

FCC RADIO TEST REPORT

Applicant : FOSHAN SHUNDE ADVANTE ELECTRON LTD.
Address : North Second XinXi Road, LunJiao Industrial Avenue, LunJiao, Shunde, Foshan, Guangdong, China
Manufacturer : FOSHAN SHUNDE ADVANTE ELECTRON LTD.
Address i North Second XinXi Road, LunJiao Industrial Avenue, LunJiao, Shunde, Foshan, Guangdong, China
Factory : FOSHAN SHUNDE ADVANTE ELECTRON LTD.
Address i North Second XinXi Road, LunJiao Industrial Avenue, LunJiao, Shunde, Foshan, Guangdong, China
Product Name : Wireless Door Chime
Brand Name : N/A
Model No : D1, D2, 612P, DES6572WB/37, 57338 (For model difference refer to section 2)
FCC ID : Q212023D1
Measurement Standard : 47 CFR FCC Part 15, Subpart C (Section 15.231)
Receipt Date of Samples : June 01, 2023
Date of Tested : June 03, 2023 to June 08, 2023
Date of Report : June 20, 2023

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by

Julie Xiao / Project Engineer

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Test Channels and Modes Detail	7
4. Configuration of EUT	7
5. Modification of EUT	7
6. Description of Support Device	7
7. Test Facility and Location	8
8. Applicable Standards and References	9
9. Deviations and Abnormalities from Standard Conditions	9
10. Test Conditions	9
11. Measurement Uncertainty	10
12. Sample Calculations	11
13. Duty Cycle	12
14. Test Items and Results	13
14.1 Conducted Emissions Measurement	13
14.2 Radiated Spurious Emissions Measurement	15
14.3 20dB Occupied Bandwidth	24
14.4 Transmission time	26
14.5 Antenna Requirement	28
15. Test Equipment List	29

Revision History

Report Number	Description	Issued Date
NTC2306006FV00	Initial Issue	2023-06-20

1. Summary of Test Result

FCC Rules	Description of Test	Result	Remarks
§15.207 (a)	AC Power Line Conducted Emission	N/A see note	
§15.231(b) & 15.209	Radiated Spurious Emission	PASS	
§15.231(c)	20 dB Occupied bandwidth	PASS	
§15.231(a)	Transmission time	PASS	
§15.203	Antenna Requirement	PASS	
Note: AC Power Conducted	Emission is not applicable due to the E	UT only can be powere	d by battery.

2. General Description of EUT

Wireless Door Chime
D1
D2, 612P, DES6572WB/37, 57338
These models have the same circuit schematic, construction, PCB Layout and
critical components. The difference is model number only due to trading purpose. 2306-2716
N/A
Not stated
Not stated
DC 4.5V from 1.5VAAA battery* 3
Class B
Table-top
N/A
N/A
N/A
N/A
According to these model differences, all tests were performed on model D1 according to the manufacturer requirement.
All the information above are provided by the manufacturer. More detailed feature of the EUT please refers to the user manual.

Technical Specification	
Declaring the Frequency:	433.92MHz
Modulation Type:	ASK
Antenna Type:	Integral antenna
Antenna Gain:	0 dBi (Declared by manufacturer)
Number of Channels:	1

3. Test Channels and Modes Detail

Mode		Node	Test Frequency (MHz)	Modulation	Data Rate (Mbps)
	1	1 TX 433.92MHz		ASK	

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

4. Configuration of EUT

TX Mode			
	EUT		

5. Modification of EUT

No modifications are made to the EUT during all test items.

6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks

7. Test Facility and Location

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)
Accreditations and	:	The Laboratory has been assessed and proved to be in compliance with
Authorizations		CNAS/CL01
		Listed by CNAS, August 13, 2018
		The Certificate Registration Number is L5795.
		The Certificate is valid until August 13, 2024
		The Laboratory has been assessed and proved to be in compliance with
		ISO17025
		Listed by A2LA, November 01, 2017
		The Certificate Registration Number is 4429.01
		The Certificate is valid until December 31, 2023
		Listed by FCC, November 06, 2017
		Test Firm Registration Number: 907417
		Listed by Industry Canada, June 08, 2017
		The Certificate Registration Number. Is 46405-9743A
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng
		District, Dongguan City, Guangdong Province, China

8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Test Standards:

47 CFR Part 15, Subpart C, 15.231 ANSI C63.10-2013

References Test Guidance:

N/A

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Test Conditions

No.	Test Item	Test Mode	Test Voltage	Tested by	Remarks
1.	AC Power Conducted Emission				
2.	Radiated Emission	1	DC 4.5V	Sean	See note 1
3.	Max. Conducted Output Power	1	DC 4.5V	Sean	See note 1
4.	20 dB Occupied bandwidth	1	DC 4.5V	Sean	See note 1
5.	Transmission time	1	DC 4.5V	Sean	See note 1
6.	Antenna Requirement				See note 1

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C, 30~70%, 86~106kPa.

2. As the EUT can be operated multiple positions, all X,Y,Z axis were considered during the test and only the worst case X was recorded.

3. Note: AC Power Conducted Emission is not applicable due to the EUT only can be powered by battery.

11. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission	150KHz ~ 30MHz	±3.04 dB	
		9kHz ~ 30MHz	±5.04 dB	
2.	Dedicted Engineerien	30MHz ~ 1GHz	0MHz ~ 1GHz ±5.04 dB ·	
	Radiated Emission	1GHz ~ 18GHz	±5.23 dB	
		18GHz ~ 40GHz	±5.23 dB	
3.	Conducted Spurious Emissions	10Hz ~ 40GHz	±0.78 dB	
4.	RF Output Power	10Hz ~ 40GHz	±0.86 dB	
5.	Power Spectral Density	10Hz ~ 40GHz	±1.06 dB	
6.	Occupied Channel Bandwidth		±1.42 x10 ⁻⁷	
Note				1

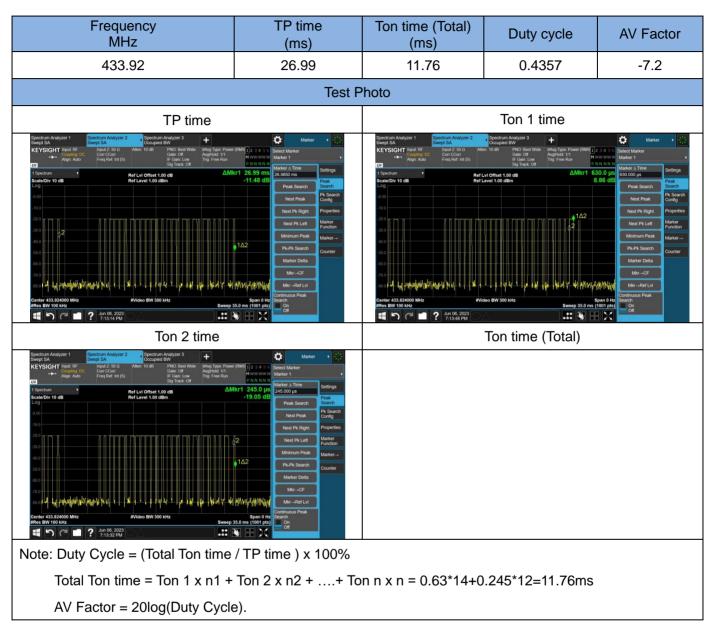
Note:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.

3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

12. Sample Calculations


Conducted Emission							
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector	
0.1900	30.10	10.60	79.00	-38.30	QP		
Where,	Where,						
Freq.	= Emiss	ion frequency in MH	lz				
Reading Lev	el = Spect	rum Analyzer/Recei	ver Reading				
Corrector Fa	Corrector Factor = Insertion loss of LISN + Cable Loss + RF Switching Unit attenuation						
Measuremer	Measurement = Reading + Corrector Factor						
Limit = Limit stated in standard							
Margin = Measurement - Limit							
Detector	Deading for Quesi Deak / Average / Deak						

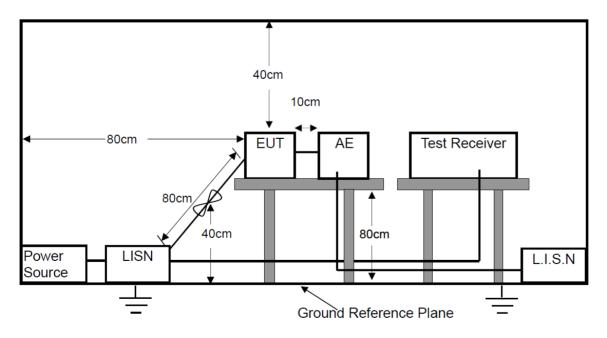
Radiated Spurious Emissions								
Freq. (MHz)	Reading Level (dBuV)							
642.0700	7.01	7.01 27.83 34.84 46.00 -						
Where,	Where,							
Freq.	= Emiss	ion frequency in MH	lz					
Reading Lev	el = Spect	rum Analyzer/Receiv	ver Reading					
Corrector Fa	Corrector Factor = Antenna Factor + Cable Loss - Pre-amplifier							
Measuremer	nt = Readi	ng + Corrector Facto	or					
Limit	Limit = Limit stated in standard							
Over	Over = Margin, which calculated by Measurement - Limit							
Detector	= Reading for Quasi-Peak / Average / Peak							

Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

13. Duty Cycle

14. Test Items and Results

14.1 Conducted Emissions Measurement


LIMITS

According to the requirements of FCC PART 15.207, the limits are as follows:

Frequency (MHz) Quasi-peak		Average				
0.15 to 0.5 66 to 56		56 to 46				
0.5 to 5 56 46		46				
5 to 30 60 50		50				
	Note: 1. If the limits for the average detector are met when using the quasi-peak detector, then the limits for the measurements with the average detector are considered to be met.					
 The lower limit shall apply at the transition frequencies. 						

3. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

TEST RESULTS

Not applicable.

14.2 Radiated Spurious Emissions Measurement

LIMITS

Frequency range	Distance Meters	Field Strengths Limit (15.209)		
MHz		μV/m		
0.009 ~ 0.490	300	2400/F(kHz)		
0.490 ~ 1.705	30	24000/F(kHz)		
1.705 ~ 30	30	30		
30 ~ 88	3	100		
88 ~ 216	3	150		
216 ~ 960	3	200		
Above 960	3	500		

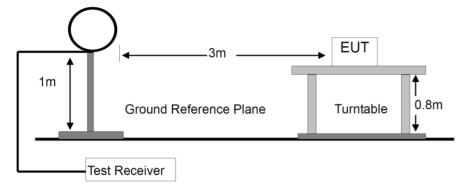
Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

(2) The smaller limit shall apply at the cross point between two frequency bands.

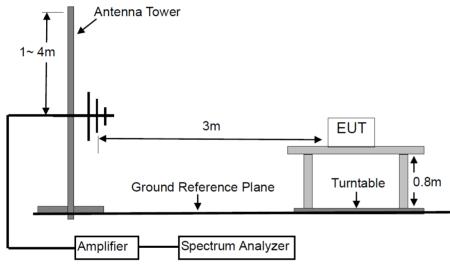
(3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

(4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.

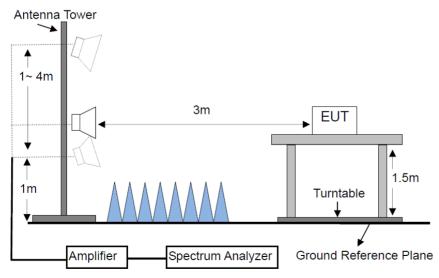
(5) §15.247(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.


According to 15.231(b), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/ meter)	spurious emissions (microvolts/meter)			
40.66 - 40.70	2250	225			
70 - 130	1250	125			
130 - 174	1250 to 3750*	125 to 375*			
174 - 260	3750	375			
260 - 470	3750 to 12500*	375 to 1250*			
Above 470	12500	1250			
Remark: (1) * Linear interpolations					
(2) Emission level (dB) μ V = 20 log Emission level μ V/m					
(3) The smaller lim	it shall apply at the cross point between	two frequency bands.			



BLOCK DIAGRAM OF TEST SETUP


For Radiated Emission below 30MHz

For Radiated Emission 30-1000MHz

For Radiated Emission Above 1000MHz.

TEST PROCEDURES

- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

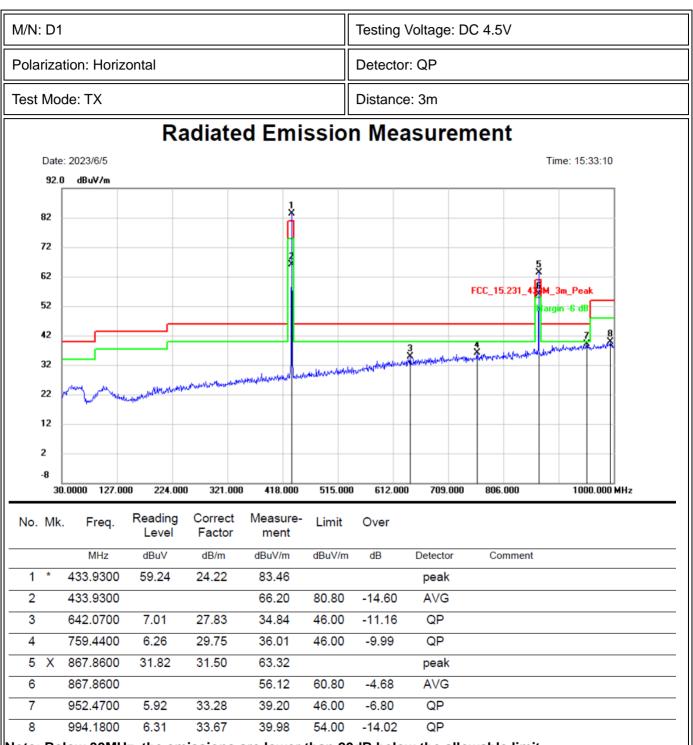
- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
	Average	1 MHz	10 Hz

During the radiated emission test, the spectrum analyzer was set with the following configurations:

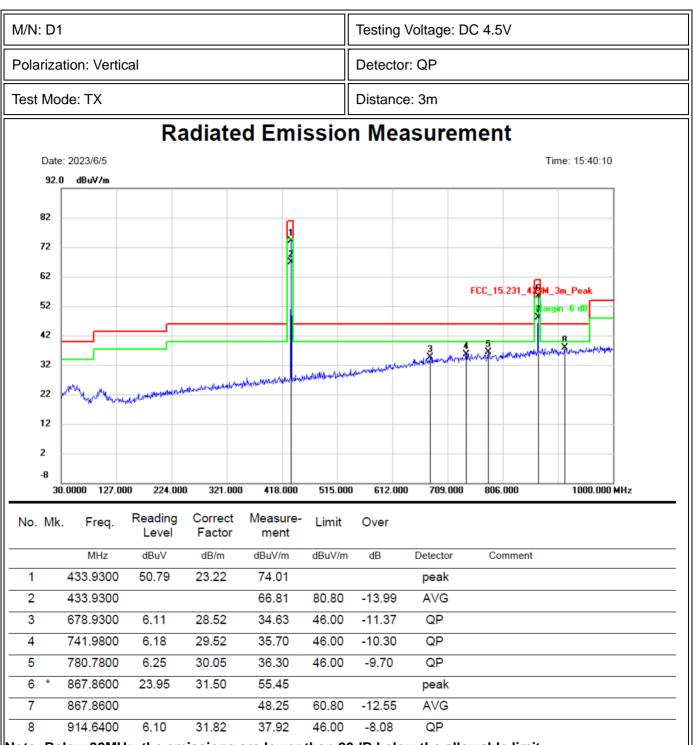
TEST RESULTS

PASS

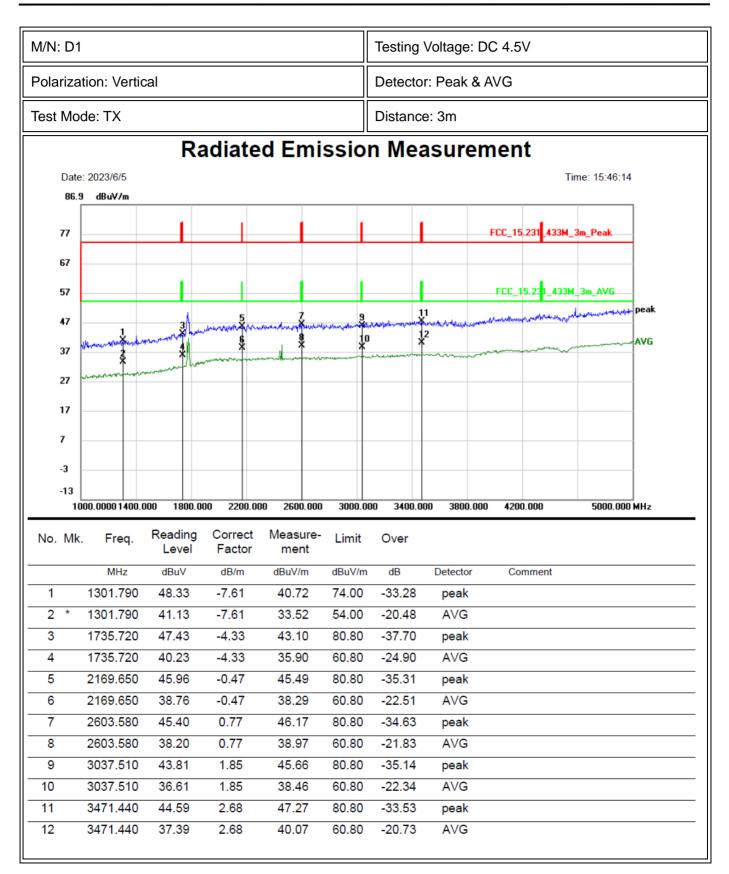

Please refer to the following pages.

AVG = Peak + AV Factor,

where Peak is the measurement peak level, and AV Factor is calculated by duty cycle, details see section 13 of the report.


Sample calculation, Peak=83.46dBuV/m, AV Factor= -7.2dB, then AVG=83.46+(-7.2)=76.46dBuV/m.

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.



Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

M/N: D1	Testing Voltage: DC 4.5V		
Polarization: Horizontal	Detector: Peak & AVG		
Test Mode: TX	Distance: 3m		
Radiated Emission	on Measurement		
Date: 2023/6/5 86.9 dBuV/m	Time: 15:52:17		
77	FCC_15.231_433M_3m_Peak		
67			
57	FCC_15.231_433M_3m_AVG		
47 <u>5</u> Z	9 11 peak		
37 marghand and and and and and and and and and	10 12 AVG		
27 Namen Average A			
17			
7			
-3			
-13			
	0.000 3400.000 3800.000 4200.000 5000.000 MHz		
No. Mk. Freq. Reading Correct Measure- Limi Level Factor ment	t Over		
MHz dBuV dB/m dBuV/m dBuV/			
1 1301.790 47.85 -7.61 40.24 74.0	·		
2 * 1301.790 40.65 -7.61 33.04 54.0			
3 1735.720 47.26 -4.33 42.93 80.8			
4 1735.720 40.06 -4.33 35.73 60.8			
5 2169.650 46.17 -0.47 45.70 80.8 6 2169.650 38.97 -0.47 38.50 60.8	· ·		
6 2169.650 38.97 -0.47 38.50 60.8 7 2603.580 43.76 0.77 44.53 80.8			
8 2603.580 36.56 0.77 37.33 60.8			
9 3037.510 43.55 1.85 45.40 80.8			
10 3037.510 36.35 1.85 38.20 60.8	· ·		
11 3471.440 43.35 2.68 46.03 80.8			
12 3471.440 36.15 2.68 38.83 60.8	· · ·		

14.3 20dB Occupied Bandwidth

LIMITS

According to 15.231(C), the bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70MHz and below 900MHz.

Limit = 433.92MHz*0.25% = 1084.8 KHz

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

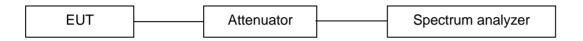
- 1. The output port (antenna) from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.
- 2. Spectrum analyzer set the corresponding parameters for measurement and record the tested data

TEST RESULTS

PASS

Please refer to the following table.

Frequency (MHz)	20 dB Bandwidth (KHz)	Limit (KHz)	Result					
433.92	62.48	1084.8	PASS					
	Test Photo							
Spectrum Analyzer 1 Spe Swept SA Swept	ctrum Analyzer 2 Spectrum Analyzer 3 occupied BW Occupied BW Input Z: 50 Ω Atten: 10 dB Trig: Free F Gerr CCorr Freq Ref. Int (S) Atten: 10 dB Trig: Free F Ref Lvi Offset 1.00 dB Ref Value 10.00 dBm Interview Interview #Video BW 30.000 kHz* #Video BW 30.000 kHz* Measure Ref 2.48 kHz % of OBV x dB	Avg Hold>10/10 Radio Sld: None 2.00 CF S 200. Freq 0 Hz Span 2 MHz Sweep 24.7 ms (1001 pts) Frace Trace 1 er13 dBm	00 MHz tep 000 kHz Auto Man Offset					


14.4 Transmission time

LIMITS

15.231 (a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

15.231(a) (2) A transmitter activated automatically shall cease transmission within 5seconds after activation.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- 1. The output port (antenna) from the transmitter was connected to an attenuator and then to the input of the RF Spectrum analyzer.
- 2. Spectrum analyzer set the corresponding parameters for measurement and record the tested data.

TEST RESULTS

PASS

Please refer to the following table.

Frequency (MHz)	Transmission time (sec)	Limit (sec)	Result
433.92	2.04	5	PASS
	Test Pho	oto	
Spectrum Analyzer 1 Swept SA KEYSIGHT Input: RF Coupling: DC Align: Auto V Scale/Div 10 dB Log -9.00 -29.0 -39.0 -49.0	ctrum Analyzer 2 pt SA Input Z: 50 Ω Cor CCor Freq Ref: Int (S) Ref LvI Offset 1.00 dB Ref Level 1.00 dB Ref Level 1.00 dB Ref Level 1.00 dB	Avg Hold: 1/1 Trig: Free Run Mwwwwww Marke ΔMkr1 2.040 s 0.08 dB	r ∆ Time Settings
-59.0 -69.0 -79.0	Atomo, ingl Maria Mari		k-Pk Search Counter farker Delta Mkr→CF
-89.0 Center 433.924000 MHz Res BW 100 kHz	#Video BW 300 kHz Jun 06, 2023 7:10:26 PM	Span 0 Hz Sweep 30.0 s (1001 pts)	lkr→Ref Lvl nuous Peak h Dn off

14.5 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203 and 15.204:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

ANTENNA CONNECTED CONSTRUCTION

The antenna is Integral antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 0dBi, Therefore, the antenna is consider meet the requirement.

Report No.: NTC2306006FV00

15. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2023	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2022	2 Year
3.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2023	1 Year
4.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 13, 2023	1 Year
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	101094	Mar. 13, 2023	1 Year
6.	Horn Antenna	Schwarzbeck	BBHA9170	9170-172	Mar. 23, 2022	2 Year
7.	Power Sensor	DARE	RPR3006W	15l00041SNO 64	Mar. 13, 2023	1 Year
8.	Communication Tester	Rohde & Schwarz	CMW500	149004	Mar. 13, 2023	1 Year
9.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2022	2 Year
10.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2023	1 Year
11.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2023	1 Year
12.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2022	2 Year
13.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2023	1 Year
14.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2023	1 Year
15.	L.I.S.N	Rohde & Schwarz	ESH2-Z5	893606/014	Mar. 13, 2023	1 Year
16.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar. 13, 2023	1 Year
17.	Temperature & Humidity Chamber	REMAFEE	SYHR225L	N/A	Mar. 13, 2023	1 Year
18.	DC Source	Maynuo	MY8811	N/A	Mar. 13, 2023	1 Year
19.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
20.	Chamber	SAEMC	9*7*7m	N/A	Apr. 21, 2023	2 Year
21.	Test Software	EZ	EZ_EMC	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.