mo
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	2/28/2012	12 mo
Antenna, Horn	ETS	3160-07	AHU	NCR	0 mo
EV01 Cables	N/A	Bilog Cables	EVA	6/26/2012	12 mo
Pre-Amplifier	Miteq	AM-1616-1000	AOL	6/26/2012	12 mo
Antenna, Horn	ETS	3115	AIZ	1/24/2011	24 mo
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	6/27/2012	12 mo
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	6/27/2012	12 mo
Antenna, Biconilog	EMCO	3141	AXG	4/10/2012	12 mo
Spectrum Analyzer	Agilent	E4446A	AAQ	2/7/2012	12 mo

MEASUREMENT BANDWIDTHS

Frequency Range	Peak Data	Quasi-Peak Data	Average Data
(MHz)	(kHz)	(kHz)	(kHz)
0.01 - 0.15	1.0	0.2	0.2
0.15 - 30.0	10.0	9.0	9.0
30.0 - 1000	100.0	120.0	120.0
Above 1000	1000.0	N/A	1000.0

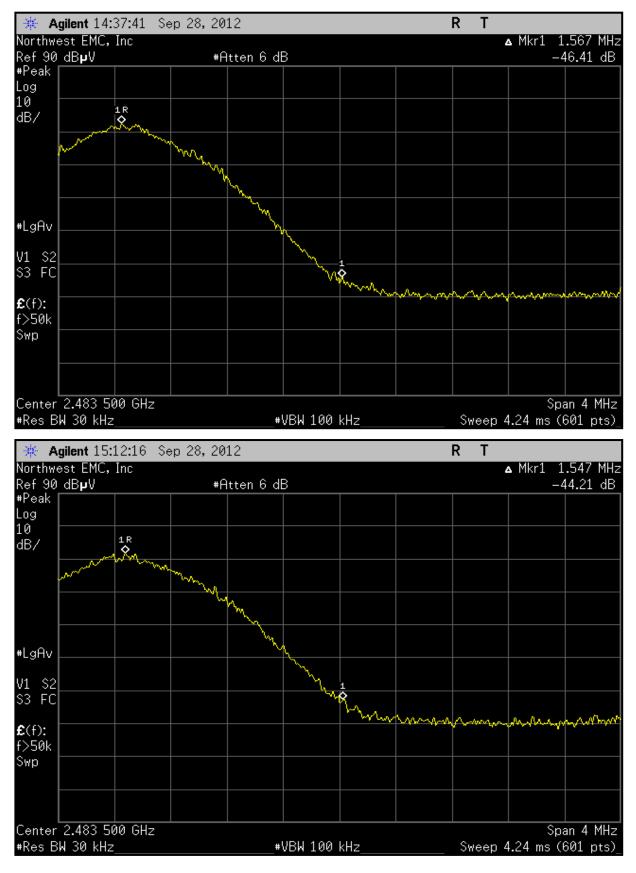
TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for a single band transmit frequency. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization. A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

SPURIOUS RADIATED EMISSIONS

	-				_							
Work Or			A0103		Date:		8/12		all	0/	/	0
Proj			one	Ter	nperature:		<u>3°C</u>	Ċ	one	ang	no	m
Job S	Site:		V01		Humidity:	43%	RH			0		
			:00:02:02,	_								
Serial Num			A:00:02:03	Barome	etric Pres.:	1015.3	3 mbar		Tested by:	Carl Engho	olm	
		xBRv3x2										
Configurat		1										
Custor	mer:	Synapse S	Strategic Pro	duct Devel	opment LLC	0						
Attende	ees:	None										
EUT Pov	wer:	PoE										
Operating Mo	ode:	Transmitti	ng GFSK at :	2482 MHz,	100% duty	cycle						
Deviatio	ons:	None										
Comme	ents:	None										
est Specificatio	ons						Test Met	od				
CC 15.247:2012							ANSI C63					
Run # 8		Test Di	istance (m)	3	Antonn	a Height(s)		1-4m		Results	Di	ass
Kull# 0		Test D	istance (m)	3	Antenna	a neight(s)		1-4[1]		Results	F	455
70 60 50 40 30 20 10												
0 100				1000				10000				100000
						MHz	Polarity/			■ PK	◆ AV	• QP
Freq Amplit	ude	Factor	Antenna Height	Azimuth	Test Distance	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.

Freq	Amplitude	Factor	Antenna Height		Test Distance	External Attenuation	Transducer Type	Detector	Distance Adjustment	Adjusted	Spec. Limit	Compared to Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	
7445 740	00.4	10.5	10	010.0				A) (45.0	54.0	0.1	Comments
7445.713	26.1	19.5	1.3	212.0	3.0	0.0	Vert	AV	0.0	45.6	54.0	-8.4	EUT Horizontal, Tx #03
7445.840	26.0	19.5	1.4	190.0	3.0	0.0	Horz	AV	0.0	45.5	54.0	-8.5	EUT Vertical, Tx #03
7446.020	25.8	19.5	1.1	71.0	3.0	0.0	Vert	AV	0.0	45.3	54.0	-8.7	EUT Horizontal, Tx #02
7445.900	25.8	19.5	1.0	325.0	3.0	0.0	Horz	AV	0.0	45.3	54.0	-8.7	EUT Vertical, Tx #02
7444.620	25.7	19.5	1.0	2.0	3.0	0.0	Horz	AV	0.0	45.2	54.0	-8.8	EUT Horizontal, Tx #02
7444.387	25.7	19.5	2.0	180.0	3.0	0.0	Horz	AV	0.0	45.2	54.0	-8.8	EUT On Side, Tx #02
7444.193	25.7	19.5	1.0	332.0	3.0	0.0	Vert	AV	0.0	45.2	54.0	-8.8	EUT On Side, Tx #02
7444.153	25.7	19.5	1.9	206.0	3.0	0.0	Vert	AV	0.0	45.2	54.0	-8.8	EUT Vertical, Tx #02
4963.893	25.3	10.8	1.0	356.0	3.0	0.0	Vert	AV	0.0	36.1	54.0	-17.9	EUT Horizontal, Tx #03
7445.727	36.5	19.5	1.4	190.0	3.0	0.0	Horz	PK	0.0	56.0	74.0	-18.0	EUT Vertical, Tx #03
7445.147	36.5	19.5	1.0	2.0	3.0	0.0	Horz	PK	0.0	56.0	74.0	-18.0	EUT Horizontal, Tx #02
4962.313	25.2	10.7	1.0	25.0	3.0	0.0	Horz	AV	0.0	35.9	54.0	-18.1	EUT Vertical, Tx #03
7444.020	36.3	19.5	2.0	180.0	3.0	0.0	Horz	PK	0.0	55.8	74.0	-18.2	EUT On Side, Tx #02
7447.600	36.2	19.5	1.9	206.0	3.0	0.0	Vert	PK	0.0	55.7	74.0	-18.3	EUT Vertical, Tx #02
7446.527	36.2	19.5	1.1	71.0	3.0	0.0	Vert	PK	0.0	55.7	74.0	-18.3	EUT Horizontal, Tx #02
7446.373	36.2	19.5	1.0	325.0	3.0	0.0	Horz	PK	0.0	55.7	74.0	-18.3	EUT Vertical, Tx #02
7445.053	36.2	19.5	1.3	212.0	3.0	0.0	Vert	PK	0.0	55.7	74.0	-18.3	EUT Horizontal, Tx #03
7444.780	35.8	19.5	1.0	332.0	3.0	0.0	Vert	PK	0.0	55.3	74.0	-18.7	EUT On Side, Tx #02
12408.100	32.6	-2.8	1.0	131.0	3.0	0.0	Vert	AV	0.0	29.8	54.0	-24.2	EUT Horizontal, Tx #03
12408.630	32.4	-2.8	1.0	25.0	3.0	0.0	Horz	AV	0.0	29.6	54.0	-24.4	EUT Vertical, Tx #03
4965.553	36.0	10.8	1.0	356.0	3.0	0.0	Vert	PK	0.0	46.8	74.0	-27.2	EUT Horizontal, Tx #03
4962.833	35.5	10.8	1.0	25.0	3.0	0.0	Horz	PK	0.0	46.3	74.0	-27.7	EUT Vertical, Tx #03
12409.810	43.7	-2.8	1.0	131.0	3.0	0.0	Vert	PK	0.0	40.9	74.0	-33.1	EUT Horizontal, Tx #03
12411.950	43.1	-2.8	1.0	25.0	3.0	0.0	Horz	PK	0.0	40.3	74.0	-33.7	EUT Vertical, Tx #03



SPURIOUS RADIATED EMISSIONS

			HIHIM	ΛΛ									
	Work Order:		NA0103		Date:		28/12		11.0	0/	/	0	1
	Project: Job Site:		None EV01	Te	mperature: Humidity:		<u>8 °C</u> 6 RH	Ċ	all	7	no	n	
	Job Site:		A:00:02:02,		Humaity:	437	0 KΠ			6			J
Se	erial Number:		A:00:02:02,	Barom	etric Pres.:	1015.	3 mbar		Tested by:	Carl Englo	olm		
	EUT:									- J			-
C	onfiguration:												_
			Strategic Pro	duct Deve	elopment LLC								-
	Attendees:												_
	EUT Power:	Troponia	ting GFSK at :	2492 Mbz	100% duty	avelo							-
Ope	erating Mode:	Transmit	ung Grok at		, 100% duty t	Sycie							
		None											-
	Deviations												
		None											-
	Comments												
													=
	ecifications						Test Meth						_
FCC 15	.247:2012						ANSI C63	.10:2009					
Rur	1# 5	Test I	Distance (m)	3	Antenna	Height(s)		1-4m		Results	Pa	ass	-
80) -												-
50	-												
70)												
~													
60	,												
50	o 🕂												
ш/ЛпВр													
1 40) 												
甲													
20													
30	7												
20	o												
10)												
(, 												
	1000											10000	
						MHz							
					_					PK	◆ AV	• QP	
						External	Polarity/ Transducer		Distance			Compared to	
Freq	Amplitude	Factor	Antenna Height	Azimuth	Test Distance	Attenuation	Type	Detector	Adjustment	Adjusted	Spec. Limit	Spec.	
(MHz)	(dBuV)	(dB)	(meters)	(degrees)	(meters)	(dB)			(dB)	(dBuV/m)	(dBuV/m)	(dB)	Commonts
2481.96	67 75.2	1.9	1.0	207.0	3.0	20.0	Vert	AV	0.0	97.1			Comments Fundemental, EUT Horizontal, Tx #03
													Marker-Delta Method:
2383.52		1.0	1.0	207.0	3.0	20.0	Vert	AV	0.0	50.7	54.0	-3.3	AV 97.1 + (-46.4 dBc) = 50.7
2481.98	37 74.9	1.9	1.0	89.0	3.0	20.0	Horz	AV	0.0	96.8			Fundemental, EUT Vertical, Tx #03 Marker-Delta Method:
2483.53			1.0	89.0	3.0	20.0	Horz	AV	0.0	51.5	54.0	-2.5	AV 96.8 + (-45.3 dBc) = 51.5
2481.97	77 74.4	1.9	1.3	65.0	3.0	20.0	Horz	AV	0.0	96.3			Fundemental, EUT Vertical, Tx #02
2483.52	27		1.3	65.0	3.0	20.0	Horz	AV	0.0	52.1	54.0	-1.9	Marker-Delta Method: AV 96.3 + (-44.2 dBc) = 52.1
2481.94		1.9	1.0	222.0	3.0	20.0	Vert	AV	0.0	95.8	0 1.0	1.0	Fundemental, EUT Horizontal, Tx #02
0.000 5 5	-			000 0	0.5	00.5						~ ~	Marker-Delta Method:
2483.52		1.9	1.0	222.0 207.0	3.0 3.0	20.0	Vert Vert	AV PK	0.0	50.7 98.1	54.0	-3.3	AV 95.8 + (-45.1 dBc) = 50.7 Fundemental, EUT Horizontal, Tx #03
2701.92		1.9	1.0	201.0	5.0	20.0	VEIL	1° IX	0.0	30.1			Marker-Delta Method:
2383.52			1.0	207.0	3.0	20.0	Vert	PK	0.0	51.7	74.0	-22.3	PK 98.1 + (-46.4 dBc) = 51.7
2482.13	33 75.8	1.9	1.0	89.0	3.0	20.0	Horz	PK	0.0	97.7			Fundemental, EUT Vertical, Tx #03
2483.53	33		1.0	89.0	3.0	20.0	Horz	PK	0.0	52.4	74.0	-21.6	Marker-Delta Method: PK 97.7 + (-45.3 dBc) = 52.4
2482.47		1.9	1.3	65.0	3.0	20.0	Horz	PK	0.0	97.4			Fundemental, EUT Vertical, Tx #02
2402 52	7		4.0	SE O	2.0	20.0	Hore	עס	0.0	E2 0	74.0	20.0	Marker-Delta Method:
2483.52		1.9	1.3	65.0 222.0	3.0 3.0	20.0	Horz Vert	PK PK	0.0	53.2 96.8	74.0	-20.8	PK 97.4 + (-44.2 dBc) = 53.2 Fundemental, EUT Horizontal, Tx #02
													Marker-Delta Method:
2483.52	27		1.0	222.0	3.0	20.0	Vert	PK	0.0	51.7	74.0	-22.3	PK 96.8 + (-45.1 dBc) = 51.7

SPURIOUS RADIATED EMISSIONS

SPURIOUS RADIATED EMISSIONS

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50 Ω measuring port is terminated by a 50 Ω EMI meter or a 50 Ω resistive load. All 50 Ω measuring ports of the LISN are terminated by 50 Ω .

TEST EQUIPMENT

Description	Manufacturer	Model	ID	Last Cal.	Interval
EV07 Cables	N/A	Conducted Cables	EVG	04/27/2012	12 mo
Attenuator	Coaxicom	66702 2910-20	RBR	08/07/2012	12 mo
High Pass Filter	TTE	H97-100K-50-720B	HHD	02/01/2012	24 mo
Receiver	Rohde & Schwarz	ESCI	ARH	03/29/2012	12 mo
LISN	Solar	9252-50-R-24-BNC	LIR	11/04/2011	12 mo
LISN	Solar	9252-50-R-24-BNC	LIN	04/16/2012	12 mo

MEASUREMENT UNCERTAINTY

Description		
Expanded k=2	2.94 dB	-2.94 dB

CONFIGURATIONS INVESTIGATED

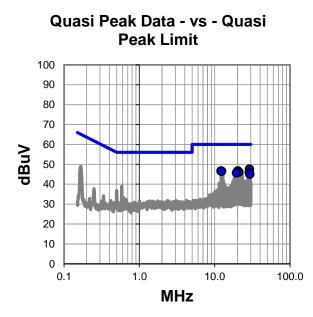
SYNA0103-1 SYNA0103-2

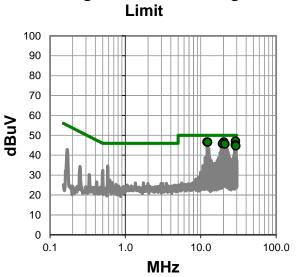
MODES INVESTIGATED

On Standby, Not Transmitting Transmitting GFSK at 2482 MHz, 100% duty cycle

EUT:	xBRv3x2	Work Order:	SYNA0103
Serial Number:	00:91:FA:00:02:02, 00:91:FA:00:02:03	Date:	10/01/2012
Customer:	Synapse Strategic Product Development LLC	Temperature:	23.9°C
Attendees:	None	Relative Humidity:	34%
Customer Project:	None	Bar. Pressure:	1024.7 mb
Tested By:	Carl Engholm, Brandon Hobbs, and Kyle Holgate	Job Site:	EV03
Power:	PoE	Configuration:	SYNA0103-1

TEST SPECIFICATIONS


NORTHWEST ENC


Specification:	Method:
FCC 15.207:2012	ANSI C63.10:2009

TEST PARAMETERS

Run #: 10	Line:	Neutral	Ext. Attenuation (dB):	20				
COMMENTS								
shielded Cat 5 eight meter bundle	d							
EUT OPERATING MODES								
Transmitting GFSK at 2482 MHz,	Transmitting GFSK at 2482 MHz, 100% duty cycle							
DEVIATIONS FROM TEST STANDARD								

None

Average Data - vs - Average Limit

RESULTS - Run #10

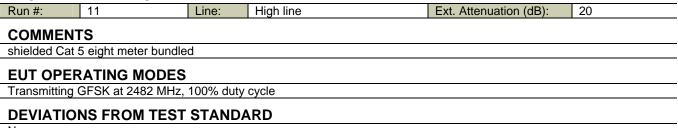
Quasi Peak Data - vs - Quasi Peak Limit					
				Spec.	
Freq	Amp.	Factor	Adjusted	Limit	Margin
(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)
29.020	25.4	22.1	47.5	60.0	-12.5
20.220	25.1	21.6	46.7	60.0	-13.3
12.130	25.6	21.1	46.7	60.0	-13.3
12.370	25.4	21.1	46.5	60.0	-13.5
20.934	24.5	21.6	46.1	60.0	-13.9
28.784	23.8	22.1	45.9	60.0	-14.1
19.506	24.1	21.6	45.7	60.0	-14.3
29.260	22.9	22.1	45.0	60.0	-15.0

Average Data - vs - Average Limit					
Freq (MHz)					
29.020	24.9	22.1	47.0	50.0	-3.0
20.220	25.1	21.6	46.7	50.0	-3.3
12.130	25.6	21.1	46.7	50.0	-3.3
12.370	25.5	21.1	46.6	50.0	-3.4
19.506	24.2	21.6	45.8	50.0	-4.2
20.934	24.0	21.6	45.6	50.0	-4.4
28.784	23.1	22.1	45.2	50.0	-4.8
29.260	22.6	22.1	44.7	50.0	-5.3

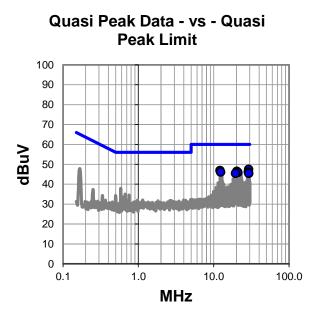
CONCLUSION

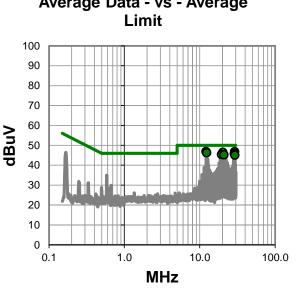
Pass

Tested By


EUT:	xBRv3x2	Work Order:	SYNA0103
Serial Number:	00:91:FA:00:02:02, 00:91:FA:00:02:03	Date:	10/01/2012
Customer:	Synapse Strategic Product Development LLC	Temperature:	23.9°C
Attendees:	None	Relative Humidity:	34%
Customer Project:	None	Bar. Pressure:	1024.7 mb
Tested By:	Carl Engholm, Brandon Hobbs, and Kyle Holgate	Job Site:	EV03
Power:	PoE	Configuration:	SYNA0103-1

TEST SPECIFICATIONS


EMC


Specification:	Method:
FCC 15.207:2012	ANSI C63.10:2009

TEST PARAMETERS

None

Average Data - vs - Average

RESULTS - Run #11

	Quasi Peak Data - vs - Quasi Peak Limit						
	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	
	29.024	25.3	22.1	47.4	60.0	-12.6	
	12.134	25.8	21.1	46.9	60.0	-13.1	
	20.220	24.9	21.6	46.5	60.0	-13.5	
	28.784	24.0	22.1	46.1	60.0	-13.9	
	12.370	25.0	21.1	46.1	60.0	-13.9	
	20.934	24.3	21.6	45.9	60.0	-14.1	
	19.506	23.9	21.6	45.5	60.0	-14.5	
1	29.258	23.3	22.1	45.4	60.0	-14.6	

Average Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
12.134	25.8	21.1	46.9	50.0	-3.1
29.024	24.7	22.1	46.8	50.0	-3.2
20.220	24.9	21.6	46.5	50.0	-3.5
12.370	25.2	21.1	46.3	50.0	-3.7
28.784	23.7	22.1	45.8	50.0	-4.2
19.506	23.8	21.6	45.4	50.0	-4.6
20.934	23.6	21.6	45.2	50.0	-4.8
29.258	22.9	22.1	45.0	50.0	-5.0

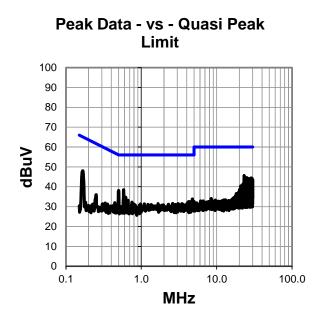
CONCLUSION

Pass

Tested By

EUT:	xBRv3x2	Work Order:	SYNA0103
Serial Number:	00:91:FA:00:02:02, 00:91:FA:00:02:03	Date:	10/01/2012
Customer:	Synapse Strategic Product Development LLC	Temperature:	23.9°C
Attendees:	None	Relative Humidity:	34%
Customer Project:	None	Bar. Pressure:	1024.7 mb
Tested By:	Carl Engholm, Brandon Hobbs, and Kyle Holgate	Job Site:	EV03
Power:	PoE	Configuration:	SYNA0103-2

TEST SPECIFICATIONS


EMC

Specification:	Method:
FCC 15.207:2012	ANSI C63.10:2009


TEST PARAMETERS

-	-								
Run #:	12	Line:	High Line	Ext. Attenuation (dB):	20				
COMMENT	COMMENTS								
unshielded Ca	at 5 cable 1 meter								
EUT OPER	EUT OPERATING MODES								
Transmitting (Transmitting GFSK at 2482 MHz, 100% duty cycle								
DEVIATIONS FROM TEST STANDARD									
Mana									

None

Peak Data - vs - Average Limit

RESULTS - Run #12

Peak Data - vs - Quasi Peak Limit						Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
23.130	23.9	21.8	45.7	60.0	-14.3	23.130	23.9	21.8	45.7	50.0	-4.3
25.220	22.7	21.9	44.6	60.0	-15.4	25.220	22.7	21.9	44.6	50.0	-5.4
28.790	22.3	22.1	44.4	60.0	-15.6	28.790	22.3	22.1	44.4	50.0	-5.6
29.510	22.1	22.2	44.3	60.0	-15.7	29.510	22.1	22.2	44.3	50.0	-5.7
28.080	22.2	22.1	44.3	60.0	-15.7	28.080	22.2	22.1	44.3	50.0	-5.7
25.930	22.3	21.9	44.2	60.0	-15.8	25.930	22.3	21.9	44.2	50.0	-5.8
28.320	22.1	22.1	44.2	60.0	-15.8	28.320	22.1	22.1	44.2	50.0	-5.8
26.650	22.0	22.0	44.0	60.0	-16.0	26.650	22.0	22.0	44.0	50.0	-6.0
25.690	21.9	21.9	43.8	60.0	-16.2	25.690	21.9	21.9	43.8	50.0	-6.2
27.360	21.8	22.0	43.8	60.0	-16.2	27.360	21.8	22.0	43.8	50.0	-6.2
23.080	22.0	21.8	43.8	60.0	-16.2	23.080	22.0	21.8	43.8	50.0	-6.2
29.980	21.4	22.2	43.6	60.0	-16.4	29.980	21.4	22.2	43.6	50.0	-6.4
26.610	21.6	22.0	43.6	60.0	-16.4	26.610	21.6	22.0	43.6	50.0	-6.4
24.510	21.6	21.8	43.4	60.0	-16.6	24.510	21.6	21.8	43.4	50.0	-6.6
29.030	21.2	22.1	43.3	60.0	-16.7	29.030	21.2	22.1	43.3	50.0	-6.7
27.840	21.0	22.0	43.0	60.0	-17.0	27.840	21.0	22.0	43.0	50.0	-7.0
27.120	21.0	22.0	43.0	60.0	-17.0	27.120	21.0	22.0	43.0	50.0	-7.0
29.740	20.8	22.2	43.0	60.0	-17.0	29.740	20.8	22.2	43.0	50.0	-7.0
0.167	27.7	20.4	48.1	65.1	-17.1	0.167	27.7	20.4	48.1	55.1	-7.1
27.600	20.9	22.0	42.9	60.0	-17.1	27.600	20.9	22.0	42.9	50.0	-7.1
23.790	21.0	21.8	42.8	60.0	-17.2	23.790	21.0	21.8	42.8	50.0	-7.2
29.270	20.5	22.1	42.6	60.0	-17.4	29.270	20.5	22.1	42.6	50.0	-7.4
26.160	20.7	21.9	42.6	60.0	-17.4	26.160	20.7	21.9	42.6	50.0	-7.4
26.890	20.6	22.0	42.6	60.0	-17.4	26.890	20.6	22.0	42.6	50.0	-7.4
0.584	18.2	20.3	38.5	56.0	-17.5	0.584	18.2	20.3	38.5	46.0	-7.5
26.490	20.4	22.0	42.4	60.0	-17.6	26.490	20.4	22.0	42.4	50.0	-7.6

CONCLUSION

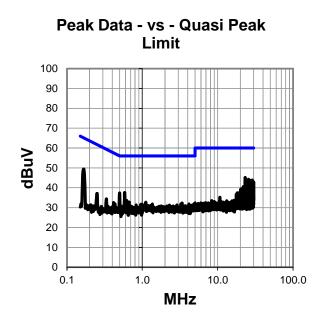
Pass

Vel

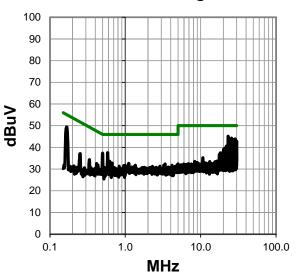
Tested By

EUT:	xBRv3x2	Work Order:	SYNA0103
Serial Number:	00:91:FA:00:02:02, 00:91:FA:00:02:03	Date:	10/01/2012
Customer:	Synapse Strategic Product Development LLC	Temperature:	23.9°C
Attendees:	None	Relative Humidity:	34%
Customer Project:	None	Bar. Pressure:	1024.7 mb
Tested By:	Carl Engholm, Brandon Hobbs, and Kyle Holgate	Job Site:	EV03
Power:	PoE	Configuration:	SYNA0103-2

TEST SPECIFICATIONS


EMC

Specification:	Method:
FCC 15.207:2012	ANSI C63.10:2009


TEST PARAMETERS

Run #:	13	Line:	Neutral	Ext. Attenuation (dB):	20
COMMENT	S				
unshielded Ca	at 5 cable 1 meter				
EUT OPER	ATING MODES				
Transmitting (GFSK at 2482 MHz,	100% duty	cycle		
DEVIATIO	NS FROM TEST	STANDA	RD		
None					

None

Peak Data - vs - Average Limit

RESULTS - Run #13

Peak Data - vs - Quasi Peak Limit						Peak Data - vs - Average Limit					
Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)	Freq (MHz)	Amp. (dBuV)	Factor (dB)	Adjusted (dBuV)	Spec. Limit (dBuV)	Margin (dB)
23.130	23.4	21.8	45.2	60.0	-14.8	23.130	23.4	21.8	45.2	50.0	-4.8
25.690	22.4	21.9	44.3	60.0	-15.7	25.690	22.4	21.9	44.3	50.0	-5.7
0.165	29.1	20.4	49.5	65.2	-15.7	0.165	29.1	20.4	49.5	55.2	-5.7
25.210	22.1	21.9	44.0	60.0	-16.0	25.210	22.1	21.9	44.0	50.0	-6.0
28.790	21.8	22.1	43.9	60.0	-16.1	28.790	21.8	22.1	43.9	50.0	-6.1
27.360	21.7	22.0	43.7	60.0	-16.3	27.360	21.7	22.0	43.7	50.0	-6.3
26.650	21.5	22.0	43.5	60.0	-16.5	26.650	21.5	22.0	43.5	50.0	-6.5
28.080	21.4	22.1	43.5	60.0	-16.5	28.080	21.4	22.1	43.5	50.0	-6.5
23.070	21.5	21.8	43.3	60.0	-16.7	23.070	21.5	21.8	43.3	50.0	-6.7
25.930	21.3	21.9	43.2	60.0	-16.8	25.930	21.3	21.9	43.2	50.0	-6.8
26.890	21.2	22.0	43.2	60.0	-16.8	26.890	21.2	22.0	43.2	50.0	-6.8
24.510	21.3	21.8	43.1	60.0	-16.9	24.510	21.3	21.8	43.1	50.0	-6.9
29.510	20.9	22.2	43.1	60.0	-16.9	29.510	20.9	22.2	43.1	50.0	-6.9
26.610	21.0	22.0	43.0	60.0	-17.0	26.610	21.0	22.0	43.0	50.0	-7.0
27.600	20.9	22.0	42.9	60.0	-17.1	27.600	20.9	22.0	42.9	50.0	-7.1
29.980	20.7	22.2	42.9	60.0	-17.1	29.980	20.7	22.2	42.9	50.0	-7.1
28.320	20.8	22.1	42.9	60.0	-17.1	28.320	20.8	22.1	42.9	50.0	-7.1
27.120	20.7	22.0	42.7	60.0	-17.3	27.120	20.7	22.0	42.7	50.0	-7.3
23.800	20.7	21.8	42.5	60.0	-17.5	23.800	20.7	21.8	42.5	50.0	-7.5
27.160	20.5	22.0	42.5	60.0	-17.5	27.160	20.5	22.0	42.5	50.0	-7.5
29.270	20.3	22.1	42.4	60.0	-17.6	29.270	20.3	22.1	42.4	50.0	-7.6
29.030	20.3	22.1	42.4	60.0	-17.6	29.030	20.3	22.1	42.4	50.0	-7.6
28.550	20.3	22.1	42.4	60.0	-17.6	28.550	20.3	22.1	42.4	50.0	-7.6
29.750	20.1	22.2	42.3	60.0	-17.7	29.750	20.1	22.2	42.3	50.0	-7.7
26.490	20.3	22.0	42.3	60.0	-17.7	26.490	20.3	22.0	42.3	50.0	-7.7
27.840	20.1	22.0	42.1	60.0	-17.9	27.840	20.1	22.0	42.1	50.0	-7.9

CONCLUSION

Pass

Vel

Tested By